LiteX: driver for MMCM
[linux/fpc-iii.git] / drivers / mtd / devices / docg3.c
blob5b0ae5ddad74554799cd4f2ede229b3f3f6eb7e8
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Handles the M-Systems DiskOnChip G3 chip
5 * Copyright (C) 2011 Robert Jarzmik
6 */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/errno.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/string.h>
14 #include <linux/slab.h>
15 #include <linux/io.h>
16 #include <linux/delay.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/bitmap.h>
20 #include <linux/bitrev.h>
21 #include <linux/bch.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
26 #define CREATE_TRACE_POINTS
27 #include "docg3.h"
30 * This driver handles the DiskOnChip G3 flash memory.
32 * As no specification is available from M-Systems/Sandisk, this drivers lacks
33 * several functions available on the chip, as :
34 * - IPL write
36 * The bus data width (8bits versus 16bits) is not handled (if_cfg flag), and
37 * the driver assumes a 16bits data bus.
39 * DocG3 relies on 2 ECC algorithms, which are handled in hardware :
40 * - a 1 byte Hamming code stored in the OOB for each page
41 * - a 7 bytes BCH code stored in the OOB for each page
42 * The BCH ECC is :
43 * - BCH is in GF(2^14)
44 * - BCH is over data of 520 bytes (512 page + 7 page_info bytes
45 * + 1 hamming byte)
46 * - BCH can correct up to 4 bits (t = 4)
47 * - BCH syndroms are calculated in hardware, and checked in hardware as well
51 static unsigned int reliable_mode;
52 module_param(reliable_mode, uint, 0);
53 MODULE_PARM_DESC(reliable_mode, "Set the docg3 mode (0=normal MLC, 1=fast, "
54 "2=reliable) : MLC normal operations are in normal mode");
56 static int docg3_ooblayout_ecc(struct mtd_info *mtd, int section,
57 struct mtd_oob_region *oobregion)
59 if (section)
60 return -ERANGE;
62 /* byte 7 is Hamming ECC, byte 8-14 are BCH ECC */
63 oobregion->offset = 7;
64 oobregion->length = 8;
66 return 0;
69 static int docg3_ooblayout_free(struct mtd_info *mtd, int section,
70 struct mtd_oob_region *oobregion)
72 if (section > 1)
73 return -ERANGE;
75 /* free bytes: byte 0 until byte 6, byte 15 */
76 if (!section) {
77 oobregion->offset = 0;
78 oobregion->length = 7;
79 } else {
80 oobregion->offset = 15;
81 oobregion->length = 1;
84 return 0;
87 static const struct mtd_ooblayout_ops nand_ooblayout_docg3_ops = {
88 .ecc = docg3_ooblayout_ecc,
89 .free = docg3_ooblayout_free,
92 static inline u8 doc_readb(struct docg3 *docg3, u16 reg)
94 u8 val = readb(docg3->cascade->base + reg);
96 trace_docg3_io(0, 8, reg, (int)val);
97 return val;
100 static inline u16 doc_readw(struct docg3 *docg3, u16 reg)
102 u16 val = readw(docg3->cascade->base + reg);
104 trace_docg3_io(0, 16, reg, (int)val);
105 return val;
108 static inline void doc_writeb(struct docg3 *docg3, u8 val, u16 reg)
110 writeb(val, docg3->cascade->base + reg);
111 trace_docg3_io(1, 8, reg, val);
114 static inline void doc_writew(struct docg3 *docg3, u16 val, u16 reg)
116 writew(val, docg3->cascade->base + reg);
117 trace_docg3_io(1, 16, reg, val);
120 static inline void doc_flash_command(struct docg3 *docg3, u8 cmd)
122 doc_writeb(docg3, cmd, DOC_FLASHCOMMAND);
125 static inline void doc_flash_sequence(struct docg3 *docg3, u8 seq)
127 doc_writeb(docg3, seq, DOC_FLASHSEQUENCE);
130 static inline void doc_flash_address(struct docg3 *docg3, u8 addr)
132 doc_writeb(docg3, addr, DOC_FLASHADDRESS);
135 static char const * const part_probes[] = { "cmdlinepart", "saftlpart", NULL };
137 static int doc_register_readb(struct docg3 *docg3, int reg)
139 u8 val;
141 doc_writew(docg3, reg, DOC_READADDRESS);
142 val = doc_readb(docg3, reg);
143 doc_vdbg("Read register %04x : %02x\n", reg, val);
144 return val;
147 static int doc_register_readw(struct docg3 *docg3, int reg)
149 u16 val;
151 doc_writew(docg3, reg, DOC_READADDRESS);
152 val = doc_readw(docg3, reg);
153 doc_vdbg("Read register %04x : %04x\n", reg, val);
154 return val;
158 * doc_delay - delay docg3 operations
159 * @docg3: the device
160 * @nbNOPs: the number of NOPs to issue
162 * As no specification is available, the right timings between chip commands are
163 * unknown. The only available piece of information are the observed nops on a
164 * working docg3 chip.
165 * Therefore, doc_delay relies on a busy loop of NOPs, instead of scheduler
166 * friendlier msleep() functions or blocking mdelay().
168 static void doc_delay(struct docg3 *docg3, int nbNOPs)
170 int i;
172 doc_vdbg("NOP x %d\n", nbNOPs);
173 for (i = 0; i < nbNOPs; i++)
174 doc_writeb(docg3, 0, DOC_NOP);
177 static int is_prot_seq_error(struct docg3 *docg3)
179 int ctrl;
181 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
182 return ctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR);
185 static int doc_is_ready(struct docg3 *docg3)
187 int ctrl;
189 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
190 return ctrl & DOC_CTRL_FLASHREADY;
193 static int doc_wait_ready(struct docg3 *docg3)
195 int maxWaitCycles = 100;
197 do {
198 doc_delay(docg3, 4);
199 cpu_relax();
200 } while (!doc_is_ready(docg3) && maxWaitCycles--);
201 doc_delay(docg3, 2);
202 if (maxWaitCycles > 0)
203 return 0;
204 else
205 return -EIO;
208 static int doc_reset_seq(struct docg3 *docg3)
210 int ret;
212 doc_writeb(docg3, 0x10, DOC_FLASHCONTROL);
213 doc_flash_sequence(docg3, DOC_SEQ_RESET);
214 doc_flash_command(docg3, DOC_CMD_RESET);
215 doc_delay(docg3, 2);
216 ret = doc_wait_ready(docg3);
218 doc_dbg("doc_reset_seq() -> isReady=%s\n", ret ? "false" : "true");
219 return ret;
223 * doc_read_data_area - Read data from data area
224 * @docg3: the device
225 * @buf: the buffer to fill in (might be NULL is dummy reads)
226 * @len: the length to read
227 * @first: first time read, DOC_READADDRESS should be set
229 * Reads bytes from flash data. Handles the single byte / even bytes reads.
231 static void doc_read_data_area(struct docg3 *docg3, void *buf, int len,
232 int first)
234 int i, cdr, len4;
235 u16 data16, *dst16;
236 u8 data8, *dst8;
238 doc_dbg("doc_read_data_area(buf=%p, len=%d)\n", buf, len);
239 cdr = len & 0x1;
240 len4 = len - cdr;
242 if (first)
243 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
244 dst16 = buf;
245 for (i = 0; i < len4; i += 2) {
246 data16 = doc_readw(docg3, DOC_IOSPACE_DATA);
247 if (dst16) {
248 *dst16 = data16;
249 dst16++;
253 if (cdr) {
254 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
255 DOC_READADDRESS);
256 doc_delay(docg3, 1);
257 dst8 = (u8 *)dst16;
258 for (i = 0; i < cdr; i++) {
259 data8 = doc_readb(docg3, DOC_IOSPACE_DATA);
260 if (dst8) {
261 *dst8 = data8;
262 dst8++;
269 * doc_write_data_area - Write data into data area
270 * @docg3: the device
271 * @buf: the buffer to get input bytes from
272 * @len: the length to write
274 * Writes bytes into flash data. Handles the single byte / even bytes writes.
276 static void doc_write_data_area(struct docg3 *docg3, const void *buf, int len)
278 int i, cdr, len4;
279 u16 *src16;
280 u8 *src8;
282 doc_dbg("doc_write_data_area(buf=%p, len=%d)\n", buf, len);
283 cdr = len & 0x3;
284 len4 = len - cdr;
286 doc_writew(docg3, DOC_IOSPACE_DATA, DOC_READADDRESS);
287 src16 = (u16 *)buf;
288 for (i = 0; i < len4; i += 2) {
289 doc_writew(docg3, *src16, DOC_IOSPACE_DATA);
290 src16++;
293 src8 = (u8 *)src16;
294 for (i = 0; i < cdr; i++) {
295 doc_writew(docg3, DOC_IOSPACE_DATA | DOC_READADDR_ONE_BYTE,
296 DOC_READADDRESS);
297 doc_writeb(docg3, *src8, DOC_IOSPACE_DATA);
298 src8++;
303 * doc_set_data_mode - Sets the flash to normal or reliable data mode
304 * @docg3: the device
306 * The reliable data mode is a bit slower than the fast mode, but less errors
307 * occur. Entering the reliable mode cannot be done without entering the fast
308 * mode first.
310 * In reliable mode, pages 2*n and 2*n+1 are clones. Writing to page 0 of blocks
311 * (4,5) make the hardware write also to page 1 of blocks blocks(4,5). Reading
312 * from page 0 of blocks (4,5) or from page 1 of blocks (4,5) gives the same
313 * result, which is a logical and between bytes from page 0 and page 1 (which is
314 * consistent with the fact that writing to a page is _clearing_ bits of that
315 * page).
