mtd: gpmi: rename the functions from gpmi_nfc_* to gpmi_nand_*
[linux/fpc-iii.git] / mm / huge_memory.c
blob7de1bf85f6833422e16161445b71e328fad2e1f6
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
72 static struct kmem_cache *mm_slot_cache __read_mostly;
74 /**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
80 struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
86 /**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
92 * There is only the one khugepaged_scan instance of this cursor structure.
94 struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
99 static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 static int set_recommended_min_free_kbytes(void)
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
110 if (!khugepaged_enabled())
111 return 0;
113 for_each_populated_zone(zone)
114 nr_zones++;
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
138 late_initcall(set_recommended_min_free_kbytes);
140 static int start_khugepaged(void)
142 int err = 0;
143 if (khugepaged_enabled()) {
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
154 if (!list_empty(&khugepaged_scan.mm_head))
155 wake_up_interruptible(&khugepaged_wait);
157 set_recommended_min_free_kbytes();
158 } else if (khugepaged_thread) {
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
163 return err;
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
169 static inline bool is_huge_zero_page(struct page *page)
171 return ACCESS_ONCE(huge_zero_page) == page;
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
176 return is_huge_zero_page(pmd_page(pmd));
179 static struct page *get_huge_zero_page(void)
181 struct page *zero_page;
182 retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_page);
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 HPAGE_PMD_ORDER);
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 return NULL;
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
193 preempt_disable();
194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_page);
206 static void put_huge_zero_page(void)
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
229 return HPAGE_PMD_NR;
232 return 0;
235 static struct shrinker huge_zero_page_shrinker = {
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
238 .seeks = DEFAULT_SEEKS,
241 #ifdef CONFIG_SYSFS
243 static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
253 else
254 return sprintf(buf, "always madvise [never]\n");
256 static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
274 } else
275 return -EINVAL;
277 return count;
280 static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
287 static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
291 ssize_t ret;
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
297 if (ret > 0) {
298 int err;
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
304 if (err)
305 ret = err;
308 return ret;
310 static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
313 static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
321 static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
326 unsigned long value;
327 int ret;
329 ret = kstrtoul(buf, 10, &value);
330 if (ret < 0)
331 return ret;
332 if (value > 1)
333 return -EINVAL;
335 if (value)
336 set_bit(flag, &transparent_hugepage_flags);
337 else
338 clear_bit(flag, &transparent_hugepage_flags);
340 return count;
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
348 static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
355 static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
363 static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378 static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394 static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
398 static struct attribute *hugepage_attr[] = {
399 &enabled_attr.attr,
400 &defrag_attr.attr,
401 &use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
404 #endif
405 NULL,
408 static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 char *buf)
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
423 unsigned long msecs;
424 int err;
426 err = kstrtoul(buf, 10, &msecs);
427 if (err || msecs > UINT_MAX)
428 return -EINVAL;
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
433 return count;
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
450 unsigned long msecs;
451 int err;
453 err = kstrtoul(buf, 10, &msecs);
454 if (err || msecs > UINT_MAX)
455 return -EINVAL;
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
460 return count;
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
476 int err;
477 unsigned long pages;
479 err = kstrtoul(buf, 10, &pages);
480 if (err || !pages || pages > UINT_MAX)
481 return -EINVAL;
483 khugepaged_pages_to_scan = pages;
485 return count;
487 static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
497 static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
500 static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
502 char *buf)
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
506 static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522 static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf)
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
544 int err;
545 unsigned long max_ptes_none;
547 err = kstrtoul(buf, 10, &max_ptes_none);
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 return -EINVAL;
551 khugepaged_max_ptes_none = max_ptes_none;
553 return count;
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
559 static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
567 NULL,
570 static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
577 int err;
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582 return -ENOMEM;
585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586 if (err) {
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 goto delete_obj;
591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592 if (err) {
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto remove_hp_group;
597 return 0;
599 remove_hp_group:
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602 kobject_put(*hugepage_kobj);
603 return err;
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
615 return 0;
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621 #endif /* CONFIG_SYSFS */
623 static int __init hugepage_init(void)
625 int err;
626 struct kobject *hugepage_kobj;
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
630 return -EINVAL;
633 err = hugepage_init_sysfs(&hugepage_kobj);
634 if (err)
635 return err;
637 err = khugepaged_slab_init();
638 if (err)
639 goto out;
641 register_shrinker(&huge_zero_page_shrinker);
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
651 start_khugepaged();
653 return 0;
654 out:
655 hugepage_exit_sysfs(hugepage_kobj);
656 return err;
658 module_init(hugepage_init)
660 static int __init setup_transparent_hugepage(char *str)
662 int ret = 0;
663 if (!str)
664 goto out;
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
684 out:
685 if (!ret)
686 printk(KERN_WARNING
687 "transparent_hugepage= cannot parse, ignored\n");
688 return ret;
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
696 return pmd;
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
701 pmd_t entry;
702 entry = mk_pmd(page, prot);
703 entry = pmd_mkhuge(entry);
704 return entry;
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
712 pgtable_t pgtable;
713 spinlock_t *ptl;
715 VM_BUG_ON(!PageCompound(page));
716 pgtable = pte_alloc_one(mm, haddr);
717 if (unlikely(!pgtable))
718 return VM_FAULT_OOM;
720 clear_huge_page(page, haddr, HPAGE_PMD_NR);
722 * The memory barrier inside __SetPageUptodate makes sure that
723 * clear_huge_page writes become visible before the set_pmd_at()
724 * write.
726 __SetPageUptodate(page);
728 ptl = pmd_lock(mm, pmd);
729 if (unlikely(!pmd_none(*pmd))) {
730 spin_unlock(ptl);
731 mem_cgroup_uncharge_page(page);
732 put_page(page);
733 pte_free(mm, pgtable);
734 } else {
735 pmd_t entry;
736 entry = mk_huge_pmd(page, vma->vm_page_prot);
737 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
738 page_add_new_anon_rmap(page, vma, haddr);
739 pgtable_trans_huge_deposit(mm, pmd, pgtable);
740 set_pmd_at(mm, haddr, pmd, entry);
741 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
742 atomic_long_inc(&mm->nr_ptes);
743 spin_unlock(ptl);
746 return 0;
749 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
751 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
754 static inline struct page *alloc_hugepage_vma(int defrag,
755 struct vm_area_struct *vma,
756 unsigned long haddr, int nd,
757 gfp_t extra_gfp)
759 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
760 HPAGE_PMD_ORDER, vma, haddr, nd);
763 /* Caller must hold page table lock. */
764 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
766 struct page *zero_page)
768 pmd_t entry;
769 if (!pmd_none(*pmd))
770 return false;
771 entry = mk_pmd(zero_page, vma->vm_page_prot);
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 atomic_long_inc(&mm->nr_ptes);
777 return true;
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
787 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
788 return VM_FAULT_FALLBACK;
789 if (unlikely(anon_vma_prepare(vma)))
790 return VM_FAULT_OOM;
791 if (unlikely(khugepaged_enter(vma)))
792 return VM_FAULT_OOM;
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
795 spinlock_t *ptl;
796 pgtable_t pgtable;
797 struct page *zero_page;
798 bool set;
799 pgtable = pte_alloc_one(mm, haddr);
800 if (unlikely(!pgtable))
801 return VM_FAULT_OOM;
802 zero_page = get_huge_zero_page();
803 if (unlikely(!zero_page)) {
804 pte_free(mm, pgtable);
805 count_vm_event(THP_FAULT_FALLBACK);
806 return VM_FAULT_FALLBACK;
808 ptl = pmd_lock(mm, pmd);
809 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810 zero_page);
811 spin_unlock(ptl);
812 if (!set) {
813 pte_free(mm, pgtable);
814 put_huge_zero_page();
816 return 0;
818 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 vma, haddr, numa_node_id(), 0);
820 if (unlikely(!page)) {
821 count_vm_event(THP_FAULT_FALLBACK);
822 return VM_FAULT_FALLBACK;
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
826 count_vm_event(THP_FAULT_FALLBACK);
827 return VM_FAULT_FALLBACK;
829 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
836 count_vm_event(THP_FAULT_ALLOC);
837 return 0;
840 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
842 struct vm_area_struct *vma)
844 spinlock_t *dst_ptl, *src_ptl;
845 struct page *src_page;
846 pmd_t pmd;
847 pgtable_t pgtable;
848 int ret;
850 ret = -ENOMEM;
851 pgtable = pte_alloc_one(dst_mm, addr);
852 if (unlikely(!pgtable))
853 goto out;
855 dst_ptl = pmd_lock(dst_mm, dst_pmd);
856 src_ptl = pmd_lockptr(src_mm, src_pmd);
857 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
859 ret = -EAGAIN;
860 pmd = *src_pmd;
861 if (unlikely(!pmd_trans_huge(pmd))) {
862 pte_free(dst_mm, pgtable);
863 goto out_unlock;
866 * When page table lock is held, the huge zero pmd should not be
867 * under splitting since we don't split the page itself, only pmd to
868 * a page table.
