LiteX: driver for MMCM
[linux/fpc-iii.git] / drivers / mtd / mtdcore.c
blob2d6423d89a1759f182f083156fc87b38c8388ff6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
35 #include "mtdcore.h"
37 struct backing_dev_info *mtd_bdi;
39 #ifdef CONFIG_PM_SLEEP
41 static int mtd_cls_suspend(struct device *dev)
43 struct mtd_info *mtd = dev_get_drvdata(dev);
45 return mtd ? mtd_suspend(mtd) : 0;
48 static int mtd_cls_resume(struct device *dev)
50 struct mtd_info *mtd = dev_get_drvdata(dev);
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
63 static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
69 static DEFINE_IDR(mtd_idr);
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76 struct mtd_info *__mtd_next_device(int i)
78 return idr_get_next(&mtd_idr, &i);
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
82 static LIST_HEAD(mtd_notifiers);
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
90 static void mtd_release(struct device *dev)
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
99 static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
102 struct mtd_info *mtd = dev_get_drvdata(dev);
103 char *type;
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
130 default:
131 type = "unknown";
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
138 static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
141 struct mtd_info *mtd = dev_get_drvdata(dev);
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
147 static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
150 struct mtd_info *mtd = dev_get_drvdata(dev);
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
157 static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
160 struct mtd_info *mtd = dev_get_drvdata(dev);
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
166 static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
169 struct mtd_info *mtd = dev_get_drvdata(dev);
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
185 static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
188 struct mtd_info *mtd = dev_get_drvdata(dev);
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
194 static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
197 struct mtd_info *mtd = dev_get_drvdata(dev);
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
206 struct mtd_info *mtd = dev_get_drvdata(dev);
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
213 static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
216 struct mtd_info *mtd = dev_get_drvdata(dev);
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
225 struct mtd_info *mtd = dev_get_drvdata(dev);
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
235 struct mtd_info *mtd = dev_get_drvdata(dev);
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
262 struct mtd_info *mtd = dev_get_drvdata(dev);
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
290 static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
310 static struct attribute *mtd_attrs[] = {
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
328 NULL,
330 ATTRIBUTE_GROUPS(mtd);
332 static const struct device_type mtd_devtype = {
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
338 static int mtd_partid_debug_show(struct seq_file *s, void *p)
340 struct mtd_info *mtd = s->private;
342 seq_printf(s, "%s\n", mtd->dbg.partid);
344 return 0;
347 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
349 static int mtd_partname_debug_show(struct seq_file *s, void *p)
351 struct mtd_info *mtd = s->private;
353 seq_printf(s, "%s\n", mtd->dbg.partname);
355 return 0;
358 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
360 static struct dentry *dfs_dir_mtd;
362 static void mtd_debugfs_populate(struct mtd_info *mtd)
364 struct device *dev = &mtd->dev;
365 struct dentry *root;
367 if (IS_ERR_OR_NULL(dfs_dir_mtd))
368 return;
370 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
371 mtd->dbg.dfs_dir = root;
373 if (mtd->dbg.partid)
374 debugfs_create_file("partid", 0400, root, mtd,
375 &mtd_partid_debug_fops);
377 if (mtd->dbg.partname)
378 debugfs_create_file("partname", 0400, root, mtd,
379 &mtd_partname_debug_fops);
382 #ifndef CONFIG_MMU
383 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
385 switch (mtd->type) {
386 case MTD_RAM:
387 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
388 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
389 case MTD_ROM:
390 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
391 NOMMU_MAP_READ;
392 default:
393 return NOMMU_MAP_COPY;
396 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
397 #endif
399 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
400 void *cmd)
402 struct mtd_info *mtd;
404 mtd = container_of(n, struct mtd_info, reboot_notifier);
405 mtd->_reboot(mtd);
407 return NOTIFY_DONE;
411 * mtd_wunit_to_pairing_info - get pairing information of a wunit
412 * @mtd: pointer to new MTD device info structure
413 * @wunit: write unit we are interested in
414 * @info: returned pairing information
416 * Retrieve pairing information associated to the wunit.