317 static void doc_set_reliable_mode(struct docg3 *docg3)
319 static char *strmode[] = { "normal", "fast", "reliable", "invalid" };
321 doc_dbg("doc_set_reliable_mode(%s)\n", strmode[docg3->reliable]);
322 switch (docg3->reliable) {
323 case 0:
324 break;
325 case 1:
326 doc_flash_sequence(docg3, DOC_SEQ_SET_FASTMODE);
327 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
328 break;
329 case 2:
330 doc_flash_sequence(docg3, DOC_SEQ_SET_RELIABLEMODE);
331 doc_flash_command(docg3, DOC_CMD_FAST_MODE);
332 doc_flash_command(docg3, DOC_CMD_RELIABLE_MODE);
333 break;
334 default:
335 doc_err("doc_set_reliable_mode(): invalid mode\n");
336 break;
338 doc_delay(docg3, 2);
342 * doc_set_asic_mode - Set the ASIC mode
343 * @docg3: the device
344 * @mode: the mode
346 * The ASIC can work in 3 modes :
347 * - RESET: all registers are zeroed
348 * - NORMAL: receives and handles commands
349 * - POWERDOWN: minimal poweruse, flash parts shut off
351 static void doc_set_asic_mode(struct docg3 *docg3, u8 mode)
353 int i;
355 for (i = 0; i < 12; i++)
356 doc_readb(docg3, DOC_IOSPACE_IPL);
358 mode |= DOC_ASICMODE_MDWREN;
359 doc_dbg("doc_set_asic_mode(%02x)\n", mode);
360 doc_writeb(docg3, mode, DOC_ASICMODE);
361 doc_writeb(docg3, ~mode, DOC_ASICMODECONFIRM);
362 doc_delay(docg3, 1);
366 * doc_set_device_id - Sets the devices id for cascaded G3 chips
367 * @docg3: the device
368 * @id: the chip to select (amongst 0, 1, 2, 3)
370 * There can be 4 cascaded G3 chips. This function selects the one which will
371 * should be the active one.
373 static void doc_set_device_id(struct docg3 *docg3, int id)
375 u8 ctrl;
377 doc_dbg("doc_set_device_id(%d)\n", id);
378 doc_writeb(docg3, id, DOC_DEVICESELECT);
379 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
381 ctrl &= ~DOC_CTRL_VIOLATION;
382 ctrl |= DOC_CTRL_CE;
383 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
387 * doc_set_extra_page_mode - Change flash page layout
388 * @docg3: the device
390 * Normally, the flash page is split into the data (512 bytes) and the out of
391 * band data (16 bytes). For each, 4 more bytes can be accessed, where the wear
392 * leveling counters are stored. To access this last area of 4 bytes, a special
393 * mode must be input to the flash ASIC.
395 * Returns 0 if no error occurred, -EIO else.
397 static int doc_set_extra_page_mode(struct docg3 *docg3)
399 int fctrl;
401 doc_dbg("doc_set_extra_page_mode()\n");
402 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SIZE_532);
403 doc_flash_command(docg3, DOC_CMD_PAGE_SIZE_532);
404 doc_delay(docg3, 2);
406 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
407 if (fctrl & (DOC_CTRL_PROTECTION_ERROR | DOC_CTRL_SEQUENCE_ERROR))
408 return -EIO;
409 else
410 return 0;
414 * doc_setup_addr_sector - Setup blocks/page/ofs address for one plane
415 * @docg3: the device
416 * @sector: the sector
418 static void doc_setup_addr_sector(struct docg3 *docg3, int sector)
420 doc_delay(docg3, 1);
421 doc_flash_address(docg3, sector & 0xff);
422 doc_flash_address(docg3, (sector >> 8) & 0xff);
423 doc_flash_address(docg3, (sector >> 16) & 0xff);
424 doc_delay(docg3, 1);
428 * doc_setup_writeaddr_sector - Setup blocks/page/ofs address for one plane
429 * @docg3: the device
430 * @sector: the sector
431 * @ofs: the offset in the page, between 0 and (512 + 16 + 512)
433 static void doc_setup_writeaddr_sector(struct docg3 *docg3, int sector, int ofs)
435 ofs = ofs >> 2;
436 doc_delay(docg3, 1);
437 doc_flash_address(docg3, ofs & 0xff);
438 doc_flash_address(docg3, sector & 0xff);
439 doc_flash_address(docg3, (sector >> 8) & 0xff);
440 doc_flash_address(docg3, (sector >> 16) & 0xff);
441 doc_delay(docg3, 1);
445 * doc_seek - Set both flash planes to the specified block, page for reading
446 * @docg3: the device
447 * @block0: the first plane block index
448 * @block1: the second plane block index
449 * @page: the page index within the block
450 * @wear: if true, read will occur on the 4 extra bytes of the wear area
451 * @ofs: offset in page to read
453 * Programs the flash even and odd planes to the specific block and page.
454 * Alternatively, programs the flash to the wear area of the specified page.
456 static int doc_read_seek(struct docg3 *docg3, int block0, int block1, int page,
457 int wear, int ofs)
459 int sector, ret = 0;
461 doc_dbg("doc_seek(blocks=(%d,%d), page=%d, ofs=%d, wear=%d)\n",
462 block0, block1, page, ofs, wear);
464 if (!wear && (ofs < 2 * DOC_LAYOUT_PAGE_SIZE)) {
465 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
466 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
467 doc_delay(docg3, 2);
468 } else {
469 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
470 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
471 doc_delay(docg3, 2);
474 doc_set_reliable_mode(docg3);
475 if (wear)
476 ret = doc_set_extra_page_mode(docg3);
477 if (ret)
478 goto out;
480 doc_flash_sequence(docg3, DOC_SEQ_READ);
481 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
482 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
483 doc_setup_addr_sector(docg3, sector);
485 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
486 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
487 doc_setup_addr_sector(docg3, sector);
488 doc_delay(docg3, 1);
490 out:
491 return ret;
495 * doc_write_seek - Set both flash planes to the specified block, page for writing
496 * @docg3: the device
497 * @block0: the first plane block index
498 * @block1: the second plane block index
499 * @page: the page index within the block
500 * @ofs: offset in page to write
502 * Programs the flash even and odd planes to the specific block and page.
503 * Alternatively, programs the flash to the wear area of the specified page.
505 static int doc_write_seek(struct docg3 *docg3, int block0, int block1, int page,
506 int ofs)
508 int ret = 0, sector;
510 doc_dbg("doc_write_seek(blocks=(%d,%d), page=%d, ofs=%d)\n",
511 block0, block1, page, ofs);
513 doc_set_reliable_mode(docg3);
515 if (ofs < 2 * DOC_LAYOUT_PAGE_SIZE) {
516 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE1);
517 doc_flash_command(docg3, DOC_CMD_READ_PLANE1);
518 doc_delay(docg3, 2);
519 } else {
520 doc_flash_sequence(docg3, DOC_SEQ_SET_PLANE2);
521 doc_flash_command(docg3, DOC_CMD_READ_PLANE2);
522 doc_delay(docg3, 2);
525 doc_flash_sequence(docg3, DOC_SEQ_PAGE_SETUP);
526 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
528 sector = (block0 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
529 doc_setup_writeaddr_sector(docg3, sector, ofs);
531 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE3);
532 doc_delay(docg3, 2);
533 ret = doc_wait_ready(docg3);
534 if (ret)
535 goto out;
537 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE1);
538 sector = (block1 << DOC_ADDR_BLOCK_SHIFT) + (page & DOC_ADDR_PAGE_MASK);
539 doc_setup_writeaddr_sector(docg3, sector, ofs);
540 doc_delay(docg3, 1);
542 out:
543 return ret;
548 * doc_read_page_ecc_init - Initialize hardware ECC engine
549 * @docg3: the device
550 * @len: the number of bytes covered by the ECC (BCH covered)
552 * The function does initialize the hardware ECC engine to compute the Hamming
553 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
555 * Return 0 if succeeded, -EIO on error
557 static int doc_read_page_ecc_init(struct docg3 *docg3, int len)
559 doc_writew(docg3, DOC_ECCCONF0_READ_MODE
560 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
561 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
562 DOC_ECCCONF0);
563 doc_delay(docg3, 4);
564 doc_register_readb(docg3, DOC_FLASHCONTROL);
565 return doc_wait_ready(docg3);
569 * doc_write_page_ecc_init - Initialize hardware BCH ECC engine
570 * @docg3: the device
571 * @len: the number of bytes covered by the ECC (BCH covered)
573 * The function does initialize the hardware ECC engine to compute the Hamming
574 * ECC (on 1 byte) and the BCH hardware ECC (on 7 bytes).
576 * Return 0 if succeeded, -EIO on error
578 static int doc_write_page_ecc_init(struct docg3 *docg3, int len)
580 doc_writew(docg3, DOC_ECCCONF0_WRITE_MODE
581 | DOC_ECCCONF0_BCH_ENABLE | DOC_ECCCONF0_HAMMING_ENABLE
582 | (len & DOC_ECCCONF0_DATA_BYTES_MASK),
583 DOC_ECCCONF0);
584 doc_delay(docg3, 4);
585 doc_register_readb(docg3, DOC_FLASHCONTROL);
586 return doc_wait_ready(docg3);
590 * doc_ecc_disable - Disable Hamming and BCH ECC hardware calculator
591 * @docg3: the device
593 * Disables the hardware ECC generator and checker, for unchecked reads (as when
594 * reading OOB only or write status byte).
