2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
37 static int max_hstate
;
38 unsigned int default_hstate_idx
;
39 struct hstate hstates
[HUGE_MAX_HSTATE
];
41 __initdata
LIST_HEAD(huge_boot_pages
);
43 /* for command line parsing */
44 static struct hstate
* __initdata parsed_hstate
;
45 static unsigned long __initdata default_hstate_max_huge_pages
;
46 static unsigned long __initdata default_hstate_size
;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock
);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
58 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
60 spin_unlock(&spool
->lock
);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
70 struct hugepage_subpool
*spool
;
72 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
76 spin_lock_init(&spool
->lock
);
78 spool
->max_hpages
= nr_blocks
;
79 spool
->used_hpages
= 0;
84 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
86 spin_lock(&spool
->lock
);
87 BUG_ON(!spool
->count
);
89 unlock_or_release_subpool(spool
);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
100 spin_lock(&spool
->lock
);
101 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
102 spool
->used_hpages
+= delta
;
106 spin_unlock(&spool
->lock
);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
117 spin_lock(&spool
->lock
);
118 spool
->used_hpages
-= delta
;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool
);
124 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
126 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
129 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
131 return subpool_inode(vma
->vm_file
->f_dentry
->d_inode
);
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantion_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link
;
154 static long region_add(struct list_head
*head
, long f
, long t
)
156 struct file_region
*rg
, *nrg
, *trg
;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg
, head
, link
)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
170 if (&rg
->link
== head
)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head
*head
, long f
, long t
)
192 struct file_region
*rg
, *nrg
;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg
, head
, link
)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg
->link
== head
|| t
< rg
->from
) {
204 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
209 INIT_LIST_HEAD(&nrg
->link
);
210 list_add(&nrg
->link
, rg
->link
.prev
);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
222 if (&rg
->link
== head
)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg
-= rg
->to
- rg
->from
;
239 static long region_truncate(struct list_head
*head
, long end
)
241 struct file_region
*rg
, *trg
;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg
, head
, link
)
248 if (&rg
->link
== head
)
251 /* If we are in the middle of a region then adjust it. */
252 if (end
> rg
->from
) {
255 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
260 if (&rg
->link
== head
)
262 chg
+= rg
->to
- rg
->from
;
269 static long region_count(struct list_head
*head
, long f
, long t
)
271 struct file_region
*rg
;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg
, head
, link
) {
284 seg_from
= max(rg
->from
, f
);
285 seg_to
= min(rg
->to
, t
);
287 chg
+= seg_to
- seg_from
;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
298 struct vm_area_struct
*vma
, unsigned long address
)
300 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
301 (vma
->vm_pgoff
>> huge_page_order(h
));
304 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
305 unsigned long address
)
307 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
316 struct hstate
*hstate
;
318 if (!is_vm_hugetlb_page(vma
))
321 hstate
= hstate_vma(vma
);
323 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
336 return vma_kernel_pagesize(vma
);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
370 return (unsigned long)vma
->vm_private_data
;
373 static void set_vma_private_data(struct vm_area_struct
*vma
,
376 vma
->vm_private_data
= (void *)value
;
381 struct list_head regions
;
384 static struct resv_map
*resv_map_alloc(void)
386 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
390 kref_init(&resv_map
->refs
);
391 INIT_LIST_HEAD(&resv_map
->regions
);
396 static void resv_map_release(struct kref
*ref
)
398 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map
->regions
, 0);
405 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
408 if (!(vma
->vm_flags
& VM_MAYSHARE
))
409 return (struct resv_map
*)(get_vma_private_data(vma
) &
414 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
417 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
419 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
420 HPAGE_RESV_MASK
) | (unsigned long)map
);
423 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
426 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
428 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
431 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
435 return (get_vma_private_data(vma
) & flag
) != 0;
438 /* Decrement the reserved pages in the hugepage pool by one */
439 static void decrement_hugepage_resv_vma(struct hstate
*h
,
440 struct vm_area_struct
*vma
)
442 if (vma
->vm_flags
& VM_NORESERVE
)
445 if (vma
->vm_flags
& VM_MAYSHARE
) {
446 /* Shared mappings always use reserves */
447 h
->resv_huge_pages
--;
448 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
450 * Only the process that called mmap() has reserves for
453 h
->resv_huge_pages
--;
457 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
458 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
460 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
461 if (!(vma
->vm_flags
& VM_MAYSHARE
))
462 vma
->vm_private_data
= (void *)0;
465 /* Returns true if the VMA has associated reserve pages */
466 static int vma_has_reserves(struct vm_area_struct
*vma
)
468 if (vma
->vm_flags
& VM_MAYSHARE
)
470 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
475 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
478 struct hstate
*h
= page_hstate(src
);
479 struct page
*dst_base
= dst
;
480 struct page
*src_base
= src
;
482 for (i
= 0; i
< pages_per_huge_page(h
); ) {
484 copy_highpage(dst
, src
);
487 dst
= mem_map_next(dst
, dst_base
, i
);
488 src
= mem_map_next(src
, src_base
, i
);
492 void copy_huge_page(struct page
*dst
, struct page
*src
)
495 struct hstate
*h
= page_hstate(src
);
497 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
498 copy_gigantic_page(dst
, src
);
503 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
505 copy_highpage(dst
+ i
, src
+ i
);
509 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
511 int nid
= page_to_nid(page
);
512 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
513 h
->free_huge_pages
++;
514 h
->free_huge_pages_node
[nid
]++;
517 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
521 if (list_empty(&h
->hugepage_freelists
[nid
]))
523 page
= list_entry(h
->hugepage_freelists
[nid
].next
, struct page
, lru
);
524 list_del(&page
->lru
);
525 set_page_refcounted(page
);
526 h
->free_huge_pages
--;
527 h
->free_huge_pages_node
[nid
]--;
531 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
532 struct vm_area_struct
*vma
,
533 unsigned long address
, int avoid_reserve
)
535 struct page
*page
= NULL
;
536 struct mempolicy
*mpol
;
537 nodemask_t
*nodemask
;
538 struct zonelist
*zonelist
;
541 unsigned int cpuset_mems_cookie
;
544 cpuset_mems_cookie
= get_mems_allowed();
545 zonelist
= huge_zonelist(vma
, address
,
546 htlb_alloc_mask
, &mpol
, &nodemask
);
548 * A child process with MAP_PRIVATE mappings created by their parent
549 * have no page reserves. This check ensures that reservations are
550 * not "stolen". The child may still get SIGKILLed
552 if (!vma_has_reserves(vma
) &&
553 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
556 /* If reserves cannot be used, ensure enough pages are in the pool */
557 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
560 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
561 MAX_NR_ZONES
- 1, nodemask
) {
562 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
)) {
563 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
566 decrement_hugepage_resv_vma(h
, vma
);
573 if (unlikely(!put_mems_allowed(cpuset_mems_cookie
) && !page
))
582 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
586 VM_BUG_ON(h
->order
>= MAX_ORDER
);
589 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
590 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
591 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
592 1 << PG_referenced
| 1 << PG_dirty
|
593 1 << PG_active
| 1 << PG_reserved
|
594 1 << PG_private
| 1 << PG_writeback
);
596 set_compound_page_dtor(page
, NULL
);
597 set_page_refcounted(page
);
598 arch_release_hugepage(page
);
599 __free_pages(page
, huge_page_order(h
));
602 struct hstate
*size_to_hstate(unsigned long size
)
607 if (huge_page_size(h
) == size
)
613 static void free_huge_page(struct page
*page
)
616 * Can't pass hstate in here because it is called from the
617 * compound page destructor.
