LiteX: driver for MMCM
[linux/fpc-iii.git] / drivers / cpufreq / mediatek-cpufreq.c
blob022e3e966e71a5eb85c3d9abb191bbaaa39561e6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015 Linaro Ltd.
4 * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
5 */
7 #include <linux/clk.h>
8 #include <linux/cpu.h>
9 #include <linux/cpufreq.h>
10 #include <linux/cpumask.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/slab.h>
17 #include <linux/thermal.h>
19 #define MIN_VOLT_SHIFT (100000)
20 #define MAX_VOLT_SHIFT (200000)
21 #define MAX_VOLT_LIMIT (1150000)
22 #define VOLT_TOL (10000)
25 * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
26 * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
27 * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
28 * voltage inputs need to be controlled under a hardware limitation:
29 * 100mV < Vsram - Vproc < 200mV
31 * When scaling the clock frequency of a CPU clock domain, the clock source
32 * needs to be switched to another stable PLL clock temporarily until
33 * the original PLL becomes stable at target frequency.
35 struct mtk_cpu_dvfs_info {
36 struct cpumask cpus;
37 struct device *cpu_dev;
38 struct regulator *proc_reg;
39 struct regulator *sram_reg;
40 struct clk *cpu_clk;
41 struct clk *inter_clk;
42 struct list_head list_head;
43 int intermediate_voltage;
44 bool need_voltage_tracking;
47 static LIST_HEAD(dvfs_info_list);
49 static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
51 struct mtk_cpu_dvfs_info *info;
53 list_for_each_entry(info, &dvfs_info_list, list_head) {
54 if (cpumask_test_cpu(cpu, &info->cpus))
55 return info;
58 return NULL;
61 static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
62 int new_vproc)
64 struct regulator *proc_reg = info->proc_reg;
65 struct regulator *sram_reg = info->sram_reg;
66 int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
68 old_vproc = regulator_get_voltage(proc_reg);
69 if (old_vproc < 0) {
70 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
71 return old_vproc;
73 /* Vsram should not exceed the maximum allowed voltage of SoC. */
74 new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
76 if (old_vproc < new_vproc) {
78 * When scaling up voltages, Vsram and Vproc scale up step
79 * by step. At each step, set Vsram to (Vproc + 200mV) first,
80 * then set Vproc to (Vsram - 100mV).
81 * Keep doing it until Vsram and Vproc hit target voltages.
83 do {
84 old_vsram = regulator_get_voltage(sram_reg);
85 if (old_vsram < 0) {
86 pr_err("%s: invalid Vsram value: %d\n",
87 __func__, old_vsram);
88 return old_vsram;
90 old_vproc = regulator_get_voltage(proc_reg);
91 if (old_vproc < 0) {
92 pr_err("%s: invalid Vproc value: %d\n",
93 __func__, old_vproc);
94 return old_vproc;
97 vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
99 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
100 vsram = MAX_VOLT_LIMIT;
103 * If the target Vsram hits the maximum voltage,
104 * try to set the exact voltage value first.
106 ret = regulator_set_voltage(sram_reg, vsram,
107 vsram);
108 if (ret)
109 ret = regulator_set_voltage(sram_reg,
110 vsram - VOLT_TOL,
111 vsram);
113 vproc = new_vproc;
114 } else {
115 ret = regulator_set_voltage(sram_reg, vsram,
116 vsram + VOLT_TOL);
118 vproc = vsram - MIN_VOLT_SHIFT;
120 if (ret)
121 return ret;
123 ret = regulator_set_voltage(proc_reg, vproc,
124 vproc + VOLT_TOL);
125 if (ret) {
126 regulator_set_voltage(sram_reg, old_vsram,
127 old_vsram);
128 return ret;
130 } while (vproc < new_vproc || vsram < new_vsram);
131 } else if (old_vproc > new_vproc) {
133 * When scaling down voltages, Vsram and Vproc scale down step
134 * by step. At each step, set Vproc to (Vsram - 200mV) first,
135 * then set Vproc to (Vproc + 100mV).
136 * Keep doing it until Vsram and Vproc hit target voltages.