870 if (is_huge_zero_pmd(pmd)) {
871 struct page *zero_page;
872 bool set;
874 * get_huge_zero_page() will never allocate a new page here,
875 * since we already have a zero page to copy. It just takes a
876 * reference.
878 zero_page = get_huge_zero_page();
879 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
880 zero_page);
881 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
882 ret = 0;
883 goto out_unlock;
886 /* mmap_sem prevents this happening but warn if that changes */
887 WARN_ON(pmd_trans_migrating(pmd));
889 if (unlikely(pmd_trans_splitting(pmd))) {
890 /* split huge page running from under us */
891 spin_unlock(src_ptl);
892 spin_unlock(dst_ptl);
893 pte_free(dst_mm, pgtable);
895 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
896 goto out;
898 src_page = pmd_page(pmd);
899 VM_BUG_ON(!PageHead(src_page));
900 get_page(src_page);
901 page_dup_rmap(src_page);
902 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
904 pmdp_set_wrprotect(src_mm, addr, src_pmd);
905 pmd = pmd_mkold(pmd_wrprotect(pmd));
906 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
907 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
908 atomic_long_inc(&dst_mm->nr_ptes);
910 ret = 0;
911 out_unlock:
912 spin_unlock(src_ptl);
913 spin_unlock(dst_ptl);
914 out:
915 return ret;
918 void huge_pmd_set_accessed(struct mm_struct *mm,
919 struct vm_area_struct *vma,
920 unsigned long address,
921 pmd_t *pmd, pmd_t orig_pmd,
922 int dirty)
924 spinlock_t *ptl;
925 pmd_t entry;
926 unsigned long haddr;
928 ptl = pmd_lock(mm, pmd);
929 if (unlikely(!pmd_same(*pmd, orig_pmd)))
930 goto unlock;
932 entry = pmd_mkyoung(orig_pmd);
933 haddr = address & HPAGE_PMD_MASK;
934 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
935 update_mmu_cache_pmd(vma, address, pmd);
937 unlock:
938 spin_unlock(ptl);
941 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
942 struct vm_area_struct *vma, unsigned long address,
943 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
945 spinlock_t *ptl;
946 pgtable_t pgtable;
947 pmd_t _pmd;
948 struct page *page;
949 int i, ret = 0;
950 unsigned long mmun_start; /* For mmu_notifiers */
951 unsigned long mmun_end; /* For mmu_notifiers */
953 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
954 if (!page) {
955 ret |= VM_FAULT_OOM;
956 goto out;
959 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
960 put_page(page);
961 ret |= VM_FAULT_OOM;
962 goto out;
965 clear_user_highpage(page, address);
966 __SetPageUptodate(page);
968 mmun_start = haddr;
969 mmun_end = haddr + HPAGE_PMD_SIZE;
970 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
972 ptl = pmd_lock(mm, pmd);
973 if (unlikely(!pmd_same(*pmd, orig_pmd)))
974 goto out_free_page;
976 pmdp_clear_flush(vma, haddr, pmd);
977 /* leave pmd empty until pte is filled */
979 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
980 pmd_populate(mm, &_pmd, pgtable);
982 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
983 pte_t *pte, entry;
984 if (haddr == (address & PAGE_MASK)) {
985 entry = mk_pte(page, vma->vm_page_prot);
986 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
987 page_add_new_anon_rmap(page, vma, haddr);
988 } else {
989 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
990 entry = pte_mkspecial(entry);
992 pte = pte_offset_map(&_pmd, haddr);
993 VM_BUG_ON(!pte_none(*pte));
994 set_pte_at(mm, haddr, pte, entry);
995 pte_unmap(pte);
997 smp_wmb(); /* make pte visible before pmd */
998 pmd_populate(mm, pmd, pgtable);
999 spin_unlock(ptl);
1000 put_huge_zero_page();
1001 inc_mm_counter(mm, MM_ANONPAGES);
1003 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1005 ret |= VM_FAULT_WRITE;
1006 out:
1007 return ret;
1008 out_free_page:
1009 spin_unlock(ptl);
1010 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1011 mem_cgroup_uncharge_page(page);
1012 put_page(page);
1013 goto out;
1016 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1017 struct vm_area_struct *vma,
1018 unsigned long address,
1019 pmd_t *pmd, pmd_t orig_pmd,
1020 struct page *page,
1021 unsigned long haddr)
1023 spinlock_t *ptl;
1024 pgtable_t pgtable;
1025 pmd_t _pmd;
1026 int ret = 0, i;
1027 struct page **pages;
1028 unsigned long mmun_start; /* For mmu_notifiers */
1029 unsigned long mmun_end; /* For mmu_notifiers */
1031 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1032 GFP_KERNEL);
1033 if (unlikely(!pages)) {
1034 ret |= VM_FAULT_OOM;
1035 goto out;
1038 for (i = 0; i < HPAGE_PMD_NR; i++) {
1039 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1040 __GFP_OTHER_NODE,
1041 vma, address, page_to_nid(page));
1042 if (unlikely(!pages[i] ||
1043 mem_cgroup_newpage_charge(pages[i], mm,
1044 GFP_KERNEL))) {
1045 if (pages[i])
1046 put_page(pages[i]);
1047 mem_cgroup_uncharge_start();
1048 while (--i >= 0) {
1049 mem_cgroup_uncharge_page(pages[i]);
1050 put_page(pages[i]);
1052 mem_cgroup_uncharge_end();
1053 kfree(pages);
1054 ret |= VM_FAULT_OOM;
1055 goto out;
1059 for (i = 0; i < HPAGE_PMD_NR; i++) {
1060 copy_user_highpage(pages[i], page + i,
1061 haddr + PAGE_SIZE * i, vma);
1062 __SetPageUptodate(pages[i]);
1063 cond_resched();
1066 mmun_start = haddr;
1067 mmun_end = haddr + HPAGE_PMD_SIZE;
1068 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1070 ptl = pmd_lock(mm, pmd);
1071 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1072 goto out_free_pages;
1073 VM_BUG_ON(!PageHead(page));
1075 pmdp_clear_flush(vma, haddr, pmd);
1076 /* leave pmd empty until pte is filled */
1078 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1079 pmd_populate(mm, &_pmd, pgtable);
1081 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1082 pte_t *pte, entry;
1083 entry = mk_pte(pages[i], vma->vm_page_prot);
1084 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1085 page_add_new_anon_rmap(pages[i], vma, haddr);
1086 pte = pte_offset_map(&_pmd, haddr);
1087 VM_BUG_ON(!pte_none(*pte));
1088 set_pte_at(mm, haddr, pte, entry);
1089 pte_unmap(pte);
1091 kfree(pages);
1093 smp_wmb(); /* make pte visible before pmd */
1094 pmd_populate(mm, pmd, pgtable);
1095 page_remove_rmap(page);
1096 spin_unlock(ptl);
1098 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1100 ret |= VM_FAULT_WRITE;
1101 put_page(page);
1103 out:
1104 return ret;
1106 out_free_pages:
1107 spin_unlock(ptl);
1108 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1109 mem_cgroup_uncharge_start();
1110 for (i = 0; i < HPAGE_PMD_NR; i++) {
1111 mem_cgroup_uncharge_page(pages[i]);
1112 put_page(pages[i]);
1114 mem_cgroup_uncharge_end();
1115 kfree(pages);
1116 goto out;
1119 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1120 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1122 spinlock_t *ptl;
1123 int ret = 0;
1124 struct page *page = NULL, *new_page;
1125 unsigned long haddr;
1126 unsigned long mmun_start; /* For mmu_notifiers */
1127 unsigned long mmun_end; /* For mmu_notifiers */
1129 ptl = pmd_lockptr(mm, pmd);
1130 VM_BUG_ON(!vma->anon_vma);
1131 haddr = address & HPAGE_PMD_MASK;
1132 if (is_huge_zero_pmd(orig_pmd))
1133 goto alloc;
1134 spin_lock(ptl);
1135 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1136 goto out_unlock;
1138 page = pmd_page(orig_pmd);
1139 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1140 if (page_mapcount(page) == 1) {
1141 pmd_t entry;
1142 entry = pmd_mkyoung(orig_pmd);
1143 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1144 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1145 update_mmu_cache_pmd(vma, address, pmd);
1146 ret |= VM_FAULT_WRITE;
1147 goto out_unlock;
1149 get_page(page);
1150 spin_unlock(ptl);
1151 alloc:
1152 if (transparent_hugepage_enabled(vma) &&
1153 !transparent_hugepage_debug_cow())
1154 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1155 vma, haddr, numa_node_id(), 0);
1156 else
1157 new_page = NULL;
1159 if (unlikely(!new_page)) {
1160 if (is_huge_zero_pmd(orig_pmd)) {
1161 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1162 address, pmd, orig_pmd, haddr);
1163 } else {
1164 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1165 pmd, orig_pmd, page, haddr);