619 struct hstate
*h
= page_hstate(page
);
620 int nid
= page_to_nid(page
);
621 struct hugepage_subpool
*spool
=
622 (struct hugepage_subpool
*)page_private(page
);
624 set_page_private(page
, 0);
625 page
->mapping
= NULL
;
626 BUG_ON(page_count(page
));
627 BUG_ON(page_mapcount(page
));
628 INIT_LIST_HEAD(&page
->lru
);
630 spin_lock(&hugetlb_lock
);
631 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
632 update_and_free_page(h
, page
);
633 h
->surplus_huge_pages
--;
634 h
->surplus_huge_pages_node
[nid
]--;
636 enqueue_huge_page(h
, page
);
638 spin_unlock(&hugetlb_lock
);
639 hugepage_subpool_put_pages(spool
, 1);
642 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
644 set_compound_page_dtor(page
, free_huge_page
);
645 spin_lock(&hugetlb_lock
);
647 h
->nr_huge_pages_node
[nid
]++;
648 spin_unlock(&hugetlb_lock
);
649 put_page(page
); /* free it into the hugepage allocator */
652 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
655 int nr_pages
= 1 << order
;
656 struct page
*p
= page
+ 1;
658 /* we rely on prep_new_huge_page to set the destructor */
659 set_compound_order(page
, order
);
661 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
663 set_page_count(p
, 0);
664 p
->first_page
= page
;
668 int PageHuge(struct page
*page
)
670 compound_page_dtor
*dtor
;
672 if (!PageCompound(page
))
675 page
= compound_head(page
);
676 dtor
= get_compound_page_dtor(page
);
678 return dtor
== free_huge_page
;
680 EXPORT_SYMBOL_GPL(PageHuge
);
682 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
686 if (h
->order
>= MAX_ORDER
)
689 page
= alloc_pages_exact_node(nid
,
690 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
691 __GFP_REPEAT
|__GFP_NOWARN
,
694 if (arch_prepare_hugepage(page
)) {
695 __free_pages(page
, huge_page_order(h
));
698 prep_new_huge_page(h
, page
, nid
);
705 * common helper functions for hstate_next_node_to_{alloc|free}.
706 * We may have allocated or freed a huge page based on a different
707 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
708 * be outside of *nodes_allowed. Ensure that we use an allowed
709 * node for alloc or free.
711 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
713 nid
= next_node(nid
, *nodes_allowed
);
714 if (nid
== MAX_NUMNODES
)
715 nid
= first_node(*nodes_allowed
);
716 VM_BUG_ON(nid
>= MAX_NUMNODES
);
721 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
723 if (!node_isset(nid
, *nodes_allowed
))
724 nid
= next_node_allowed(nid
, nodes_allowed
);
729 * returns the previously saved node ["this node"] from which to
730 * allocate a persistent huge page for the pool and advance the
731 * next node from which to allocate, handling wrap at end of node
734 static int hstate_next_node_to_alloc(struct hstate
*h
,
735 nodemask_t
*nodes_allowed
)
739 VM_BUG_ON(!nodes_allowed
);
741 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
742 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
747 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
754 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
755 next_nid
= start_nid
;
758 page
= alloc_fresh_huge_page_node(h
, next_nid
);
763 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
764 } while (next_nid
!= start_nid
);
767 count_vm_event(HTLB_BUDDY_PGALLOC
);
769 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
775 * helper for free_pool_huge_page() - return the previously saved
776 * node ["this node"] from which to free a huge page. Advance the
777 * next node id whether or not we find a free huge page to free so
778 * that the next attempt to free addresses the next node.
780 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
784 VM_BUG_ON(!nodes_allowed
);
786 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
787 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
793 * Free huge page from pool from next node to free.
794 * Attempt to keep persistent huge pages more or less
795 * balanced over allowed nodes.
796 * Called with hugetlb_lock locked.
798 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
805 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
806 next_nid
= start_nid
;
810 * If we're returning unused surplus pages, only examine
811 * nodes with surplus pages.
813 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
814 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
816 list_entry(h
->hugepage_freelists
[next_nid
].next
,
818 list_del(&page
->lru
);
819 h
->free_huge_pages
--;
820 h
->free_huge_pages_node
[next_nid
]--;
822 h
->surplus_huge_pages
--;
823 h
->surplus_huge_pages_node
[next_nid
]--;
825 update_and_free_page(h
, page
);
829 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
830 } while (next_nid
!= start_nid
);
835 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
840 if (h
->order
>= MAX_ORDER
)
844 * Assume we will successfully allocate the surplus page to
845 * prevent racing processes from causing the surplus to exceed
848 * This however introduces a different race, where a process B
849 * tries to grow the static hugepage pool while alloc_pages() is
850 * called by process A. B will only examine the per-node
851 * counters in determining if surplus huge pages can be
852 * converted to normal huge pages in adjust_pool_surplus(). A
853 * won't be able to increment the per-node counter, until the
854 * lock is dropped by B, but B doesn't drop hugetlb_lock until
855 * no more huge pages can be converted from surplus to normal
856 * state (and doesn't try to convert again). Thus, we have a
857 * case where a surplus huge page exists, the pool is grown, and
858 * the surplus huge page still exists after, even though it
859 * should just have been converted to a normal huge page. This
860 * does not leak memory, though, as the hugepage will be freed
861 * once it is out of use. It also does not allow the counters to
862 * go out of whack in adjust_pool_surplus() as we don't modify
863 * the node values until we've gotten the hugepage and only the
864 * per-node value is checked there.
866 spin_lock(&hugetlb_lock
);
867 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
868 spin_unlock(&hugetlb_lock
);
872 h
->surplus_huge_pages
++;
874 spin_unlock(&hugetlb_lock
);
876 if (nid
== NUMA_NO_NODE
)
877 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
878 __GFP_REPEAT
|__GFP_NOWARN
,
881 page
= alloc_pages_exact_node(nid
,
882 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
883 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
885 if (page
&& arch_prepare_hugepage(page
)) {
886 __free_pages(page
, huge_page_order(h
));
890 spin_lock(&hugetlb_lock
);
892 r_nid
= page_to_nid(page
);
893 set_compound_page_dtor(page
, free_huge_page
);
895 * We incremented the global counters already
897 h
->nr_huge_pages_node
[r_nid
]++;
898 h
->surplus_huge_pages_node
[r_nid
]++;
899 __count_vm_event(HTLB_BUDDY_PGALLOC
);
902 h
->surplus_huge_pages
--;
903 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
905 spin_unlock(&hugetlb_lock
);
911 * This allocation function is useful in the context where vma is irrelevant.
912 * E.g. soft-offlining uses this function because it only cares physical
913 * address of error page.
915 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
919 spin_lock(&hugetlb_lock
);
920 page
= dequeue_huge_page_node(h
, nid
);
921 spin_unlock(&hugetlb_lock
);
924 page
= alloc_buddy_huge_page(h
, nid
);
930 * Increase the hugetlb pool such that it can accommodate a reservation
933 static int gather_surplus_pages(struct hstate
*h
, int delta
)
935 struct list_head surplus_list
;
936 struct page
*page
, *tmp
;
938 int needed
, allocated
;
940 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
942 h
->resv_huge_pages
+= delta
;
947 INIT_LIST_HEAD(&surplus_list
);
951 spin_unlock(&hugetlb_lock
);
952 for (i
= 0; i
< needed
; i
++) {
953 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
956 * We were not able to allocate enough pages to
957 * satisfy the entire reservation so we free what
958 * we've allocated so far.
962 list_add(&page
->lru
, &surplus_list
);
967 * After retaking hugetlb_lock, we need to recalculate 'needed'
968 * because either resv_huge_pages or free_huge_pages may have changed.
970 spin_lock(&hugetlb_lock
);
971 needed
= (h
->resv_huge_pages
+ delta
) -
972 (h
->free_huge_pages
+ allocated
);
977 * The surplus_list now contains _at_least_ the number of extra pages
978 * needed to accommodate the reservation. Add the appropriate number
979 * of pages to the hugetlb pool and free the extras back to the buddy
980 * allocator. Commit the entire reservation here to prevent another
981 * process from stealing the pages as they are added to the pool but
982 * before they are reserved.
985 h
->resv_huge_pages
+= delta
;
988 /* Free the needed pages to the hugetlb pool */
989 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
992 list_del(&page
->lru
);
994 * This page is now managed by the hugetlb allocator and has
995 * no users -- drop the buddy allocator's reference.