596 static void doc_ecc_disable(struct docg3 *docg3)
598 doc_writew(docg3, DOC_ECCCONF0_READ_MODE, DOC_ECCCONF0);
599 doc_delay(docg3, 4);
603 * doc_hamming_ecc_init - Initialize hardware Hamming ECC engine
604 * @docg3: the device
605 * @nb_bytes: the number of bytes covered by the ECC (Hamming covered)
607 * This function programs the ECC hardware to compute the hamming code on the
608 * last provided N bytes to the hardware generator.
610 static void doc_hamming_ecc_init(struct docg3 *docg3, int nb_bytes)
612 u8 ecc_conf1;
614 ecc_conf1 = doc_register_readb(docg3, DOC_ECCCONF1);
615 ecc_conf1 &= ~DOC_ECCCONF1_HAMMING_BITS_MASK;
616 ecc_conf1 |= (nb_bytes & DOC_ECCCONF1_HAMMING_BITS_MASK);
617 doc_writeb(docg3, ecc_conf1, DOC_ECCCONF1);
621 * doc_ecc_bch_fix_data - Fix if need be read data from flash
622 * @docg3: the device
623 * @buf: the buffer of read data (512 + 7 + 1 bytes)
624 * @hwecc: the hardware calculated ECC.
625 * It's in fact recv_ecc ^ calc_ecc, where recv_ecc was read from OOB
626 * area data, and calc_ecc the ECC calculated by the hardware generator.
628 * Checks if the received data matches the ECC, and if an error is detected,
629 * tries to fix the bit flips (at most 4) in the buffer buf. As the docg3
630 * understands the (data, ecc, syndroms) in an inverted order in comparison to
631 * the BCH library, the function reverses the order of bits (ie. bit7 and bit0,
632 * bit6 and bit 1, ...) for all ECC data.
634 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
635 * algorithm is used to decode this. However the hw operates on page
636 * data in a bit order that is the reverse of that of the bch alg,
637 * requiring that the bits be reversed on the result. Thanks to Ivan
638 * Djelic for his analysis.
640 * Returns number of fixed bits (0, 1, 2, 3, 4) or -EBADMSG if too many bit
641 * errors were detected and cannot be fixed.
643 static int doc_ecc_bch_fix_data(struct docg3 *docg3, void *buf, u8 *hwecc)
645 u8 ecc[DOC_ECC_BCH_SIZE];
646 int errorpos[DOC_ECC_BCH_T], i, numerrs;
648 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
649 ecc[i] = bitrev8(hwecc[i]);
650 numerrs = bch_decode(docg3->cascade->bch, NULL,
651 DOC_ECC_BCH_COVERED_BYTES,
652 NULL, ecc, NULL, errorpos);
653 BUG_ON(numerrs == -EINVAL);
654 if (numerrs < 0)
655 goto out;
657 for (i = 0; i < numerrs; i++)
658 errorpos[i] = (errorpos[i] & ~7) | (7 - (errorpos[i] & 7));
659 for (i = 0; i < numerrs; i++)
660 if (errorpos[i] < DOC_ECC_BCH_COVERED_BYTES*8)
661 /* error is located in data, correct it */
662 change_bit(errorpos[i], buf);
663 out:
664 doc_dbg("doc_ecc_bch_fix_data: flipped %d bits\n", numerrs);
665 return numerrs;
670 * doc_read_page_prepare - Prepares reading data from a flash page
671 * @docg3: the device
672 * @block0: the first plane block index on flash memory
673 * @block1: the second plane block index on flash memory
674 * @page: the page index in the block
675 * @offset: the offset in the page (must be a multiple of 4)
677 * Prepares the page to be read in the flash memory :
678 * - tell ASIC to map the flash pages
679 * - tell ASIC to be in read mode
681 * After a call to this method, a call to doc_read_page_finish is mandatory,
682 * to end the read cycle of the flash.
684 * Read data from a flash page. The length to be read must be between 0 and
685 * (page_size + oob_size + wear_size), ie. 532, and a multiple of 4 (because
686 * the extra bytes reading is not implemented).
688 * As pages are grouped by 2 (in 2 planes), reading from a page must be done
689 * in two steps:
690 * - one read of 512 bytes at offset 0
691 * - one read of 512 bytes at offset 512 + 16
693 * Returns 0 if successful, -EIO if a read error occurred.
695 static int doc_read_page_prepare(struct docg3 *docg3, int block0, int block1,
696 int page, int offset)
698 int wear_area = 0, ret = 0;
700 doc_dbg("doc_read_page_prepare(blocks=(%d,%d), page=%d, ofsInPage=%d)\n",
701 block0, block1, page, offset);
702 if (offset >= DOC_LAYOUT_WEAR_OFFSET)
703 wear_area = 1;
704 if (!wear_area && offset > (DOC_LAYOUT_PAGE_OOB_SIZE * 2))
705 return -EINVAL;
707 doc_set_device_id(docg3, docg3->device_id);
708 ret = doc_reset_seq(docg3);
709 if (ret)
710 goto err;
712 /* Program the flash address block and page */
713 ret = doc_read_seek(docg3, block0, block1, page, wear_area, offset);
714 if (ret)
715 goto err;
717 doc_flash_command(docg3, DOC_CMD_READ_ALL_PLANES);
718 doc_delay(docg3, 2);
719 doc_wait_ready(docg3);
721 doc_flash_command(docg3, DOC_CMD_SET_ADDR_READ);
722 doc_delay(docg3, 1);
723 if (offset >= DOC_LAYOUT_PAGE_SIZE * 2)
724 offset -= 2 * DOC_LAYOUT_PAGE_SIZE;
725 doc_flash_address(docg3, offset >> 2);
726 doc_delay(docg3, 1);
727 doc_wait_ready(docg3);
729 doc_flash_command(docg3, DOC_CMD_READ_FLASH);
731 return 0;
732 err:
733 doc_writeb(docg3, 0, DOC_DATAEND);
734 doc_delay(docg3, 2);
735 return -EIO;
739 * doc_read_page_getbytes - Reads bytes from a prepared page
740 * @docg3: the device
741 * @len: the number of bytes to be read (must be a multiple of 4)
742 * @buf: the buffer to be filled in (or NULL is forget bytes)
743 * @first: 1 if first time read, DOC_READADDRESS should be set
744 * @last_odd: 1 if last read ended up on an odd byte
746 * Reads bytes from a prepared page. There is a trickery here : if the last read
747 * ended up on an odd offset in the 1024 bytes double page, ie. between the 2
748 * planes, the first byte must be read apart. If a word (16bit) read was used,
749 * the read would return the byte of plane 2 as low *and* high endian, which
750 * will mess the read.
753 static int doc_read_page_getbytes(struct docg3 *docg3, int len, u_char *buf,
754 int first, int last_odd)
756 if (last_odd && len > 0) {
757 doc_read_data_area(docg3, buf, 1, first);
758 doc_read_data_area(docg3, buf ? buf + 1 : buf, len - 1, 0);
759 } else {
760 doc_read_data_area(docg3, buf, len, first);
762 doc_delay(docg3, 2);
763 return len;
767 * doc_write_page_putbytes - Writes bytes into a prepared page
768 * @docg3: the device
769 * @len: the number of bytes to be written
770 * @buf: the buffer of input bytes
773 static void doc_write_page_putbytes(struct docg3 *docg3, int len,
774 const u_char *buf)
776 doc_write_data_area(docg3, buf, len);
777 doc_delay(docg3, 2);
781 * doc_get_bch_hw_ecc - Get hardware calculated BCH ECC
782 * @docg3: the device
783 * @hwecc: the array of 7 integers where the hardware ecc will be stored
785 static void doc_get_bch_hw_ecc(struct docg3 *docg3, u8 *hwecc)
787 int i;
789 for (i = 0; i < DOC_ECC_BCH_SIZE; i++)
790 hwecc[i] = doc_register_readb(docg3, DOC_BCH_HW_ECC(i));
794 * doc_page_finish - Ends reading/writing of a flash page
795 * @docg3: the device
797 static void doc_page_finish(struct docg3 *docg3)
799 doc_writeb(docg3, 0, DOC_DATAEND);
800 doc_delay(docg3, 2);
804 * doc_read_page_finish - Ends reading of a flash page
805 * @docg3: the device
807 * As a side effect, resets the chip selector to 0. This ensures that after each
808 * read operation, the floor 0 is selected. Therefore, if the systems halts, the
809 * reboot will boot on floor 0, where the IPL is.
811 static void doc_read_page_finish(struct docg3 *docg3)
813 doc_page_finish(docg3);
814 doc_set_device_id(docg3, 0);
818 * calc_block_sector - Calculate blocks, pages and ofs.
820 * @from: offset in flash
821 * @block0: first plane block index calculated
822 * @block1: second plane block index calculated
823 * @page: page calculated
824 * @ofs: offset in page
825 * @reliable: 0 if docg3 in normal mode, 1 if docg3 in fast mode, 2 if docg3 in
826 * reliable mode.
828 * The calculation is based on the reliable/normal mode. In normal mode, the 64
829 * pages of a block are available. In reliable mode, as pages 2*n and 2*n+1 are
830 * clones, only 32 pages per block are available.
