1 // SPDX-License-Identifier: GPL-2.0-only
3 * intel_pstate.c: Native P state management for Intel processors
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
30 #include <asm/div64.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 static inline int32_t mul_fp(int32_t x
, int32_t y
)
60 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
63 static inline int32_t div_fp(s64 x
, s64 y
)
65 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
68 static inline int ceiling_fp(int32_t x
)
73 mask
= (1 << FRAC_BITS
) - 1;
79 static inline u64
mul_ext_fp(u64 x
, u64 y
)
81 return (x
* y
) >> EXT_FRAC_BITS
;
84 static inline u64
div_ext_fp(u64 x
, u64 y
)
86 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
90 * struct sample - Store performance sample
91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
92 * performance during last sample period
93 * @busy_scaled: Scaled busy value which is used to calculate next
94 * P state. This can be different than core_avg_perf
95 * to account for cpu idle period
96 * @aperf: Difference of actual performance frequency clock count
97 * read from APERF MSR between last and current sample
98 * @mperf: Difference of maximum performance frequency clock count
99 * read from MPERF MSR between last and current sample
100 * @tsc: Difference of time stamp counter between last and
102 * @time: Current time from scheduler
104 * This structure is used in the cpudata structure to store performance sample
105 * data for choosing next P State.
108 int32_t core_avg_perf
;
117 * struct pstate_data - Store P state data
118 * @current_pstate: Current requested P state
119 * @min_pstate: Min P state possible for this platform
120 * @max_pstate: Max P state possible for this platform
121 * @max_pstate_physical:This is physical Max P state for a processor
122 * This can be higher than the max_pstate which can
123 * be limited by platform thermal design power limits
124 * @scaling: Scaling factor to convert frequency to cpufreq
126 * @turbo_pstate: Max Turbo P state possible for this platform
127 * @max_freq: @max_pstate frequency in cpufreq units
128 * @turbo_freq: @turbo_pstate frequency in cpufreq units
130 * Stores the per cpu model P state limits and current P state.
136 int max_pstate_physical
;
139 unsigned int max_freq
;
140 unsigned int turbo_freq
;
144 * struct vid_data - Stores voltage information data
145 * @min: VID data for this platform corresponding to
147 * @max: VID data corresponding to the highest P State.
148 * @turbo: VID data for turbo P state
149 * @ratio: Ratio of (vid max - vid min) /
150 * (max P state - Min P State)
152 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
153 * This data is used in Atom platforms, where in addition to target P state,
154 * the voltage data needs to be specified to select next P State.
164 * struct global_params - Global parameters, mostly tunable via sysfs.
165 * @no_turbo: Whether or not to use turbo P-states.
166 * @turbo_disabled: Whether or not turbo P-states are available at all,
167 * based on the MSR_IA32_MISC_ENABLE value and whether or
168 * not the maximum reported turbo P-state is different from
169 * the maximum reported non-turbo one.
170 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
171 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
173 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
176 struct global_params
{
179 bool turbo_disabled_mf
;
185 * struct cpudata - Per CPU instance data storage
186 * @cpu: CPU number for this instance data
187 * @policy: CPUFreq policy value
188 * @update_util: CPUFreq utility callback information
189 * @update_util_set: CPUFreq utility callback is set
190 * @iowait_boost: iowait-related boost fraction
191 * @last_update: Time of the last update.
192 * @pstate: Stores P state limits for this CPU
193 * @vid: Stores VID limits for this CPU
194 * @last_sample_time: Last Sample time
195 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
196 * @prev_aperf: Last APERF value read from APERF MSR
197 * @prev_mperf: Last MPERF value read from MPERF MSR
198 * @prev_tsc: Last timestamp counter (TSC) value
199 * @prev_cummulative_iowait: IO Wait time difference from last and
201 * @sample: Storage for storing last Sample data
202 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
203 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
204 * @acpi_perf_data: Stores ACPI perf information read from _PSS
205 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
206 * @epp_powersave: Last saved HWP energy performance preference
207 * (EPP) or energy performance bias (EPB),
208 * when policy switched to performance
209 * @epp_policy: Last saved policy used to set EPP/EPB
210 * @epp_default: Power on default HWP energy performance
212 * @epp_cached Cached HWP energy-performance preference value
213 * @hwp_req_cached: Cached value of the last HWP Request MSR
214 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
215 * @last_io_update: Last time when IO wake flag was set
216 * @sched_flags: Store scheduler flags for possible cross CPU update
217 * @hwp_boost_min: Last HWP boosted min performance
218 * @suspended: Whether or not the driver has been suspended.
220 * This structure stores per CPU instance data for all CPUs.
226 struct update_util_data update_util
;
227 bool update_util_set
;
229 struct pstate_data pstate
;
233 u64 last_sample_time
;
234 u64 aperf_mperf_shift
;
238 u64 prev_cummulative_iowait
;
239 struct sample sample
;
240 int32_t min_perf_ratio
;
241 int32_t max_perf_ratio
;
243 struct acpi_processor_performance acpi_perf_data
;
244 bool valid_pss_table
;
246 unsigned int iowait_boost
;
254 unsigned int sched_flags
;
259 static struct cpudata
**all_cpu_data
;
262 * struct pstate_funcs - Per CPU model specific callbacks
263 * @get_max: Callback to get maximum non turbo effective P state
264 * @get_max_physical: Callback to get maximum non turbo physical P state
265 * @get_min: Callback to get minimum P state
266 * @get_turbo: Callback to get turbo P state
267 * @get_scaling: Callback to get frequency scaling factor
268 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
269 * @get_val: Callback to convert P state to actual MSR write value
270 * @get_vid: Callback to get VID data for Atom platforms
272 * Core and Atom CPU models have different way to get P State limits. This
273 * structure is used to store those callbacks.
275 struct pstate_funcs
{
276 int (*get_max
)(void);
277 int (*get_max_physical
)(void);
278 int (*get_min
)(void);
279 int (*get_turbo
)(void);
280 int (*get_scaling
)(void);
281 int (*get_aperf_mperf_shift
)(void);
282 u64 (*get_val
)(struct cpudata
*, int pstate
);
283 void (*get_vid
)(struct cpudata
*);
286 static struct pstate_funcs pstate_funcs __read_mostly
;
288 static int hwp_active __read_mostly
;
289 static int hwp_mode_bdw __read_mostly
;
290 static bool per_cpu_limits __read_mostly
;
291 static bool hwp_boost __read_mostly
;
293 static struct cpufreq_driver
*intel_pstate_driver __read_mostly
;
296 static bool acpi_ppc
;
299 static struct global_params global
;
301 static DEFINE_MUTEX(intel_pstate_driver_lock
);
302 static DEFINE_MUTEX(intel_pstate_limits_lock
);
306 static bool intel_pstate_acpi_pm_profile_server(void)
308 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
309 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
315 static bool intel_pstate_get_ppc_enable_status(void)
317 if (intel_pstate_acpi_pm_profile_server())
323 #ifdef CONFIG_ACPI_CPPC_LIB
325 /* The work item is needed to avoid CPU hotplug locking issues */
326 static void intel_pstste_sched_itmt_work_fn(struct work_struct
*work
)
328 sched_set_itmt_support();
331 static DECLARE_WORK(sched_itmt_work
, intel_pstste_sched_itmt_work_fn
);
333 static void intel_pstate_set_itmt_prio(int cpu
)
335 struct cppc_perf_caps cppc_perf
;
336 static u32 max_highest_perf
= 0, min_highest_perf
= U32_MAX
;
339 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
344 * The priorities can be set regardless of whether or not
345 * sched_set_itmt_support(true) has been called and it is valid to
346 * update them at any time after it has been called.
348 sched_set_itmt_core_prio(cppc_perf
.highest_perf
, cpu
);
350 if (max_highest_perf
<= min_highest_perf
) {
351 if (cppc_perf
.highest_perf
> max_highest_perf
)
352 max_highest_perf
= cppc_perf
.highest_perf
;
354 if (cppc_perf
.highest_perf
< min_highest_perf
)
355 min_highest_perf
= cppc_perf
.highest_perf
;
357 if (max_highest_perf
> min_highest_perf
) {
359 * This code can be run during CPU online under the
360 * CPU hotplug locks, so sched_set_itmt_support()
361 * cannot be called from here. Queue up a work item
364 schedule_work(&sched_itmt_work
);
369 static int intel_pstate_get_cppc_guranteed(int cpu
)
371 struct cppc_perf_caps cppc_perf
;
374 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
378 if (cppc_perf
.guaranteed_perf
)
379 return cppc_perf
.guaranteed_perf
;
381 return cppc_perf
.nominal_perf
;
384 #else /* CONFIG_ACPI_CPPC_LIB */
385 static void intel_pstate_set_itmt_prio(int cpu
)
388 #endif /* CONFIG_ACPI_CPPC_LIB */
390 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
397 intel_pstate_set_itmt_prio(policy
->cpu
);
401 if (!intel_pstate_get_ppc_enable_status())
404 cpu
= all_cpu_data
[policy
->cpu
];
406 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
412 * Check if the control value in _PSS is for PERF_CTL MSR, which should
413 * guarantee that the states returned by it map to the states in our
416 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
417 ACPI_ADR_SPACE_FIXED_HARDWARE
)
421 * If there is only one entry _PSS, simply ignore _PSS and continue as
422 * usual without taking _PSS into account
424 if (cpu
->acpi_perf_data
.state_count
< 2)
427 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
428 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
429 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
430 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
431 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
432 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
433 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
437 * The _PSS table doesn't contain whole turbo frequency range.
438 * This just contains +1 MHZ above the max non turbo frequency,
439 * with control value corresponding to max turbo ratio. But
440 * when cpufreq set policy is called, it will call with this
441 * max frequency, which will cause a reduced performance as
442 * this driver uses real max turbo frequency as the max
443 * frequency. So correct this frequency in _PSS table to
444 * correct max turbo frequency based on the turbo state.
445 * Also need to convert to MHz as _PSS freq is in MHz.