1166 if (ret & VM_FAULT_OOM)
1167 split_huge_page(page);
1168 put_page(page);
1170 count_vm_event(THP_FAULT_FALLBACK);
1171 goto out;
1174 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1175 put_page(new_page);
1176 if (page) {
1177 split_huge_page(page);
1178 put_page(page);
1180 count_vm_event(THP_FAULT_FALLBACK);
1181 ret |= VM_FAULT_OOM;
1182 goto out;
1185 count_vm_event(THP_FAULT_ALLOC);
1187 if (is_huge_zero_pmd(orig_pmd))
1188 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1189 else
1190 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1191 __SetPageUptodate(new_page);
1193 mmun_start = haddr;
1194 mmun_end = haddr + HPAGE_PMD_SIZE;
1195 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1197 spin_lock(ptl);
1198 if (page)
1199 put_page(page);
1200 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1201 spin_unlock(ptl);
1202 mem_cgroup_uncharge_page(new_page);
1203 put_page(new_page);
1204 goto out_mn;
1205 } else {
1206 pmd_t entry;
1207 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1208 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1209 pmdp_clear_flush(vma, haddr, pmd);
1210 page_add_new_anon_rmap(new_page, vma, haddr);
1211 set_pmd_at(mm, haddr, pmd, entry);
1212 update_mmu_cache_pmd(vma, address, pmd);
1213 if (is_huge_zero_pmd(orig_pmd)) {
1214 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1215 put_huge_zero_page();
1216 } else {
1217 VM_BUG_ON(!PageHead(page));
1218 page_remove_rmap(page);
1219 put_page(page);
1221 ret |= VM_FAULT_WRITE;
1223 spin_unlock(ptl);
1224 out_mn:
1225 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1226 out:
1227 return ret;
1228 out_unlock:
1229 spin_unlock(ptl);
1230 return ret;
1233 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1234 unsigned long addr,
1235 pmd_t *pmd,
1236 unsigned int flags)
1238 struct mm_struct *mm = vma->vm_mm;
1239 struct page *page = NULL;
1241 assert_spin_locked(pmd_lockptr(mm, pmd));
1243 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1244 goto out;
1246 /* Avoid dumping huge zero page */
1247 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1248 return ERR_PTR(-EFAULT);
1250 /* Full NUMA hinting faults to serialise migration in fault paths */
1251 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1252 goto out;
1254 page = pmd_page(*pmd);
1255 VM_BUG_ON(!PageHead(page));
1256 if (flags & FOLL_TOUCH) {
1257 pmd_t _pmd;
1259 * We should set the dirty bit only for FOLL_WRITE but
1260 * for now the dirty bit in the pmd is meaningless.
1261 * And if the dirty bit will become meaningful and
1262 * we'll only set it with FOLL_WRITE, an atomic
1263 * set_bit will be required on the pmd to set the
1264 * young bit, instead of the current set_pmd_at.
1266 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1267 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1268 pmd, _pmd, 1))
1269 update_mmu_cache_pmd(vma, addr, pmd);
1271 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1272 if (page->mapping && trylock_page(page)) {
1273 lru_add_drain();
1274 if (page->mapping)
1275 mlock_vma_page(page);
1276 unlock_page(page);
1279 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1280 VM_BUG_ON(!PageCompound(page));
1281 if (flags & FOLL_GET)
1282 get_page_foll(page);
1284 out:
1285 return page;
1288 /* NUMA hinting page fault entry point for trans huge pmds */
1289 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1290 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1292 spinlock_t *ptl;
1293 struct anon_vma *anon_vma = NULL;
1294 struct page *page;
1295 unsigned long haddr = addr & HPAGE_PMD_MASK;
1296 int page_nid = -1, this_nid = numa_node_id();
1297 int target_nid, last_cpupid = -1;
1298 bool page_locked;
1299 bool migrated = false;
1300 int flags = 0;
1302 ptl = pmd_lock(mm, pmdp);
1303 if (unlikely(!pmd_same(pmd, *pmdp)))
1304 goto out_unlock;
1307 * If there are potential migrations, wait for completion and retry
1308 * without disrupting NUMA hinting information. Do not relock and
1309 * check_same as the page may no longer be mapped.
1311 if (unlikely(pmd_trans_migrating(*pmdp))) {
1312 spin_unlock(ptl);
1313 wait_migrate_huge_page(vma->anon_vma, pmdp);
1314 goto out;
1317 page = pmd_page(pmd);
1318 BUG_ON(is_huge_zero_page(page));
1319 page_nid = page_to_nid(page);
1320 last_cpupid = page_cpupid_last(page);
1321 count_vm_numa_event(NUMA_HINT_FAULTS);
1322 if (page_nid == this_nid) {
1323 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1324 flags |= TNF_FAULT_LOCAL;
1328 * Avoid grouping on DSO/COW pages in specific and RO pages
1329 * in general, RO pages shouldn't hurt as much anyway since
1330 * they can be in shared cache state.
1332 if (!pmd_write(pmd))
1333 flags |= TNF_NO_GROUP;
1336 * Acquire the page lock to serialise THP migrations but avoid dropping
1337 * page_table_lock if at all possible
1339 page_locked = trylock_page(page);
1340 target_nid = mpol_misplaced(page, vma, haddr);
1341 if (target_nid == -1) {
1342 /* If the page was locked, there are no parallel migrations */
1343 if (page_locked)
1344 goto clear_pmdnuma;
1347 /* Migration could have started since the pmd_trans_migrating check */
1348 if (!page_locked) {
1349 spin_unlock(ptl);
1350 wait_on_page_locked(page);
1351 page_nid = -1;
1352 goto out;
1356 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1357 * to serialises splits
1359 get_page(page);
1360 spin_unlock(ptl);
1361 anon_vma = page_lock_anon_vma_read(page);
1363 /* Confirm the PMD did not change while page_table_lock was released */
1364 spin_lock(ptl);
1365 if (unlikely(!pmd_same(pmd, *pmdp))) {
1366 unlock_page(page);
1367 put_page(page);
1368 page_nid = -1;
1369 goto out_unlock;
1372 /* Bail if we fail to protect against THP splits for any reason */
1373 if (unlikely(!anon_vma)) {
1374 put_page(page);
1375 page_nid = -1;
1376 goto clear_pmdnuma;
1380 * Migrate the THP to the requested node, returns with page unlocked
1381 * and pmd_numa cleared.
1383 spin_unlock(ptl);
1384 migrated = migrate_misplaced_transhuge_page(mm, vma,
1385 pmdp, pmd, addr, page, target_nid);
1386 if (migrated) {
1387 flags |= TNF_MIGRATED;
1388 page_nid = target_nid;
1391 goto out;
1392 clear_pmdnuma:
1393 BUG_ON(!PageLocked(page));
1394 pmd = pmd_mknonnuma(pmd);
1395 set_pmd_at(mm, haddr, pmdp, pmd);
1396 VM_BUG_ON(pmd_numa(*pmdp));
1397 update_mmu_cache_pmd(vma, addr, pmdp);
1398 unlock_page(page);
1399 out_unlock:
1400 spin_unlock(ptl);
1402 out:
1403 if (anon_vma)
1404 page_unlock_anon_vma_read(anon_vma);
1406 if (page_nid != -1)
1407 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1409 return 0;
1412 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1413 pmd_t *pmd, unsigned long addr)
1415 spinlock_t *ptl;
1416 int ret = 0;
1418 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1419 struct page *page;
1420 pgtable_t pgtable;
1421 pmd_t orig_pmd;
1423 * For architectures like ppc64 we look at deposited pgtable
1424 * when calling pmdp_get_and_clear. So do the
1425 * pgtable_trans_huge_withdraw after finishing pmdp related
1426 * operations.
1428 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1429 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1430 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1431 if (is_huge_zero_pmd(orig_pmd)) {
1432 atomic_long_dec(&tlb->mm->nr_ptes);
1433 spin_unlock(ptl);
1434 put_huge_zero_page();
1435 } else {
1436 page = pmd_page(orig_pmd);
1437 page_remove_rmap(page);
1438 VM_BUG_ON(page_mapcount(page) < 0);
1439 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1440 VM_BUG_ON(!PageHead(page));
1441 atomic_long_dec(&tlb->mm->nr_ptes);
1442 spin_unlock(ptl);
1443 tlb_remove_page(tlb, page);
1445 pte_free(tlb->mm, pgtable);
1446 ret = 1;
1448 return ret;
1451 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1452 unsigned long addr, unsigned long end,
1453 unsigned char *vec)
1455 spinlock_t *ptl;
1456 int ret = 0;
1458 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1460 * All logical pages in the range are present
1461 * if backed by a huge page.