138 do {
139 old_vproc = regulator_get_voltage(proc_reg);
140 if (old_vproc < 0) {
141 pr_err("%s: invalid Vproc value: %d\n",
142 __func__, old_vproc);
143 return old_vproc;
145 old_vsram = regulator_get_voltage(sram_reg);
146 if (old_vsram < 0) {
147 pr_err("%s: invalid Vsram value: %d\n",
148 __func__, old_vsram);
149 return old_vsram;
152 vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
153 ret = regulator_set_voltage(proc_reg, vproc,
154 vproc + VOLT_TOL);
155 if (ret)
156 return ret;
158 if (vproc == new_vproc)
159 vsram = new_vsram;
160 else
161 vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
163 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
164 vsram = MAX_VOLT_LIMIT;
167 * If the target Vsram hits the maximum voltage,
168 * try to set the exact voltage value first.
170 ret = regulator_set_voltage(sram_reg, vsram,
171 vsram);
172 if (ret)
173 ret = regulator_set_voltage(sram_reg,
174 vsram - VOLT_TOL,
175 vsram);
176 } else {
177 ret = regulator_set_voltage(sram_reg, vsram,
178 vsram + VOLT_TOL);
181 if (ret) {
182 regulator_set_voltage(proc_reg, old_vproc,
183 old_vproc);
184 return ret;
186 } while (vproc > new_vproc + VOLT_TOL ||
187 vsram > new_vsram + VOLT_TOL);
190 return 0;
193 static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
195 if (info->need_voltage_tracking)
196 return mtk_cpufreq_voltage_tracking(info, vproc);
197 else
198 return regulator_set_voltage(info->proc_reg, vproc,
199 vproc + VOLT_TOL);
202 static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
203 unsigned int index)
205 struct cpufreq_frequency_table *freq_table = policy->freq_table;
206 struct clk *cpu_clk = policy->clk;
207 struct clk *armpll = clk_get_parent(cpu_clk);
208 struct mtk_cpu_dvfs_info *info = policy->driver_data;
209 struct device *cpu_dev = info->cpu_dev;
210 struct dev_pm_opp *opp;
211 long freq_hz, old_freq_hz;
212 int vproc, old_vproc, inter_vproc, target_vproc, ret;
214 inter_vproc = info->intermediate_voltage;
216 old_freq_hz = clk_get_rate(cpu_clk);
217 old_vproc = regulator_get_voltage(info->proc_reg);
218 if (old_vproc < 0) {
219 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
220 return old_vproc;
223 freq_hz = freq_table[index].frequency * 1000;
225 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
226 if (IS_ERR(opp)) {
227 pr_err("cpu%d: failed to find OPP for %ld\n",
228 policy->cpu, freq_hz);
229 return PTR_ERR(opp);
231 vproc = dev_pm_opp_get_voltage(opp);
232 dev_pm_opp_put(opp);
235 * If the new voltage or the intermediate voltage is higher than the
236 * current voltage, scale up voltage first.
238 target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
239 if (old_vproc < target_vproc) {
240 ret = mtk_cpufreq_set_voltage(info, target_vproc);
241 if (ret) {
242 pr_err("cpu%d: failed to scale up voltage!\n",
243 policy->cpu);
244 mtk_cpufreq_set_voltage(info, old_vproc);
245 return ret;
249 /* Reparent the CPU clock to intermediate clock. */
250 ret = clk_set_parent(cpu_clk, info->inter_clk);
251 if (ret) {
252 pr_err("cpu%d: failed to re-parent cpu clock!\n",
253 policy->cpu);
254 mtk_cpufreq_set_voltage(info, old_vproc);
255 WARN_ON(1);
256 return ret;
259 /* Set the original PLL to target rate. */
260 ret = clk_set_rate(armpll, freq_hz);
261 if (ret) {
262 pr_err("cpu%d: failed to scale cpu clock rate!\n",
263 policy->cpu);
264 clk_set_parent(cpu_clk, armpll);
265 mtk_cpufreq_set_voltage(info, old_vproc);
266 return ret;
269 /* Set parent of CPU clock back to the original PLL. */
270 ret = clk_set_parent(cpu_clk, armpll);
271 if (ret) {
272 pr_err("cpu%d: failed to re-parent cpu clock!\n",
273 policy->cpu);
274 mtk_cpufreq_set_voltage(info, inter_vproc);
275 WARN_ON(1);
276 return ret;
280 * If the new voltage is lower than the intermediate voltage or the
281 * original voltage, scale down to the new voltage.