447 if (!global
.turbo_disabled
)
448 cpu
->acpi_perf_data
.states
[0].core_frequency
=
449 policy
->cpuinfo
.max_freq
/ 1000;
450 cpu
->valid_pss_table
= true;
451 pr_debug("_PPC limits will be enforced\n");
456 cpu
->valid_pss_table
= false;
457 acpi_processor_unregister_performance(policy
->cpu
);
460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
464 cpu
= all_cpu_data
[policy
->cpu
];
465 if (!cpu
->valid_pss_table
)
468 acpi_processor_unregister_performance(policy
->cpu
);
470 #else /* CONFIG_ACPI */
471 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
475 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
479 static inline bool intel_pstate_acpi_pm_profile_server(void)
483 #endif /* CONFIG_ACPI */
485 #ifndef CONFIG_ACPI_CPPC_LIB
486 static int intel_pstate_get_cppc_guranteed(int cpu
)
490 #endif /* CONFIG_ACPI_CPPC_LIB */
492 static inline void update_turbo_state(void)
497 cpu
= all_cpu_data
[0];
498 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
499 global
.turbo_disabled
=
500 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
501 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
504 static int min_perf_pct_min(void)
506 struct cpudata
*cpu
= all_cpu_data
[0];
507 int turbo_pstate
= cpu
->pstate
.turbo_pstate
;
509 return turbo_pstate
?
510 (cpu
->pstate
.min_pstate
* 100 / turbo_pstate
) : 0;
513 static s16
intel_pstate_get_epb(struct cpudata
*cpu_data
)
518 if (!boot_cpu_has(X86_FEATURE_EPB
))
521 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
525 return (s16
)(epb
& 0x0f);
528 static s16
intel_pstate_get_epp(struct cpudata
*cpu_data
, u64 hwp_req_data
)
532 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
534 * When hwp_req_data is 0, means that caller didn't read
535 * MSR_HWP_REQUEST, so need to read and get EPP.
538 epp
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
,
543 epp
= (hwp_req_data
>> 24) & 0xff;
545 /* When there is no EPP present, HWP uses EPB settings */
546 epp
= intel_pstate_get_epb(cpu_data
);
552 static int intel_pstate_set_epb(int cpu
, s16 pref
)
557 if (!boot_cpu_has(X86_FEATURE_EPB
))
560 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
564 epb
= (epb
& ~0x0f) | pref
;
565 wrmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, epb
);
571 * EPP/EPB display strings corresponding to EPP index in the
572 * energy_perf_strings[]
574 *-------------------------------------
577 * 2 balance_performance
581 static const char * const energy_perf_strings
[] = {
584 "balance_performance",
589 static const unsigned int epp_values
[] = {
591 HWP_EPP_BALANCE_PERFORMANCE
,
592 HWP_EPP_BALANCE_POWERSAVE
,
596 static int intel_pstate_get_energy_pref_index(struct cpudata
*cpu_data
, int *raw_epp
)
602 epp
= intel_pstate_get_epp(cpu_data
, 0);
606 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
607 if (epp
== HWP_EPP_PERFORMANCE
)
609 if (epp
== HWP_EPP_BALANCE_PERFORMANCE
)
611 if (epp
== HWP_EPP_BALANCE_POWERSAVE
)
613 if (epp
== HWP_EPP_POWERSAVE
)
617 } else if (boot_cpu_has(X86_FEATURE_EPB
)) {
620 * 0x00-0x03 : Performance
621 * 0x04-0x07 : Balance performance
622 * 0x08-0x0B : Balance power
624 * The EPB is a 4 bit value, but our ranges restrict the
625 * value which can be set. Here only using top two bits
628 index
= (epp
>> 2) + 1;
634 static int intel_pstate_set_epp(struct cpudata
*cpu
, u32 epp
)
639 * Use the cached HWP Request MSR value, because in the active mode the
640 * register itself may be updated by intel_pstate_hwp_boost_up() or
641 * intel_pstate_hwp_boost_down() at any time.
643 u64 value
= READ_ONCE(cpu
->hwp_req_cached
);
645 value
&= ~GENMASK_ULL(31, 24);
646 value
|= (u64
)epp
<< 24;
648 * The only other updater of hwp_req_cached in the active mode,
649 * intel_pstate_hwp_set(), is called under the same lock as this
650 * function, so it cannot run in parallel with the update below.
652 WRITE_ONCE(cpu
->hwp_req_cached
, value
);
653 ret
= wrmsrl_on_cpu(cpu
->cpu
, MSR_HWP_REQUEST
, value
);
655 cpu
->epp_cached
= epp
;
660 static int intel_pstate_set_energy_pref_index(struct cpudata
*cpu_data
,
661 int pref_index
, bool use_raw
,
668 epp
= cpu_data
->epp_default
;
670 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
673 else if (epp
== -EINVAL
)
674 epp
= epp_values
[pref_index
- 1];
677 * To avoid confusion, refuse to set EPP to any values different
678 * from 0 (performance) if the current policy is "performance",
679 * because those values would be overridden.
681 if (epp
> 0 && cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
)
684 ret
= intel_pstate_set_epp(cpu_data
, epp
);
687 epp
= (pref_index
- 1) << 2;
688 ret
= intel_pstate_set_epb(cpu_data
->cpu
, epp
);
694 static ssize_t
show_energy_performance_available_preferences(
695 struct cpufreq_policy
*policy
, char *buf
)
700 while (energy_perf_strings
[i
] != NULL
)
701 ret
+= sprintf(&buf
[ret
], "%s ", energy_perf_strings
[i
++]);
703 ret
+= sprintf(&buf
[ret
], "\n");
708 cpufreq_freq_attr_ro(energy_performance_available_preferences
);
710 static struct cpufreq_driver intel_pstate
;
712 static ssize_t
store_energy_performance_preference(
713 struct cpufreq_policy
*policy
, const char *buf
, size_t count
)
715 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
716 char str_preference
[21];
721 ret
= sscanf(buf
, "%20s", str_preference
);
725 ret
= match_string(energy_perf_strings
, -1, str_preference
);
727 if (!boot_cpu_has(X86_FEATURE_HWP_EPP
))
730 ret
= kstrtouint(buf
, 10, &epp
);
741 * This function runs with the policy R/W semaphore held, which
742 * guarantees that the driver pointer will not change while it is
745 if (!intel_pstate_driver
)
748 mutex_lock(&intel_pstate_limits_lock
);
750 if (intel_pstate_driver
== &intel_pstate
) {
751 ret
= intel_pstate_set_energy_pref_index(cpu
, ret
, raw
, epp
);
754 * In the passive mode the governor needs to be stopped on the
755 * target CPU before the EPP update and restarted after it,
756 * which is super-heavy-weight, so make sure it is worth doing
760 epp
= ret
? epp_values
[ret
- 1] : cpu
->epp_default
;
762 if (cpu
->epp_cached
!= epp
) {
765 cpufreq_stop_governor(policy
);
766 ret
= intel_pstate_set_epp(cpu
, epp
);
767 err
= cpufreq_start_governor(policy
);
773 mutex_unlock(&intel_pstate_limits_lock
);
778 static ssize_t
show_energy_performance_preference(
779 struct cpufreq_policy
*policy
, char *buf
)
781 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
782 int preference
, raw_epp
;
784 preference
= intel_pstate_get_energy_pref_index(cpu_data
, &raw_epp
);
789 return sprintf(buf
, "%d\n", raw_epp
);
791 return sprintf(buf
, "%s\n", energy_perf_strings
[preference
]);
794 cpufreq_freq_attr_rw(energy_performance_preference
);
796 static ssize_t
show_base_frequency(struct cpufreq_policy
*policy
, char *buf
)
802 ratio
= intel_pstate_get_cppc_guranteed(policy
->cpu
);
804 rdmsrl_on_cpu(policy
->cpu
, MSR_HWP_CAPABILITIES
, &cap
);
805 ratio
= HWP_GUARANTEED_PERF(cap
);
808 cpu
= all_cpu_data
[policy
->cpu
];
810 return sprintf(buf
, "%d\n", ratio
* cpu
->pstate
.scaling
);
813 cpufreq_freq_attr_ro(base_frequency
);
815 static struct freq_attr
*hwp_cpufreq_attrs
[] = {
816 &energy_performance_preference
,
817 &energy_performance_available_preferences
,
822 static void intel_pstate_get_hwp_max(unsigned int cpu
, int *phy_max
,
827 rdmsrl_on_cpu(cpu
, MSR_HWP_CAPABILITIES
, &cap
);
828 WRITE_ONCE(all_cpu_data
[cpu
]->hwp_cap_cached
, cap
);
829 if (global
.no_turbo
|| global
.turbo_disabled
)
830 *current_max
= HWP_GUARANTEED_PERF(cap
);
832 *current_max
= HWP_HIGHEST_PERF(cap
);
834 *phy_max
= HWP_HIGHEST_PERF(cap
);
837 static void intel_pstate_hwp_set(unsigned int cpu
)
839 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
844 max
= cpu_data
->max_perf_ratio
;
845 min
= cpu_data
->min_perf_ratio
;
847 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
)
850 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
852 value
&= ~HWP_MIN_PERF(~0L);
853 value
|= HWP_MIN_PERF(min
);
855 value
&= ~HWP_MAX_PERF(~0L);
856 value
|= HWP_MAX_PERF(max
);
858 if (cpu_data
->epp_policy
== cpu_data
->policy
)
861 cpu_data
->epp_policy
= cpu_data
->policy
;
863 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
864 epp
= intel_pstate_get_epp(cpu_data
, value
);
865 cpu_data
->epp_powersave
= epp
;
866 /* If EPP read was failed, then don't try to write */
872 /* skip setting EPP, when saved value is invalid */
873 if (cpu_data
->epp_powersave
< 0)
877 * No need to restore EPP when it is not zero. This
879 * - Policy is not changed
880 * - user has manually changed
881 * - Error reading EPB
883 epp
= intel_pstate_get_epp(cpu_data
, value
);
887 epp
= cpu_data
->epp_powersave
;
889 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
890 value
&= ~GENMASK_ULL(31, 24);
891 value
|= (u64
)epp
<< 24;
893 intel_pstate_set_epb(cpu
, epp
);
896 WRITE_ONCE(cpu_data
->hwp_req_cached
, value
);
897 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
900 static void intel_pstate_hwp_offline(struct cpudata
*cpu
)
902 u64 value
= READ_ONCE(cpu
->hwp_req_cached
);
905 if (boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
907 * In case the EPP has been set to "performance" by the
908 * active mode "performance" scaling algorithm, replace that
909 * temporary value with the cached EPP one.