1463 spin_unlock(ptl);
1464 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1465 ret = 1;
1468 return ret;
1471 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1472 unsigned long old_addr,
1473 unsigned long new_addr, unsigned long old_end,
1474 pmd_t *old_pmd, pmd_t *new_pmd)
1476 spinlock_t *old_ptl, *new_ptl;
1477 int ret = 0;
1478 pmd_t pmd;
1480 struct mm_struct *mm = vma->vm_mm;
1482 if ((old_addr & ~HPAGE_PMD_MASK) ||
1483 (new_addr & ~HPAGE_PMD_MASK) ||
1484 old_end - old_addr < HPAGE_PMD_SIZE ||
1485 (new_vma->vm_flags & VM_NOHUGEPAGE))
1486 goto out;
1489 * The destination pmd shouldn't be established, free_pgtables()
1490 * should have release it.
1492 if (WARN_ON(!pmd_none(*new_pmd))) {
1493 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1494 goto out;
1498 * We don't have to worry about the ordering of src and dst
1499 * ptlocks because exclusive mmap_sem prevents deadlock.
1501 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1502 if (ret == 1) {
1503 new_ptl = pmd_lockptr(mm, new_pmd);
1504 if (new_ptl != old_ptl)
1505 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1506 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1507 VM_BUG_ON(!pmd_none(*new_pmd));
1508 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1509 if (new_ptl != old_ptl) {
1510 pgtable_t pgtable;
1513 * Move preallocated PTE page table if new_pmd is on
1514 * different PMD page table.
1516 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1517 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1519 spin_unlock(new_ptl);
1521 spin_unlock(old_ptl);
1523 out:
1524 return ret;
1528 * Returns
1529 * - 0 if PMD could not be locked
1530 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1531 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1533 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1534 unsigned long addr, pgprot_t newprot, int prot_numa)
1536 struct mm_struct *mm = vma->vm_mm;
1537 spinlock_t *ptl;
1538 int ret = 0;
1540 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1541 pmd_t entry;
1542 ret = 1;
1543 if (!prot_numa) {
1544 entry = pmdp_get_and_clear(mm, addr, pmd);
1545 if (pmd_numa(entry))
1546 entry = pmd_mknonnuma(entry);
1547 entry = pmd_modify(entry, newprot);
1548 ret = HPAGE_PMD_NR;
1549 BUG_ON(pmd_write(entry));
1550 } else {
1551 struct page *page = pmd_page(*pmd);
1554 * Do not trap faults against the zero page. The
1555 * read-only data is likely to be read-cached on the
1556 * local CPU cache and it is less useful to know about
1557 * local vs remote hits on the zero page.
1559 if (!is_huge_zero_page(page) &&
1560 !pmd_numa(*pmd)) {
1561 entry = *pmd;
1562 entry = pmd_mknuma(entry);
1563 ret = HPAGE_PMD_NR;
1567 /* Set PMD if cleared earlier */
1568 if (ret == HPAGE_PMD_NR)
1569 set_pmd_at(mm, addr, pmd, entry);
1571 spin_unlock(ptl);
1574 return ret;
1578 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1579 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1581 * Note that if it returns 1, this routine returns without unlocking page
1582 * table locks. So callers must unlock them.
1584 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1585 spinlock_t **ptl)
1587 *ptl = pmd_lock(vma->vm_mm, pmd);
1588 if (likely(pmd_trans_huge(*pmd))) {
1589 if (unlikely(pmd_trans_splitting(*pmd))) {
1590 spin_unlock(*ptl);
1591 wait_split_huge_page(vma->anon_vma, pmd);
1592 return -1;
1593 } else {
1594 /* Thp mapped by 'pmd' is stable, so we can
1595 * handle it as it is. */
1596 return 1;
1599 spin_unlock(*ptl);
1600 return 0;
1604 * This function returns whether a given @page is mapped onto the @address
1605 * in the virtual space of @mm.
1607 * When it's true, this function returns *pmd with holding the page table lock
1608 * and passing it back to the caller via @ptl.
1609 * If it's false, returns NULL without holding the page table lock.
1611 pmd_t *page_check_address_pmd(struct page *page,
1612 struct mm_struct *mm,
1613 unsigned long address,
1614 enum page_check_address_pmd_flag flag,
1615 spinlock_t **ptl)
1617 pmd_t *pmd;
1619 if (address & ~HPAGE_PMD_MASK)
1620 return NULL;
1622 pmd = mm_find_pmd(mm, address);
1623 if (!pmd)
1624 return NULL;
1625 *ptl = pmd_lock(mm, pmd);
1626 if (pmd_none(*pmd))
1627 goto unlock;
1628 if (pmd_page(*pmd) != page)
1629 goto unlock;
1631 * split_vma() may create temporary aliased mappings. There is
1632 * no risk as long as all huge pmd are found and have their
1633 * splitting bit set before __split_huge_page_refcount
1634 * runs. Finding the same huge pmd more than once during the
1635 * same rmap walk is not a problem.
1637 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1638 pmd_trans_splitting(*pmd))
1639 goto unlock;
1640 if (pmd_trans_huge(*pmd)) {
1641 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1642 !pmd_trans_splitting(*pmd));
1643 return pmd;
1645 unlock:
1646 spin_unlock(*ptl);
1647 return NULL;
1650 static int __split_huge_page_splitting(struct page *page,
1651 struct vm_area_struct *vma,
1652 unsigned long address)
1654 struct mm_struct *mm = vma->vm_mm;
1655 spinlock_t *ptl;
1656 pmd_t *pmd;
1657 int ret = 0;
1658 /* For mmu_notifiers */
1659 const unsigned long mmun_start = address;
1660 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1662 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1663 pmd = page_check_address_pmd(page, mm, address,
1664 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1665 if (pmd) {
1667 * We can't temporarily set the pmd to null in order
1668 * to split it, the pmd must remain marked huge at all
1669 * times or the VM won't take the pmd_trans_huge paths
1670 * and it won't wait on the anon_vma->root->rwsem to
1671 * serialize against split_huge_page*.
1673 pmdp_splitting_flush(vma, address, pmd);
1674 ret = 1;
1675 spin_unlock(ptl);
1677 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1679 return ret;
1682 static void __split_huge_page_refcount(struct page *page,
1683 struct list_head *list)
1685 int i;
1686 struct zone *zone = page_zone(page);
1687 struct lruvec *lruvec;
1688 int tail_count = 0;
1690 /* prevent PageLRU to go away from under us, and freeze lru stats */
1691 spin_lock_irq(&zone->lru_lock);
1692 lruvec = mem_cgroup_page_lruvec(page, zone);
1694 compound_lock(page);
1695 /* complete memcg works before add pages to LRU */
1696 mem_cgroup_split_huge_fixup(page);
1698 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1699 struct page *page_tail = page + i;
1701 /* tail_page->_mapcount cannot change */
1702 BUG_ON(page_mapcount(page_tail) < 0);
1703 tail_count += page_mapcount(page_tail);
1704 /* check for overflow */
1705 BUG_ON(tail_count < 0);
1706 BUG_ON(atomic_read(&page_tail->_count) != 0);
1708 * tail_page->_count is zero and not changing from
1709 * under us. But get_page_unless_zero() may be running
1710 * from under us on the tail_page. If we used
1711 * atomic_set() below instead of atomic_add(), we
1712 * would then run atomic_set() concurrently with
1713 * get_page_unless_zero(), and atomic_set() is
1714 * implemented in C not using locked ops. spin_unlock
1715 * on x86 sometime uses locked ops because of PPro
1716 * errata 66, 92, so unless somebody can guarantee
1717 * atomic_set() here would be safe on all archs (and
1718 * not only on x86), it's safer to use atomic_add().
1720 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1721 &page_tail->_count);
1723 /* after clearing PageTail the gup refcount can be released */
1724 smp_mb();
1727 * retain hwpoison flag of the poisoned tail page:
1728 * fix for the unsuitable process killed on Guest Machine(KVM)
1729 * by the memory-failure.
1731 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1732 page_tail->flags |= (page->flags &
1733 ((1L << PG_referenced) |
1734 (1L << PG_swapbacked) |
1735 (1L << PG_mlocked) |
1736 (1L << PG_uptodate) |
1737 (1L << PG_active) |
1738 (1L << PG_unevictable)));
1739 page_tail->flags |= (1L << PG_dirty);
1741 /* clear PageTail before overwriting first_page */
1742 smp_wmb();
1745 * __split_huge_page_splitting() already set the
1746 * splitting bit in all pmd that could map this
1747 * hugepage, that will ensure no CPU can alter the
1748 * mapcount on the head page. The mapcount is only
1749 * accounted in the head page and it has to be
1750 * transferred to all tail pages in the below code. So
1751 * for this code to be safe, the split the mapcount
1752 * can't change. But that doesn't mean userland can't
1753 * keep changing and reading the page contents while
1754 * we transfer the mapcount, so the pmd splitting
1755 * status is achieved setting a reserved bit in the
1756 * pmd, not by clearing the present bit.