417 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
418 * paired together, and where programming a page may influence the page it is
419 * paired with.
420 * The notion of page is replaced by the term wunit (write-unit) to stay
421 * consistent with the ->writesize field.
423 * The @wunit argument can be extracted from an absolute offset using
424 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
425 * to @wunit.
427 * From the pairing info the MTD user can find all the wunits paired with
428 * @wunit using the following loop:
430 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
431 * info.pair = i;
432 * mtd_pairing_info_to_wunit(mtd, &info);
433 * ...
436 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
437 struct mtd_pairing_info *info)
439 struct mtd_info *master = mtd_get_master(mtd);
440 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
442 if (wunit < 0 || wunit >= npairs)
443 return -EINVAL;
445 if (master->pairing && master->pairing->get_info)
446 return master->pairing->get_info(master, wunit, info);
448 info->group = 0;
449 info->pair = wunit;
451 return 0;
453 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
456 * mtd_pairing_info_to_wunit - get wunit from pairing information
457 * @mtd: pointer to new MTD device info structure
458 * @info: pairing information struct
460 * Returns a positive number representing the wunit associated to the info
461 * struct, or a negative error code.
463 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
464 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
465 * doc).
467 * It can also be used to only program the first page of each pair (i.e.
468 * page attached to group 0), which allows one to use an MLC NAND in
469 * software-emulated SLC mode:
471 * info.group = 0;
472 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
473 * for (info.pair = 0; info.pair < npairs; info.pair++) {
474 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
475 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
476 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
479 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
480 const struct mtd_pairing_info *info)
482 struct mtd_info *master = mtd_get_master(mtd);
483 int ngroups = mtd_pairing_groups(master);
484 int npairs = mtd_wunit_per_eb(master) / ngroups;
486 if (!info || info->pair < 0 || info->pair >= npairs ||
487 info->group < 0 || info->group >= ngroups)
488 return -EINVAL;
490 if (master->pairing && master->pairing->get_wunit)
491 return mtd->pairing->get_wunit(master, info);
493 return info->pair;
495 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
498 * mtd_pairing_groups - get the number of pairing groups
499 * @mtd: pointer to new MTD device info structure
501 * Returns the number of pairing groups.
503 * This number is usually equal to the number of bits exposed by a single
504 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
505 * to iterate over all pages of a given pair.
507 int mtd_pairing_groups(struct mtd_info *mtd)
509 struct mtd_info *master = mtd_get_master(mtd);
511 if (!master->pairing || !master->pairing->ngroups)
512 return 1;
514 return master->pairing->ngroups;
516 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
518 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
519 void *val, size_t bytes)
521 struct mtd_info *mtd = priv;
522 size_t retlen;
523 int err;
525 err = mtd_read(mtd, offset, bytes, &retlen, val);
526 if (err && err != -EUCLEAN)
527 return err;
529 return retlen == bytes ? 0 : -EIO;
532 static int mtd_nvmem_add(struct mtd_info *mtd)
534 struct nvmem_config config = {};
536 config.id = -1;
537 config.dev = &mtd->dev;
538 config.name = dev_name(&mtd->dev);
539 config.owner = THIS_MODULE;
540 config.reg_read = mtd_nvmem_reg_read;
541 config.size = mtd->size;
542 config.word_size = 1;
543 config.stride = 1;
544 config.read_only = true;
545 config.root_only = true;
546 config.no_of_node = true;
547 config.priv = mtd;
549 mtd->nvmem = nvmem_register(&config);
550 if (IS_ERR(mtd->nvmem)) {
551 /* Just ignore if there is no NVMEM support in the kernel */
552 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
553 mtd->nvmem = NULL;
554 } else {
555 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
556 return PTR_ERR(mtd->nvmem);
560 return 0;
564 * add_mtd_device - register an MTD device
565 * @mtd: pointer to new MTD device info structure
567 * Add a device to the list of MTD devices present in the system, and
568 * notify each currently active MTD 'user' of its arrival. Returns
569 * zero on success or non-zero on failure.