911 value
&= ~GENMASK_ULL(31, 24);
912 value
|= HWP_ENERGY_PERF_PREFERENCE(cpu
->epp_cached
);
913 WRITE_ONCE(cpu
->hwp_req_cached
, value
);
916 value
&= ~GENMASK_ULL(31, 0);
917 min_perf
= HWP_LOWEST_PERF(cpu
->hwp_cap_cached
);
919 /* Set hwp_max = hwp_min */
920 value
|= HWP_MAX_PERF(min_perf
);
921 value
|= HWP_MIN_PERF(min_perf
);
924 if (boot_cpu_has(X86_FEATURE_HWP_EPP
))
925 value
|= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE
);
927 wrmsrl_on_cpu(cpu
->cpu
, MSR_HWP_REQUEST
, value
);
930 #define POWER_CTL_EE_ENABLE 1
931 #define POWER_CTL_EE_DISABLE 2
933 static int power_ctl_ee_state
;
935 static void set_power_ctl_ee_state(bool input
)
939 mutex_lock(&intel_pstate_driver_lock
);
940 rdmsrl(MSR_IA32_POWER_CTL
, power_ctl
);
942 power_ctl
&= ~BIT(MSR_IA32_POWER_CTL_BIT_EE
);
943 power_ctl_ee_state
= POWER_CTL_EE_ENABLE
;
945 power_ctl
|= BIT(MSR_IA32_POWER_CTL_BIT_EE
);
946 power_ctl_ee_state
= POWER_CTL_EE_DISABLE
;
948 wrmsrl(MSR_IA32_POWER_CTL
, power_ctl
);
949 mutex_unlock(&intel_pstate_driver_lock
);
952 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
);
954 static void intel_pstate_hwp_reenable(struct cpudata
*cpu
)
956 intel_pstate_hwp_enable(cpu
);
957 wrmsrl_on_cpu(cpu
->cpu
, MSR_HWP_REQUEST
, READ_ONCE(cpu
->hwp_req_cached
));
960 static int intel_pstate_suspend(struct cpufreq_policy
*policy
)
962 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
964 pr_debug("CPU %d suspending\n", cpu
->cpu
);
966 cpu
->suspended
= true;
971 static int intel_pstate_resume(struct cpufreq_policy
*policy
)
973 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
975 pr_debug("CPU %d resuming\n", cpu
->cpu
);
977 /* Only restore if the system default is changed */
978 if (power_ctl_ee_state
== POWER_CTL_EE_ENABLE
)
979 set_power_ctl_ee_state(true);
980 else if (power_ctl_ee_state
== POWER_CTL_EE_DISABLE
)
981 set_power_ctl_ee_state(false);
983 if (cpu
->suspended
&& hwp_active
) {
984 mutex_lock(&intel_pstate_limits_lock
);
986 /* Re-enable HWP, because "online" has not done that. */
987 intel_pstate_hwp_reenable(cpu
);
989 mutex_unlock(&intel_pstate_limits_lock
);
992 cpu
->suspended
= false;
997 static void intel_pstate_update_policies(void)
1001 for_each_possible_cpu(cpu
)
1002 cpufreq_update_policy(cpu
);
1005 static void intel_pstate_update_max_freq(unsigned int cpu
)
1007 struct cpufreq_policy
*policy
= cpufreq_cpu_acquire(cpu
);
1008 struct cpudata
*cpudata
;
1013 cpudata
= all_cpu_data
[cpu
];
1014 policy
->cpuinfo
.max_freq
= global
.turbo_disabled_mf
?
1015 cpudata
->pstate
.max_freq
: cpudata
->pstate
.turbo_freq
;
1017 refresh_frequency_limits(policy
);
1019 cpufreq_cpu_release(policy
);
1022 static void intel_pstate_update_limits(unsigned int cpu
)
1024 mutex_lock(&intel_pstate_driver_lock
);
1026 update_turbo_state();
1028 * If turbo has been turned on or off globally, policy limits for
1029 * all CPUs need to be updated to reflect that.
1031 if (global
.turbo_disabled_mf
!= global
.turbo_disabled
) {
1032 global
.turbo_disabled_mf
= global
.turbo_disabled
;
1033 arch_set_max_freq_ratio(global
.turbo_disabled
);
1034 for_each_possible_cpu(cpu
)
1035 intel_pstate_update_max_freq(cpu
);
1037 cpufreq_update_policy(cpu
);
1040 mutex_unlock(&intel_pstate_driver_lock
);
1043 /************************** sysfs begin ************************/
1044 #define show_one(file_name, object) \
1045 static ssize_t show_##file_name \
1046 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1048 return sprintf(buf, "%u\n", global.object); \
1051 static ssize_t
intel_pstate_show_status(char *buf
);
1052 static int intel_pstate_update_status(const char *buf
, size_t size
);
1054 static ssize_t
show_status(struct kobject
*kobj
,
1055 struct kobj_attribute
*attr
, char *buf
)
1059 mutex_lock(&intel_pstate_driver_lock
);
1060 ret
= intel_pstate_show_status(buf
);
1061 mutex_unlock(&intel_pstate_driver_lock
);
1066 static ssize_t
store_status(struct kobject
*a
, struct kobj_attribute
*b
,
1067 const char *buf
, size_t count
)
1069 char *p
= memchr(buf
, '\n', count
);
1072 mutex_lock(&intel_pstate_driver_lock
);
1073 ret
= intel_pstate_update_status(buf
, p
? p
- buf
: count
);
1074 mutex_unlock(&intel_pstate_driver_lock
);
1076 return ret
< 0 ? ret
: count
;
1079 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
1080 struct kobj_attribute
*attr
, char *buf
)
1082 struct cpudata
*cpu
;
1083 int total
, no_turbo
, turbo_pct
;
1086 mutex_lock(&intel_pstate_driver_lock
);
1088 if (!intel_pstate_driver
) {
1089 mutex_unlock(&intel_pstate_driver_lock
);
1093 cpu
= all_cpu_data
[0];
1095 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
1096 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
1097 turbo_fp
= div_fp(no_turbo
, total
);
1098 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
1100 mutex_unlock(&intel_pstate_driver_lock
);
1102 return sprintf(buf
, "%u\n", turbo_pct
);
1105 static ssize_t
show_num_pstates(struct kobject
*kobj
,
1106 struct kobj_attribute
*attr
, char *buf
)
1108 struct cpudata
*cpu
;
1111 mutex_lock(&intel_pstate_driver_lock
);
1113 if (!intel_pstate_driver
) {
1114 mutex_unlock(&intel_pstate_driver_lock
);
1118 cpu
= all_cpu_data
[0];
1119 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
1121 mutex_unlock(&intel_pstate_driver_lock
);
1123 return sprintf(buf
, "%u\n", total
);
1126 static ssize_t
show_no_turbo(struct kobject
*kobj
,
1127 struct kobj_attribute
*attr
, char *buf
)
1131 mutex_lock(&intel_pstate_driver_lock
);
1133 if (!intel_pstate_driver
) {
1134 mutex_unlock(&intel_pstate_driver_lock
);
1138 update_turbo_state();
1139 if (global
.turbo_disabled
)
1140 ret
= sprintf(buf
, "%u\n", global
.turbo_disabled
);
1142 ret
= sprintf(buf
, "%u\n", global
.no_turbo
);
1144 mutex_unlock(&intel_pstate_driver_lock
);
1149 static ssize_t
store_no_turbo(struct kobject
*a
, struct kobj_attribute
*b
,
1150 const char *buf
, size_t count
)
1155 ret
= sscanf(buf
, "%u", &input
);
1159 mutex_lock(&intel_pstate_driver_lock
);
1161 if (!intel_pstate_driver
) {
1162 mutex_unlock(&intel_pstate_driver_lock
);
1166 mutex_lock(&intel_pstate_limits_lock
);
1168 update_turbo_state();
1169 if (global
.turbo_disabled
) {
1170 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1171 mutex_unlock(&intel_pstate_limits_lock
);
1172 mutex_unlock(&intel_pstate_driver_lock
);
1176 global
.no_turbo
= clamp_t(int, input
, 0, 1);
1178 if (global
.no_turbo
) {
1179 struct cpudata
*cpu
= all_cpu_data
[0];
1180 int pct
= cpu
->pstate
.max_pstate
* 100 / cpu
->pstate
.turbo_pstate
;
1182 /* Squash the global minimum into the permitted range. */
1183 if (global
.min_perf_pct
> pct
)
1184 global
.min_perf_pct
= pct
;
1187 mutex_unlock(&intel_pstate_limits_lock
);
1189 intel_pstate_update_policies();
1191 mutex_unlock(&intel_pstate_driver_lock
);
1196 static void update_qos_request(enum freq_qos_req_type type
)
1198 int max_state
, turbo_max
, freq
, i
, perf_pct
;
1199 struct freq_qos_request
*req
;
1200 struct cpufreq_policy
*policy
;
1202 for_each_possible_cpu(i
) {
1203 struct cpudata
*cpu
= all_cpu_data
[i
];
1205 policy
= cpufreq_cpu_get(i
);
1209 req
= policy
->driver_data
;
1210 cpufreq_cpu_put(policy
);
1216 intel_pstate_get_hwp_max(i
, &turbo_max
, &max_state
);
1218 turbo_max
= cpu
->pstate
.turbo_pstate
;
1220 if (type
== FREQ_QOS_MIN
) {
1221 perf_pct
= global
.min_perf_pct
;
1224 perf_pct
= global
.max_perf_pct
;
1227 freq
= DIV_ROUND_UP(turbo_max
* perf_pct
, 100);
1228 freq
*= cpu
->pstate
.scaling
;
1230 if (freq_qos_update_request(req
, freq
) < 0)
1231 pr_warn("Failed to update freq constraint: CPU%d\n", i
);
1235 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
1236 const char *buf
, size_t count
)
1241 ret
= sscanf(buf
, "%u", &input
);
1245 mutex_lock(&intel_pstate_driver_lock
);
1247 if (!intel_pstate_driver
) {
1248 mutex_unlock(&intel_pstate_driver_lock
);
1252 mutex_lock(&intel_pstate_limits_lock
);
1254 global
.max_perf_pct
= clamp_t(int, input
, global
.min_perf_pct
, 100);
1256 mutex_unlock(&intel_pstate_limits_lock
);
1258 if (intel_pstate_driver
== &intel_pstate
)
1259 intel_pstate_update_policies();
1261 update_qos_request(FREQ_QOS_MAX
);
1263 mutex_unlock(&intel_pstate_driver_lock
);
1268 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct kobj_attribute
*b
,
1269 const char *buf
, size_t count
)
1274 ret
= sscanf(buf
, "%u", &input
);
1278 mutex_lock(&intel_pstate_driver_lock
);
1280 if (!intel_pstate_driver
) {
1281 mutex_unlock(&intel_pstate_driver_lock
);
1285 mutex_lock(&intel_pstate_limits_lock
);
1287 global
.min_perf_pct
= clamp_t(int, input
,
1288 min_perf_pct_min(), global
.max_perf_pct
);
1290 mutex_unlock(&intel_pstate_limits_lock
);
1292 if (intel_pstate_driver
== &intel_pstate
)
1293 intel_pstate_update_policies();
1295 update_qos_request(FREQ_QOS_MIN
);
1297 mutex_unlock(&intel_pstate_driver_lock
);
1302 static ssize_t
show_hwp_dynamic_boost(struct kobject
*kobj
,
1303 struct kobj_attribute
*attr
, char *buf
)
1305 return sprintf(buf
, "%u\n", hwp_boost
);
1308 static ssize_t
store_hwp_dynamic_boost(struct kobject
*a
,
1309 struct kobj_attribute
*b
,
1310 const char *buf
, size_t count
)
1315 ret
= kstrtouint(buf
, 10, &input
);
1319 mutex_lock(&intel_pstate_driver_lock
);
1320 hwp_boost
= !!input
;
1321 intel_pstate_update_policies();
1322 mutex_unlock(&intel_pstate_driver_lock
);
1327 static ssize_t
show_energy_efficiency(struct kobject
*kobj
, struct kobj_attribute