1758 page_tail->_mapcount = page->_mapcount;
1760 BUG_ON(page_tail->mapping);
1761 page_tail->mapping = page->mapping;
1763 page_tail->index = page->index + i;
1764 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1766 BUG_ON(!PageAnon(page_tail));
1767 BUG_ON(!PageUptodate(page_tail));
1768 BUG_ON(!PageDirty(page_tail));
1769 BUG_ON(!PageSwapBacked(page_tail));
1771 lru_add_page_tail(page, page_tail, lruvec, list);
1773 atomic_sub(tail_count, &page->_count);
1774 BUG_ON(atomic_read(&page->_count) <= 0);
1776 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1778 ClearPageCompound(page);
1779 compound_unlock(page);
1780 spin_unlock_irq(&zone->lru_lock);
1782 for (i = 1; i < HPAGE_PMD_NR; i++) {
1783 struct page *page_tail = page + i;
1784 BUG_ON(page_count(page_tail) <= 0);
1786 * Tail pages may be freed if there wasn't any mapping
1787 * like if add_to_swap() is running on a lru page that
1788 * had its mapping zapped. And freeing these pages
1789 * requires taking the lru_lock so we do the put_page
1790 * of the tail pages after the split is complete.
1792 put_page(page_tail);
1796 * Only the head page (now become a regular page) is required
1797 * to be pinned by the caller.
1799 BUG_ON(page_count(page) <= 0);
1802 static int __split_huge_page_map(struct page *page,
1803 struct vm_area_struct *vma,
1804 unsigned long address)
1806 struct mm_struct *mm = vma->vm_mm;
1807 spinlock_t *ptl;
1808 pmd_t *pmd, _pmd;
1809 int ret = 0, i;
1810 pgtable_t pgtable;
1811 unsigned long haddr;
1813 pmd = page_check_address_pmd(page, mm, address,
1814 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1815 if (pmd) {
1816 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1817 pmd_populate(mm, &_pmd, pgtable);
1819 haddr = address;
1820 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1821 pte_t *pte, entry;
1822 BUG_ON(PageCompound(page+i));
1823 entry = mk_pte(page + i, vma->vm_page_prot);
1824 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1825 if (!pmd_write(*pmd))
1826 entry = pte_wrprotect(entry);
1827 else
1828 BUG_ON(page_mapcount(page) != 1);
1829 if (!pmd_young(*pmd))
1830 entry = pte_mkold(entry);
1831 if (pmd_numa(*pmd))
1832 entry = pte_mknuma(entry);
1833 pte = pte_offset_map(&_pmd, haddr);
1834 BUG_ON(!pte_none(*pte));
1835 set_pte_at(mm, haddr, pte, entry);
1836 pte_unmap(pte);
1839 smp_wmb(); /* make pte visible before pmd */
1841 * Up to this point the pmd is present and huge and
1842 * userland has the whole access to the hugepage
1843 * during the split (which happens in place). If we
1844 * overwrite the pmd with the not-huge version
1845 * pointing to the pte here (which of course we could
1846 * if all CPUs were bug free), userland could trigger
1847 * a small page size TLB miss on the small sized TLB
1848 * while the hugepage TLB entry is still established
1849 * in the huge TLB. Some CPU doesn't like that. See
1850 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1851 * Erratum 383 on page 93. Intel should be safe but is
1852 * also warns that it's only safe if the permission
1853 * and cache attributes of the two entries loaded in
1854 * the two TLB is identical (which should be the case
1855 * here). But it is generally safer to never allow
1856 * small and huge TLB entries for the same virtual
1857 * address to be loaded simultaneously. So instead of
1858 * doing "pmd_populate(); flush_tlb_range();" we first
1859 * mark the current pmd notpresent (atomically because
1860 * here the pmd_trans_huge and pmd_trans_splitting
1861 * must remain set at all times on the pmd until the
1862 * split is complete for this pmd), then we flush the
1863 * SMP TLB and finally we write the non-huge version
1864 * of the pmd entry with pmd_populate.
1866 pmdp_invalidate(vma, address, pmd);
1867 pmd_populate(mm, pmd, pgtable);
1868 ret = 1;
1869 spin_unlock(ptl);
1872 return ret;
1875 /* must be called with anon_vma->root->rwsem held */
1876 static void __split_huge_page(struct page *page,
1877 struct anon_vma *anon_vma,
1878 struct list_head *list)
1880 int mapcount, mapcount2;
1881 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1882 struct anon_vma_chain *avc;
1884 BUG_ON(!PageHead(page));
1885 BUG_ON(PageTail(page));
1887 mapcount = 0;
1888 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1889 struct vm_area_struct *vma = avc->vma;
1890 unsigned long addr = vma_address(page, vma);
1891 BUG_ON(is_vma_temporary_stack(vma));
1892 mapcount += __split_huge_page_splitting(page, vma, addr);
1895 * It is critical that new vmas are added to the tail of the
1896 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1897 * and establishes a child pmd before
1898 * __split_huge_page_splitting() freezes the parent pmd (so if
1899 * we fail to prevent copy_huge_pmd() from running until the
1900 * whole __split_huge_page() is complete), we will still see
1901 * the newly established pmd of the child later during the
1902 * walk, to be able to set it as pmd_trans_splitting too.
1904 if (mapcount != page_mapcount(page))
1905 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1906 mapcount, page_mapcount(page));
1907 BUG_ON(mapcount != page_mapcount(page));
1909 __split_huge_page_refcount(page, list);
1911 mapcount2 = 0;
1912 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1913 struct vm_area_struct *vma = avc->vma;
1914 unsigned long addr = vma_address(page, vma);
1915 BUG_ON(is_vma_temporary_stack(vma));
1916 mapcount2 += __split_huge_page_map(page, vma, addr);
1918 if (mapcount != mapcount2)
1919 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1920 mapcount, mapcount2, page_mapcount(page));
1921 BUG_ON(mapcount != mapcount2);
1925 * Split a hugepage into normal pages. This doesn't change the position of head
1926 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1927 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1928 * from the hugepage.
1929 * Return 0 if the hugepage is split successfully otherwise return 1.
1931 int split_huge_page_to_list(struct page *page, struct list_head *list)
1933 struct anon_vma *anon_vma;
1934 int ret = 1;
1936 BUG_ON(is_huge_zero_page(page));
1937 BUG_ON(!PageAnon(page));
1940 * The caller does not necessarily hold an mmap_sem that would prevent
1941 * the anon_vma disappearing so we first we take a reference to it
1942 * and then lock the anon_vma for write. This is similar to
1943 * page_lock_anon_vma_read except the write lock is taken to serialise
1944 * against parallel split or collapse operations.
1946 anon_vma = page_get_anon_vma(page);
1947 if (!anon_vma)
1948 goto out;
1949 anon_vma_lock_write(anon_vma);
1951 ret = 0;
1952 if (!PageCompound(page))
1953 goto out_unlock;
1955 BUG_ON(!PageSwapBacked(page));
1956 __split_huge_page(page, anon_vma, list);
1957 count_vm_event(THP_SPLIT);
1959 BUG_ON(PageCompound(page));
1960 out_unlock:
1961 anon_vma_unlock_write(anon_vma);
1962 put_anon_vma(anon_vma);
1963 out:
1964 return ret;
1967 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1969 int hugepage_madvise(struct vm_area_struct *vma,
1970 unsigned long *vm_flags, int advice)
1972 struct mm_struct *mm = vma->vm_mm;
1974 switch (advice) {
1975 case MADV_HUGEPAGE:
1977 * Be somewhat over-protective like KSM for now!
1979 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1980 return -EINVAL;
1981 if (mm->def_flags & VM_NOHUGEPAGE)
1982 return -EINVAL;
1983 *vm_flags &= ~VM_NOHUGEPAGE;
1984 *vm_flags |= VM_HUGEPAGE;
1986 * If the vma become good for khugepaged to scan,
1987 * register it here without waiting a page fault that
1988 * may not happen any time soon.
1990 if (unlikely(khugepaged_enter_vma_merge(vma)))
1991 return -ENOMEM;
1992 break;
1993 case MADV_NOHUGEPAGE:
1995 * Be somewhat over-protective like KSM for now!
1997 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1998 return -EINVAL;
1999 *vm_flags &= ~VM_HUGEPAGE;
2000 *vm_flags |= VM_NOHUGEPAGE;
2002 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2003 * this vma even if we leave the mm registered in khugepaged if
2004 * it got registered before VM_NOHUGEPAGE was set.