832 static void calc_block_sector(loff_t from, int *block0, int *block1, int *page,
833 int *ofs, int reliable)
835 uint sector, pages_biblock;
837 pages_biblock = DOC_LAYOUT_PAGES_PER_BLOCK * DOC_LAYOUT_NBPLANES;
838 if (reliable == 1 || reliable == 2)
839 pages_biblock /= 2;
841 sector = from / DOC_LAYOUT_PAGE_SIZE;
842 *block0 = sector / pages_biblock * DOC_LAYOUT_NBPLANES;
843 *block1 = *block0 + 1;
844 *page = sector % pages_biblock;
845 *page /= DOC_LAYOUT_NBPLANES;
846 if (reliable == 1 || reliable == 2)
847 *page *= 2;
848 if (sector % 2)
849 *ofs = DOC_LAYOUT_PAGE_OOB_SIZE;
850 else
851 *ofs = 0;
855 * doc_read_oob - Read out of band bytes from flash
856 * @mtd: the device
857 * @from: the offset from first block and first page, in bytes, aligned on page
858 * size
859 * @ops: the mtd oob structure
861 * Reads flash memory OOB area of pages.
863 * Returns 0 if read successful, of -EIO, -EINVAL if an error occurred
865 static int doc_read_oob(struct mtd_info *mtd, loff_t from,
866 struct mtd_oob_ops *ops)
868 struct docg3 *docg3 = mtd->priv;
869 int block0, block1, page, ret, skip, ofs = 0;
870 u8 *oobbuf = ops->oobbuf;
871 u8 *buf = ops->datbuf;
872 size_t len, ooblen, nbdata, nboob;
873 u8 hwecc[DOC_ECC_BCH_SIZE], eccconf1;
874 int max_bitflips = 0;
876 if (buf)
877 len = ops->len;
878 else
879 len = 0;
880 if (oobbuf)
881 ooblen = ops->ooblen;
882 else
883 ooblen = 0;
885 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
886 oobbuf += ops->ooboffs;
888 doc_dbg("doc_read_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
889 from, ops->mode, buf, len, oobbuf, ooblen);
890 if (ooblen % DOC_LAYOUT_OOB_SIZE)
891 return -EINVAL;
893 ops->oobretlen = 0;
894 ops->retlen = 0;
895 ret = 0;
896 skip = from % DOC_LAYOUT_PAGE_SIZE;
897 mutex_lock(&docg3->cascade->lock);
898 while (ret >= 0 && (len > 0 || ooblen > 0)) {
899 calc_block_sector(from - skip, &block0, &block1, &page, &ofs,
900 docg3->reliable);
901 nbdata = min_t(size_t, len, DOC_LAYOUT_PAGE_SIZE - skip);
902 nboob = min_t(size_t, ooblen, (size_t)DOC_LAYOUT_OOB_SIZE);
903 ret = doc_read_page_prepare(docg3, block0, block1, page, ofs);
904 if (ret < 0)
905 goto out;
906 ret = doc_read_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
907 if (ret < 0)
908 goto err_in_read;
909 ret = doc_read_page_getbytes(docg3, skip, NULL, 1, 0);
910 if (ret < skip)
911 goto err_in_read;
912 ret = doc_read_page_getbytes(docg3, nbdata, buf, 0, skip % 2);
913 if (ret < nbdata)
914 goto err_in_read;
915 doc_read_page_getbytes(docg3,
916 DOC_LAYOUT_PAGE_SIZE - nbdata - skip,
917 NULL, 0, (skip + nbdata) % 2);
918 ret = doc_read_page_getbytes(docg3, nboob, oobbuf, 0, 0);
919 if (ret < nboob)
920 goto err_in_read;
921 doc_read_page_getbytes(docg3, DOC_LAYOUT_OOB_SIZE - nboob,
922 NULL, 0, nboob % 2);
924 doc_get_bch_hw_ecc(docg3, hwecc);
925 eccconf1 = doc_register_readb(docg3, DOC_ECCCONF1);
927 if (nboob >= DOC_LAYOUT_OOB_SIZE) {
928 doc_dbg("OOB - INFO: %*phC\n", 7, oobbuf);
929 doc_dbg("OOB - HAMMING: %02x\n", oobbuf[7]);
930 doc_dbg("OOB - BCH_ECC: %*phC\n", 7, oobbuf + 8);
931 doc_dbg("OOB - UNUSED: %02x\n", oobbuf[15]);
933 doc_dbg("ECC checks: ECCConf1=%x\n", eccconf1);
934 doc_dbg("ECC HW_ECC: %*phC\n", 7, hwecc);
936 ret = -EIO;
937 if (is_prot_seq_error(docg3))
938 goto err_in_read;
939 ret = 0;
940 if ((block0 >= DOC_LAYOUT_BLOCK_FIRST_DATA) &&
941 (eccconf1 & DOC_ECCCONF1_BCH_SYNDROM_ERR) &&
942 (eccconf1 & DOC_ECCCONF1_PAGE_IS_WRITTEN) &&
943 (ops->mode != MTD_OPS_RAW) &&
944 (nbdata == DOC_LAYOUT_PAGE_SIZE)) {
945 ret = doc_ecc_bch_fix_data(docg3, buf, hwecc);
946 if (ret < 0) {
947 mtd->ecc_stats.failed++;
948 ret = -EBADMSG;
950 if (ret > 0) {
951 mtd->ecc_stats.corrected += ret;
952 max_bitflips = max(max_bitflips, ret);
953 ret = max_bitflips;
957 doc_read_page_finish(docg3);
958 ops->retlen += nbdata;
959 ops->oobretlen += nboob;
960 buf += nbdata;
961 oobbuf += nboob;
962 len -= nbdata;
963 ooblen -= nboob;
964 from += DOC_LAYOUT_PAGE_SIZE;
965 skip = 0;
968 out:
969 mutex_unlock(&docg3->cascade->lock);
970 return ret;
971 err_in_read:
972 doc_read_page_finish(docg3);
973 goto out;
976 static int doc_reload_bbt(struct docg3 *docg3)
978 int block = DOC_LAYOUT_BLOCK_BBT;
979 int ret = 0, nbpages, page;
980 u_char *buf = docg3->bbt;
982 nbpages = DIV_ROUND_UP(docg3->max_block + 1, 8 * DOC_LAYOUT_PAGE_SIZE);
983 for (page = 0; !ret && (page < nbpages); page++) {
984 ret = doc_read_page_prepare(docg3, block, block + 1,
985 page + DOC_LAYOUT_PAGE_BBT, 0);
986 if (!ret)
987 ret = doc_read_page_ecc_init(docg3,
988 DOC_LAYOUT_PAGE_SIZE);
989 if (!ret)
990 doc_read_page_getbytes(docg3, DOC_LAYOUT_PAGE_SIZE,
991 buf, 1, 0);
992 buf += DOC_LAYOUT_PAGE_SIZE;
994 doc_read_page_finish(docg3);
995 return ret;
999 * doc_block_isbad - Checks whether a block is good or not
1000 * @mtd: the device
1001 * @from: the offset to find the correct block
1003 * Returns 1 if block is bad, 0 if block is good
1005 static int doc_block_isbad(struct mtd_info *mtd, loff_t from)
1007 struct docg3 *docg3 = mtd->priv;
1008 int block0, block1, page, ofs, is_good;
1010 calc_block_sector(from, &block0, &block1, &page, &ofs,
1011 docg3->reliable);
1012 doc_dbg("doc_block_isbad(from=%lld) => block=(%d,%d), page=%d, ofs=%d\n",
1013 from, block0, block1, page, ofs);
1015 if (block0 < DOC_LAYOUT_BLOCK_FIRST_DATA)
1016 return 0;
1017 if (block1 > docg3->max_block)
1018 return -EINVAL;
1020 is_good = docg3->bbt[block0 >> 3] & (1 << (block0 & 0x7));
1021 return !is_good;
1024 #if 0
1026 * doc_get_erase_count - Get block erase count
1027 * @docg3: the device
1028 * @from: the offset in which the block is.
1030 * Get the number of times a block was erased. The number is the maximum of
1031 * erase times between first and second plane (which should be equal normally).
1033 * Returns The number of erases, or -EINVAL or -EIO on error.
1035 static int doc_get_erase_count(struct docg3 *docg3, loff_t from)
1037 u8 buf[DOC_LAYOUT_WEAR_SIZE];
1038 int ret, plane1_erase_count, plane2_erase_count;
1039 int block0, block1, page, ofs;
1041 doc_dbg("doc_get_erase_count(from=%lld, buf=%p)\n", from, buf);
1042 if (from % DOC_LAYOUT_PAGE_SIZE)
1043 return -EINVAL;
1044 calc_block_sector(from, &block0, &block1, &page, &ofs, docg3->reliable);
1045 if (block1 > docg3->max_block)
1046 return -EINVAL;
1048 ret = doc_reset_seq(docg3);
1049 if (!ret)
1050 ret = doc_read_page_prepare(docg3, block0, block1, page,
1051 ofs + DOC_LAYOUT_WEAR_OFFSET, 0);
1052 if (!ret)
1053 ret = doc_read_page_getbytes(docg3, DOC_LAYOUT_WEAR_SIZE,
1054 buf, 1, 0);
1055 doc_read_page_finish(docg3);
1057 if (ret || (buf[0] != DOC_ERASE_MARK) || (buf[2] != DOC_ERASE_MARK))
1058 return -EIO;
1059 plane1_erase_count = (u8)(~buf[1]) | ((u8)(~buf[4]) << 8)
1060 | ((u8)(~buf[5]) << 16);
1061 plane2_erase_count = (u8)(~buf[3]) | ((u8)(~buf[6]) << 8)
1062 | ((u8)(~buf[7]) << 16);
1064 return max(plane1_erase_count, plane2_erase_count);
1066 #endif
1069 * doc_get_op_status - get erase/write operation status
1070 * @docg3: the device
1072 * Queries the status from the chip, and returns it
1074 * Returns the status (bits DOC_PLANES_STATUS_*)
1076 static int doc_get_op_status(struct docg3 *docg3)
1078 u8 status;
1080 doc_flash_sequence(docg3, DOC_SEQ_PLANES_STATUS);
1081 doc_flash_command(docg3, DOC_CMD_PLANES_STATUS);
1082 doc_delay(docg3, 5);
1084 doc_ecc_disable(docg3);
1085 doc_read_data_area(docg3, &status, 1, 1);
1086 return status;
1090 * doc_write_erase_wait_status - wait for write or erase completion
1091 * @docg3: the device
1093 * Wait for the chip to be ready again after erase or write operation, and check
1094 * erase/write status.