*attr
,
1333 rdmsrl(MSR_IA32_POWER_CTL
, power_ctl
);
1334 enable
= !!(power_ctl
& BIT(MSR_IA32_POWER_CTL_BIT_EE
));
1335 return sprintf(buf
, "%d\n", !enable
);
1338 static ssize_t
store_energy_efficiency(struct kobject
*a
, struct kobj_attribute
*b
,
1339 const char *buf
, size_t count
)
1344 ret
= kstrtobool(buf
, &input
);
1348 set_power_ctl_ee_state(input
);
1353 show_one(max_perf_pct
, max_perf_pct
);
1354 show_one(min_perf_pct
, min_perf_pct
);
1356 define_one_global_rw(status
);
1357 define_one_global_rw(no_turbo
);
1358 define_one_global_rw(max_perf_pct
);
1359 define_one_global_rw(min_perf_pct
);
1360 define_one_global_ro(turbo_pct
);
1361 define_one_global_ro(num_pstates
);
1362 define_one_global_rw(hwp_dynamic_boost
);
1363 define_one_global_rw(energy_efficiency
);
1365 static struct attribute
*intel_pstate_attributes
[] = {
1373 static const struct attribute_group intel_pstate_attr_group
= {
1374 .attrs
= intel_pstate_attributes
,
1377 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids
[];
1379 static struct kobject
*intel_pstate_kobject
;
1381 static void __init
intel_pstate_sysfs_expose_params(void)
1385 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
1386 &cpu_subsys
.dev_root
->kobj
);
1387 if (WARN_ON(!intel_pstate_kobject
))
1390 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1395 * If per cpu limits are enforced there are no global limits, so
1396 * return without creating max/min_perf_pct attributes
1401 rc
= sysfs_create_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1404 rc
= sysfs_create_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1407 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids
)) {
1408 rc
= sysfs_create_file(intel_pstate_kobject
, &energy_efficiency
.attr
);
1413 static void __init
intel_pstate_sysfs_remove(void)
1415 if (!intel_pstate_kobject
)
1418 sysfs_remove_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1420 if (!per_cpu_limits
) {
1421 sysfs_remove_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1422 sysfs_remove_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1424 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids
))
1425 sysfs_remove_file(intel_pstate_kobject
, &energy_efficiency
.attr
);
1428 kobject_put(intel_pstate_kobject
);
1431 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1438 rc
= sysfs_create_file(intel_pstate_kobject
, &hwp_dynamic_boost
.attr
);
1442 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1447 sysfs_remove_file(intel_pstate_kobject
, &hwp_dynamic_boost
.attr
);
1450 /************************** sysfs end ************************/
1452 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
1454 /* First disable HWP notification interrupt as we don't process them */
1455 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY
))
1456 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
1458 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
1459 if (cpudata
->epp_default
== -EINVAL
)
1460 cpudata
->epp_default
= intel_pstate_get_epp(cpudata
, 0);
1463 static int atom_get_min_pstate(void)
1467 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1468 return (value
>> 8) & 0x7F;
1471 static int atom_get_max_pstate(void)
1475 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1476 return (value
>> 16) & 0x7F;
1479 static int atom_get_turbo_pstate(void)
1483 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS
, value
);
1484 return value
& 0x7F;
1487 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
1493 val
= (u64
)pstate
<< 8;
1494 if (global
.no_turbo
&& !global
.turbo_disabled
)
1495 val
|= (u64
)1 << 32;
1497 vid_fp
= cpudata
->vid
.min
+ mul_fp(
1498 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
1499 cpudata
->vid
.ratio
);
1501 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
1502 vid
= ceiling_fp(vid_fp
);
1504 if (pstate
> cpudata
->pstate
.max_pstate
)
1505 vid
= cpudata
->vid
.turbo
;
1510 static int silvermont_get_scaling(void)
1514 /* Defined in Table 35-6 from SDM (Sept 2015) */
1515 static int silvermont_freq_table
[] = {
1516 83300, 100000, 133300, 116700, 80000};
1518 rdmsrl(MSR_FSB_FREQ
, value
);
1522 return silvermont_freq_table
[i
];
1525 static int airmont_get_scaling(void)
1529 /* Defined in Table 35-10 from SDM (Sept 2015) */
1530 static int airmont_freq_table
[] = {
1531 83300, 100000, 133300, 116700, 80000,
1532 93300, 90000, 88900, 87500};
1534 rdmsrl(MSR_FSB_FREQ
, value
);
1538 return airmont_freq_table
[i
];
1541 static void atom_get_vid(struct cpudata
*cpudata
)
1545 rdmsrl(MSR_ATOM_CORE_VIDS
, value
);
1546 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
1547 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
1548 cpudata
->vid
.ratio
= div_fp(
1549 cpudata
->vid
.max
- cpudata
->vid
.min
,
1550 int_tofp(cpudata
->pstate
.max_pstate
-
1551 cpudata
->pstate
.min_pstate
));
1553 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS
, value
);
1554 cpudata
->vid
.turbo
= value
& 0x7f;
1557 static int core_get_min_pstate(void)
1561 rdmsrl(MSR_PLATFORM_INFO
, value
);
1562 return (value
>> 40) & 0xFF;
1565 static int core_get_max_pstate_physical(void)
1569 rdmsrl(MSR_PLATFORM_INFO
, value
);
1570 return (value
>> 8) & 0xFF;
1573 static int core_get_tdp_ratio(u64 plat_info
)
1575 /* Check how many TDP levels present */
1576 if (plat_info
& 0x600000000) {
1582 /* Get the TDP level (0, 1, 2) to get ratios */
1583 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
1587 /* TDP MSR are continuous starting at 0x648 */
1588 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ (tdp_ctrl
& 0x03);
1589 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
1593 /* For level 1 and 2, bits[23:16] contain the ratio */
1594 if (tdp_ctrl
& 0x03)
1597 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
1598 pr_debug("tdp_ratio %x\n", (int)tdp_ratio
);
1600 return (int)tdp_ratio
;
1606 static int core_get_max_pstate(void)
1614 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
1615 max_pstate
= (plat_info
>> 8) & 0xFF;
1617 tdp_ratio
= core_get_tdp_ratio(plat_info
);
1622 /* Turbo activation ratio is not used on HWP platforms */
1626 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
1630 /* Do some sanity checking for safety */
1631 tar_levels
= tar
& 0xff;
1632 if (tdp_ratio
- 1 == tar_levels
) {
1633 max_pstate
= tar_levels
;
1634 pr_debug("max_pstate=TAC %x\n", max_pstate
);
1641 static int core_get_turbo_pstate(void)
1646 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1647 nont
= core_get_max_pstate();
1648 ret
= (value
) & 255;
1654 static inline int core_get_scaling(void)
1659 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1663 val
= (u64
)pstate
<< 8;
1664 if (global
.no_turbo
&& !global
.turbo_disabled
)
1665 val
|= (u64
)1 << 32;
1670 static int knl_get_aperf_mperf_shift(void)
1675 static int knl_get_turbo_pstate(void)
1680 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1681 nont
= core_get_max_pstate();
1682 ret
= (((value
) >> 8) & 0xFF);
1688 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
)
1690 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1691 cpu
->pstate
.current_pstate
= pstate
;
1693 * Generally, there is no guarantee that this code will always run on
1694 * the CPU being updated, so force the register update to run on the
1697 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1698 pstate_funcs
.get_val(cpu
, pstate
));
1701 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1703 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
);
1706 static void intel_pstate_max_within_limits(struct cpudata
*cpu
)
1708 int pstate
= max(cpu
->pstate
.min_pstate
, cpu
->max_perf_ratio
);
1710 update_turbo_state();
1711 intel_pstate_set_pstate(cpu
, pstate
);
1714 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1716 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1717 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1718 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1719 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1720 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1721 cpu
->pstate
.max_freq
= cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
;
1723 if (hwp_active
&& !hwp_mode_bdw
) {
1724 unsigned int phy_max
, current_max
;
1726 intel_pstate_get_hwp_max(cpu
->cpu
, &phy_max
, ¤t_max
);
1727 cpu
->pstate
.turbo_freq
= phy_max
* cpu
->pstate
.scaling
;
1728 cpu
->pstate
.turbo_pstate
= phy_max
;
1730 cpu
->pstate
.turbo_freq
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1733 if (pstate_funcs
.get_aperf_mperf_shift
)
1734 cpu
->aperf_mperf_shift
= pstate_funcs
.get_aperf_mperf_shift();
1736 if (pstate_funcs
.get_vid
)
1737 pstate_funcs
.get_vid(cpu
);
1739 intel_pstate_set_min_pstate(cpu
);
1743 * Long hold time will keep high perf limits for long time,
1744 * which negatively impacts perf/watt for some workloads,
1745 * like specpower. 3ms is based on experiements on some
1748 static int hwp_boost_hold_time_ns
= 3 * NSEC_PER_MSEC
;
1750 static inline void intel_pstate_hwp_boost_up(struct cpudata
*cpu
)
1752 u64 hwp_req
= READ_ONCE(cpu
->hwp_req_cached
);
1753 u32 max_limit
= (hwp_req
& 0xff00) >> 8;
1754 u32 min_limit
= (hwp_req
& 0xff);
1758 * Cases to consider (User changes via sysfs or boot time):
1759 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1761 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1762 * Should result in one level boost only for P0.