2006 break;
2009 return 0;
2012 static int __init khugepaged_slab_init(void)
2014 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2015 sizeof(struct mm_slot),
2016 __alignof__(struct mm_slot), 0, NULL);
2017 if (!mm_slot_cache)
2018 return -ENOMEM;
2020 return 0;
2023 static inline struct mm_slot *alloc_mm_slot(void)
2025 if (!mm_slot_cache) /* initialization failed */
2026 return NULL;
2027 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2030 static inline void free_mm_slot(struct mm_slot *mm_slot)
2032 kmem_cache_free(mm_slot_cache, mm_slot);
2035 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2037 struct mm_slot *mm_slot;
2039 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2040 if (mm == mm_slot->mm)
2041 return mm_slot;
2043 return NULL;
2046 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2047 struct mm_slot *mm_slot)
2049 mm_slot->mm = mm;
2050 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2053 static inline int khugepaged_test_exit(struct mm_struct *mm)
2055 return atomic_read(&mm->mm_users) == 0;
2058 int __khugepaged_enter(struct mm_struct *mm)
2060 struct mm_slot *mm_slot;
2061 int wakeup;
2063 mm_slot = alloc_mm_slot();
2064 if (!mm_slot)
2065 return -ENOMEM;
2067 /* __khugepaged_exit() must not run from under us */
2068 VM_BUG_ON(khugepaged_test_exit(mm));
2069 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2070 free_mm_slot(mm_slot);
2071 return 0;
2074 spin_lock(&khugepaged_mm_lock);
2075 insert_to_mm_slots_hash(mm, mm_slot);
2077 * Insert just behind the scanning cursor, to let the area settle
2078 * down a little.
2080 wakeup = list_empty(&khugepaged_scan.mm_head);
2081 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2082 spin_unlock(&khugepaged_mm_lock);
2084 atomic_inc(&mm->mm_count);
2085 if (wakeup)
2086 wake_up_interruptible(&khugepaged_wait);
2088 return 0;
2091 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2093 unsigned long hstart, hend;
2094 if (!vma->anon_vma)
2096 * Not yet faulted in so we will register later in the
2097 * page fault if needed.
2099 return 0;
2100 if (vma->vm_ops)
2101 /* khugepaged not yet working on file or special mappings */
2102 return 0;
2103 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2104 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2105 hend = vma->vm_end & HPAGE_PMD_MASK;
2106 if (hstart < hend)
2107 return khugepaged_enter(vma);
2108 return 0;
2111 void __khugepaged_exit(struct mm_struct *mm)
2113 struct mm_slot *mm_slot;
2114 int free = 0;
2116 spin_lock(&khugepaged_mm_lock);
2117 mm_slot = get_mm_slot(mm);
2118 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2119 hash_del(&mm_slot->hash);
2120 list_del(&mm_slot->mm_node);
2121 free = 1;
2123 spin_unlock(&khugepaged_mm_lock);
2125 if (free) {
2126 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2127 free_mm_slot(mm_slot);
2128 mmdrop(mm);
2129 } else if (mm_slot) {
2131 * This is required to serialize against
2132 * khugepaged_test_exit() (which is guaranteed to run
2133 * under mmap sem read mode). Stop here (after we
2134 * return all pagetables will be destroyed) until
2135 * khugepaged has finished working on the pagetables
2136 * under the mmap_sem.
2138 down_write(&mm->mmap_sem);
2139 up_write(&mm->mmap_sem);
2143 static void release_pte_page(struct page *page)
2145 /* 0 stands for page_is_file_cache(page) == false */
2146 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2147 unlock_page(page);
2148 putback_lru_page(page);
2151 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2153 while (--_pte >= pte) {
2154 pte_t pteval = *_pte;
2155 if (!pte_none(pteval))
2156 release_pte_page(pte_page(pteval));
2160 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2161 unsigned long address,
2162 pte_t *pte)
2164 struct page *page;
2165 pte_t *_pte;
2166 int referenced = 0, none = 0;
2167 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2168 _pte++, address += PAGE_SIZE) {
2169 pte_t pteval = *_pte;
2170 if (pte_none(pteval)) {
2171 if (++none <= khugepaged_max_ptes_none)
2172 continue;
2173 else
2174 goto out;
2176 if (!pte_present(pteval) || !pte_write(pteval))
2177 goto out;
2178 page = vm_normal_page(vma, address, pteval);
2179 if (unlikely(!page))
2180 goto out;
2182 VM_BUG_ON(PageCompound(page));
2183 BUG_ON(!PageAnon(page));
2184 VM_BUG_ON(!PageSwapBacked(page));
2186 /* cannot use mapcount: can't collapse if there's a gup pin */
2187 if (page_count(page) != 1)
2188 goto out;
2190 * We can do it before isolate_lru_page because the
2191 * page can't be freed from under us. NOTE: PG_lock
2192 * is needed to serialize against split_huge_page
2193 * when invoked from the VM.
2195 if (!trylock_page(page))
2196 goto out;
2198 * Isolate the page to avoid collapsing an hugepage
2199 * currently in use by the VM.
2201 if (isolate_lru_page(page)) {
2202 unlock_page(page);
2203 goto out;
2205 /* 0 stands for page_is_file_cache(page) == false */
2206 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2207 VM_BUG_ON(!PageLocked(page));
2208 VM_BUG_ON(PageLRU(page));
2210 /* If there is no mapped pte young don't collapse the page */
2211 if (pte_young(pteval) || PageReferenced(page) ||
2212 mmu_notifier_test_young(vma->vm_mm, address))
2213 referenced = 1;
2215 if (likely(referenced))
2216 return 1;
2217 out:
2218 release_pte_pages(pte, _pte);
2219 return 0;
2222 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2223 struct vm_area_struct *vma,
2224 unsigned long address,
2225 spinlock_t *ptl)
2227 pte_t *_pte;
2228 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2229 pte_t pteval = *_pte;
2230 struct page *src_page;
2232 if (pte_none(pteval)) {
2233 clear_user_highpage(page, address);
2234 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2235 } else {
2236 src_page = pte_page(pteval);
2237 copy_user_highpage(page, src_page, address, vma);
2238 VM_BUG_ON(page_mapcount(src_page) != 1);
2239 release_pte_page(src_page);
2241 * ptl mostly unnecessary, but preempt has to
2242 * be disabled to update the per-cpu stats
2243 * inside page_remove_rmap().
2245 spin_lock(ptl);
2247 * paravirt calls inside pte_clear here are
2248 * superfluous.
2250 pte_clear(vma->vm_mm, address, _pte);
2251 page_remove_rmap(src_page);
2252 spin_unlock(ptl);
2253 free_page_and_swap_cache(src_page);
2256 address += PAGE_SIZE;
2257 page++;
2261 static void khugepaged_alloc_sleep(void)
2263 wait_event_freezable_timeout(khugepaged_wait, false,
2264 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2267 static int khugepaged_node_load[MAX_NUMNODES];
2269 #ifdef CONFIG_NUMA
2270 static int khugepaged_find_target_node(void)
2272 static int last_khugepaged_target_node = NUMA_NO_NODE;
2273 int nid, target_node = 0, max_value = 0;
2275 /* find first node with max normal pages hit */
2276 for (nid = 0; nid < MAX_NUMNODES; nid++)
2277 if (khugepaged_node_load[nid] > max_value) {
2278 max_value = khugepaged_node_load[nid];
2279 target_node = nid;
2282 /* do some balance if several nodes have the same hit record */
2283 if (target_node <= last_khugepaged_target_node)
2284 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2285 nid++)
2286 if (max_value == khugepaged_node_load[nid]) {
2287 target_node = nid;
2288 break;
2291 last_khugepaged_target_node = target_node;
2292 return target_node;
2295 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2297 if (IS_ERR(*hpage)) {
2298 if (!*wait)
2299 return false;
2301 *wait = false;
2302 *hpage = NULL;
2303 khugepaged_alloc_sleep();
2304 } else if (*hpage) {
2305 put_page(*hpage);
2306 *hpage = NULL;
2309 return true;
2312 static struct page
2313 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2314 struct vm_area_struct *vma, unsigned long address,
2315 int node)
2317 VM_BUG_ON(*hpage);
2319 * Allocate the page while the vma is still valid and under
2320 * the mmap_sem read mode so there is no memory allocation
2321 * later when we take the mmap_sem in write mode. This is more
2322 * friendly behavior (OTOH it may actually hide bugs) to
2323 * filesystems in userland with daemons allocating memory in
2324 * the userland I/O paths. Allocating memory with the
2325 * mmap_sem in read mode is good idea also to allow greater
2326 * scalability.
2328 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2329 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2331 * After allocating the hugepage, release the mmap_sem read lock in
2332 * preparation for taking it in write mode.