572 int add_mtd_device(struct mtd_info *mtd)
574 struct mtd_info *master = mtd_get_master(mtd);
575 struct mtd_notifier *not;
576 int i, error;
579 * May occur, for instance, on buggy drivers which call
580 * mtd_device_parse_register() multiple times on the same master MTD,
581 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
583 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
584 return -EEXIST;
586 BUG_ON(mtd->writesize == 0);
589 * MTD drivers should implement ->_{write,read}() or
590 * ->_{write,read}_oob(), but not both.
592 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
593 (mtd->_read && mtd->_read_oob)))
594 return -EINVAL;
596 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
597 !(mtd->flags & MTD_NO_ERASE)))
598 return -EINVAL;
601 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
602 * master is an MLC NAND and has a proper pairing scheme defined.
603 * We also reject masters that implement ->_writev() for now, because
604 * NAND controller drivers don't implement this hook, and adding the
605 * SLC -> MLC address/length conversion to this path is useless if we
606 * don't have a user.
608 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
609 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
610 !master->pairing || master->_writev))
611 return -EINVAL;
613 mutex_lock(&mtd_table_mutex);
615 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
616 if (i < 0) {
617 error = i;
618 goto fail_locked;
621 mtd->index = i;
622 mtd->usecount = 0;
624 /* default value if not set by driver */
625 if (mtd->bitflip_threshold == 0)
626 mtd->bitflip_threshold = mtd->ecc_strength;
628 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
629 int ngroups = mtd_pairing_groups(master);
631 mtd->erasesize /= ngroups;
632 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
633 mtd->erasesize;
636 if (is_power_of_2(mtd->erasesize))
637 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
638 else
639 mtd->erasesize_shift = 0;
641 if (is_power_of_2(mtd->writesize))
642 mtd->writesize_shift = ffs(mtd->writesize) - 1;
643 else
644 mtd->writesize_shift = 0;
646 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
647 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
649 /* Some chips always power up locked. Unlock them now */
650 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
651 error = mtd_unlock(mtd, 0, mtd->size);
652 if (error && error != -EOPNOTSUPP)
653 printk(KERN_WARNING
654 "%s: unlock failed, writes may not work\n",
655 mtd->name);
656 /* Ignore unlock failures? */
657 error = 0;
660 /* Caller should have set dev.parent to match the
661 * physical device, if appropriate.
663 mtd->dev.type = &mtd_devtype;
664 mtd->dev.class = &mtd_class;
665 mtd->dev.devt = MTD_DEVT(i);
666 dev_set_name(&mtd->dev, "mtd%d", i);
667 dev_set_drvdata(&mtd->dev, mtd);
668 of_node_get(mtd_get_of_node(mtd));
669 error = device_register(&mtd->dev);
670 if (error)
671 goto fail_added;
673 /* Add the nvmem provider */
674 error = mtd_nvmem_add(mtd);
675 if (error)
676 goto fail_nvmem_add;
678 mtd_debugfs_populate(mtd);
680 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
681 "mtd%dro", i);
683 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
684 /* No need to get a refcount on the module containing
685 the notifier, since we hold the mtd_table_mutex */
686 list_for_each_entry(not, &mtd_notifiers, list)
687 not->add(mtd);
689 mutex_unlock(&mtd_table_mutex);
690 /* We _know_ we aren't being removed, because
691 our caller is still holding us here. So none
692 of this try_ nonsense, and no bitching about it
693 either. :) */
694 __module_get(THIS_MODULE);
695 return 0;
697 fail_nvmem_add:
698 device_unregister(&mtd->dev);
699 fail_added:
700 of_node_put(mtd_get_of_node(mtd));
701 idr_remove(&mtd_idr, i);
702 fail_locked:
703 mutex_unlock(&mtd_table_mutex);
704 return error;
708 * del_mtd_device - unregister an MTD device
709 * @mtd: pointer to MTD device info structure
711 * Remove a device from the list of MTD devices present in the system,
712 * and notify each currently active MTD 'user' of its departure.
