2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 Andrew Morton
10 #include <linux/kernel.h>
12 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
24 * Initialise a struct file's readahead state. Assumes that the caller has
28 file_ra_state_init(struct file_ra_state
*ra
, struct address_space
*mapping
)
30 ra
->ra_pages
= mapping
->backing_dev_info
->ra_pages
;
33 EXPORT_SYMBOL_GPL(file_ra_state_init
);
35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
38 * see if a page needs releasing upon read_cache_pages() failure
39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40 * before calling, such as the NFS fs marking pages that are cached locally
41 * on disk, thus we need to give the fs a chance to clean up in the event of
44 static void read_cache_pages_invalidate_page(struct address_space
*mapping
,
47 if (page_has_private(page
)) {
48 if (!trylock_page(page
))
50 page
->mapping
= mapping
;
51 do_invalidatepage(page
, 0);
55 page_cache_release(page
);
59 * release a list of pages, invalidating them first if need be
61 static void read_cache_pages_invalidate_pages(struct address_space
*mapping
,
62 struct list_head
*pages
)
66 while (!list_empty(pages
)) {
67 victim
= list_to_page(pages
);
68 list_del(&victim
->lru
);
69 read_cache_pages_invalidate_page(mapping
, victim
);
74 * read_cache_pages - populate an address space with some pages & start reads against them
75 * @mapping: the address_space
76 * @pages: The address of a list_head which contains the target pages. These
77 * pages have their ->index populated and are otherwise uninitialised.
78 * @filler: callback routine for filling a single page.
79 * @data: private data for the callback routine.
81 * Hides the details of the LRU cache etc from the filesystems.
83 int read_cache_pages(struct address_space
*mapping
, struct list_head
*pages
,
84 int (*filler
)(void *, struct page
*), void *data
)
89 while (!list_empty(pages
)) {
90 page
= list_to_page(pages
);
92 if (add_to_page_cache_lru(page
, mapping
,
93 page
->index
, GFP_KERNEL
)) {
94 read_cache_pages_invalidate_page(mapping
, page
);
97 page_cache_release(page
);
99 ret
= filler(data
, page
);
101 read_cache_pages_invalidate_pages(mapping
, pages
);
104 task_io_account_read(PAGE_CACHE_SIZE
);
109 EXPORT_SYMBOL(read_cache_pages
);
111 static int read_pages(struct address_space
*mapping
, struct file
*filp
,
112 struct list_head
*pages
, unsigned nr_pages
)
114 struct blk_plug plug
;
118 blk_start_plug(&plug
);
120 if (mapping
->a_ops
->readpages
) {
121 ret
= mapping
->a_ops
->readpages(filp
, mapping
, pages
, nr_pages
);
122 /* Clean up the remaining pages */
123 put_pages_list(pages
);
127 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
128 struct page
*page
= list_to_page(pages
);
129 list_del(&page
->lru
);
130 if (!add_to_page_cache_lru(page
, mapping
,
131 page
->index
, GFP_KERNEL
)) {
132 mapping
->a_ops
->readpage(filp
, page
);
134 page_cache_release(page
);
139 blk_finish_plug(&plug
);
145 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
146 * the pages first, then submits them all for I/O. This avoids the very bad
147 * behaviour which would occur if page allocations are causing VM writeback.
148 * We really don't want to intermingle reads and writes like that.
150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
153 __do_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
154 pgoff_t offset
, unsigned long nr_to_read
,
155 unsigned long lookahead_size
)
157 struct inode
*inode
= mapping
->host
;
159 unsigned long end_index
; /* The last page we want to read */
160 LIST_HEAD(page_pool
);
163 loff_t isize
= i_size_read(inode
);
168 end_index
= ((isize
- 1) >> PAGE_CACHE_SHIFT
);
171 * Preallocate as many pages as we will need.
173 for (page_idx
= 0; page_idx
< nr_to_read
; page_idx
++) {
174 pgoff_t page_offset
= offset
+ page_idx
;
176 if (page_offset
> end_index
)
180 page
= radix_tree_lookup(&mapping
->page_tree
, page_offset
);
185 page
= page_cache_alloc_readahead(mapping
);
188 page
->index
= page_offset
;
189 list_add(&page
->lru
, &page_pool
);
190 if (page_idx
== nr_to_read
- lookahead_size
)
191 SetPageReadahead(page
);
196 * Now start the IO. We ignore I/O errors - if the page is not
197 * uptodate then the caller will launch readpage again, and
198 * will then handle the error.
201 read_pages(mapping
, filp
, &page_pool
, ret
);
202 BUG_ON(!list_empty(&page_pool
));
208 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
211 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
212 pgoff_t offset
, unsigned long nr_to_read
)
216 if (unlikely(!mapping
->a_ops
->readpage
&& !mapping
->a_ops
->readpages
))
219 nr_to_read
= max_sane_readahead(nr_to_read
);
223 unsigned long this_chunk
= (2 * 1024 * 1024) / PAGE_CACHE_SIZE
;
225 if (this_chunk
> nr_to_read
)
226 this_chunk
= nr_to_read
;
227 err
= __do_page_cache_readahead(mapping
, filp
,
228 offset
, this_chunk
, 0);
234 offset
+= this_chunk
;
235 nr_to_read
-= this_chunk
;
241 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
242 * sensible upper limit.