997 put_page_testzero(page
);
998 VM_BUG_ON(page_count(page
));
999 enqueue_huge_page(h
, page
);
1001 spin_unlock(&hugetlb_lock
);
1003 /* Free unnecessary surplus pages to the buddy allocator */
1005 if (!list_empty(&surplus_list
)) {
1006 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1007 list_del(&page
->lru
);
1011 spin_lock(&hugetlb_lock
);
1017 * When releasing a hugetlb pool reservation, any surplus pages that were
1018 * allocated to satisfy the reservation must be explicitly freed if they were
1020 * Called with hugetlb_lock held.
1022 static void return_unused_surplus_pages(struct hstate
*h
,
1023 unsigned long unused_resv_pages
)
1025 unsigned long nr_pages
;
1027 /* Uncommit the reservation */
1028 h
->resv_huge_pages
-= unused_resv_pages
;
1030 /* Cannot return gigantic pages currently */
1031 if (h
->order
>= MAX_ORDER
)
1034 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1037 * We want to release as many surplus pages as possible, spread
1038 * evenly across all nodes with memory. Iterate across these nodes
1039 * until we can no longer free unreserved surplus pages. This occurs
1040 * when the nodes with surplus pages have no free pages.
1041 * free_pool_huge_page() will balance the the freed pages across the
1042 * on-line nodes with memory and will handle the hstate accounting.
1044 while (nr_pages
--) {
1045 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
1051 * Determine if the huge page at addr within the vma has an associated
1052 * reservation. Where it does not we will need to logically increase
1053 * reservation and actually increase subpool usage before an allocation
1054 * can occur. Where any new reservation would be required the
1055 * reservation change is prepared, but not committed. Once the page
1056 * has been allocated from the subpool and instantiated the change should
1057 * be committed via vma_commit_reservation. No action is required on
1060 static long vma_needs_reservation(struct hstate
*h
,
1061 struct vm_area_struct
*vma
, unsigned long addr
)
1063 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1064 struct inode
*inode
= mapping
->host
;
1066 if (vma
->vm_flags
& VM_MAYSHARE
) {
1067 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1068 return region_chg(&inode
->i_mapping
->private_list
,
1071 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1076 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1077 struct resv_map
*reservations
= vma_resv_map(vma
);
1079 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
1085 static void vma_commit_reservation(struct hstate
*h
,
1086 struct vm_area_struct
*vma
, unsigned long addr
)
1088 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1089 struct inode
*inode
= mapping
->host
;
1091 if (vma
->vm_flags
& VM_MAYSHARE
) {
1092 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1093 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1095 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1096 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1097 struct resv_map
*reservations
= vma_resv_map(vma
);
1099 /* Mark this page used in the map. */
1100 region_add(&reservations
->regions
, idx
, idx
+ 1);
1104 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1105 unsigned long addr
, int avoid_reserve
)
1107 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1108 struct hstate
*h
= hstate_vma(vma
);
1113 * Processes that did not create the mapping will have no
1114 * reserves and will not have accounted against subpool
1115 * limit. Check that the subpool limit can be made before
1116 * satisfying the allocation MAP_NORESERVE mappings may also
1117 * need pages and subpool limit allocated allocated if no reserve
1120 chg
= vma_needs_reservation(h
, vma
, addr
);
1122 return ERR_PTR(-VM_FAULT_OOM
);
1124 if (hugepage_subpool_get_pages(spool
, chg
))
1125 return ERR_PTR(-VM_FAULT_SIGBUS
);
1127 spin_lock(&hugetlb_lock
);
1128 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1129 spin_unlock(&hugetlb_lock
);
1132 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1134 hugepage_subpool_put_pages(spool
, chg
);
1135 return ERR_PTR(-VM_FAULT_SIGBUS
);
1139 set_page_private(page
, (unsigned long)spool
);
1141 vma_commit_reservation(h
, vma
, addr
);
1146 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1148 struct huge_bootmem_page
*m
;
1149 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1154 addr
= __alloc_bootmem_node_nopanic(
1155 NODE_DATA(hstate_next_node_to_alloc(h
,
1156 &node_states
[N_HIGH_MEMORY
])),
1157 huge_page_size(h
), huge_page_size(h
), 0);
1161 * Use the beginning of the huge page to store the
1162 * huge_bootmem_page struct (until gather_bootmem
1163 * puts them into the mem_map).
1173 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1174 /* Put them into a private list first because mem_map is not up yet */
1175 list_add(&m
->list
, &huge_boot_pages
);
1180 static void prep_compound_huge_page(struct page
*page
, int order
)
1182 if (unlikely(order
> (MAX_ORDER
- 1)))
1183 prep_compound_gigantic_page(page
, order
);
1185 prep_compound_page(page
, order
);
1188 /* Put bootmem huge pages into the standard lists after mem_map is up */
1189 static void __init
gather_bootmem_prealloc(void)
1191 struct huge_bootmem_page
*m
;
1193 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1194 struct hstate
*h
= m
->hstate
;
1197 #ifdef CONFIG_HIGHMEM
1198 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1199 free_bootmem_late((unsigned long)m
,
1200 sizeof(struct huge_bootmem_page
));
1202 page
= virt_to_page(m
);
1204 __ClearPageReserved(page
);
1205 WARN_ON(page_count(page
) != 1);
1206 prep_compound_huge_page(page
, h
->order
);
1207 prep_new_huge_page(h
, page
, page_to_nid(page
));
1209 * If we had gigantic hugepages allocated at boot time, we need
1210 * to restore the 'stolen' pages to totalram_pages in order to
1211 * fix confusing memory reports from free(1) and another
1212 * side-effects, like CommitLimit going negative.
1214 if (h
->order
> (MAX_ORDER
- 1))
1215 totalram_pages
+= 1 << h
->order
;
1219 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1223 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1224 if (h
->order
>= MAX_ORDER
) {
1225 if (!alloc_bootmem_huge_page(h
))
1227 } else if (!alloc_fresh_huge_page(h
,
1228 &node_states
[N_HIGH_MEMORY
]))
1231 h
->max_huge_pages
= i
;
1234 static void __init
hugetlb_init_hstates(void)
1238 for_each_hstate(h
) {
1239 /* oversize hugepages were init'ed in early boot */
1240 if (h
->order
< MAX_ORDER
)
1241 hugetlb_hstate_alloc_pages(h
);
1245 static char * __init
memfmt(char *buf
, unsigned long n
)
1247 if (n
>= (1UL << 30))
1248 sprintf(buf
, "%lu GB", n
>> 30);
1249 else if (n
>= (1UL << 20))
1250 sprintf(buf
, "%lu MB", n
>> 20);
1252 sprintf(buf
, "%lu KB", n
>> 10);
1256 static void __init
report_hugepages(void)
1260 for_each_hstate(h
) {
1262 printk(KERN_INFO
"HugeTLB registered %s page size, "
1263 "pre-allocated %ld pages\n",
1264 memfmt(buf
, huge_page_size(h
)),
1265 h
->free_huge_pages
);
1269 #ifdef CONFIG_HIGHMEM
1270 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1271 nodemask_t
*nodes_allowed
)
1275 if (h
->order
>= MAX_ORDER
)
1278 for_each_node_mask(i
, *nodes_allowed
) {
1279 struct page
*page
, *next
;
1280 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1281 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1282 if (count
>= h
->nr_huge_pages
)
1284 if (PageHighMem(page
))
1286 list_del(&page
->lru
);
1287 update_and_free_page(h
, page
);
1288 h
->free_huge_pages
--;
1289 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1294 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1295 nodemask_t
*nodes_allowed
)
1301 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1302 * balanced by operating on them in a round-robin fashion.
1303 * Returns 1 if an adjustment was made.