713 * Returns zero on success or 1 on failure, which currently will happen
714 * if the requested device does not appear to be present in the list.
717 int del_mtd_device(struct mtd_info *mtd)
719 int ret;
720 struct mtd_notifier *not;
722 mutex_lock(&mtd_table_mutex);
724 debugfs_remove_recursive(mtd->dbg.dfs_dir);
726 if (idr_find(&mtd_idr, mtd->index) != mtd) {
727 ret = -ENODEV;
728 goto out_error;
731 /* No need to get a refcount on the module containing
732 the notifier, since we hold the mtd_table_mutex */
733 list_for_each_entry(not, &mtd_notifiers, list)
734 not->remove(mtd);
736 if (mtd->usecount) {
737 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
738 mtd->index, mtd->name, mtd->usecount);
739 ret = -EBUSY;
740 } else {
741 /* Try to remove the NVMEM provider */
742 if (mtd->nvmem)
743 nvmem_unregister(mtd->nvmem);
745 device_unregister(&mtd->dev);
747 idr_remove(&mtd_idr, mtd->index);
748 of_node_put(mtd_get_of_node(mtd));
750 module_put(THIS_MODULE);
751 ret = 0;
754 out_error:
755 mutex_unlock(&mtd_table_mutex);
756 return ret;
760 * Set a few defaults based on the parent devices, if not provided by the
761 * driver
763 static void mtd_set_dev_defaults(struct mtd_info *mtd)
765 if (mtd->dev.parent) {
766 if (!mtd->owner && mtd->dev.parent->driver)
767 mtd->owner = mtd->dev.parent->driver->owner;
768 if (!mtd->name)
769 mtd->name = dev_name(mtd->dev.parent);
770 } else {
771 pr_debug("mtd device won't show a device symlink in sysfs\n");
774 INIT_LIST_HEAD(&mtd->partitions);
775 mutex_init(&mtd->master.partitions_lock);
779 * mtd_device_parse_register - parse partitions and register an MTD device.
781 * @mtd: the MTD device to register
782 * @types: the list of MTD partition probes to try, see
783 * 'parse_mtd_partitions()' for more information
784 * @parser_data: MTD partition parser-specific data
785 * @parts: fallback partition information to register, if parsing fails;
786 * only valid if %nr_parts > %0
787 * @nr_parts: the number of partitions in parts, if zero then the full
788 * MTD device is registered if no partition info is found
790 * This function aggregates MTD partitions parsing (done by
791 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
792 * basically follows the most common pattern found in many MTD drivers:
794 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
795 * registered first.
796 * * Then It tries to probe partitions on MTD device @mtd using parsers
797 * specified in @types (if @types is %NULL, then the default list of parsers
798 * is used, see 'parse_mtd_partitions()' for more information). If none are
799 * found this functions tries to fallback to information specified in
800 * @parts/@nr_parts.
801 * * If no partitions were found this function just registers the MTD device
802 * @mtd and exits.
804 * Returns zero in case of success and a negative error code in case of failure.
806 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
807 struct mtd_part_parser_data *parser_data,
808 const struct mtd_partition *parts,
809 int nr_parts)
811 int ret;
813 mtd_set_dev_defaults(mtd);
815 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
816 ret = add_mtd_device(mtd);
817 if (ret)
818 return ret;
821 /* Prefer parsed partitions over driver-provided fallback */
822 ret = parse_mtd_partitions(mtd, types, parser_data);
823 if (ret > 0)
824 ret = 0;
825 else if (nr_parts)
826 ret = add_mtd_partitions(mtd, parts, nr_parts);
827 else if (!device_is_registered(&mtd->dev))
828 ret = add_mtd_device(mtd);
829 else
830 ret = 0;
832 if (ret)
833 goto out;
836 * FIXME: some drivers unfortunately call this function more than once.