1096 * Returns 0 if erase successful, -EIO if erase/write issue, -ETIMEOUT if
1097 * timeout
1099 static int doc_write_erase_wait_status(struct docg3 *docg3)
1101 int i, status, ret = 0;
1103 for (i = 0; !doc_is_ready(docg3) && i < 5; i++)
1104 msleep(20);
1105 if (!doc_is_ready(docg3)) {
1106 doc_dbg("Timeout reached and the chip is still not ready\n");
1107 ret = -EAGAIN;
1108 goto out;
1111 status = doc_get_op_status(docg3);
1112 if (status & DOC_PLANES_STATUS_FAIL) {
1113 doc_dbg("Erase/Write failed on (a) plane(s), status = %x\n",
1114 status);
1115 ret = -EIO;
1118 out:
1119 doc_page_finish(docg3);
1120 return ret;
1124 * doc_erase_block - Erase a couple of blocks
1125 * @docg3: the device
1126 * @block0: the first block to erase (leftmost plane)
1127 * @block1: the second block to erase (rightmost plane)
1129 * Erase both blocks, and return operation status
1131 * Returns 0 if erase successful, -EIO if erase issue, -ETIMEOUT if chip not
1132 * ready for too long
1134 static int doc_erase_block(struct docg3 *docg3, int block0, int block1)
1136 int ret, sector;
1138 doc_dbg("doc_erase_block(blocks=(%d,%d))\n", block0, block1);
1139 ret = doc_reset_seq(docg3);
1140 if (ret)
1141 return -EIO;
1143 doc_set_reliable_mode(docg3);
1144 doc_flash_sequence(docg3, DOC_SEQ_ERASE);
1146 sector = block0 << DOC_ADDR_BLOCK_SHIFT;
1147 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1148 doc_setup_addr_sector(docg3, sector);
1149 sector = block1 << DOC_ADDR_BLOCK_SHIFT;
1150 doc_flash_command(docg3, DOC_CMD_PROG_BLOCK_ADDR);
1151 doc_setup_addr_sector(docg3, sector);
1152 doc_delay(docg3, 1);
1154 doc_flash_command(docg3, DOC_CMD_ERASECYCLE2);
1155 doc_delay(docg3, 2);
1157 if (is_prot_seq_error(docg3)) {
1158 doc_err("Erase blocks %d,%d error\n", block0, block1);
1159 return -EIO;
1162 return doc_write_erase_wait_status(docg3);
1166 * doc_erase - Erase a portion of the chip
1167 * @mtd: the device
1168 * @info: the erase info
1170 * Erase a bunch of contiguous blocks, by pairs, as a "mtd" page of 1024 is
1171 * split into 2 pages of 512 bytes on 2 contiguous blocks.
1173 * Returns 0 if erase successful, -EINVAL if addressing error, -EIO if erase
1174 * issue
1176 static int doc_erase(struct mtd_info *mtd, struct erase_info *info)
1178 struct docg3 *docg3 = mtd->priv;
1179 uint64_t len;
1180 int block0, block1, page, ret = 0, ofs = 0;
1182 doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len);
1184 calc_block_sector(info->addr + info->len, &block0, &block1, &page,
1185 &ofs, docg3->reliable);
1186 if (info->addr + info->len > mtd->size || page || ofs)
1187 return -EINVAL;
1189 calc_block_sector(info->addr, &block0, &block1, &page, &ofs,
1190 docg3->reliable);
1191 mutex_lock(&docg3->cascade->lock);
1192 doc_set_device_id(docg3, docg3->device_id);
1193 doc_set_reliable_mode(docg3);
1194 for (len = info->len; !ret && len > 0; len -= mtd->erasesize) {
1195 ret = doc_erase_block(docg3, block0, block1);
1196 block0 += 2;
1197 block1 += 2;
1199 mutex_unlock(&docg3->cascade->lock);
1201 return ret;
1205 * doc_write_page - Write a single page to the chip
1206 * @docg3: the device
1207 * @to: the offset from first block and first page, in bytes, aligned on page
1208 * size
1209 * @buf: buffer to get bytes from
1210 * @oob: buffer to get out of band bytes from (can be NULL if no OOB should be
1211 * written)
1212 * @autoecc: if 0, all 16 bytes from OOB are taken, regardless of HW Hamming or
1213 * BCH computations. If 1, only bytes 0-7 and byte 15 are taken,
1214 * remaining ones are filled with hardware Hamming and BCH
1215 * computations. Its value is not meaningfull is oob == NULL.
1217 * Write one full page (ie. 1 page split on two planes), of 512 bytes, with the
1218 * OOB data. The OOB ECC is automatically computed by the hardware Hamming and
1219 * BCH generator if autoecc is not null.
1221 * Returns 0 if write successful, -EIO if write error, -EAGAIN if timeout
1223 static int doc_write_page(struct docg3 *docg3, loff_t to, const u_char *buf,
1224 const u_char *oob, int autoecc)
1226 int block0, block1, page, ret, ofs = 0;
1227 u8 hwecc[DOC_ECC_BCH_SIZE], hamming;
1229 doc_dbg("doc_write_page(to=%lld)\n", to);
1230 calc_block_sector(to, &block0, &block1, &page, &ofs, docg3->reliable);
1232 doc_set_device_id(docg3, docg3->device_id);
1233 ret = doc_reset_seq(docg3);
1234 if (ret)
1235 goto err;
1237 /* Program the flash address block and page */
1238 ret = doc_write_seek(docg3, block0, block1, page, ofs);
1239 if (ret)
1240 goto err;
1242 doc_write_page_ecc_init(docg3, DOC_ECC_BCH_TOTAL_BYTES);
1243 doc_delay(docg3, 2);
1244 doc_write_page_putbytes(docg3, DOC_LAYOUT_PAGE_SIZE, buf);
1246 if (oob && autoecc) {
1247 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ, oob);
1248 doc_delay(docg3, 2);
1249 oob += DOC_LAYOUT_OOB_UNUSED_OFS;
1251 hamming = doc_register_readb(docg3, DOC_HAMMINGPARITY);
1252 doc_delay(docg3, 2);
1253 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_HAMMING_SZ,
1254 &hamming);
1255 doc_delay(docg3, 2);
1257 doc_get_bch_hw_ecc(docg3, hwecc);
1258 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_BCH_SZ, hwecc);
1259 doc_delay(docg3, 2);
1261 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_UNUSED_SZ, oob);
1263 if (oob && !autoecc)
1264 doc_write_page_putbytes(docg3, DOC_LAYOUT_OOB_SIZE, oob);
1266 doc_delay(docg3, 2);
1267 doc_page_finish(docg3);
1268 doc_delay(docg3, 2);
1269 doc_flash_command(docg3, DOC_CMD_PROG_CYCLE2);
1270 doc_delay(docg3, 2);
1273 * The wait status will perform another doc_page_finish() call, but that
1274 * seems to please the docg3, so leave it.
1276 ret = doc_write_erase_wait_status(docg3);
1277 return ret;
1278 err:
1279 doc_read_page_finish(docg3);
1280 return ret;
1284 * doc_guess_autoecc - Guess autoecc mode from mbd_oob_ops
1285 * @ops: the oob operations
1287 * Returns 0 or 1 if success, -EINVAL if invalid oob mode
1289 static int doc_guess_autoecc(struct mtd_oob_ops *ops)
1291 int autoecc;
1293 switch (ops->mode) {
1294 case MTD_OPS_PLACE_OOB:
1295 case MTD_OPS_AUTO_OOB:
1296 autoecc = 1;
1297 break;
1298 case MTD_OPS_RAW:
1299 autoecc = 0;
1300 break;
1301 default:
1302 autoecc = -EINVAL;
1304 return autoecc;
1308 * doc_fill_autooob - Fill a 16 bytes OOB from 8 non-ECC bytes
1309 * @dst: the target 16 bytes OOB buffer
1310 * @oobsrc: the source 8 bytes non-ECC OOB buffer
1313 static void doc_fill_autooob(u8 *dst, u8 *oobsrc)
1315 memcpy(dst, oobsrc, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1316 dst[DOC_LAYOUT_OOB_UNUSED_OFS] = oobsrc[DOC_LAYOUT_OOB_PAGEINFO_SZ];
1320 * doc_backup_oob - Backup OOB into docg3 structure
1321 * @docg3: the device
1322 * @to: the page offset in the chip
1323 * @ops: the OOB size and buffer
1325 * As the docg3 should write a page with its OOB in one pass, and some userland
1326 * applications do write_oob() to setup the OOB and then write(), store the OOB
1327 * into a temporary storage. This is very dangerous, as 2 concurrent
1328 * applications could store an OOB, and then write their pages (which will
1329 * result into one having its OOB corrupted).