1305 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1308 int start_nid
, next_nid
;
1311 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1314 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1316 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1317 next_nid
= start_nid
;
1323 * To shrink on this node, there must be a surplus page
1325 if (!h
->surplus_huge_pages_node
[nid
]) {
1326 next_nid
= hstate_next_node_to_alloc(h
,
1333 * Surplus cannot exceed the total number of pages
1335 if (h
->surplus_huge_pages_node
[nid
] >=
1336 h
->nr_huge_pages_node
[nid
]) {
1337 next_nid
= hstate_next_node_to_free(h
,
1343 h
->surplus_huge_pages
+= delta
;
1344 h
->surplus_huge_pages_node
[nid
] += delta
;
1347 } while (next_nid
!= start_nid
);
1352 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1353 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1354 nodemask_t
*nodes_allowed
)
1356 unsigned long min_count
, ret
;
1358 if (h
->order
>= MAX_ORDER
)
1359 return h
->max_huge_pages
;
1362 * Increase the pool size
1363 * First take pages out of surplus state. Then make up the
1364 * remaining difference by allocating fresh huge pages.
1366 * We might race with alloc_buddy_huge_page() here and be unable
1367 * to convert a surplus huge page to a normal huge page. That is
1368 * not critical, though, it just means the overall size of the
1369 * pool might be one hugepage larger than it needs to be, but
1370 * within all the constraints specified by the sysctls.
1372 spin_lock(&hugetlb_lock
);
1373 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1374 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1378 while (count
> persistent_huge_pages(h
)) {
1380 * If this allocation races such that we no longer need the
1381 * page, free_huge_page will handle it by freeing the page
1382 * and reducing the surplus.
1384 spin_unlock(&hugetlb_lock
);
1385 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1386 spin_lock(&hugetlb_lock
);
1390 /* Bail for signals. Probably ctrl-c from user */
1391 if (signal_pending(current
))
1396 * Decrease the pool size
1397 * First return free pages to the buddy allocator (being careful
1398 * to keep enough around to satisfy reservations). Then place
1399 * pages into surplus state as needed so the pool will shrink
1400 * to the desired size as pages become free.
1402 * By placing pages into the surplus state independent of the
1403 * overcommit value, we are allowing the surplus pool size to
1404 * exceed overcommit. There are few sane options here. Since
1405 * alloc_buddy_huge_page() is checking the global counter,
1406 * though, we'll note that we're not allowed to exceed surplus
1407 * and won't grow the pool anywhere else. Not until one of the
1408 * sysctls are changed, or the surplus pages go out of use.
1410 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1411 min_count
= max(count
, min_count
);
1412 try_to_free_low(h
, min_count
, nodes_allowed
);
1413 while (min_count
< persistent_huge_pages(h
)) {
1414 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1417 while (count
< persistent_huge_pages(h
)) {
1418 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1422 ret
= persistent_huge_pages(h
);
1423 spin_unlock(&hugetlb_lock
);
1427 #define HSTATE_ATTR_RO(_name) \
1428 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1430 #define HSTATE_ATTR(_name) \
1431 static struct kobj_attribute _name##_attr = \
1432 __ATTR(_name, 0644, _name##_show, _name##_store)
1434 static struct kobject
*hugepages_kobj
;
1435 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1437 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1439 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1443 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1444 if (hstate_kobjs
[i
] == kobj
) {
1446 *nidp
= NUMA_NO_NODE
;
1450 return kobj_to_node_hstate(kobj
, nidp
);
1453 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1454 struct kobj_attribute
*attr
, char *buf
)
1457 unsigned long nr_huge_pages
;
1460 h
= kobj_to_hstate(kobj
, &nid
);
1461 if (nid
== NUMA_NO_NODE
)
1462 nr_huge_pages
= h
->nr_huge_pages
;
1464 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1466 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1469 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1470 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1471 const char *buf
, size_t len
)
1475 unsigned long count
;
1477 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1479 err
= strict_strtoul(buf
, 10, &count
);
1483 h
= kobj_to_hstate(kobj
, &nid
);
1484 if (h
->order
>= MAX_ORDER
) {
1489 if (nid
== NUMA_NO_NODE
) {
1491 * global hstate attribute
1493 if (!(obey_mempolicy
&&
1494 init_nodemask_of_mempolicy(nodes_allowed
))) {
1495 NODEMASK_FREE(nodes_allowed
);
1496 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1498 } else if (nodes_allowed
) {
1500 * per node hstate attribute: adjust count to global,
1501 * but restrict alloc/free to the specified node.
1503 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1504 init_nodemask_of_node(nodes_allowed
, nid
);
1506 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1508 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1510 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1511 NODEMASK_FREE(nodes_allowed
);
1515 NODEMASK_FREE(nodes_allowed
);
1519 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1520 struct kobj_attribute
*attr
, char *buf
)
1522 return nr_hugepages_show_common(kobj
, attr
, buf
);
1525 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1526 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1528 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1530 HSTATE_ATTR(nr_hugepages
);
1535 * hstate attribute for optionally mempolicy-based constraint on persistent
1536 * huge page alloc/free.
1538 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1539 struct kobj_attribute
*attr
, char *buf
)
1541 return nr_hugepages_show_common(kobj
, attr
, buf
);
1544 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1545 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1547 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1549 HSTATE_ATTR(nr_hugepages_mempolicy
);
1553 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1554 struct kobj_attribute
*attr
, char *buf
)
1556 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1557 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1560 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1561 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1564 unsigned long input
;
1565 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1567 if (h
->order
>= MAX_ORDER
)
1570 err
= strict_strtoul(buf
, 10, &input
);
1574 spin_lock(&hugetlb_lock
);
1575 h
->nr_overcommit_huge_pages
= input
;
1576 spin_unlock(&hugetlb_lock
);
1580 HSTATE_ATTR(nr_overcommit_hugepages
);
1582 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1583 struct kobj_attribute
*attr
, char *buf
)
1586 unsigned long free_huge_pages
;
1589 h
= kobj_to_hstate(kobj
, &nid
);
1590 if (nid
== NUMA_NO_NODE
)
1591 free_huge_pages
= h
->free_huge_pages
;
1593 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1595 return sprintf(buf
, "%lu\n", free_huge_pages
);
1597 HSTATE_ATTR_RO(free_hugepages
);
1599 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1600 struct kobj_attribute
*attr
, char *buf
)
1602 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1603 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1605 HSTATE_ATTR_RO(resv_hugepages
);
1607 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1608 struct kobj_attribute
*attr
, char *buf
)
1611 unsigned long surplus_huge_pages
;
1614 h
= kobj_to_hstate(kobj
, &nid
);
1615 if (nid
== NUMA_NO_NODE
)
1616 surplus_huge_pages
= h
->surplus_huge_pages
;
1618 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1620 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1622 HSTATE_ATTR_RO(surplus_hugepages
);
1624 static struct attribute
*hstate_attrs
[] = {
1625 &nr_hugepages_attr
.attr
,
1626 &nr_overcommit_hugepages_attr
.attr
,
1627 &free_hugepages_attr
.attr
,
1628 &resv_hugepages_attr
.attr
,
1629 &surplus_hugepages_attr
.attr
,
1631 &nr_hugepages_mempolicy_attr
.attr
,
1636 static struct attribute_group hstate_attr_group
= {
1637 .attrs
= hstate_attrs
,
1640 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1641 struct kobject
**hstate_kobjs
,
1642 struct attribute_group
*hstate_attr_group
)
1645 int hi
= h
- hstates
;
1647 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1648 if (!hstate_kobjs
[hi
])
1651 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1653 kobject_put(hstate_kobjs
[hi
]);
1658 static void __init
hugetlb_sysfs_init(void)
1663 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1664 if (!hugepages_kobj
)
1667 for_each_hstate(h
) {
1668 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1669 hstate_kobjs
, &hstate_attr_group
);
1671 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1679 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1680 * with node sysdevs in node_devices[] using a parallel array. The array
1681 * index of a node sysdev or _hstate == node id.
1682 * This is here to avoid any static dependency of the node sysdev driver, in
1683 * the base kernel, on the hugetlb module.