1763 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1764 * Should result in two level boost:
1765 * (min + p1)/2 and P1.
1766 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1767 * Should result in three level boost:
1768 * (min + p1)/2, P1 and P0.
1771 /* If max and min are equal or already at max, nothing to boost */
1772 if (max_limit
== min_limit
|| cpu
->hwp_boost_min
>= max_limit
)
1775 if (!cpu
->hwp_boost_min
)
1776 cpu
->hwp_boost_min
= min_limit
;
1778 /* level at half way mark between min and guranteed */
1779 boost_level1
= (HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) + min_limit
) >> 1;
1781 if (cpu
->hwp_boost_min
< boost_level1
)
1782 cpu
->hwp_boost_min
= boost_level1
;
1783 else if (cpu
->hwp_boost_min
< HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1784 cpu
->hwp_boost_min
= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
);
1785 else if (cpu
->hwp_boost_min
== HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
) &&
1786 max_limit
!= HWP_GUARANTEED_PERF(cpu
->hwp_cap_cached
))
1787 cpu
->hwp_boost_min
= max_limit
;
1791 hwp_req
= (hwp_req
& ~GENMASK_ULL(7, 0)) | cpu
->hwp_boost_min
;
1792 wrmsrl(MSR_HWP_REQUEST
, hwp_req
);
1793 cpu
->last_update
= cpu
->sample
.time
;
1796 static inline void intel_pstate_hwp_boost_down(struct cpudata
*cpu
)
1798 if (cpu
->hwp_boost_min
) {
1801 /* Check if we are idle for hold time to boost down */
1802 expired
= time_after64(cpu
->sample
.time
, cpu
->last_update
+
1803 hwp_boost_hold_time_ns
);
1805 wrmsrl(MSR_HWP_REQUEST
, cpu
->hwp_req_cached
);
1806 cpu
->hwp_boost_min
= 0;
1809 cpu
->last_update
= cpu
->sample
.time
;
1812 static inline void intel_pstate_update_util_hwp_local(struct cpudata
*cpu
,
1815 cpu
->sample
.time
= time
;
1817 if (cpu
->sched_flags
& SCHED_CPUFREQ_IOWAIT
) {
1820 cpu
->sched_flags
= 0;
1822 * Set iowait_boost flag and update time. Since IO WAIT flag
1823 * is set all the time, we can't just conclude that there is
1824 * some IO bound activity is scheduled on this CPU with just
1825 * one occurrence. If we receive at least two in two
1826 * consecutive ticks, then we treat as boost candidate.
1828 if (time_before64(time
, cpu
->last_io_update
+ 2 * TICK_NSEC
))
1831 cpu
->last_io_update
= time
;
1834 intel_pstate_hwp_boost_up(cpu
);
1837 intel_pstate_hwp_boost_down(cpu
);
1841 static inline void intel_pstate_update_util_hwp(struct update_util_data
*data
,
1842 u64 time
, unsigned int flags
)
1844 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1846 cpu
->sched_flags
|= flags
;
1848 if (smp_processor_id() == cpu
->cpu
)
1849 intel_pstate_update_util_hwp_local(cpu
, time
);
1852 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1854 struct sample
*sample
= &cpu
->sample
;
1856 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1859 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1862 unsigned long flags
;
1865 local_irq_save(flags
);
1866 rdmsrl(MSR_IA32_APERF
, aperf
);
1867 rdmsrl(MSR_IA32_MPERF
, mperf
);
1869 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1870 local_irq_restore(flags
);
1873 local_irq_restore(flags
);
1875 cpu
->last_sample_time
= cpu
->sample
.time
;
1876 cpu
->sample
.time
= time
;
1877 cpu
->sample
.aperf
= aperf
;
1878 cpu
->sample
.mperf
= mperf
;
1879 cpu
->sample
.tsc
= tsc
;
1880 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1881 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1882 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1884 cpu
->prev_aperf
= aperf
;
1885 cpu
->prev_mperf
= mperf
;
1886 cpu
->prev_tsc
= tsc
;
1888 * First time this function is invoked in a given cycle, all of the
1889 * previous sample data fields are equal to zero or stale and they must
1890 * be populated with meaningful numbers for things to work, so assume
1891 * that sample.time will always be reset before setting the utilization
1892 * update hook and make the caller skip the sample then.
1894 if (cpu
->last_sample_time
) {
1895 intel_pstate_calc_avg_perf(cpu
);
1901 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1903 return mul_ext_fp(cpu
->sample
.core_avg_perf
, cpu_khz
);
1906 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1908 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1909 cpu
->sample
.core_avg_perf
);
1912 static inline int32_t get_target_pstate(struct cpudata
*cpu
)
1914 struct sample
*sample
= &cpu
->sample
;
1916 int target
, avg_pstate
;
1918 busy_frac
= div_fp(sample
->mperf
<< cpu
->aperf_mperf_shift
,
1921 if (busy_frac
< cpu
->iowait_boost
)
1922 busy_frac
= cpu
->iowait_boost
;
1924 sample
->busy_scaled
= busy_frac
* 100;
1926 target
= global
.no_turbo
|| global
.turbo_disabled
?
1927 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1928 target
+= target
>> 2;
1929 target
= mul_fp(target
, busy_frac
);
1930 if (target
< cpu
->pstate
.min_pstate
)
1931 target
= cpu
->pstate
.min_pstate
;
1934 * If the average P-state during the previous cycle was higher than the
1935 * current target, add 50% of the difference to the target to reduce
1936 * possible performance oscillations and offset possible performance
1937 * loss related to moving the workload from one CPU to another within
1940 avg_pstate
= get_avg_pstate(cpu
);
1941 if (avg_pstate
> target
)
1942 target
+= (avg_pstate
- target
) >> 1;
1947 static int intel_pstate_prepare_request(struct cpudata
*cpu
, int pstate
)
1949 int min_pstate
= max(cpu
->pstate
.min_pstate
, cpu
->min_perf_ratio
);
1950 int max_pstate
= max(min_pstate
, cpu
->max_perf_ratio
);
1952 return clamp_t(int, pstate
, min_pstate
, max_pstate
);
1955 static void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1957 if (pstate
== cpu
->pstate
.current_pstate
)
1960 cpu
->pstate
.current_pstate
= pstate
;
1961 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1964 static void intel_pstate_adjust_pstate(struct cpudata
*cpu
)
1966 int from
= cpu
->pstate
.current_pstate
;
1967 struct sample
*sample
;
1970 update_turbo_state();
1972 target_pstate
= get_target_pstate(cpu
);
1973 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1974 trace_cpu_frequency(target_pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1975 intel_pstate_update_pstate(cpu
, target_pstate
);
1977 sample
= &cpu
->sample
;
1978 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1979 fp_toint(sample
->busy_scaled
),
1981 cpu
->pstate
.current_pstate
,
1985 get_avg_frequency(cpu
),
1986 fp_toint(cpu
->iowait_boost
* 100));
1989 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1992 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1995 /* Don't allow remote callbacks */
1996 if (smp_processor_id() != cpu
->cpu
)
1999 delta_ns
= time
- cpu
->last_update
;
2000 if (flags
& SCHED_CPUFREQ_IOWAIT
) {
2001 /* Start over if the CPU may have been idle. */
2002 if (delta_ns
> TICK_NSEC
) {
2003 cpu
->iowait_boost
= ONE_EIGHTH_FP
;
2004 } else if (cpu
->iowait_boost
>= ONE_EIGHTH_FP
) {
2005 cpu
->iowait_boost
<<= 1;
2006 if (cpu
->iowait_boost
> int_tofp(1))
2007 cpu
->iowait_boost
= int_tofp(1);
2009 cpu
->iowait_boost
= ONE_EIGHTH_FP
;
2011 } else if (cpu
->iowait_boost
) {
2012 /* Clear iowait_boost if the CPU may have been idle. */
2013 if (delta_ns
> TICK_NSEC
)
2014 cpu
->iowait_boost
= 0;
2016 cpu
->iowait_boost
>>= 1;
2018 cpu
->last_update
= time
;
2019 delta_ns
= time
- cpu
->sample
.time
;
2020 if ((s64
)delta_ns
< INTEL_PSTATE_SAMPLING_INTERVAL
)
2023 if (intel_pstate_sample(cpu
, time
))
2024 intel_pstate_adjust_pstate(cpu
);
2027 static struct pstate_funcs core_funcs
= {
2028 .get_max
= core_get_max_pstate
,
2029 .get_max_physical
= core_get_max_pstate_physical
,
2030 .get_min
= core_get_min_pstate
,
2031 .get_turbo
= core_get_turbo_pstate
,
2032 .get_scaling
= core_get_scaling
,
2033 .get_val
= core_get_val
,
2036 static const struct pstate_funcs silvermont_funcs
= {
2037 .get_max
= atom_get_max_pstate
,
2038 .get_max_physical
= atom_get_max_pstate
,
2039 .get_min
= atom_get_min_pstate
,
2040 .get_turbo
= atom_get_turbo_pstate
,
2041 .get_val
= atom_get_val
,
2042 .get_scaling
= silvermont_get_scaling
,
2043 .get_vid
= atom_get_vid
,
2046 static const struct pstate_funcs airmont_funcs
= {
2047 .get_max
= atom_get_max_pstate
,
2048 .get_max_physical
= atom_get_max_pstate
,
2049 .get_min
= atom_get_min_pstate
,
2050 .get_turbo
= atom_get_turbo_pstate
,
2051 .get_val
= atom_get_val
,
2052 .get_scaling
= airmont_get_scaling
,
2053 .get_vid
= atom_get_vid
,
2056 static const struct pstate_funcs knl_funcs
= {
2057 .get_max
= core_get_max_pstate
,
2058 .get_max_physical
= core_get_max_pstate_physical
,
2059 .get_min
= core_get_min_pstate
,
2060 .get_turbo
= knl_get_turbo_pstate
,
2061 .get_aperf_mperf_shift
= knl_get_aperf_mperf_shift
,
2062 .get_scaling
= core_get_scaling
,
2063 .get_val
= core_get_val
,
2066 #define X86_MATCH(model, policy) \
2067 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2068 X86_FEATURE_APERFMPERF, &policy)
2070 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
2071 X86_MATCH(SANDYBRIDGE
, core_funcs
),
2072 X86_MATCH(SANDYBRIDGE_X
, core_funcs
),
2073 X86_MATCH(ATOM_SILVERMONT
, silvermont_funcs
),
2074 X86_MATCH(IVYBRIDGE
, core_funcs
),
2075 X86_MATCH(HASWELL