244 unsigned long max_sane_readahead(unsigned long nr
)
246 return min(nr
, (node_page_state(numa_node_id(), NR_INACTIVE_FILE
)
247 + node_page_state(numa_node_id(), NR_FREE_PAGES
)) / 2);
251 * Submit IO for the read-ahead request in file_ra_state.
253 unsigned long ra_submit(struct file_ra_state
*ra
,
254 struct address_space
*mapping
, struct file
*filp
)
258 actual
= __do_page_cache_readahead(mapping
, filp
,
259 ra
->start
, ra
->size
, ra
->async_size
);
265 * Set the initial window size, round to next power of 2 and square
266 * for small size, x 4 for medium, and x 2 for large
267 * for 128k (32 page) max ra
268 * 1-8 page = 32k initial, > 8 page = 128k initial
270 static unsigned long get_init_ra_size(unsigned long size
, unsigned long max
)
272 unsigned long newsize
= roundup_pow_of_two(size
);
274 if (newsize
<= max
/ 32)
275 newsize
= newsize
* 4;
276 else if (newsize
<= max
/ 4)
277 newsize
= newsize
* 2;
285 * Get the previous window size, ramp it up, and
286 * return it as the new window size.
288 static unsigned long get_next_ra_size(struct file_ra_state
*ra
,
291 unsigned long cur
= ra
->size
;
292 unsigned long newsize
;
299 return min(newsize
, max
);
303 * On-demand readahead design.
305 * The fields in struct file_ra_state represent the most-recently-executed
308 * |<----- async_size ---------|
309 * |------------------- size -------------------->|
310 * |==================#===========================|
311 * ^start ^page marked with PG_readahead
313 * To overlap application thinking time and disk I/O time, we do
314 * `readahead pipelining': Do not wait until the application consumed all
315 * readahead pages and stalled on the missing page at readahead_index;
316 * Instead, submit an asynchronous readahead I/O as soon as there are
317 * only async_size pages left in the readahead window. Normally async_size
318 * will be equal to size, for maximum pipelining.
320 * In interleaved sequential reads, concurrent streams on the same fd can
321 * be invalidating each other's readahead state. So we flag the new readahead
322 * page at (start+size-async_size) with PG_readahead, and use it as readahead
323 * indicator. The flag won't be set on already cached pages, to avoid the
324 * readahead-for-nothing fuss, saving pointless page cache lookups.
326 * prev_pos tracks the last visited byte in the _previous_ read request.
327 * It should be maintained by the caller, and will be used for detecting
328 * small random reads. Note that the readahead algorithm checks loosely
329 * for sequential patterns. Hence interleaved reads might be served as
332 * There is a special-case: if the first page which the application tries to
333 * read happens to be the first page of the file, it is assumed that a linear
334 * read is about to happen and the window is immediately set to the initial size
335 * based on I/O request size and the max_readahead.
337 * The code ramps up the readahead size aggressively at first, but slow down as
338 * it approaches max_readhead.
342 * Count contiguously cached pages from @offset-1 to @offset-@max,
343 * this count is a conservative estimation of
344 * - length of the sequential read sequence, or
345 * - thrashing threshold in memory tight systems
347 static pgoff_t
count_history_pages(struct address_space
*mapping
,
348 struct file_ra_state
*ra
,
349 pgoff_t offset
, unsigned long max
)
354 head
= radix_tree_prev_hole(&mapping
->page_tree
, offset
- 1, max
);
357 return offset
- 1 - head
;
361 * page cache context based read-ahead
363 static int try_context_readahead(struct address_space
*mapping
,
364 struct file_ra_state
*ra
,
366 unsigned long req_size
,
371 size
= count_history_pages(mapping
, ra
, offset
, max
);
375 * it could be a random read
381 * starts from beginning of file:
382 * it is a strong indication of long-run stream (or whole-file-read)
388 ra
->size
= get_init_ra_size(size
+ req_size
, max
);
389 ra
->async_size
= ra
->size
;
395 * A minimal readahead algorithm for trivial sequential/random reads.
398 ondemand_readahead(struct address_space
*mapping
,
399 struct file_ra_state
*ra
, struct file
*filp
,
400 bool hit_readahead_marker
, pgoff_t offset
,
401 unsigned long req_size
)
403 unsigned long max
= max_sane_readahead(ra
->ra_pages
);
409 goto initial_readahead
;
412 * It's the expected callback offset, assume sequential access.
413 * Ramp up sizes, and push forward the readahead window.