2334 up_read(&mm->mmap_sem);
2335 if (unlikely(!*hpage)) {
2336 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2337 *hpage = ERR_PTR(-ENOMEM);
2338 return NULL;
2341 count_vm_event(THP_COLLAPSE_ALLOC);
2342 return *hpage;
2344 #else
2345 static int khugepaged_find_target_node(void)
2347 return 0;
2350 static inline struct page *alloc_hugepage(int defrag)
2352 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2353 HPAGE_PMD_ORDER);
2356 static struct page *khugepaged_alloc_hugepage(bool *wait)
2358 struct page *hpage;
2360 do {
2361 hpage = alloc_hugepage(khugepaged_defrag());
2362 if (!hpage) {
2363 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2364 if (!*wait)
2365 return NULL;
2367 *wait = false;
2368 khugepaged_alloc_sleep();
2369 } else
2370 count_vm_event(THP_COLLAPSE_ALLOC);
2371 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2373 return hpage;
2376 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2378 if (!*hpage)
2379 *hpage = khugepaged_alloc_hugepage(wait);
2381 if (unlikely(!*hpage))
2382 return false;
2384 return true;
2387 static struct page
2388 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2389 struct vm_area_struct *vma, unsigned long address,
2390 int node)
2392 up_read(&mm->mmap_sem);
2393 VM_BUG_ON(!*hpage);
2394 return *hpage;
2396 #endif
2398 static bool hugepage_vma_check(struct vm_area_struct *vma)
2400 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2401 (vma->vm_flags & VM_NOHUGEPAGE))
2402 return false;
2404 if (!vma->anon_vma || vma->vm_ops)
2405 return false;
2406 if (is_vma_temporary_stack(vma))
2407 return false;
2408 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2409 return true;
2412 static void collapse_huge_page(struct mm_struct *mm,
2413 unsigned long address,
2414 struct page **hpage,
2415 struct vm_area_struct *vma,
2416 int node)
2418 pmd_t *pmd, _pmd;
2419 pte_t *pte;
2420 pgtable_t pgtable;
2421 struct page *new_page;
2422 spinlock_t *pmd_ptl, *pte_ptl;
2423 int isolated;
2424 unsigned long hstart, hend;
2425 unsigned long mmun_start; /* For mmu_notifiers */
2426 unsigned long mmun_end; /* For mmu_notifiers */
2428 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2430 /* release the mmap_sem read lock. */
2431 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2432 if (!new_page)
2433 return;
2435 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2436 return;
2439 * Prevent all access to pagetables with the exception of
2440 * gup_fast later hanlded by the ptep_clear_flush and the VM
2441 * handled by the anon_vma lock + PG_lock.
2443 down_write(&mm->mmap_sem);
2444 if (unlikely(khugepaged_test_exit(mm)))
2445 goto out;
2447 vma = find_vma(mm, address);
2448 if (!vma)
2449 goto out;
2450 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2451 hend = vma->vm_end & HPAGE_PMD_MASK;
2452 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2453 goto out;
2454 if (!hugepage_vma_check(vma))
2455 goto out;
2456 pmd = mm_find_pmd(mm, address);
2457 if (!pmd)
2458 goto out;
2459 if (pmd_trans_huge(*pmd))
2460 goto out;
2462 anon_vma_lock_write(vma->anon_vma);
2464 pte = pte_offset_map(pmd, address);
2465 pte_ptl = pte_lockptr(mm, pmd);
2467 mmun_start = address;
2468 mmun_end = address + HPAGE_PMD_SIZE;
2469 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2470 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2472 * After this gup_fast can't run anymore. This also removes
2473 * any huge TLB entry from the CPU so we won't allow
2474 * huge and small TLB entries for the same virtual address
2475 * to avoid the risk of CPU bugs in that area.
2477 _pmd = pmdp_clear_flush(vma, address, pmd);
2478 spin_unlock(pmd_ptl);
2479 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2481 spin_lock(pte_ptl);
2482 isolated = __collapse_huge_page_isolate(vma, address, pte);
2483 spin_unlock(pte_ptl);
2485 if (unlikely(!isolated)) {
2486 pte_unmap(pte);
2487 spin_lock(pmd_ptl);
2488 BUG_ON(!pmd_none(*pmd));
2490 * We can only use set_pmd_at when establishing
2491 * hugepmds and never for establishing regular pmds that
2492 * points to regular pagetables. Use pmd_populate for that
2494 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2495 spin_unlock(pmd_ptl);
2496 anon_vma_unlock_write(vma->anon_vma);
2497 goto out;
2501 * All pages are isolated and locked so anon_vma rmap
2502 * can't run anymore.
2504 anon_vma_unlock_write(vma->anon_vma);
2506 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2507 pte_unmap(pte);
2508 __SetPageUptodate(new_page);
2509 pgtable = pmd_pgtable(_pmd);
2511 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2512 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2515 * spin_lock() below is not the equivalent of smp_wmb(), so
2516 * this is needed to avoid the copy_huge_page writes to become
2517 * visible after the set_pmd_at() write.
2519 smp_wmb();
2521 spin_lock(pmd_ptl);
2522 BUG_ON(!pmd_none(*pmd));
2523 page_add_new_anon_rmap(new_page, vma, address);
2524 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2525 set_pmd_at(mm, address, pmd, _pmd);
2526 update_mmu_cache_pmd(vma, address, pmd);
2527 spin_unlock(pmd_ptl);
2529 *hpage = NULL;
2531 khugepaged_pages_collapsed++;
2532 out_up_write:
2533 up_write(&mm->mmap_sem);
2534 return;
2536 out:
2537 mem_cgroup_uncharge_page(new_page);
2538 goto out_up_write;
2541 static int khugepaged_scan_pmd(struct mm_struct *mm,
2542 struct vm_area_struct *vma,
2543 unsigned long address,
2544 struct page **hpage)
2546 pmd_t *pmd;
2547 pte_t *pte, *_pte;
2548 int ret = 0, referenced = 0, none = 0;
2549 struct page *page;
2550 unsigned long _address;
2551 spinlock_t *ptl;
2552 int node = NUMA_NO_NODE;
2554 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2556 pmd = mm_find_pmd(mm, address);
2557 if (!pmd)
2558 goto out;
2559 if (pmd_trans_huge(*pmd))
2560 goto out;
2562 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2563 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2564 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2565 _pte++, _address += PAGE_SIZE) {
2566 pte_t pteval = *_pte;
2567 if (pte_none(pteval)) {
2568 if (++none <= khugepaged_max_ptes_none)
2569 continue;
2570 else
2571 goto out_unmap;
2573 if (!pte_present(pteval) || !pte_write(pteval))
2574 goto out_unmap;
2575 page = vm_normal_page(vma, _address, pteval);
2576 if (unlikely(!page))
2577 goto out_unmap;
2579 * Record which node the original page is from and save this
2580 * information to khugepaged_node_load[].
2581 * Khupaged will allocate hugepage from the node has the max
2582 * hit record.
2584 node = page_to_nid(page);
2585 khugepaged_node_load[node]++;
2586 VM_BUG_ON(PageCompound(page));
2587 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2588 goto out_unmap;
2589 /* cannot use mapcount: can't collapse if there's a gup pin */
2590 if (page_count(page) != 1)
2591 goto out_unmap;
2592 if (pte_young(pteval) || PageReferenced(page) ||
2593 mmu_notifier_test_young(vma->vm_mm, address))
2594 referenced = 1;
2596 if (referenced)
2597 ret = 1;
2598 out_unmap:
2599 pte_unmap_unlock(pte, ptl);
2600 if (ret) {
2601 node = khugepaged_find_target_node();
2602 /* collapse_huge_page will return with the mmap_sem released */
2603 collapse_huge_page(mm, address, hpage, vma, node);
2605 out:
2606 return ret;
2609 static void collect_mm_slot(struct mm_slot *mm_slot)
2611 struct mm_struct *mm = mm_slot->mm;
2613 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2615 if (khugepaged_test_exit(mm)) {
2616 /* free mm_slot */
2617 hash_del(&mm_slot->hash);
2618 list_del(&mm_slot->mm_node);
2621 * Not strictly needed because the mm exited already.