, core_funcs
),
2076 X86_MATCH(BROADWELL
, core_funcs
),
2077 X86_MATCH(IVYBRIDGE_X
, core_funcs
),
2078 X86_MATCH(HASWELL_X
, core_funcs
),
2079 X86_MATCH(HASWELL_L
, core_funcs
),
2080 X86_MATCH(HASWELL_G
, core_funcs
),
2081 X86_MATCH(BROADWELL_G
, core_funcs
),
2082 X86_MATCH(ATOM_AIRMONT
, airmont_funcs
),
2083 X86_MATCH(SKYLAKE_L
, core_funcs
),
2084 X86_MATCH(BROADWELL_X
, core_funcs
),
2085 X86_MATCH(SKYLAKE
, core_funcs
),
2086 X86_MATCH(BROADWELL_D
, core_funcs
),
2087 X86_MATCH(XEON_PHI_KNL
, knl_funcs
),
2088 X86_MATCH(XEON_PHI_KNM
, knl_funcs
),
2089 X86_MATCH(ATOM_GOLDMONT
, core_funcs
),
2090 X86_MATCH(ATOM_GOLDMONT_PLUS
, core_funcs
),
2091 X86_MATCH(SKYLAKE_X
, core_funcs
),
2094 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
2096 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] __initconst
= {
2097 X86_MATCH(BROADWELL_D
, core_funcs
),
2098 X86_MATCH(BROADWELL_X
, core_funcs
),
2099 X86_MATCH(SKYLAKE_X
, core_funcs
),
2103 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids
[] = {
2104 X86_MATCH(KABYLAKE
, core_funcs
),
2108 static const struct x86_cpu_id intel_pstate_hwp_boost_ids
[] = {
2109 X86_MATCH(SKYLAKE_X
, core_funcs
),
2110 X86_MATCH(SKYLAKE
, core_funcs
),
2114 static int intel_pstate_init_cpu(unsigned int cpunum
)
2116 struct cpudata
*cpu
;
2118 cpu
= all_cpu_data
[cpunum
];
2121 cpu
= kzalloc(sizeof(*cpu
), GFP_KERNEL
);
2125 all_cpu_data
[cpunum
] = cpu
;
2129 cpu
->epp_default
= -EINVAL
;
2132 const struct x86_cpu_id
*id
;
2134 intel_pstate_hwp_enable(cpu
);
2136 id
= x86_match_cpu(intel_pstate_hwp_boost_ids
);
2137 if (id
&& intel_pstate_acpi_pm_profile_server())
2140 } else if (hwp_active
) {
2142 * Re-enable HWP in case this happens after a resume from ACPI
2143 * S3 if the CPU was offline during the whole system/resume
2146 intel_pstate_hwp_reenable(cpu
);
2149 cpu
->epp_powersave
= -EINVAL
;
2150 cpu
->epp_policy
= 0;
2152 intel_pstate_get_cpu_pstates(cpu
);
2154 pr_debug("controlling: cpu %d\n", cpunum
);
2159 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
2161 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
2163 if (hwp_active
&& !hwp_boost
)
2166 if (cpu
->update_util_set
)
2169 /* Prevent intel_pstate_update_util() from using stale data. */
2170 cpu
->sample
.time
= 0;
2171 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
2173 intel_pstate_update_util_hwp
:
2174 intel_pstate_update_util
));
2175 cpu
->update_util_set
= true;
2178 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
2180 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
2182 if (!cpu_data
->update_util_set
)
2185 cpufreq_remove_update_util_hook(cpu
);
2186 cpu_data
->update_util_set
= false;
2190 static int intel_pstate_get_max_freq(struct cpudata
*cpu
)
2192 return global
.turbo_disabled
|| global
.no_turbo
?
2193 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2196 static void intel_pstate_update_perf_limits(struct cpudata
*cpu
,
2197 unsigned int policy_min
,
2198 unsigned int policy_max
)
2200 int32_t max_policy_perf
, min_policy_perf
;
2201 int max_state
, turbo_max
;
2205 * HWP needs some special consideration, because on BDX the
2206 * HWP_REQUEST uses abstract value to represent performance
2207 * rather than pure ratios.
2210 intel_pstate_get_hwp_max(cpu
->cpu
, &turbo_max
, &max_state
);
2212 max_state
= global
.no_turbo
|| global
.turbo_disabled
?
2213 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2214 turbo_max
= cpu
->pstate
.turbo_pstate
;
2216 max_freq
= max_state
* cpu
->pstate
.scaling
;
2218 max_policy_perf
= max_state
* policy_max
/ max_freq
;
2219 if (policy_max
== policy_min
) {
2220 min_policy_perf
= max_policy_perf
;
2222 min_policy_perf
= max_state
* policy_min
/ max_freq
;
2223 min_policy_perf
= clamp_t(int32_t, min_policy_perf
,
2224 0, max_policy_perf
);
2227 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2228 cpu
->cpu
, max_state
, min_policy_perf
, max_policy_perf
);
2230 /* Normalize user input to [min_perf, max_perf] */
2231 if (per_cpu_limits
) {
2232 cpu
->min_perf_ratio
= min_policy_perf
;
2233 cpu
->max_perf_ratio
= max_policy_perf
;
2235 int32_t global_min
, global_max
;
2237 /* Global limits are in percent of the maximum turbo P-state. */
2238 global_max
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
2239 global_min
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
2240 global_min
= clamp_t(int32_t, global_min
, 0, global_max
);
2242 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu
->cpu
,
2243 global_min
, global_max
);
2245 cpu
->min_perf_ratio
= max(min_policy_perf
, global_min
);
2246 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
, max_policy_perf
);
2247 cpu
->max_perf_ratio
= min(max_policy_perf
, global_max
);
2248 cpu
->max_perf_ratio
= max(min_policy_perf
, cpu
->max_perf_ratio
);
2250 /* Make sure min_perf <= max_perf */
2251 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
,
2252 cpu
->max_perf_ratio
);
2255 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu
->cpu
,
2256 cpu
->max_perf_ratio
,
2257 cpu
->min_perf_ratio
);
2260 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
2262 struct cpudata
*cpu
;
2264 if (!policy
->cpuinfo
.max_freq
)
2267 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2268 policy
->cpuinfo
.max_freq
, policy
->max
);
2270 cpu
= all_cpu_data
[policy
->cpu
];
2271 cpu
->policy
= policy
->policy
;
2273 mutex_lock(&intel_pstate_limits_lock
);
2275 intel_pstate_update_perf_limits(cpu
, policy
->min
, policy
->max
);
2277 if (cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
2279 * NOHZ_FULL CPUs need this as the governor callback may not
2280 * be invoked on them.
2282 intel_pstate_clear_update_util_hook(policy
->cpu
);
2283 intel_pstate_max_within_limits(cpu
);
2285 intel_pstate_set_update_util_hook(policy
->cpu
);
2290 * When hwp_boost was active before and dynamically it
2291 * was turned off, in that case we need to clear the
2295 intel_pstate_clear_update_util_hook(policy
->cpu
);
2296 intel_pstate_hwp_set(policy
->cpu
);
2299 mutex_unlock(&intel_pstate_limits_lock
);
2304 static void intel_pstate_adjust_policy_max(struct cpudata
*cpu
,
2305 struct cpufreq_policy_data
*policy
)
2308 cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
2309 policy
->max
< policy
->cpuinfo
.max_freq
&&
2310 policy
->max
> cpu
->pstate
.max_freq
) {
2311 pr_debug("policy->max > max non turbo frequency\n");
2312 policy
->max
= policy
->cpuinfo
.max_freq
;
2316 static void intel_pstate_verify_cpu_policy(struct cpudata
*cpu
,
2317 struct cpufreq_policy_data
*policy
)
2321 update_turbo_state();
2323 int max_state
, turbo_max
;
2325 intel_pstate_get_hwp_max(cpu
->cpu
, &turbo_max
, &max_state
);
2326 max_freq
= max_state
* cpu
->pstate
.scaling
;
2328 max_freq
= intel_pstate_get_max_freq(cpu
);
2330 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
, max_freq
);
2332 intel_pstate_adjust_policy_max(cpu
, policy
);
2335 static int intel_pstate_verify_policy(struct cpufreq_policy_data
*policy
)
2337 intel_pstate_verify_cpu_policy(all_cpu_data
[policy
->cpu
], policy
);
2342 static int intel_pstate_cpu_offline(struct cpufreq_policy
*policy
)
2344 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2346 pr_debug("CPU %d going offline\n", cpu
->cpu
);
2352 * If the CPU is an SMT thread and it goes offline with the performance
2353 * settings different from the minimum, it will prevent its sibling
2354 * from getting to lower performance levels, so force the minimum
2355 * performance on CPU offline to prevent that from happening.
2358 intel_pstate_hwp_offline(cpu
);
2360 intel_pstate_set_min_pstate(cpu
);
2362 intel_pstate_exit_perf_limits(policy
);
2367 static int intel_pstate_cpu_online(struct cpufreq_policy
*policy
)
2369 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2371 pr_debug("CPU %d going online\n", cpu
->cpu
);
2373 intel_pstate_init_acpi_perf_limits(policy
);
2377 * Re-enable HWP and clear the "suspended" flag to let "resume"
2378 * know that it need not do that.
2380 intel_pstate_hwp_reenable(cpu
);
2381 cpu
->suspended
= false;
2387 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
2389 pr_debug("CPU %d stopping\n", policy
->cpu
);
2391 intel_pstate_clear_update_util_hook(policy
->cpu
);
2394 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
2396 pr_debug("CPU %d exiting\n", policy
->cpu
);
2398 policy
->fast_switch_possible
= false;
2403 static int __intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2405 struct cpudata
*cpu
;
2408 rc
= intel_pstate_init_cpu(policy
->cpu
);
2412 cpu
= all_cpu_data
[policy
->cpu
];
2414 cpu
->max_perf_ratio
= 0xFF;
2415 cpu
->min_perf_ratio
= 0;
2417 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2418 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
2420 /* cpuinfo and default policy values */
2421 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2422 update_turbo_state();
2423 global
.turbo_disabled_mf
= global
.turbo_disabled
;
2424 policy
->cpuinfo
.max_freq
= global
.turbo_disabled
?
2425 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2426 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
2429 unsigned int max_freq
;
2431 max_freq
= global
.turbo_disabled
?