415 if ((offset
== (ra
->start
+ ra
->size
- ra
->async_size
) ||
416 offset
== (ra
->start
+ ra
->size
))) {
417 ra
->start
+= ra
->size
;
418 ra
->size
= get_next_ra_size(ra
, max
);
419 ra
->async_size
= ra
->size
;
424 * Hit a marked page without valid readahead state.
425 * E.g. interleaved reads.
426 * Query the pagecache for async_size, which normally equals to
427 * readahead size. Ramp it up and use it as the new readahead size.
429 if (hit_readahead_marker
) {
433 start
= radix_tree_next_hole(&mapping
->page_tree
, offset
+1,max
);
436 if (!start
|| start
- offset
> max
)
440 ra
->size
= start
- offset
; /* old async_size */
441 ra
->size
+= req_size
;
442 ra
->size
= get_next_ra_size(ra
, max
);
443 ra
->async_size
= ra
->size
;
451 goto initial_readahead
;
454 * sequential cache miss
456 if (offset
- (ra
->prev_pos
>> PAGE_CACHE_SHIFT
) <= 1UL)
457 goto initial_readahead
;
460 * Query the page cache and look for the traces(cached history pages)
461 * that a sequential stream would leave behind.
463 if (try_context_readahead(mapping
, ra
, offset
, req_size
, max
))
467 * standalone, small random read
468 * Read as is, and do not pollute the readahead state.
470 return __do_page_cache_readahead(mapping
, filp
, offset
, req_size
, 0);
474 ra
->size
= get_init_ra_size(req_size
, max
);
475 ra
->async_size
= ra
->size
> req_size
? ra
->size
- req_size
: ra
->size
;
479 * Will this read hit the readahead marker made by itself?
480 * If so, trigger the readahead marker hit now, and merge
481 * the resulted next readahead window into the current one.
483 if (offset
== ra
->start
&& ra
->size
== ra
->async_size
) {
484 ra
->async_size
= get_next_ra_size(ra
, max
);
485 ra
->size
+= ra
->async_size
;
488 return ra_submit(ra
, mapping
, filp
);
492 * page_cache_sync_readahead - generic file readahead
493 * @mapping: address_space which holds the pagecache and I/O vectors
494 * @ra: file_ra_state which holds the readahead state
495 * @filp: passed on to ->readpage() and ->readpages()
496 * @offset: start offset into @mapping, in pagecache page-sized units
497 * @req_size: hint: total size of the read which the caller is performing in
500 * page_cache_sync_readahead() should be called when a cache miss happened:
501 * it will submit the read. The readahead logic may decide to piggyback more
502 * pages onto the read request if access patterns suggest it will improve
505 void page_cache_sync_readahead(struct address_space
*mapping
,
506 struct file_ra_state
*ra
, struct file
*filp
,
507 pgoff_t offset
, unsigned long req_size
)
514 if (filp
&& (filp
->f_mode
& FMODE_RANDOM
)) {
515 force_page_cache_readahead(mapping
, filp
, offset
, req_size
);
520 ondemand_readahead(mapping
, ra
, filp
, false, offset
, req_size
);
522 EXPORT_SYMBOL_GPL(page_cache_sync_readahead
);
525 * page_cache_async_readahead - file readahead for marked pages
526 * @mapping: address_space which holds the pagecache and I/O vectors
527 * @ra: file_ra_state which holds the readahead state
528 * @filp: passed on to ->readpage() and ->readpages()
529 * @page: the page at @offset which has the PG_readahead flag set
530 * @offset: start offset into @mapping, in pagecache page-sized units
531 * @req_size: hint: total size of the read which the caller is performing in
534 * page_cache_async_readahead() should be called when a page is used which
535 * has the PG_readahead flag; this is a marker to suggest that the application
536 * has used up enough of the readahead window that we should start pulling in
540 page_cache_async_readahead(struct address_space
*mapping
,
541 struct file_ra_state
*ra
, struct file
*filp
,
542 struct page
*page
, pgoff_t offset
,
543 unsigned long req_size
)
550 * Same bit is used for PG_readahead and PG_reclaim.
552 if (PageWriteback(page
))
555 ClearPageReadahead(page
);
558 * Defer asynchronous read-ahead on IO congestion.
560 if (bdi_read_congested(mapping
->backing_dev_info
))
564 ondemand_readahead(mapping
, ra
, filp
, true, offset
, req_size
);
566 EXPORT_SYMBOL_GPL(page_cache_async_readahead
);
569 do_readahead(struct address_space
*mapping
, struct file
*filp
,
570 pgoff_t index
, unsigned long nr
)
572 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
575 force_page_cache_readahead(mapping
, filp
, index
, nr
);
579 SYSCALL_DEFINE3(readahead
, int, fd
, loff_t
, offset
, size_t, count
)
587 if (f
.file
->f_mode
& FMODE_READ
) {
588 struct address_space
*mapping
= f
.file
->f_mapping
;
589 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
590 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
591 unsigned long len
= end
- start
+ 1;
592 ret
= do_readahead(mapping
, f
.file
, start
, len
);