1685 struct node_hstate
{
1686 struct kobject
*hugepages_kobj
;
1687 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1689 struct node_hstate node_hstates
[MAX_NUMNODES
];
1692 * A subset of global hstate attributes for node sysdevs
1694 static struct attribute
*per_node_hstate_attrs
[] = {
1695 &nr_hugepages_attr
.attr
,
1696 &free_hugepages_attr
.attr
,
1697 &surplus_hugepages_attr
.attr
,
1701 static struct attribute_group per_node_hstate_attr_group
= {
1702 .attrs
= per_node_hstate_attrs
,
1706 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1707 * Returns node id via non-NULL nidp.
1709 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1713 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1714 struct node_hstate
*nhs
= &node_hstates
[nid
];
1716 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1717 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1729 * Unregister hstate attributes from a single node sysdev.
1730 * No-op if no hstate attributes attached.
1732 void hugetlb_unregister_node(struct node
*node
)
1735 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1737 if (!nhs
->hugepages_kobj
)
1738 return; /* no hstate attributes */
1741 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1742 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1743 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1746 kobject_put(nhs
->hugepages_kobj
);
1747 nhs
->hugepages_kobj
= NULL
;
1751 * hugetlb module exit: unregister hstate attributes from node sysdevs
1754 static void hugetlb_unregister_all_nodes(void)
1759 * disable node sysdev registrations.
1761 register_hugetlbfs_with_node(NULL
, NULL
);
1764 * remove hstate attributes from any nodes that have them.
1766 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1767 hugetlb_unregister_node(&node_devices
[nid
]);
1771 * Register hstate attributes for a single node sysdev.
1772 * No-op if attributes already registered.
1774 void hugetlb_register_node(struct node
*node
)
1777 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1780 if (nhs
->hugepages_kobj
)
1781 return; /* already allocated */
1783 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1784 &node
->sysdev
.kobj
);
1785 if (!nhs
->hugepages_kobj
)
1788 for_each_hstate(h
) {
1789 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1791 &per_node_hstate_attr_group
);
1793 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1795 h
->name
, node
->sysdev
.id
);
1796 hugetlb_unregister_node(node
);
1803 * hugetlb init time: register hstate attributes for all registered node
1804 * sysdevs of nodes that have memory. All on-line nodes should have
1805 * registered their associated sysdev by this time.
1807 static void hugetlb_register_all_nodes(void)
1811 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1812 struct node
*node
= &node_devices
[nid
];
1813 if (node
->sysdev
.id
== nid
)
1814 hugetlb_register_node(node
);
1818 * Let the node sysdev driver know we're here so it can
1819 * [un]register hstate attributes on node hotplug.
1821 register_hugetlbfs_with_node(hugetlb_register_node
,
1822 hugetlb_unregister_node
);
1824 #else /* !CONFIG_NUMA */
1826 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1834 static void hugetlb_unregister_all_nodes(void) { }
1836 static void hugetlb_register_all_nodes(void) { }
1840 static void __exit
hugetlb_exit(void)
1844 hugetlb_unregister_all_nodes();
1846 for_each_hstate(h
) {
1847 kobject_put(hstate_kobjs
[h
- hstates
]);
1850 kobject_put(hugepages_kobj
);
1852 module_exit(hugetlb_exit
);
1854 static int __init
hugetlb_init(void)
1856 /* Some platform decide whether they support huge pages at boot
1857 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1858 * there is no such support
1860 if (HPAGE_SHIFT
== 0)
1863 if (!size_to_hstate(default_hstate_size
)) {
1864 default_hstate_size
= HPAGE_SIZE
;
1865 if (!size_to_hstate(default_hstate_size
))
1866 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1868 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1869 if (default_hstate_max_huge_pages
)
1870 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1872 hugetlb_init_hstates();
1874 gather_bootmem_prealloc();
1878 hugetlb_sysfs_init();
1880 hugetlb_register_all_nodes();
1884 module_init(hugetlb_init
);
1886 /* Should be called on processing a hugepagesz=... option */
1887 void __init
hugetlb_add_hstate(unsigned order
)
1892 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1893 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1896 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1898 h
= &hstates
[max_hstate
++];
1900 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1901 h
->nr_huge_pages
= 0;
1902 h
->free_huge_pages
= 0;
1903 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1904 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1905 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1906 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1907 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1908 huge_page_size(h
)/1024);
1913 static int __init
hugetlb_nrpages_setup(char *s
)
1916 static unsigned long *last_mhp
;
1919 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1920 * so this hugepages= parameter goes to the "default hstate".
1923 mhp
= &default_hstate_max_huge_pages
;
1925 mhp
= &parsed_hstate
->max_huge_pages
;
1927 if (mhp
== last_mhp
) {
1928 printk(KERN_WARNING
"hugepages= specified twice without "
1929 "interleaving hugepagesz=, ignoring\n");
1933 if (sscanf(s
, "%lu", mhp
) <= 0)
1937 * Global state is always initialized later in hugetlb_init.
1938 * But we need to allocate >= MAX_ORDER hstates here early to still
1939 * use the bootmem allocator.
1941 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1942 hugetlb_hstate_alloc_pages(parsed_hstate
);
1948 __setup("hugepages=", hugetlb_nrpages_setup
);
1950 static int __init
hugetlb_default_setup(char *s
)
1952 default_hstate_size
= memparse(s
, &s
);
1955 __setup("default_hugepagesz=", hugetlb_default_setup
);
1957 static unsigned int cpuset_mems_nr(unsigned int *array
)
1960 unsigned int nr
= 0;
1962 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1968 #ifdef CONFIG_SYSCTL
1969 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1970 struct ctl_table
*table
, int write
,
1971 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1973 struct hstate
*h
= &default_hstate
;
1977 tmp
= h
->max_huge_pages
;
1979 if (write
&& h
->order
>= MAX_ORDER
)
1983 table
->maxlen
= sizeof(unsigned long);
1984 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1989 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1990 GFP_KERNEL
| __GFP_NORETRY
);
1991 if (!(obey_mempolicy
&&
1992 init_nodemask_of_mempolicy(nodes_allowed
))) {
1993 NODEMASK_FREE(nodes_allowed
);
1994 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1996 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1998 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1999 NODEMASK_FREE(nodes_allowed
);
2005 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2006 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2009 return hugetlb_sysctl_handler_common(false, table
, write
,
2010 buffer
, length
, ppos
);
2014 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2015 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2017 return hugetlb_sysctl_handler_common(true, table
, write
,
2018 buffer
, length
, ppos
);
2020 #endif /* CONFIG_NUMA */
2022 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
2023 void __user
*buffer
,
2024 size_t *length
, loff_t
*ppos
)
2026 proc_dointvec(table
, write
, buffer
, length
, ppos
);
2027 if (hugepages_treat_as_movable
)
2028 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
2030 htlb_alloc_mask
= GFP_HIGHUSER
;
2034 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2035 void __user
*buffer
,
2036 size_t *length
, loff_t
*ppos
)
2038 struct hstate
*h
= &default_hstate
;
2042 tmp
= h
->nr_overcommit_huge_pages
;
2044 if (write
&& h
->order
>= MAX_ORDER
)
2048 table
->maxlen
= sizeof(unsigned long);
2049 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2054 spin_lock(&hugetlb_lock
);
2055 h
->nr_overcommit_huge_pages
= tmp
;
2056 spin_unlock(&hugetlb_lock
);
2062 #endif /* CONFIG_SYSCTL */
2064 void hugetlb_report_meminfo(struct seq_file
*m
)
2066 struct hstate
*h
= &default_hstate
;
2068 "HugePages_Total: %5lu\n"
2069 "HugePages_Free: %5lu\n"
2070 "HugePages_Rsvd: %5lu\n"
2071 "HugePages_Surp: %5lu\n"
2072 "Hugepagesize: %8lu kB\n",
2076 h
->surplus_huge_pages
,
2077 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2080 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2082 struct hstate
*h
= &default_hstate
;
2084 "Node %d HugePages_Total: %5u\n"
2085 "Node %d HugePages_Free: %5u\n"
2086 "Node %d HugePages_Surp: %5u\n",
2087 nid
, h
->nr_huge_pages_node
[nid
],
2088 nid
, h
->free_huge_pages_node
[nid
],
2089 nid
, h
->surplus_huge_pages_node
[nid
]);
2092 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2093 unsigned long hugetlb_total_pages(void)
2095 struct hstate
*h
= &default_hstate
;
2096 return h
->nr_huge_pages
* pages_per_huge_page(h
);
2099 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2103 spin_lock(&hugetlb_lock
);
2105 * When cpuset is configured, it breaks the strict hugetlb page
2106 * reservation as the accounting is done on a global variable. Such
2107 * reservation is completely rubbish in the presence of cpuset because
2108 * the reservation is not checked against page availability for the
2109 * current cpuset. Application can still potentially OOM'ed by kernel
2110 * with lack of free htlb page in cpuset that the task is in.