2432 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2433 if (max_freq
< policy
->cpuinfo
.max_freq
)
2434 policy
->cpuinfo
.max_freq
= max_freq
;
2437 intel_pstate_init_acpi_perf_limits(policy
);
2439 policy
->fast_switch_possible
= true;
2444 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2446 int ret
= __intel_pstate_cpu_init(policy
);
2452 * Set the policy to powersave to provide a valid fallback value in case
2453 * the default cpufreq governor is neither powersave nor performance.
2455 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
2458 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2460 cpu
->epp_cached
= intel_pstate_get_epp(cpu
, 0);
2466 static struct cpufreq_driver intel_pstate
= {
2467 .flags
= CPUFREQ_CONST_LOOPS
,
2468 .verify
= intel_pstate_verify_policy
,
2469 .setpolicy
= intel_pstate_set_policy
,
2470 .suspend
= intel_pstate_suspend
,
2471 .resume
= intel_pstate_resume
,
2472 .init
= intel_pstate_cpu_init
,
2473 .exit
= intel_pstate_cpu_exit
,
2474 .stop_cpu
= intel_pstate_stop_cpu
,
2475 .offline
= intel_pstate_cpu_offline
,
2476 .online
= intel_pstate_cpu_online
,
2477 .update_limits
= intel_pstate_update_limits
,
2478 .name
= "intel_pstate",
2481 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data
*policy
)
2483 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2485 intel_pstate_verify_cpu_policy(cpu
, policy
);
2486 intel_pstate_update_perf_limits(cpu
, policy
->min
, policy
->max
);
2491 /* Use of trace in passive mode:
2493 * In passive mode the trace core_busy field (also known as the
2494 * performance field, and lablelled as such on the graphs; also known as
2495 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2496 * driver call was via the normal or fast switch path. Various graphs
2497 * output from the intel_pstate_tracer.py utility that include core_busy
2498 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2499 * so we use 10 to indicate the the normal path through the driver, and
2500 * 90 to indicate the fast switch path through the driver.
2501 * The scaled_busy field is not used, and is set to 0.
2504 #define INTEL_PSTATE_TRACE_TARGET 10
2505 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2507 static void intel_cpufreq_trace(struct cpudata
*cpu
, unsigned int trace_type
, int old_pstate
)
2509 struct sample
*sample
;
2511 if (!trace_pstate_sample_enabled())
2514 if (!intel_pstate_sample(cpu
, ktime_get()))
2517 sample
= &cpu
->sample
;
2518 trace_pstate_sample(trace_type
,
2521 cpu
->pstate
.current_pstate
,
2525 get_avg_frequency(cpu
),
2526 fp_toint(cpu
->iowait_boost
* 100));
2529 static void intel_cpufreq_adjust_hwp(struct cpudata
*cpu
, u32 min
, u32 max
,
2530 u32 desired
, bool fast_switch
)
2532 u64 prev
= READ_ONCE(cpu
->hwp_req_cached
), value
= prev
;
2534 value
&= ~HWP_MIN_PERF(~0L);
2535 value
|= HWP_MIN_PERF(min
);
2537 value
&= ~HWP_MAX_PERF(~0L);
2538 value
|= HWP_MAX_PERF(max
);
2540 value
&= ~HWP_DESIRED_PERF(~0L);
2541 value
|= HWP_DESIRED_PERF(desired
);
2546 WRITE_ONCE(cpu
->hwp_req_cached
, value
);
2548 wrmsrl(MSR_HWP_REQUEST
, value
);
2550 wrmsrl_on_cpu(cpu
->cpu
, MSR_HWP_REQUEST
, value
);
2553 static void intel_cpufreq_adjust_perf_ctl(struct cpudata
*cpu
,
2554 u32 target_pstate
, bool fast_switch
)
2557 wrmsrl(MSR_IA32_PERF_CTL
,
2558 pstate_funcs
.get_val(cpu
, target_pstate
));
2560 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
2561 pstate_funcs
.get_val(cpu
, target_pstate
));
2564 static int intel_cpufreq_update_pstate(struct cpufreq_policy
*policy
,
2565 int target_pstate
, bool fast_switch
)
2567 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2568 int old_pstate
= cpu
->pstate
.current_pstate
;
2570 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2572 int max_pstate
= policy
->strict_target
?
2573 target_pstate
: cpu
->max_perf_ratio
;
2575 intel_cpufreq_adjust_hwp(cpu
, target_pstate
, max_pstate
, 0,
2577 } else if (target_pstate
!= old_pstate
) {
2578 intel_cpufreq_adjust_perf_ctl(cpu
, target_pstate
, fast_switch
);
2581 cpu
->pstate
.current_pstate
= target_pstate
;
2583 intel_cpufreq_trace(cpu
, fast_switch
? INTEL_PSTATE_TRACE_FAST_SWITCH
:
2584 INTEL_PSTATE_TRACE_TARGET
, old_pstate
);
2586 return target_pstate
;
2589 static int intel_cpufreq_target(struct cpufreq_policy
*policy
,
2590 unsigned int target_freq
,
2591 unsigned int relation
)
2593 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2594 struct cpufreq_freqs freqs
;
2597 update_turbo_state();
2599 freqs
.old
= policy
->cur
;
2600 freqs
.new = target_freq
;
2602 cpufreq_freq_transition_begin(policy
, &freqs
);
2605 case CPUFREQ_RELATION_L
:
2606 target_pstate
= DIV_ROUND_UP(freqs
.new, cpu
->pstate
.scaling
);
2608 case CPUFREQ_RELATION_H
:
2609 target_pstate
= freqs
.new / cpu
->pstate
.scaling
;
2612 target_pstate
= DIV_ROUND_CLOSEST(freqs
.new, cpu
->pstate
.scaling
);
2616 target_pstate
= intel_cpufreq_update_pstate(policy
, target_pstate
, false);
2618 freqs
.new = target_pstate
* cpu
->pstate
.scaling
;
2620 cpufreq_freq_transition_end(policy
, &freqs
, false);
2625 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
2626 unsigned int target_freq
)
2628 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2631 update_turbo_state();
2633 target_pstate
= DIV_ROUND_UP(target_freq
, cpu
->pstate
.scaling
);
2635 target_pstate
= intel_cpufreq_update_pstate(policy
, target_pstate
, true);
2637 return target_pstate
* cpu
->pstate
.scaling
;
2640 static void intel_cpufreq_adjust_perf(unsigned int cpunum
,
2641 unsigned long min_perf
,
2642 unsigned long target_perf
,
2643 unsigned long capacity
)
2645 struct cpudata
*cpu
= all_cpu_data
[cpunum
];
2646 u64 hwp_cap
= READ_ONCE(cpu
->hwp_cap_cached
);
2647 int old_pstate
= cpu
->pstate
.current_pstate
;
2648 int cap_pstate
, min_pstate
, max_pstate
, target_pstate
;
2650 update_turbo_state();
2651 cap_pstate
= global
.turbo_disabled
? HWP_GUARANTEED_PERF(hwp_cap
) :
2652 HWP_HIGHEST_PERF(hwp_cap
);
2654 /* Optimization: Avoid unnecessary divisions. */
2656 target_pstate
= cap_pstate
;
2657 if (target_perf
< capacity
)
2658 target_pstate
= DIV_ROUND_UP(cap_pstate
* target_perf
, capacity
);
2660 min_pstate
= cap_pstate
;
2661 if (min_perf
< capacity
)
2662 min_pstate
= DIV_ROUND_UP(cap_pstate
* min_perf
, capacity
);
2664 if (min_pstate
< cpu
->pstate
.min_pstate
)
2665 min_pstate
= cpu
->pstate
.min_pstate
;
2667 if (min_pstate
< cpu
->min_perf_ratio
)
2668 min_pstate
= cpu
->min_perf_ratio
;
2670 max_pstate
= min(cap_pstate
, cpu
->max_perf_ratio
);
2671 if (max_pstate
< min_pstate
)
2672 max_pstate
= min_pstate
;
2674 target_pstate
= clamp_t(int, target_pstate
, min_pstate
, max_pstate
);
2676 intel_cpufreq_adjust_hwp(cpu
, min_pstate
, max_pstate
, target_pstate
, true);
2678 cpu
->pstate
.current_pstate
= target_pstate
;
2679 intel_cpufreq_trace(cpu
, INTEL_PSTATE_TRACE_FAST_SWITCH
, old_pstate
);
2682 static int intel_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
2684 int max_state
, turbo_max
, min_freq
, max_freq
, ret
;
2685 struct freq_qos_request
*req
;
2686 struct cpudata
*cpu
;
2689 dev
= get_cpu_device(policy
->cpu
);
2693 ret
= __intel_pstate_cpu_init(policy
);
2697 policy
->cpuinfo
.transition_latency
= INTEL_CPUFREQ_TRANSITION_LATENCY
;
2698 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2699 policy
->cur
= policy
->cpuinfo
.min_freq
;
2701 req
= kcalloc(2, sizeof(*req
), GFP_KERNEL
);
2707 cpu
= all_cpu_data
[policy
->cpu
];
2712 intel_pstate_get_hwp_max(policy
->cpu
, &turbo_max
, &max_state
);
2713 policy
->transition_delay_us
= INTEL_CPUFREQ_TRANSITION_DELAY_HWP
;
2714 rdmsrl_on_cpu(cpu
->cpu
, MSR_HWP_REQUEST
, &value
);
2715 WRITE_ONCE(cpu
->hwp_req_cached
, value
);
2716 cpu
->epp_cached
= intel_pstate_get_epp(cpu
, value
);
2718 turbo_max
= cpu
->pstate
.turbo_pstate
;
2719 policy
->transition_delay_us
= INTEL_CPUFREQ_TRANSITION_DELAY
;
2722 min_freq
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
2723 min_freq
*= cpu
->pstate
.scaling
;
2724 max_freq
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
2725 max_freq
*= cpu
->pstate
.scaling
;
2727 ret
= freq_qos_add_request(&policy
->constraints
, req
, FREQ_QOS_MIN
,
2730 dev_err(dev
, "Failed to add min-freq constraint (%d)\n", ret
);
2734 ret
= freq_qos_add_request(&policy
->constraints
, req
+ 1, FREQ_QOS_MAX
,
2737 dev_err(dev
, "Failed to add max-freq constraint (%d)\n", ret
);
2738 goto remove_min_req
;
2741 policy
->driver_data
= req
;
2746 freq_qos_remove_request(req
);
2750 intel_pstate_exit_perf_limits(policy
);
2755 static int intel_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
2757 struct freq_qos_request
*req
;
2759 req
= policy
->driver_data
;
2761 freq_qos_remove_request(req
+ 1);
2762 freq_qos_remove_request(req
);
2765 return intel_pstate_cpu_exit(policy
);
2768 static struct cpufreq_driver intel_cpufreq
= {
2769 .flags
= CPUFREQ_CONST_LOOPS
,
2770 .verify
= intel_cpufreq_verify_policy
,
2771 .target
= intel_cpufreq_target
,
2772 .fast_switch
= intel_cpufreq_fast_switch
,
2773 .init
= intel_cpufreq_cpu_init
,
2774 .exit
= intel_cpufreq_cpu_exit
,
2775 .offline
= intel_pstate_cpu_offline
,
2776 .online
= intel_pstate_cpu_online
,
2777 .suspend
= intel_pstate_suspend
,
2778 .resume
= intel_pstate_resume
,
2779 .update_limits
= intel_pstate_update_limits
,
2780 .name
= "intel_cpufreq",
2783 static struct cpufreq_driver
*default_driver
;
2785 static void intel_pstate_driver_cleanup(void)
2790 for_each_online_cpu(cpu
) {
2791 if (all_cpu_data
[cpu
]) {
2792 if (intel_pstate_driver
== &intel_pstate
)
2793 intel_pstate_clear_update_util_hook(cpu
);
2795 kfree(all_cpu_data
[cpu
]);
2796 all_cpu_data
[cpu
] = NULL
;
2801 intel_pstate_driver
= NULL
;
2804 static int intel_pstate_register_driver(struct cpufreq_driver
*driver
)
2808 if (driver
== &intel_pstate
)
2809 intel_pstate_sysfs_expose_hwp_dynamic_boost();
2811 memset(&global
, 0, sizeof(global
));
2812 global
.max_perf_pct
= 100;
2814 intel_pstate_driver
= driver
;
2815 ret
= cpufreq_register_driver(intel_pstate_driver
);
2817 intel_pstate_driver_cleanup();
2821 global
.min_perf_pct
= min_perf_pct_min();
2826 static ssize_t
intel_pstate_show_status(char *buf
)
2828 if (!intel_pstate_driver
)
2829 return sprintf(buf
, "off\n");
2831 return sprintf(buf
, "%s\n", intel_pstate_driver
== &intel_pstate
?