1331 * The only reliable way would be for userland to call doc_write_oob() with both
1332 * the page data _and_ the OOB area.
1334 * Returns 0 if success, -EINVAL if ops content invalid
1336 static int doc_backup_oob(struct docg3 *docg3, loff_t to,
1337 struct mtd_oob_ops *ops)
1339 int ooblen = ops->ooblen, autoecc;
1341 if (ooblen != DOC_LAYOUT_OOB_SIZE)
1342 return -EINVAL;
1343 autoecc = doc_guess_autoecc(ops);
1344 if (autoecc < 0)
1345 return autoecc;
1347 docg3->oob_write_ofs = to;
1348 docg3->oob_autoecc = autoecc;
1349 if (ops->mode == MTD_OPS_AUTO_OOB) {
1350 doc_fill_autooob(docg3->oob_write_buf, ops->oobbuf);
1351 ops->oobretlen = 8;
1352 } else {
1353 memcpy(docg3->oob_write_buf, ops->oobbuf, DOC_LAYOUT_OOB_SIZE);
1354 ops->oobretlen = DOC_LAYOUT_OOB_SIZE;
1356 return 0;
1360 * doc_write_oob - Write out of band bytes to flash
1361 * @mtd: the device
1362 * @ofs: the offset from first block and first page, in bytes, aligned on page
1363 * size
1364 * @ops: the mtd oob structure
1366 * Either write OOB data into a temporary buffer, for the subsequent write
1367 * page. The provided OOB should be 16 bytes long. If a data buffer is provided
1368 * as well, issue the page write.
1369 * Or provide data without OOB, and then a all zeroed OOB will be used (ECC will
1370 * still be filled in if asked for).
1372 * Returns 0 is successful, EINVAL if length is not 14 bytes
1374 static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1375 struct mtd_oob_ops *ops)
1377 struct docg3 *docg3 = mtd->priv;
1378 int ret, autoecc, oobdelta;
1379 u8 *oobbuf = ops->oobbuf;
1380 u8 *buf = ops->datbuf;
1381 size_t len, ooblen;
1382 u8 oob[DOC_LAYOUT_OOB_SIZE];
1384 if (buf)
1385 len = ops->len;
1386 else
1387 len = 0;
1388 if (oobbuf)
1389 ooblen = ops->ooblen;
1390 else
1391 ooblen = 0;
1393 if (oobbuf && ops->mode == MTD_OPS_PLACE_OOB)
1394 oobbuf += ops->ooboffs;
1396 doc_dbg("doc_write_oob(from=%lld, mode=%d, data=(%p:%zu), oob=(%p:%zu))\n",
1397 ofs, ops->mode, buf, len, oobbuf, ooblen);
1398 switch (ops->mode) {
1399 case MTD_OPS_PLACE_OOB:
1400 case MTD_OPS_RAW:
1401 oobdelta = mtd->oobsize;
1402 break;
1403 case MTD_OPS_AUTO_OOB:
1404 oobdelta = mtd->oobavail;
1405 break;
1406 default:
1407 return -EINVAL;
1409 if ((len % DOC_LAYOUT_PAGE_SIZE) || (ooblen % oobdelta) ||
1410 (ofs % DOC_LAYOUT_PAGE_SIZE))
1411 return -EINVAL;
1412 if (len && ooblen &&
1413 (len / DOC_LAYOUT_PAGE_SIZE) != (ooblen / oobdelta))
1414 return -EINVAL;
1416 ops->oobretlen = 0;
1417 ops->retlen = 0;
1418 ret = 0;
1419 if (len == 0 && ooblen == 0)
1420 return -EINVAL;
1421 if (len == 0 && ooblen > 0)
1422 return doc_backup_oob(docg3, ofs, ops);
1424 autoecc = doc_guess_autoecc(ops);
1425 if (autoecc < 0)
1426 return autoecc;
1428 mutex_lock(&docg3->cascade->lock);
1429 while (!ret && len > 0) {
1430 memset(oob, 0, sizeof(oob));
1431 if (ofs == docg3->oob_write_ofs)
1432 memcpy(oob, docg3->oob_write_buf, DOC_LAYOUT_OOB_SIZE);
1433 else if (ooblen > 0 && ops->mode == MTD_OPS_AUTO_OOB)
1434 doc_fill_autooob(oob, oobbuf);
1435 else if (ooblen > 0)
1436 memcpy(oob, oobbuf, DOC_LAYOUT_OOB_SIZE);
1437 ret = doc_write_page(docg3, ofs, buf, oob, autoecc);
1439 ofs += DOC_LAYOUT_PAGE_SIZE;
1440 len -= DOC_LAYOUT_PAGE_SIZE;
1441 buf += DOC_LAYOUT_PAGE_SIZE;
1442 if (ooblen) {
1443 oobbuf += oobdelta;
1444 ooblen -= oobdelta;
1445 ops->oobretlen += oobdelta;
1447 ops->retlen += DOC_LAYOUT_PAGE_SIZE;
1450 doc_set_device_id(docg3, 0);
1451 mutex_unlock(&docg3->cascade->lock);
1452 return ret;
1455 static struct docg3 *sysfs_dev2docg3(struct device *dev,
1456 struct device_attribute *attr)
1458 int floor;
1459 struct mtd_info **docg3_floors = dev_get_drvdata(dev);
1461 floor = attr->attr.name[1] - '0';
1462 if (floor < 0 || floor >= DOC_MAX_NBFLOORS)
1463 return NULL;
1464 else
1465 return docg3_floors[floor]->priv;
1468 static ssize_t dps0_is_key_locked(struct device *dev,
1469 struct device_attribute *attr, char *buf)
1471 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1472 int dps0;
1474 mutex_lock(&docg3->cascade->lock);
1475 doc_set_device_id(docg3, docg3->device_id);
1476 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1477 doc_set_device_id(docg3, 0);
1478 mutex_unlock(&docg3->cascade->lock);
1480 return sprintf(buf, "%d\n", !(dps0 & DOC_DPS_KEY_OK));
1483 static ssize_t dps1_is_key_locked(struct device *dev,
1484 struct device_attribute *attr, char *buf)
1486 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1487 int dps1;
1489 mutex_lock(&docg3->cascade->lock);
1490 doc_set_device_id(docg3, docg3->device_id);
1491 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1492 doc_set_device_id(docg3, 0);
1493 mutex_unlock(&docg3->cascade->lock);
1495 return sprintf(buf, "%d\n", !(dps1 & DOC_DPS_KEY_OK));
1498 static ssize_t dps0_insert_key(struct device *dev,
1499 struct device_attribute *attr,
1500 const char *buf, size_t count)
1502 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1503 int i;
1505 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1506 return -EINVAL;
1508 mutex_lock(&docg3->cascade->lock);
1509 doc_set_device_id(docg3, docg3->device_id);
1510 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1511 doc_writeb(docg3, buf[i], DOC_DPS0_KEY);
1512 doc_set_device_id(docg3, 0);
1513 mutex_unlock(&docg3->cascade->lock);
1514 return count;
1517 static ssize_t dps1_insert_key(struct device *dev,
1518 struct device_attribute *attr,
1519 const char *buf, size_t count)
1521 struct docg3 *docg3 = sysfs_dev2docg3(dev, attr);
1522 int i;
1524 if (count != DOC_LAYOUT_DPS_KEY_LENGTH)
1525 return -EINVAL;
1527 mutex_lock(&docg3->cascade->lock);
1528 doc_set_device_id(docg3, docg3->device_id);
1529 for (i = 0; i < DOC_LAYOUT_DPS_KEY_LENGTH; i++)
1530 doc_writeb(docg3, buf[i], DOC_DPS1_KEY);
1531 doc_set_device_id(docg3, 0);
1532 mutex_unlock(&docg3->cascade->lock);
1533 return count;
1536 #define FLOOR_SYSFS(id) { \
1537 __ATTR(f##id##_dps0_is_keylocked, S_IRUGO, dps0_is_key_locked, NULL), \
1538 __ATTR(f##id##_dps1_is_keylocked, S_IRUGO, dps1_is_key_locked, NULL), \
1539 __ATTR(f##id##_dps0_protection_key, S_IWUSR|S_IWGRP, NULL, dps0_insert_key), \
1540 __ATTR(f##id##_dps1_protection_key, S_IWUSR|S_IWGRP, NULL, dps1_insert_key), \
1543 static struct device_attribute doc_sys_attrs[DOC_MAX_NBFLOORS][4] = {
1544 FLOOR_SYSFS(0), FLOOR_SYSFS(1), FLOOR_SYSFS(2), FLOOR_SYSFS(3)
1547 static int doc_register_sysfs(struct platform_device *pdev,
1548 struct docg3_cascade *cascade)
1550 struct device *dev = &pdev->dev;
1551 int floor;
1552 int ret;
1553 int i;
1555 for (floor = 0;
1556 floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1557 floor++) {
1558 for (i = 0; i < 4; i++) {
1559 ret = device_create_file(dev, &doc_sys_attrs[floor][i]);
1560 if (ret)
1561 goto remove_files;
1565 return 0;
1567 remove_files:
1568 do {
1569 while (--i >= 0)
1570 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1571 i = 4;
1572 } while (--floor >= 0);
1574 return ret;