2623 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2626 /* khugepaged_mm_lock actually not necessary for the below */
2627 free_mm_slot(mm_slot);
2628 mmdrop(mm);
2632 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2633 struct page **hpage)
2634 __releases(&khugepaged_mm_lock)
2635 __acquires(&khugepaged_mm_lock)
2637 struct mm_slot *mm_slot;
2638 struct mm_struct *mm;
2639 struct vm_area_struct *vma;
2640 int progress = 0;
2642 VM_BUG_ON(!pages);
2643 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2645 if (khugepaged_scan.mm_slot)
2646 mm_slot = khugepaged_scan.mm_slot;
2647 else {
2648 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2649 struct mm_slot, mm_node);
2650 khugepaged_scan.address = 0;
2651 khugepaged_scan.mm_slot = mm_slot;
2653 spin_unlock(&khugepaged_mm_lock);
2655 mm = mm_slot->mm;
2656 down_read(&mm->mmap_sem);
2657 if (unlikely(khugepaged_test_exit(mm)))
2658 vma = NULL;
2659 else
2660 vma = find_vma(mm, khugepaged_scan.address);
2662 progress++;
2663 for (; vma; vma = vma->vm_next) {
2664 unsigned long hstart, hend;
2666 cond_resched();
2667 if (unlikely(khugepaged_test_exit(mm))) {
2668 progress++;
2669 break;
2671 if (!hugepage_vma_check(vma)) {
2672 skip:
2673 progress++;
2674 continue;
2676 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2677 hend = vma->vm_end & HPAGE_PMD_MASK;
2678 if (hstart >= hend)
2679 goto skip;
2680 if (khugepaged_scan.address > hend)
2681 goto skip;
2682 if (khugepaged_scan.address < hstart)
2683 khugepaged_scan.address = hstart;
2684 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2686 while (khugepaged_scan.address < hend) {
2687 int ret;
2688 cond_resched();
2689 if (unlikely(khugepaged_test_exit(mm)))
2690 goto breakouterloop;
2692 VM_BUG_ON(khugepaged_scan.address < hstart ||
2693 khugepaged_scan.address + HPAGE_PMD_SIZE >
2694 hend);
2695 ret = khugepaged_scan_pmd(mm, vma,
2696 khugepaged_scan.address,
2697 hpage);
2698 /* move to next address */
2699 khugepaged_scan.address += HPAGE_PMD_SIZE;
2700 progress += HPAGE_PMD_NR;
2701 if (ret)
2702 /* we released mmap_sem so break loop */
2703 goto breakouterloop_mmap_sem;
2704 if (progress >= pages)
2705 goto breakouterloop;
2708 breakouterloop:
2709 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2710 breakouterloop_mmap_sem:
2712 spin_lock(&khugepaged_mm_lock);
2713 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2715 * Release the current mm_slot if this mm is about to die, or
2716 * if we scanned all vmas of this mm.
2718 if (khugepaged_test_exit(mm) || !vma) {
2720 * Make sure that if mm_users is reaching zero while
2721 * khugepaged runs here, khugepaged_exit will find
2722 * mm_slot not pointing to the exiting mm.
2724 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2725 khugepaged_scan.mm_slot = list_entry(
2726 mm_slot->mm_node.next,
2727 struct mm_slot, mm_node);
2728 khugepaged_scan.address = 0;
2729 } else {
2730 khugepaged_scan.mm_slot = NULL;
2731 khugepaged_full_scans++;
2734 collect_mm_slot(mm_slot);
2737 return progress;
2740 static int khugepaged_has_work(void)
2742 return !list_empty(&khugepaged_scan.mm_head) &&
2743 khugepaged_enabled();
2746 static int khugepaged_wait_event(void)
2748 return !list_empty(&khugepaged_scan.mm_head) ||
2749 kthread_should_stop();
2752 static void khugepaged_do_scan(void)
2754 struct page *hpage = NULL;
2755 unsigned int progress = 0, pass_through_head = 0;
2756 unsigned int pages = khugepaged_pages_to_scan;
2757 bool wait = true;
2759 barrier(); /* write khugepaged_pages_to_scan to local stack */
2761 while (progress < pages) {
2762 if (!khugepaged_prealloc_page(&hpage, &wait))
2763 break;
2765 cond_resched();
2767 if (unlikely(kthread_should_stop() || freezing(current)))
2768 break;
2770 spin_lock(&khugepaged_mm_lock);
2771 if (!khugepaged_scan.mm_slot)
2772 pass_through_head++;
2773 if (khugepaged_has_work() &&
2774 pass_through_head < 2)
2775 progress += khugepaged_scan_mm_slot(pages - progress,
2776 &hpage);
2777 else
2778 progress = pages;
2779 spin_unlock(&khugepaged_mm_lock);
2782 if (!IS_ERR_OR_NULL(hpage))
2783 put_page(hpage);
2786 static void khugepaged_wait_work(void)
2788 try_to_freeze();
2790 if (khugepaged_has_work()) {
2791 if (!khugepaged_scan_sleep_millisecs)
2792 return;
2794 wait_event_freezable_timeout(khugepaged_wait,
2795 kthread_should_stop(),
2796 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2797 return;
2800 if (khugepaged_enabled())
2801 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2804 static int khugepaged(void *none)
2806 struct mm_slot *mm_slot;
2808 set_freezable();
2809 set_user_nice(current, 19);
2811 while (!kthread_should_stop()) {
2812 khugepaged_do_scan();
2813 khugepaged_wait_work();
2816 spin_lock(&khugepaged_mm_lock);
2817 mm_slot = khugepaged_scan.mm_slot;
2818 khugepaged_scan.mm_slot = NULL;
2819 if (mm_slot)
2820 collect_mm_slot(mm_slot);
2821 spin_unlock(&khugepaged_mm_lock);
2822 return 0;
2825 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2826 unsigned long haddr, pmd_t *pmd)
2828 struct mm_struct *mm = vma->vm_mm;
2829 pgtable_t pgtable;
2830 pmd_t _pmd;
2831 int i;
2833 pmdp_clear_flush(vma, haddr, pmd);
2834 /* leave pmd empty until pte is filled */
2836 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2837 pmd_populate(mm, &_pmd, pgtable);
2839 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2840 pte_t *pte, entry;
2841 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2842 entry = pte_mkspecial(entry);
2843 pte = pte_offset_map(&_pmd, haddr);
2844 VM_BUG_ON(!pte_none(*pte));
2845 set_pte_at(mm, haddr, pte, entry);
2846 pte_unmap(pte);
2848 smp_wmb(); /* make pte visible before pmd */
2849 pmd_populate(mm, pmd, pgtable);
2850 put_huge_zero_page();
2853 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2854 pmd_t *pmd)
2856 spinlock_t *ptl;
2857 struct page *page;
2858 struct mm_struct *mm = vma->vm_mm;
2859 unsigned long haddr = address & HPAGE_PMD_MASK;
2860 unsigned long mmun_start; /* For mmu_notifiers */
2861 unsigned long mmun_end; /* For mmu_notifiers */
2863 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2865 mmun_start = haddr;
2866 mmun_end = haddr + HPAGE_PMD_SIZE;
2867 again:
2868 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2869 ptl = pmd_lock(mm, pmd);
2870 if (unlikely(!pmd_trans_huge(*pmd))) {
2871 spin_unlock(ptl);
2872 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2873 return;
2875 if (is_huge_zero_pmd(*pmd)) {
2876 __split_huge_zero_page_pmd(vma, haddr, pmd);
2877 spin_unlock(ptl);
2878 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2879 return;
2881 page = pmd_page(*pmd);
2882 VM_BUG_ON(!page_count(page));
2883 get_page(page);
2884 spin_unlock(ptl);
2885 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2887 split_huge_page(page);
2889 put_page(page);
2892 * We don't always have down_write of mmap_sem here: a racing
2893 * do_huge_pmd_wp_page() might have copied-on-write to another
2894 * huge page before our split_huge_page() got the anon_vma lock.
2896 if (unlikely(pmd_trans_huge(*pmd)))
2897 goto again;
2900 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2901 pmd_t *pmd)
2903 struct vm_area_struct *vma;
2905 vma = find_vma(mm, address);
2906 BUG_ON(vma == NULL);
2907 split_huge_page_pmd(vma, address, pmd);
2910 static void split_huge_page_address(struct mm_struct *mm,
2911 unsigned long address)
2913 pmd_t *pmd;
2915 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2917 pmd = mm_find_pmd(mm, address);
2918 if (!pmd)
2919 return;
2921 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2922 * materialize from under us.
2924 split_huge_page_pmd_mm(mm, address, pmd);
2927 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2928 unsigned long start,
2929 unsigned long end,
2930 long adjust_next)
2933 * If the new start address isn't hpage aligned and it could
2934 * previously contain an hugepage: check if we need to split
2935 * an huge pmd.
2937 if (start & ~HPAGE_PMD_MASK &&
2938 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2939 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2940 split_huge_page_address(vma->vm_mm, start);
2943 * If the new end address isn't hpage aligned and it could
2944 * previously contain an hugepage: check if we need to split
2945 * an huge pmd.
2947 if (end & ~HPAGE_PMD_MASK &&
2948 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2949 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2950 split_huge_page_address(vma->vm_mm, end);
2953 * If we're also updating the vma->vm_next->vm_start, if the new
2954 * vm_next->vm_start isn't page aligned and it could previously
2955 * contain an hugepage: check if we need to split an huge pmd.
2957 if (adjust_next > 0) {
2958 struct vm_area_struct *next = vma->vm_next;
2959 unsigned long nstart = next->vm_start;
2960 nstart += adjust_next << PAGE_SHIFT;
2961 if (nstart & ~HPAGE_PMD_MASK &&
2962 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2963 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2964 split_huge_page_address(next->vm_mm, nstart);