2832 "active" : "passive");
2835 static int intel_pstate_update_status(const char *buf
, size_t size
)
2837 if (size
== 3 && !strncmp(buf
, "off", size
)) {
2838 if (!intel_pstate_driver
)
2844 cpufreq_unregister_driver(intel_pstate_driver
);
2845 intel_pstate_driver_cleanup();
2849 if (size
== 6 && !strncmp(buf
, "active", size
)) {
2850 if (intel_pstate_driver
) {
2851 if (intel_pstate_driver
== &intel_pstate
)
2854 cpufreq_unregister_driver(intel_pstate_driver
);
2857 return intel_pstate_register_driver(&intel_pstate
);
2860 if (size
== 7 && !strncmp(buf
, "passive", size
)) {
2861 if (intel_pstate_driver
) {
2862 if (intel_pstate_driver
== &intel_cpufreq
)
2865 cpufreq_unregister_driver(intel_pstate_driver
);
2866 intel_pstate_sysfs_hide_hwp_dynamic_boost();
2869 return intel_pstate_register_driver(&intel_cpufreq
);
2875 static int no_load __initdata
;
2876 static int no_hwp __initdata
;
2877 static int hwp_only __initdata
;
2878 static unsigned int force_load __initdata
;
2880 static int __init
intel_pstate_msrs_not_valid(void)
2882 if (!pstate_funcs
.get_max() ||
2883 !pstate_funcs
.get_min() ||
2884 !pstate_funcs
.get_turbo())
2890 static void __init
copy_cpu_funcs(struct pstate_funcs
*funcs
)
2892 pstate_funcs
.get_max
= funcs
->get_max
;
2893 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
2894 pstate_funcs
.get_min
= funcs
->get_min
;
2895 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
2896 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
2897 pstate_funcs
.get_val
= funcs
->get_val
;
2898 pstate_funcs
.get_vid
= funcs
->get_vid
;
2899 pstate_funcs
.get_aperf_mperf_shift
= funcs
->get_aperf_mperf_shift
;
2904 static bool __init
intel_pstate_no_acpi_pss(void)
2908 for_each_possible_cpu(i
) {
2910 union acpi_object
*pss
;
2911 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
2912 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2917 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
2918 if (ACPI_FAILURE(status
))
2921 pss
= buffer
.pointer
;
2922 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
2930 pr_debug("ACPI _PSS not found\n");
2934 static bool __init
intel_pstate_no_acpi_pcch(void)
2939 status
= acpi_get_handle(NULL
, "\\_SB", &handle
);
2940 if (ACPI_FAILURE(status
))
2943 if (acpi_has_method(handle
, "PCCH"))
2947 pr_debug("ACPI PCCH not found\n");
2951 static bool __init
intel_pstate_has_acpi_ppc(void)
2955 for_each_possible_cpu(i
) {
2956 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2960 if (acpi_has_method(pr
->handle
, "_PPC"))
2963 pr_debug("ACPI _PPC not found\n");
2972 /* Hardware vendor-specific info that has its own power management modes */
2973 static struct acpi_platform_list plat_info
[] __initdata
= {
2974 {"HP ", "ProLiant", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PSS
},
2975 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2976 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2977 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2978 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2979 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2980 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2981 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2982 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2983 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2984 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2985 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2986 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2987 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2988 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT
, all_versions
, NULL
, PPC
},
2992 #define BITMASK_OOB (BIT(8) | BIT(18))
2994 static bool __init
intel_pstate_platform_pwr_mgmt_exists(void)
2996 const struct x86_cpu_id
*id
;
3000 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
3002 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
3003 if (misc_pwr
& BITMASK_OOB
) {
3004 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3005 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3010 idx
= acpi_match_platform_list(plat_info
);
3014 switch (plat_info
[idx
].data
) {
3016 if (!intel_pstate_no_acpi_pss())
3019 return intel_pstate_no_acpi_pcch();
3021 return intel_pstate_has_acpi_ppc() && !force_load
;
3027 static void intel_pstate_request_control_from_smm(void)
3030 * It may be unsafe to request P-states control from SMM if _PPC support
3031 * has not been enabled.
3034 acpi_processor_pstate_control();
3036 #else /* CONFIG_ACPI not enabled */
3037 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3038 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3039 static inline void intel_pstate_request_control_from_smm(void) {}
3040 #endif /* CONFIG_ACPI */
3042 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3044 #define X86_MATCH_HWP(model, hwp_mode) \
3045 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3046 X86_FEATURE_HWP, hwp_mode)
3048 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
3049 X86_MATCH_HWP(BROADWELL_X
, INTEL_PSTATE_HWP_BROADWELL
),
3050 X86_MATCH_HWP(BROADWELL_D
, INTEL_PSTATE_HWP_BROADWELL
),
3051 X86_MATCH_HWP(ANY
, 0),
3055 static int __init
intel_pstate_init(void)
3057 const struct x86_cpu_id
*id
;
3060 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_INTEL
)
3066 id
= x86_match_cpu(hwp_support_ids
);
3068 copy_cpu_funcs(&core_funcs
);
3070 * Avoid enabling HWP for processors without EPP support,
3071 * because that means incomplete HWP implementation which is a
3072 * corner case and supporting it is generally problematic.
3074 if (!no_hwp
&& boot_cpu_has(X86_FEATURE_HWP_EPP
)) {
3076 hwp_mode_bdw
= id
->driver_data
;
3077 intel_pstate
.attr
= hwp_cpufreq_attrs
;
3078 intel_cpufreq
.attr
= hwp_cpufreq_attrs
;
3079 intel_cpufreq
.flags
|= CPUFREQ_NEED_UPDATE_LIMITS
;
3080 intel_cpufreq
.adjust_perf
= intel_cpufreq_adjust_perf
;
3081 if (!default_driver
)
3082 default_driver
= &intel_pstate
;
3084 goto hwp_cpu_matched
;
3087 id
= x86_match_cpu(intel_pstate_cpu_ids
);
3089 pr_info("CPU model not supported\n");
3093 copy_cpu_funcs((struct pstate_funcs
*)id
->driver_data
);
3096 if (intel_pstate_msrs_not_valid()) {
3097 pr_info("Invalid MSRs\n");
3100 /* Without HWP start in the passive mode. */
3101 if (!default_driver
)
3102 default_driver
= &intel_cpufreq
;
3106 * The Intel pstate driver will be ignored if the platform
3107 * firmware has its own power management modes.
3109 if (intel_pstate_platform_pwr_mgmt_exists()) {
3110 pr_info("P-states controlled by the platform\n");
3114 if (!hwp_active
&& hwp_only
)
3117 pr_info("Intel P-state driver initializing\n");
3119 all_cpu_data
= vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3123 intel_pstate_request_control_from_smm();
3125 intel_pstate_sysfs_expose_params();
3127 mutex_lock(&intel_pstate_driver_lock
);
3128 rc
= intel_pstate_register_driver(default_driver
);
3129 mutex_unlock(&intel_pstate_driver_lock
);
3131 intel_pstate_sysfs_remove();
3136 const struct x86_cpu_id
*id
;
3138 id
= x86_match_cpu(intel_pstate_cpu_ee_disable_ids
);
3140 set_power_ctl_ee_state(false);
3141 pr_info("Disabling energy efficiency optimization\n");
3144 pr_info("HWP enabled\n");
3149 device_initcall(intel_pstate_init
);
3151 static int __init
intel_pstate_setup(char *str
)
3156 if (!strcmp(str
, "disable"))
3158 else if (!strcmp(str
, "active"))
3159 default_driver
= &intel_pstate
;
3160 else if (!strcmp(str
, "passive"))
3161 default_driver
= &intel_cpufreq
;
3163 if (!strcmp(str
, "no_hwp")) {
3164 pr_info("HWP disabled\n");
3167 if (!strcmp(str
, "force"))
3169 if (!strcmp(str
, "hwp_only"))
3171 if (!strcmp(str
, "per_cpu_perf_limits"))
3172 per_cpu_limits
= true;
3175 if (!strcmp(str
, "support_acpi_ppc"))
3181 early_param("intel_pstate", intel_pstate_setup
);
3183 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3184 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3185 MODULE_LICENSE("GPL");