2111 * Attempt to enforce strict accounting with cpuset is almost
2112 * impossible (or too ugly) because cpuset is too fluid that
2113 * task or memory node can be dynamically moved between cpusets.
2115 * The change of semantics for shared hugetlb mapping with cpuset is
2116 * undesirable. However, in order to preserve some of the semantics,
2117 * we fall back to check against current free page availability as
2118 * a best attempt and hopefully to minimize the impact of changing
2119 * semantics that cpuset has.
2122 if (gather_surplus_pages(h
, delta
) < 0)
2125 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2126 return_unused_surplus_pages(h
, delta
);
2133 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2136 spin_unlock(&hugetlb_lock
);
2140 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2142 struct resv_map
*reservations
= vma_resv_map(vma
);
2145 * This new VMA should share its siblings reservation map if present.
2146 * The VMA will only ever have a valid reservation map pointer where
2147 * it is being copied for another still existing VMA. As that VMA
2148 * has a reference to the reservation map it cannot disappear until
2149 * after this open call completes. It is therefore safe to take a
2150 * new reference here without additional locking.
2153 kref_get(&reservations
->refs
);
2156 static void resv_map_put(struct vm_area_struct
*vma
)
2158 struct resv_map
*reservations
= vma_resv_map(vma
);
2162 kref_put(&reservations
->refs
, resv_map_release
);
2165 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2167 struct hstate
*h
= hstate_vma(vma
);
2168 struct resv_map
*reservations
= vma_resv_map(vma
);
2169 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2170 unsigned long reserve
;
2171 unsigned long start
;
2175 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2176 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2178 reserve
= (end
- start
) -
2179 region_count(&reservations
->regions
, start
, end
);
2184 hugetlb_acct_memory(h
, -reserve
);
2185 hugepage_subpool_put_pages(spool
, reserve
);
2191 * We cannot handle pagefaults against hugetlb pages at all. They cause
2192 * handle_mm_fault() to try to instantiate regular-sized pages in the
2193 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2196 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2202 const struct vm_operations_struct hugetlb_vm_ops
= {
2203 .fault
= hugetlb_vm_op_fault
,
2204 .open
= hugetlb_vm_op_open
,
2205 .close
= hugetlb_vm_op_close
,
2208 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2215 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2217 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2219 entry
= pte_mkyoung(entry
);
2220 entry
= pte_mkhuge(entry
);
2225 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2226 unsigned long address
, pte_t
*ptep
)
2230 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2231 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2232 update_mmu_cache(vma
, address
, ptep
);
2236 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2237 struct vm_area_struct
*vma
)
2239 pte_t
*src_pte
, *dst_pte
, entry
;
2240 struct page
*ptepage
;
2243 struct hstate
*h
= hstate_vma(vma
);
2244 unsigned long sz
= huge_page_size(h
);
2246 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2248 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2249 src_pte
= huge_pte_offset(src
, addr
);
2252 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2256 /* If the pagetables are shared don't copy or take references */
2257 if (dst_pte
== src_pte
)
2260 spin_lock(&dst
->page_table_lock
);
2261 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2262 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2264 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2265 entry
= huge_ptep_get(src_pte
);
2266 ptepage
= pte_page(entry
);
2268 page_dup_rmap(ptepage
);
2269 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2271 spin_unlock(&src
->page_table_lock
);
2272 spin_unlock(&dst
->page_table_lock
);
2280 static int is_hugetlb_entry_migration(pte_t pte
)
2284 if (huge_pte_none(pte
) || pte_present(pte
))
2286 swp
= pte_to_swp_entry(pte
);
2287 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2293 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2297 if (huge_pte_none(pte
) || pte_present(pte
))
2299 swp
= pte_to_swp_entry(pte
);
2300 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2306 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2307 unsigned long end
, struct page
*ref_page
)
2309 struct mm_struct
*mm
= vma
->vm_mm
;
2310 unsigned long address
;
2315 struct hstate
*h
= hstate_vma(vma
);
2316 unsigned long sz
= huge_page_size(h
);
2319 * A page gathering list, protected by per file i_mmap_mutex. The
2320 * lock is used to avoid list corruption from multiple unmapping
2321 * of the same page since we are using page->lru.
2323 LIST_HEAD(page_list
);
2325 WARN_ON(!is_vm_hugetlb_page(vma
));
2326 BUG_ON(start
& ~huge_page_mask(h
));
2327 BUG_ON(end
& ~huge_page_mask(h
));
2329 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2330 spin_lock(&mm
->page_table_lock
);
2331 for (address
= start
; address
< end
; address
+= sz
) {
2332 ptep
= huge_pte_offset(mm
, address
);
2336 if (huge_pmd_unshare(mm
, &address
, ptep
))
2340 * If a reference page is supplied, it is because a specific
2341 * page is being unmapped, not a range. Ensure the page we
2342 * are about to unmap is the actual page of interest.
2345 pte
= huge_ptep_get(ptep
);
2346 if (huge_pte_none(pte
))
2348 page
= pte_page(pte
);
2349 if (page
!= ref_page
)
2353 * Mark the VMA as having unmapped its page so that
2354 * future faults in this VMA will fail rather than
2355 * looking like data was lost
2357 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2360 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2361 if (huge_pte_none(pte
))
2365 * HWPoisoned hugepage is already unmapped and dropped reference
2367 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
)))
2370 page
= pte_page(pte
);
2372 set_page_dirty(page
);
2373 list_add(&page
->lru
, &page_list
);
2375 spin_unlock(&mm
->page_table_lock
);
2376 flush_tlb_range(vma
, start
, end
);
2377 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2378 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2379 page_remove_rmap(page
);
2380 list_del(&page
->lru
);
2385 void __unmap_hugepage_range_final(struct vm_area_struct
*vma
,
2386 unsigned long start
, unsigned long end
,
2387 struct page
*ref_page
)
2389 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2392 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2393 * test will fail on a vma being torn down, and not grab a page table
2394 * on its way out. We're lucky that the flag has such an appropriate
2395 * name, and can in fact be safely cleared here. We could clear it
2396 * before the __unmap_hugepage_range above, but all that's necessary
2397 * is to clear it before releasing the i_mmap_mutex. This works
2398 * because in the context this is called, the VMA is about to be
2399 * destroyed and the i_mmap_mutex is held.
2401 vma
->vm_flags
&= ~VM_MAYSHARE
;
2404 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2405 unsigned long end
, struct page
*ref_page
)
2407 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2408 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2409 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2413 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2414 * mappping it owns the reserve page for. The intention is to unmap the page
2415 * from other VMAs and let the children be SIGKILLed if they are faulting the
2418 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2419 struct page
*page
, unsigned long address
)
2421 struct hstate
*h
= hstate_vma(vma
);
2422 struct vm_area_struct
*iter_vma
;
2423 struct address_space
*mapping
;
2424 struct prio_tree_iter iter
;
2428 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2429 * from page cache lookup which is in HPAGE_SIZE units.