1577 static void doc_unregister_sysfs(struct platform_device *pdev,
1578 struct docg3_cascade *cascade)
1580 struct device *dev = &pdev->dev;
1581 int floor, i;
1583 for (floor = 0; floor < DOC_MAX_NBFLOORS && cascade->floors[floor];
1584 floor++)
1585 for (i = 0; i < 4; i++)
1586 device_remove_file(dev, &doc_sys_attrs[floor][i]);
1590 * Debug sysfs entries
1592 static int flashcontrol_show(struct seq_file *s, void *p)
1594 struct docg3 *docg3 = (struct docg3 *)s->private;
1596 u8 fctrl;
1598 mutex_lock(&docg3->cascade->lock);
1599 fctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1600 mutex_unlock(&docg3->cascade->lock);
1602 seq_printf(s, "FlashControl : 0x%02x (%s,CE# %s,%s,%s,flash %s)\n",
1603 fctrl,
1604 fctrl & DOC_CTRL_VIOLATION ? "protocol violation" : "-",
1605 fctrl & DOC_CTRL_CE ? "active" : "inactive",
1606 fctrl & DOC_CTRL_PROTECTION_ERROR ? "protection error" : "-",
1607 fctrl & DOC_CTRL_SEQUENCE_ERROR ? "sequence error" : "-",
1608 fctrl & DOC_CTRL_FLASHREADY ? "ready" : "not ready");
1610 return 0;
1612 DEFINE_SHOW_ATTRIBUTE(flashcontrol);
1614 static int asic_mode_show(struct seq_file *s, void *p)
1616 struct docg3 *docg3 = (struct docg3 *)s->private;
1618 int pctrl, mode;
1620 mutex_lock(&docg3->cascade->lock);
1621 pctrl = doc_register_readb(docg3, DOC_ASICMODE);
1622 mode = pctrl & 0x03;
1623 mutex_unlock(&docg3->cascade->lock);
1625 seq_printf(s,
1626 "%04x : RAM_WE=%d,RSTIN_RESET=%d,BDETCT_RESET=%d,WRITE_ENABLE=%d,POWERDOWN=%d,MODE=%d%d (",
1627 pctrl,
1628 pctrl & DOC_ASICMODE_RAM_WE ? 1 : 0,
1629 pctrl & DOC_ASICMODE_RSTIN_RESET ? 1 : 0,
1630 pctrl & DOC_ASICMODE_BDETCT_RESET ? 1 : 0,
1631 pctrl & DOC_ASICMODE_MDWREN ? 1 : 0,
1632 pctrl & DOC_ASICMODE_POWERDOWN ? 1 : 0,
1633 mode >> 1, mode & 0x1);
1635 switch (mode) {
1636 case DOC_ASICMODE_RESET:
1637 seq_puts(s, "reset");
1638 break;
1639 case DOC_ASICMODE_NORMAL:
1640 seq_puts(s, "normal");
1641 break;
1642 case DOC_ASICMODE_POWERDOWN:
1643 seq_puts(s, "powerdown");
1644 break;
1646 seq_puts(s, ")\n");
1647 return 0;
1649 DEFINE_SHOW_ATTRIBUTE(asic_mode);
1651 static int device_id_show(struct seq_file *s, void *p)
1653 struct docg3 *docg3 = (struct docg3 *)s->private;
1654 int id;
1656 mutex_lock(&docg3->cascade->lock);
1657 id = doc_register_readb(docg3, DOC_DEVICESELECT);
1658 mutex_unlock(&docg3->cascade->lock);
1660 seq_printf(s, "DeviceId = %d\n", id);
1661 return 0;
1663 DEFINE_SHOW_ATTRIBUTE(device_id);
1665 static int protection_show(struct seq_file *s, void *p)
1667 struct docg3 *docg3 = (struct docg3 *)s->private;
1668 int protect, dps0, dps0_low, dps0_high, dps1, dps1_low, dps1_high;
1670 mutex_lock(&docg3->cascade->lock);
1671 protect = doc_register_readb(docg3, DOC_PROTECTION);
1672 dps0 = doc_register_readb(docg3, DOC_DPS0_STATUS);
1673 dps0_low = doc_register_readw(docg3, DOC_DPS0_ADDRLOW);
1674 dps0_high = doc_register_readw(docg3, DOC_DPS0_ADDRHIGH);
1675 dps1 = doc_register_readb(docg3, DOC_DPS1_STATUS);
1676 dps1_low = doc_register_readw(docg3, DOC_DPS1_ADDRLOW);
1677 dps1_high = doc_register_readw(docg3, DOC_DPS1_ADDRHIGH);
1678 mutex_unlock(&docg3->cascade->lock);
1680 seq_printf(s, "Protection = 0x%02x (", protect);
1681 if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
1682 seq_puts(s, "FOUNDRY_OTP_LOCK,");
1683 if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
1684 seq_puts(s, "CUSTOMER_OTP_LOCK,");
1685 if (protect & DOC_PROTECT_LOCK_INPUT)
1686 seq_puts(s, "LOCK_INPUT,");
1687 if (protect & DOC_PROTECT_STICKY_LOCK)
1688 seq_puts(s, "STICKY_LOCK,");
1689 if (protect & DOC_PROTECT_PROTECTION_ENABLED)
1690 seq_puts(s, "PROTECTION ON,");
1691 if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
1692 seq_puts(s, "IPL_DOWNLOAD_LOCK,");
1693 if (protect & DOC_PROTECT_PROTECTION_ERROR)
1694 seq_puts(s, "PROTECT_ERR,");
1695 else
1696 seq_puts(s, "NO_PROTECT_ERR");
1697 seq_puts(s, ")\n");
1699 seq_printf(s, "DPS0 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1700 dps0, dps0_low, dps0_high,
1701 !!(dps0 & DOC_DPS_OTP_PROTECTED),
1702 !!(dps0 & DOC_DPS_READ_PROTECTED),
1703 !!(dps0 & DOC_DPS_WRITE_PROTECTED),
1704 !!(dps0 & DOC_DPS_HW_LOCK_ENABLED),
1705 !!(dps0 & DOC_DPS_KEY_OK));
1706 seq_printf(s, "DPS1 = 0x%02x : Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, WRITE=%d, HW_LOCK=%d, KEY_OK=%d\n",
1707 dps1, dps1_low, dps1_high,
1708 !!(dps1 & DOC_DPS_OTP_PROTECTED),
1709 !!(dps1 & DOC_DPS_READ_PROTECTED),
1710 !!(dps1 & DOC_DPS_WRITE_PROTECTED),
1711 !!(dps1 & DOC_DPS_HW_LOCK_ENABLED),
1712 !!(dps1 & DOC_DPS_KEY_OK));
1713 return 0;
1715 DEFINE_SHOW_ATTRIBUTE(protection);
1717 static void __init doc_dbg_register(struct mtd_info *floor)
1719 struct dentry *root = floor->dbg.dfs_dir;
1720 struct docg3 *docg3 = floor->priv;
1722 if (IS_ERR_OR_NULL(root)) {
1723 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
1724 !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1725 dev_warn(floor->dev.parent,
1726 "CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n");
1727 return;
1730 debugfs_create_file("docg3_flashcontrol", S_IRUSR, root, docg3,
1731 &flashcontrol_fops);
1732 debugfs_create_file("docg3_asic_mode", S_IRUSR, root, docg3,
1733 &asic_mode_fops);
1734 debugfs_create_file("docg3_device_id", S_IRUSR, root, docg3,
1735 &device_id_fops);
1736 debugfs_create_file("docg3_protection", S_IRUSR, root, docg3,
1737 &protection_fops);
1741 * doc_set_driver_info - Fill the mtd_info structure and docg3 structure
1742 * @chip_id: The chip ID of the supported chip
1743 * @mtd: The structure to fill
1745 static int __init doc_set_driver_info(int chip_id, struct mtd_info *mtd)
1747 struct docg3 *docg3 = mtd->priv;
1748 int cfg;
1750 cfg = doc_register_readb(docg3, DOC_CONFIGURATION);
1751 docg3->if_cfg = (cfg & DOC_CONF_IF_CFG ? 1 : 0);
1752 docg3->reliable = reliable_mode;
1754 switch (chip_id) {
1755 case DOC_CHIPID_G3:
1756 mtd->name = devm_kasprintf(docg3->dev, GFP_KERNEL, "docg3.%d",
1757 docg3->device_id);
1758 if (!mtd->name)
1759 return -ENOMEM;
1760 docg3->max_block = 2047;
1761 break;
1763 mtd->type = MTD_NANDFLASH;
1764 mtd->flags = MTD_CAP_NANDFLASH;
1765 mtd->size = (docg3->max_block + 1) * DOC_LAYOUT_BLOCK_SIZE;
1766 if (docg3->reliable == 2)
1767 mtd->size /= 2;
1768 mtd->erasesize = DOC_LAYOUT_BLOCK_SIZE * DOC_LAYOUT_NBPLANES;
1769 if (docg3->reliable == 2)
1770 mtd->erasesize /= 2;
1771 mtd->writebufsize = mtd->writesize = DOC_LAYOUT_PAGE_SIZE;
1772 mtd->oobsize = DOC_LAYOUT_OOB_SIZE;
1773 mtd->_erase = doc_erase;
1774 mtd->_read_oob = doc_read_oob;
1775 mtd->_write_oob = doc_write_oob;
1776 mtd->_block_isbad = doc_block_isbad;
1777 mtd_set_ooblayout(mtd, &nand_ooblayout_docg3_ops);
1778 mtd->oobavail = 8;
1779 mtd->ecc_strength = DOC_ECC_BCH_T;
1781 return 0;
1785 * doc_probe_device - Check if a device is available
1786 * @cascade: the cascade of chips this devices will belong to
1787 * @floor: the floor of the probed device
1788 * @dev: the device
1790 * Checks whether a device at the specified IO range, and floor is available.