283 if (vproc < inter_vproc || vproc < old_vproc) {
284 ret = mtk_cpufreq_set_voltage(info, vproc);
285 if (ret) {
286 pr_err("cpu%d: failed to scale down voltage!\n",
287 policy->cpu);
288 clk_set_parent(cpu_clk, info->inter_clk);
289 clk_set_rate(armpll, old_freq_hz);
290 clk_set_parent(cpu_clk, armpll);
291 return ret;
295 return 0;
298 #define DYNAMIC_POWER "dynamic-power-coefficient"
300 static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
302 struct device *cpu_dev;
303 struct regulator *proc_reg = ERR_PTR(-ENODEV);
304 struct regulator *sram_reg = ERR_PTR(-ENODEV);
305 struct clk *cpu_clk = ERR_PTR(-ENODEV);
306 struct clk *inter_clk = ERR_PTR(-ENODEV);
307 struct dev_pm_opp *opp;
308 unsigned long rate;
309 int ret;
311 cpu_dev = get_cpu_device(cpu);
312 if (!cpu_dev) {
313 pr_err("failed to get cpu%d device\n", cpu);
314 return -ENODEV;
317 cpu_clk = clk_get(cpu_dev, "cpu");
318 if (IS_ERR(cpu_clk)) {
319 if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
320 pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
321 else
322 pr_err("failed to get cpu clk for cpu%d\n", cpu);
324 ret = PTR_ERR(cpu_clk);
325 return ret;
328 inter_clk = clk_get(cpu_dev, "intermediate");
329 if (IS_ERR(inter_clk)) {
330 if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
331 pr_warn("intermediate clk for cpu%d not ready, retry.\n",
332 cpu);
333 else
334 pr_err("failed to get intermediate clk for cpu%d\n",
335 cpu);
337 ret = PTR_ERR(inter_clk);
338 goto out_free_resources;
341 proc_reg = regulator_get_optional(cpu_dev, "proc");
342 if (IS_ERR(proc_reg)) {
343 if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
344 pr_warn("proc regulator for cpu%d not ready, retry.\n",
345 cpu);
346 else
347 pr_err("failed to get proc regulator for cpu%d\n",
348 cpu);
350 ret = PTR_ERR(proc_reg);
351 goto out_free_resources;
354 /* Both presence and absence of sram regulator are valid cases. */
355 sram_reg = regulator_get_exclusive(cpu_dev, "sram");
357 /* Get OPP-sharing information from "operating-points-v2" bindings */
358 ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
359 if (ret) {
360 pr_err("failed to get OPP-sharing information for cpu%d\n",
361 cpu);
362 goto out_free_resources;
365 ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
366 if (ret) {
367 pr_warn("no OPP table for cpu%d\n", cpu);
368 goto out_free_resources;
371 /* Search a safe voltage for intermediate frequency. */
372 rate = clk_get_rate(inter_clk);
373 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
374 if (IS_ERR(opp)) {
375 pr_err("failed to get intermediate opp for cpu%d\n", cpu);
376 ret = PTR_ERR(opp);
377 goto out_free_opp_table;
379 info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
380 dev_pm_opp_put(opp);
382 info->cpu_dev = cpu_dev;
383 info->proc_reg = proc_reg;
384 info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
385 info->cpu_clk = cpu_clk;
386 info->inter_clk = inter_clk;
389 * If SRAM regulator is present, software "voltage tracking" is needed
390 * for this CPU power domain.