2431 address
= address
& huge_page_mask(h
);
2432 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2434 mapping
= vma
->vm_file
->f_dentry
->d_inode
->i_mapping
;
2437 * Take the mapping lock for the duration of the table walk. As
2438 * this mapping should be shared between all the VMAs,
2439 * __unmap_hugepage_range() is called as the lock is already held
2441 mutex_lock(&mapping
->i_mmap_mutex
);
2442 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2443 /* Do not unmap the current VMA */
2444 if (iter_vma
== vma
)
2448 * Unmap the page from other VMAs without their own reserves.
2449 * They get marked to be SIGKILLed if they fault in these
2450 * areas. This is because a future no-page fault on this VMA
2451 * could insert a zeroed page instead of the data existing
2452 * from the time of fork. This would look like data corruption
2454 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2455 __unmap_hugepage_range(iter_vma
,
2456 address
, address
+ huge_page_size(h
),
2459 mutex_unlock(&mapping
->i_mmap_mutex
);
2465 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2467 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2468 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2469 struct page
*pagecache_page
)
2471 struct hstate
*h
= hstate_vma(vma
);
2472 struct page
*old_page
, *new_page
;
2474 int outside_reserve
= 0;
2476 old_page
= pte_page(pte
);
2479 /* If no-one else is actually using this page, avoid the copy
2480 * and just make the page writable */
2481 avoidcopy
= (page_mapcount(old_page
) == 1);
2483 if (PageAnon(old_page
))
2484 page_move_anon_rmap(old_page
, vma
, address
);
2485 set_huge_ptep_writable(vma
, address
, ptep
);
2490 * If the process that created a MAP_PRIVATE mapping is about to
2491 * perform a COW due to a shared page count, attempt to satisfy
2492 * the allocation without using the existing reserves. The pagecache
2493 * page is used to determine if the reserve at this address was
2494 * consumed or not. If reserves were used, a partial faulted mapping
2495 * at the time of fork() could consume its reserves on COW instead
2496 * of the full address range.
2498 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2499 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2500 old_page
!= pagecache_page
)
2501 outside_reserve
= 1;
2503 page_cache_get(old_page
);
2505 /* Drop page_table_lock as buddy allocator may be called */
2506 spin_unlock(&mm
->page_table_lock
);
2507 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2509 if (IS_ERR(new_page
)) {
2510 page_cache_release(old_page
);
2513 * If a process owning a MAP_PRIVATE mapping fails to COW,
2514 * it is due to references held by a child and an insufficient
2515 * huge page pool. To guarantee the original mappers
2516 * reliability, unmap the page from child processes. The child
2517 * may get SIGKILLed if it later faults.
2519 if (outside_reserve
) {
2520 BUG_ON(huge_pte_none(pte
));
2521 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2522 BUG_ON(huge_pte_none(pte
));
2523 spin_lock(&mm
->page_table_lock
);
2524 goto retry_avoidcopy
;
2529 /* Caller expects lock to be held */
2530 spin_lock(&mm
->page_table_lock
);
2531 return -PTR_ERR(new_page
);
2535 * When the original hugepage is shared one, it does not have
2536 * anon_vma prepared.
2538 if (unlikely(anon_vma_prepare(vma
))) {
2539 page_cache_release(new_page
);
2540 page_cache_release(old_page
);
2541 /* Caller expects lock to be held */
2542 spin_lock(&mm
->page_table_lock
);
2543 return VM_FAULT_OOM
;
2546 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2547 pages_per_huge_page(h
));
2548 __SetPageUptodate(new_page
);
2551 * Retake the page_table_lock to check for racing updates
2552 * before the page tables are altered
2554 spin_lock(&mm
->page_table_lock
);
2555 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2556 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2558 mmu_notifier_invalidate_range_start(mm
,
2559 address
& huge_page_mask(h
),
2560 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2561 huge_ptep_clear_flush(vma
, address
, ptep
);
2562 set_huge_pte_at(mm
, address
, ptep
,
2563 make_huge_pte(vma
, new_page
, 1));
2564 page_remove_rmap(old_page
);
2565 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2566 /* Make the old page be freed below */
2567 new_page
= old_page
;
2568 mmu_notifier_invalidate_range_end(mm
,
2569 address
& huge_page_mask(h
),
2570 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2572 page_cache_release(new_page
);
2573 page_cache_release(old_page
);
2577 /* Return the pagecache page at a given address within a VMA */
2578 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2579 struct vm_area_struct
*vma
, unsigned long address
)
2581 struct address_space
*mapping
;
2584 mapping
= vma
->vm_file
->f_mapping
;
2585 idx
= vma_hugecache_offset(h
, vma
, address
);
2587 return find_lock_page(mapping
, idx
);
2591 * Return whether there is a pagecache page to back given address within VMA.
2592 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2594 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2595 struct vm_area_struct
*vma
, unsigned long address
)
2597 struct address_space
*mapping
;
2601 mapping
= vma
->vm_file
->f_mapping
;
2602 idx
= vma_hugecache_offset(h
, vma
, address
);
2604 page
= find_get_page(mapping
, idx
);
2607 return page
!= NULL
;
2610 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2611 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2613 struct hstate
*h
= hstate_vma(vma
);
2614 int ret
= VM_FAULT_SIGBUS
;
2618 struct address_space
*mapping
;
2622 * Currently, we are forced to kill the process in the event the
2623 * original mapper has unmapped pages from the child due to a failed
2624 * COW. Warn that such a situation has occurred as it may not be obvious
2626 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2628 "PID %d killed due to inadequate hugepage pool\n",
2633 mapping
= vma
->vm_file
->f_mapping
;
2634 idx
= vma_hugecache_offset(h
, vma
, address
);
2637 * Use page lock to guard against racing truncation
2638 * before we get page_table_lock.
2641 page
= find_lock_page(mapping
, idx
);
2643 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2646 page
= alloc_huge_page(vma
, address
, 0);
2648 ret
= -PTR_ERR(page
);
2651 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2652 __SetPageUptodate(page
);
2654 if (vma
->vm_flags
& VM_MAYSHARE
) {
2656 struct inode
*inode
= mapping
->host
;
2658 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2666 spin_lock(&inode
->i_lock
);
2667 inode
->i_blocks
+= blocks_per_huge_page(h
);
2668 spin_unlock(&inode
->i_lock
);
2669 page_dup_rmap(page
);
2672 if (unlikely(anon_vma_prepare(vma
))) {
2674 goto backout_unlocked
;
2676 hugepage_add_new_anon_rmap(page
, vma
, address
);
2680 * If memory error occurs between mmap() and fault, some process
2681 * don't have hwpoisoned swap entry for errored virtual address.
2682 * So we need to block hugepage fault by PG_hwpoison bit check.
2684 if (unlikely(PageHWPoison(page
))) {
2685 ret
= VM_FAULT_HWPOISON
|
2686 VM_FAULT_SET_HINDEX(h
- hstates
);
2687 goto backout_unlocked
;
2689 page_dup_rmap(page
);
2693 * If we are going to COW a private mapping later, we examine the
2694 * pending reservations for this page now. This will ensure that
2695 * any allocations necessary to record that reservation occur outside
2698 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2699 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2701 goto backout_unlocked
;
2704 spin_lock(&mm
->page_table_lock
);
2705 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2710 if (!huge_pte_none(huge_ptep_get(ptep
)))
2713 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2714 && (vma
->vm_flags
& VM_SHARED
)));
2715 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2717 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2718 /* Optimization, do the COW without a second fault */
2719 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2722 spin_unlock(&mm
->page_table_lock
);
2728 spin_unlock(&mm
->page_table_lock
);
2735 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2736 unsigned long address
, unsigned int flags
)
2741 struct page
*page
= NULL
;
2742 struct page
*pagecache_page
= NULL
;
2743 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2744 struct hstate
*h
= hstate_vma(vma
);
2746 ptep
= huge_pte_offset(mm
, address
);
2748 entry
= huge_ptep_get(ptep
);
2749 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2750 migration_entry_wait(mm
, (pmd_t
*)ptep
, address
);
2752 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2753 return VM_FAULT_HWPOISON_LARGE
|
2754 VM_FAULT_SET_HINDEX(h
- hstates
);
2757 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2759 return VM_FAULT_OOM
;
2762 * Serialize hugepage allocation and instantiation, so that we don't
2763 * get spurious allocation failures if two CPUs race to instantiate
2764 * the same page in the page cache.