1792 * Returns a mtd_info struct if there is a device, ENODEV if none found, ENOMEM
1793 * if a memory allocation failed. If floor 0 is checked, a reset of the ASIC is
1794 * launched.
1796 static struct mtd_info * __init
1797 doc_probe_device(struct docg3_cascade *cascade, int floor, struct device *dev)
1799 int ret, bbt_nbpages;
1800 u16 chip_id, chip_id_inv;
1801 struct docg3 *docg3;
1802 struct mtd_info *mtd;
1804 ret = -ENOMEM;
1805 docg3 = kzalloc(sizeof(struct docg3), GFP_KERNEL);
1806 if (!docg3)
1807 goto nomem1;
1808 mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL);
1809 if (!mtd)
1810 goto nomem2;
1811 mtd->priv = docg3;
1812 mtd->dev.parent = dev;
1813 bbt_nbpages = DIV_ROUND_UP(docg3->max_block + 1,
1814 8 * DOC_LAYOUT_PAGE_SIZE);
1815 docg3->bbt = kcalloc(DOC_LAYOUT_PAGE_SIZE, bbt_nbpages, GFP_KERNEL);
1816 if (!docg3->bbt)
1817 goto nomem3;
1819 docg3->dev = dev;
1820 docg3->device_id = floor;
1821 docg3->cascade = cascade;
1822 doc_set_device_id(docg3, docg3->device_id);
1823 if (!floor)
1824 doc_set_asic_mode(docg3, DOC_ASICMODE_RESET);
1825 doc_set_asic_mode(docg3, DOC_ASICMODE_NORMAL);
1827 chip_id = doc_register_readw(docg3, DOC_CHIPID);
1828 chip_id_inv = doc_register_readw(docg3, DOC_CHIPID_INV);
1830 ret = 0;
1831 if (chip_id != (u16)(~chip_id_inv)) {
1832 goto nomem4;
1835 switch (chip_id) {
1836 case DOC_CHIPID_G3:
1837 doc_info("Found a G3 DiskOnChip at addr %p, floor %d\n",
1838 docg3->cascade->base, floor);
1839 break;
1840 default:
1841 doc_err("Chip id %04x is not a DiskOnChip G3 chip\n", chip_id);
1842 goto nomem4;
1845 ret = doc_set_driver_info(chip_id, mtd);
1846 if (ret)
1847 goto nomem4;
1849 doc_hamming_ecc_init(docg3, DOC_LAYOUT_OOB_PAGEINFO_SZ);
1850 doc_reload_bbt(docg3);
1851 return mtd;
1853 nomem4:
1854 kfree(docg3->bbt);
1855 nomem3:
1856 kfree(mtd);
1857 nomem2:
1858 kfree(docg3);
1859 nomem1:
1860 return ret ? ERR_PTR(ret) : NULL;
1864 * doc_release_device - Release a docg3 floor
1865 * @mtd: the device
1867 static void doc_release_device(struct mtd_info *mtd)
1869 struct docg3 *docg3 = mtd->priv;
1871 mtd_device_unregister(mtd);
1872 kfree(docg3->bbt);
1873 kfree(docg3);
1874 kfree(mtd);
1878 * docg3_resume - Awakens docg3 floor
1879 * @pdev: platfrom device
1881 * Returns 0 (always successful)
1883 static int docg3_resume(struct platform_device *pdev)
1885 int i;
1886 struct docg3_cascade *cascade;
1887 struct mtd_info **docg3_floors, *mtd;
1888 struct docg3 *docg3;
1890 cascade = platform_get_drvdata(pdev);
1891 docg3_floors = cascade->floors;
1892 mtd = docg3_floors[0];
1893 docg3 = mtd->priv;
1895 doc_dbg("docg3_resume()\n");
1896 for (i = 0; i < 12; i++)
1897 doc_readb(docg3, DOC_IOSPACE_IPL);
1898 return 0;
1902 * docg3_suspend - Put in low power mode the docg3 floor
1903 * @pdev: platform device
1904 * @state: power state
1906 * Shuts off most of docg3 circuitery to lower power consumption.
1908 * Returns 0 if suspend succeeded, -EIO if chip refused suspend
1910 static int docg3_suspend(struct platform_device *pdev, pm_message_t state)
1912 int floor, i;
1913 struct docg3_cascade *cascade;
1914 struct mtd_info **docg3_floors, *mtd;
1915 struct docg3 *docg3;
1916 u8 ctrl, pwr_down;
1918 cascade = platform_get_drvdata(pdev);
1919 docg3_floors = cascade->floors;
1920 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1921 mtd = docg3_floors[floor];
1922 if (!mtd)
1923 continue;
1924 docg3 = mtd->priv;
1926 doc_writeb(docg3, floor, DOC_DEVICESELECT);
1927 ctrl = doc_register_readb(docg3, DOC_FLASHCONTROL);
1928 ctrl &= ~DOC_CTRL_VIOLATION & ~DOC_CTRL_CE;
1929 doc_writeb(docg3, ctrl, DOC_FLASHCONTROL);
1931 for (i = 0; i < 10; i++) {
1932 usleep_range(3000, 4000);
1933 pwr_down = doc_register_readb(docg3, DOC_POWERMODE);
1934 if (pwr_down & DOC_POWERDOWN_READY)
1935 break;
1937 if (pwr_down & DOC_POWERDOWN_READY) {
1938 doc_dbg("docg3_suspend(): floor %d powerdown ok\n",
1939 floor);
1940 } else {
1941 doc_err("docg3_suspend(): floor %d powerdown failed\n",
1942 floor);
1943 return -EIO;
1947 mtd = docg3_floors[0];
1948 docg3 = mtd->priv;
1949 doc_set_asic_mode(docg3, DOC_ASICMODE_POWERDOWN);
1950 return 0;
1954 * doc_probe - Probe the IO space for a DiskOnChip G3 chip
1955 * @pdev: platform device
1957 * Probes for a G3 chip at the specified IO space in the platform data
1958 * ressources. The floor 0 must be available.
1960 * Returns 0 on success, -ENOMEM, -ENXIO on error
1962 static int __init docg3_probe(struct platform_device *pdev)
1964 struct device *dev = &pdev->dev;
1965 struct mtd_info *mtd;
1966 struct resource *ress;
1967 void __iomem *base;
1968 int ret, floor;
1969 struct docg3_cascade *cascade;
1971 ret = -ENXIO;
1972 ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1973 if (!ress) {
1974 dev_err(dev, "No I/O memory resource defined\n");
1975 return ret;
1977 base = devm_ioremap(dev, ress->start, DOC_IOSPACE_SIZE);
1979 ret = -ENOMEM;
1980 cascade = devm_kcalloc(dev, DOC_MAX_NBFLOORS, sizeof(*cascade),
1981 GFP_KERNEL);
1982 if (!cascade)
1983 return ret;
1984 cascade->base = base;
1985 mutex_init(&cascade->lock);
1986 cascade->bch = bch_init(DOC_ECC_BCH_M, DOC_ECC_BCH_T,
1987 DOC_ECC_BCH_PRIMPOLY, false);
1988 if (!cascade->bch)
1989 return ret;
1991 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++) {
1992 mtd = doc_probe_device(cascade, floor, dev);
1993 if (IS_ERR(mtd)) {
1994 ret = PTR_ERR(mtd);
1995 goto err_probe;
1997 if (!mtd) {
1998 if (floor == 0)
1999 goto notfound;
2000 else
2001 continue;
2003 cascade->floors[floor] = mtd;
2004 ret = mtd_device_parse_register(mtd, part_probes, NULL, NULL,
2006 if (ret)
2007 goto err_probe;
2009 doc_dbg_register(cascade->floors[floor]);
2012 ret = doc_register_sysfs(pdev, cascade);
2013 if (ret)
2014 goto err_probe;
2016 platform_set_drvdata(pdev, cascade);
2017 return 0;
2019 notfound:
2020 ret = -ENODEV;
2021 dev_info(dev, "No supported DiskOnChip found\n");
2022 err_probe:
2023 bch_free(cascade->bch);
2024 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2025 if (cascade->floors[floor])
2026 doc_release_device(cascade->floors[floor]);
2027 return ret;
2031 * docg3_release - Release the driver
2032 * @pdev: the platform device
2034 * Returns 0
2036 static int docg3_release(struct platform_device *pdev)
2038 struct docg3_cascade *cascade = platform_get_drvdata(pdev);
2039 struct docg3 *docg3 = cascade->floors[0]->priv;
2040 int floor;
2042 doc_unregister_sysfs(pdev, cascade);
2043 for (floor = 0; floor < DOC_MAX_NBFLOORS; floor++)
2044 if (cascade->floors[floor])
2045 doc_release_device(cascade->floors[floor]);
2047 bch_free(docg3->cascade->bch);
2048 return 0;
2051 #ifdef CONFIG_OF
2052 static const struct of_device_id docg3_dt_ids[] = {
2053 { .compatible = "m-systems,diskonchip-g3" },
2056 MODULE_DEVICE_TABLE(of, docg3_dt_ids);
2057 #endif
2059 static struct platform_driver g3_driver = {
2060 .driver = {
2061 .name = "docg3",
2062 .of_match_table = of_match_ptr(docg3_dt_ids),
2064 .suspend = docg3_suspend,
2065 .resume = docg3_resume,
2066 .remove = docg3_release,
2069 module_platform_driver_probe(g3_driver, docg3_probe);
2071 MODULE_LICENSE("GPL");
2072 MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
2073 MODULE_DESCRIPTION("MTD driver for DiskOnChip G3");