392 info->need_voltage_tracking = !IS_ERR(sram_reg);
394 return 0;
396 out_free_opp_table:
397 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
399 out_free_resources:
400 if (!IS_ERR(proc_reg))
401 regulator_put(proc_reg);
402 if (!IS_ERR(sram_reg))
403 regulator_put(sram_reg);
404 if (!IS_ERR(cpu_clk))
405 clk_put(cpu_clk);
406 if (!IS_ERR(inter_clk))
407 clk_put(inter_clk);
409 return ret;
412 static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
414 if (!IS_ERR(info->proc_reg))
415 regulator_put(info->proc_reg);
416 if (!IS_ERR(info->sram_reg))
417 regulator_put(info->sram_reg);
418 if (!IS_ERR(info->cpu_clk))
419 clk_put(info->cpu_clk);
420 if (!IS_ERR(info->inter_clk))
421 clk_put(info->inter_clk);
423 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
426 static int mtk_cpufreq_init(struct cpufreq_policy *policy)
428 struct mtk_cpu_dvfs_info *info;
429 struct cpufreq_frequency_table *freq_table;
430 int ret;
432 info = mtk_cpu_dvfs_info_lookup(policy->cpu);
433 if (!info) {
434 pr_err("dvfs info for cpu%d is not initialized.\n",
435 policy->cpu);
436 return -EINVAL;
439 ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
440 if (ret) {
441 pr_err("failed to init cpufreq table for cpu%d: %d\n",
442 policy->cpu, ret);
443 return ret;
446 cpumask_copy(policy->cpus, &info->cpus);
447 policy->freq_table = freq_table;
448 policy->driver_data = info;
449 policy->clk = info->cpu_clk;
451 dev_pm_opp_of_register_em(info->cpu_dev, policy->cpus);
453 return 0;
456 static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
458 struct mtk_cpu_dvfs_info *info = policy->driver_data;
460 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
462 return 0;
465 static struct cpufreq_driver mtk_cpufreq_driver = {
466 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
467 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
468 CPUFREQ_IS_COOLING_DEV,
469 .verify = cpufreq_generic_frequency_table_verify,
470 .target_index = mtk_cpufreq_set_target,
471 .get = cpufreq_generic_get,
472 .init = mtk_cpufreq_init,
473 .exit = mtk_cpufreq_exit,
474 .name = "mtk-cpufreq",
475 .attr = cpufreq_generic_attr,
478 static int mtk_cpufreq_probe(struct platform_device *pdev)
480 struct mtk_cpu_dvfs_info *info, *tmp;
481 int cpu, ret;
483 for_each_possible_cpu(cpu) {
484 info = mtk_cpu_dvfs_info_lookup(cpu);
485 if (info)
486 continue;
488 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
489 if (!info) {
490 ret = -ENOMEM;
491 goto release_dvfs_info_list;
494 ret = mtk_cpu_dvfs_info_init(info, cpu);
495 if (ret) {
496 dev_err(&pdev->dev,
497 "failed to initialize dvfs info for cpu%d\n",
498 cpu);
499 goto release_dvfs_info_list;
502 list_add(&info->list_head, &dvfs_info_list);
505 ret = cpufreq_register_driver(&mtk_cpufreq_driver);
506 if (ret) {
507 dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
508 goto release_dvfs_info_list;
511 return 0;
513 release_dvfs_info_list:
514 list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
515 mtk_cpu_dvfs_info_release(info);
516 list_del(&info->list_head);
519 return ret;
522 static struct platform_driver mtk_cpufreq_platdrv = {
523 .driver = {
524 .name = "mtk-cpufreq",
526 .probe = mtk_cpufreq_probe,
529 /* List of machines supported by this driver */
530 static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
531 { .compatible = "mediatek,mt2701", },
532 { .compatible = "mediatek,mt2712", },
533 { .compatible = "mediatek,mt7622", },
534 { .compatible = "mediatek,mt7623", },
535 { .compatible = "mediatek,mt8167", },
536 { .compatible = "mediatek,mt817x", },
537 { .compatible = "mediatek,mt8173", },
538 { .compatible = "mediatek,mt8176", },
539 { .compatible = "mediatek,mt8183", },
540 { .compatible = "mediatek,mt8516", },
544 MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
546 static int __init mtk_cpufreq_driver_init(void)
548 struct device_node *np;
549 const struct of_device_id *match;
550 struct platform_device *pdev;
551 int err;
553 np = of_find_node_by_path("/");
554 if (!np)
555 return -ENODEV;
557 match = of_match_node(mtk_cpufreq_machines, np);
558 of_node_put(np);
559 if (!match) {
560 pr_debug("Machine is not compatible with mtk-cpufreq\n");
561 return -ENODEV;
564 err = platform_driver_register(&mtk_cpufreq_platdrv);
565 if (err)
566 return err;
569 * Since there's no place to hold device registration code and no
570 * device tree based way to match cpufreq driver yet, both the driver
571 * and the device registration codes are put here to handle defer
572 * probing.
574 pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
575 if (IS_ERR(pdev)) {
576 pr_err("failed to register mtk-cpufreq platform device\n");
577 platform_driver_unregister(&mtk_cpufreq_platdrv);
578 return PTR_ERR(pdev);
581 return 0;
583 device_initcall(mtk_cpufreq_driver_init);
585 MODULE_DESCRIPTION("MediaTek CPUFreq driver");
586 MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
587 MODULE_LICENSE("GPL v2");