2766 mutex_lock(&hugetlb_instantiation_mutex
);
2767 entry
= huge_ptep_get(ptep
);
2768 if (huge_pte_none(entry
)) {
2769 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2776 * If we are going to COW the mapping later, we examine the pending
2777 * reservations for this page now. This will ensure that any
2778 * allocations necessary to record that reservation occur outside the
2779 * spinlock. For private mappings, we also lookup the pagecache
2780 * page now as it is used to determine if a reservation has been
2783 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2784 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2789 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2790 pagecache_page
= hugetlbfs_pagecache_page(h
,
2795 * hugetlb_cow() requires page locks of pte_page(entry) and
2796 * pagecache_page, so here we need take the former one
2797 * when page != pagecache_page or !pagecache_page.
2798 * Note that locking order is always pagecache_page -> page,
2799 * so no worry about deadlock.
2801 page
= pte_page(entry
);
2803 if (page
!= pagecache_page
)
2806 spin_lock(&mm
->page_table_lock
);
2807 /* Check for a racing update before calling hugetlb_cow */
2808 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2809 goto out_page_table_lock
;
2812 if (flags
& FAULT_FLAG_WRITE
) {
2813 if (!pte_write(entry
)) {
2814 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2816 goto out_page_table_lock
;
2818 entry
= pte_mkdirty(entry
);
2820 entry
= pte_mkyoung(entry
);
2821 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2822 flags
& FAULT_FLAG_WRITE
))
2823 update_mmu_cache(vma
, address
, ptep
);
2825 out_page_table_lock
:
2826 spin_unlock(&mm
->page_table_lock
);
2828 if (pagecache_page
) {
2829 unlock_page(pagecache_page
);
2830 put_page(pagecache_page
);
2832 if (page
!= pagecache_page
)
2837 mutex_unlock(&hugetlb_instantiation_mutex
);
2842 /* Can be overriden by architectures */
2843 __attribute__((weak
)) struct page
*
2844 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2845 pud_t
*pud
, int write
)
2851 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2852 struct page
**pages
, struct vm_area_struct
**vmas
,
2853 unsigned long *position
, int *length
, int i
,
2856 unsigned long pfn_offset
;
2857 unsigned long vaddr
= *position
;
2858 int remainder
= *length
;
2859 struct hstate
*h
= hstate_vma(vma
);
2861 spin_lock(&mm
->page_table_lock
);
2862 while (vaddr
< vma
->vm_end
&& remainder
) {
2868 * Some archs (sparc64, sh*) have multiple pte_ts to
2869 * each hugepage. We have to make sure we get the
2870 * first, for the page indexing below to work.
2872 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2873 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2876 * When coredumping, it suits get_dump_page if we just return
2877 * an error where there's an empty slot with no huge pagecache
2878 * to back it. This way, we avoid allocating a hugepage, and
2879 * the sparse dumpfile avoids allocating disk blocks, but its
2880 * huge holes still show up with zeroes where they need to be.
2882 if (absent
&& (flags
& FOLL_DUMP
) &&
2883 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2889 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2892 spin_unlock(&mm
->page_table_lock
);
2893 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2894 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2895 spin_lock(&mm
->page_table_lock
);
2896 if (!(ret
& VM_FAULT_ERROR
))
2903 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2904 page
= pte_page(huge_ptep_get(pte
));
2907 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2918 if (vaddr
< vma
->vm_end
&& remainder
&&
2919 pfn_offset
< pages_per_huge_page(h
)) {
2921 * We use pfn_offset to avoid touching the pageframes
2922 * of this compound page.
2927 spin_unlock(&mm
->page_table_lock
);
2928 *length
= remainder
;
2931 return i
? i
: -EFAULT
;
2934 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2935 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2937 struct mm_struct
*mm
= vma
->vm_mm
;
2938 unsigned long start
= address
;
2941 struct hstate
*h
= hstate_vma(vma
);
2943 BUG_ON(address
>= end
);
2944 flush_cache_range(vma
, address
, end
);
2946 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2947 spin_lock(&mm
->page_table_lock
);
2948 for (; address
< end
; address
+= huge_page_size(h
)) {
2949 ptep
= huge_pte_offset(mm
, address
);
2952 if (huge_pmd_unshare(mm
, &address
, ptep
))
2954 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2955 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2956 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2957 set_huge_pte_at(mm
, address
, ptep
, pte
);
2960 spin_unlock(&mm
->page_table_lock
);
2962 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
2963 * may have cleared our pud entry and done put_page on the page table:
2964 * once we release i_mmap_mutex, another task can do the final put_page
2965 * and that page table be reused and filled with junk.
2967 flush_tlb_range(vma
, start
, end
);
2968 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2971 int hugetlb_reserve_pages(struct inode
*inode
,
2973 struct vm_area_struct
*vma
,
2974 vm_flags_t vm_flags
)
2977 struct hstate
*h
= hstate_inode(inode
);
2978 struct hugepage_subpool
*spool
= subpool_inode(inode
);
2981 * Only apply hugepage reservation if asked. At fault time, an
2982 * attempt will be made for VM_NORESERVE to allocate a page
2983 * without using reserves
2985 if (vm_flags
& VM_NORESERVE
)
2989 * Shared mappings base their reservation on the number of pages that
2990 * are already allocated on behalf of the file. Private mappings need
2991 * to reserve the full area even if read-only as mprotect() may be
2992 * called to make the mapping read-write. Assume !vma is a shm mapping
2994 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2995 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2997 struct resv_map
*resv_map
= resv_map_alloc();
3003 set_vma_resv_map(vma
, resv_map
);
3004 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3012 /* There must be enough pages in the subpool for the mapping */
3013 if (hugepage_subpool_get_pages(spool
, chg
)) {
3019 * Check enough hugepages are available for the reservation.
3020 * Hand the pages back to the subpool if there are not
3022 ret
= hugetlb_acct_memory(h
, chg
);
3024 hugepage_subpool_put_pages(spool
, chg
);
3029 * Account for the reservations made. Shared mappings record regions
3030 * that have reservations as they are shared by multiple VMAs.
3031 * When the last VMA disappears, the region map says how much
3032 * the reservation was and the page cache tells how much of
3033 * the reservation was consumed. Private mappings are per-VMA and
3034 * only the consumed reservations are tracked. When the VMA
3035 * disappears, the original reservation is the VMA size and the
3036 * consumed reservations are stored in the map. Hence, nothing
3037 * else has to be done for private mappings here
3039 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3040 region_add(&inode
->i_mapping
->private_list
, from
, to
);
3048 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3050 struct hstate
*h
= hstate_inode(inode
);
3051 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
3052 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3054 spin_lock(&inode
->i_lock
);
3055 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3056 spin_unlock(&inode
->i_lock
);
3058 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3059 hugetlb_acct_memory(h
, -(chg
- freed
));
3062 #ifdef CONFIG_MEMORY_FAILURE
3064 /* Should be called in hugetlb_lock */
3065 static int is_hugepage_on_freelist(struct page
*hpage
)
3069 struct hstate
*h
= page_hstate(hpage
);
3070 int nid
= page_to_nid(hpage
);
3072 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3079 * This function is called from memory failure code.
3080 * Assume the caller holds page lock of the head page.
3082 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3084 struct hstate
*h
= page_hstate(hpage
);
3085 int nid
= page_to_nid(hpage
);
3088 spin_lock(&hugetlb_lock
);
3089 if (is_hugepage_on_freelist(hpage
)) {
3090 list_del(&hpage
->lru
);
3091 set_page_refcounted(hpage
);
3092 h
->free_huge_pages
--;
3093 h
->free_huge_pages_node
[nid
]--;
3096 spin_unlock(&hugetlb_lock
);