837 * So we have to check if we've already assigned the reboot notifier.
839 * Generally, we can make multiple calls work for most cases, but it
840 * does cause problems with parse_mtd_partitions() above (e.g.,
841 * cmdlineparts will register partitions more than once).
843 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
844 "MTD already registered\n");
845 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
846 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
847 register_reboot_notifier(&mtd->reboot_notifier);
850 out:
851 if (ret && device_is_registered(&mtd->dev))
852 del_mtd_device(mtd);
854 return ret;
856 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
859 * mtd_device_unregister - unregister an existing MTD device.
861 * @master: the MTD device to unregister. This will unregister both the master
862 * and any partitions if registered.
864 int mtd_device_unregister(struct mtd_info *master)
866 int err;
868 if (master->_reboot)
869 unregister_reboot_notifier(&master->reboot_notifier);
871 err = del_mtd_partitions(master);
872 if (err)
873 return err;
875 if (!device_is_registered(&master->dev))
876 return 0;
878 return del_mtd_device(master);
880 EXPORT_SYMBOL_GPL(mtd_device_unregister);
883 * register_mtd_user - register a 'user' of MTD devices.
884 * @new: pointer to notifier info structure
886 * Registers a pair of callbacks function to be called upon addition
887 * or removal of MTD devices. Causes the 'add' callback to be immediately
888 * invoked for each MTD device currently present in the system.
890 void register_mtd_user (struct mtd_notifier *new)
892 struct mtd_info *mtd;
894 mutex_lock(&mtd_table_mutex);
896 list_add(&new->list, &mtd_notifiers);
898 __module_get(THIS_MODULE);
900 mtd_for_each_device(mtd)
901 new->add(mtd);
903 mutex_unlock(&mtd_table_mutex);
905 EXPORT_SYMBOL_GPL(register_mtd_user);
908 * unregister_mtd_user - unregister a 'user' of MTD devices.
909 * @old: pointer to notifier info structure
911 * Removes a callback function pair from the list of 'users' to be
912 * notified upon addition or removal of MTD devices. Causes the
913 * 'remove' callback to be immediately invoked for each MTD device
914 * currently present in the system.
916 int unregister_mtd_user (struct mtd_notifier *old)
918 struct mtd_info *mtd;
920 mutex_lock(&mtd_table_mutex);
922 module_put(THIS_MODULE);
924 mtd_for_each_device(mtd)
925 old->remove(mtd);
927 list_del(&old->list);
928 mutex_unlock(&mtd_table_mutex);
929 return 0;
931 EXPORT_SYMBOL_GPL(unregister_mtd_user);
934 * get_mtd_device - obtain a validated handle for an MTD device
935 * @mtd: last known address of the required MTD device
936 * @num: internal device number of the required MTD device
938 * Given a number and NULL address, return the num'th entry in the device
939 * table, if any. Given an address and num == -1, search the device table
940 * for a device with that address and return if it's still present. Given
941 * both, return the num'th driver only if its address matches. Return
942 * error code if not.
944 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
946 struct mtd_info *ret = NULL, *other;
947 int err = -ENODEV;
949 mutex_lock(&mtd_table_mutex);
951 if (num == -1) {
952 mtd_for_each_device(other) {
953 if (other == mtd) {
954 ret = mtd;
955 break;
958 } else if (num >= 0) {
959 ret = idr_find(&mtd_idr, num);
960 if (mtd && mtd != ret)
961 ret = NULL;
964 if (!ret) {
965 ret = ERR_PTR(err);
966 goto out;
969 err = __get_mtd_device(ret);
970 if (err)
971 ret = ERR_PTR(err);
972 out:
973 mutex_unlock(&mtd_table_mutex);
974 return ret;
976 EXPORT_SYMBOL_GPL(get_mtd_device);
979 int __get_mtd_device(struct mtd_info *mtd)
981 struct mtd_info *master = mtd_get_master(mtd);
982 int err;
984 if (!try_module_get(master->owner))
985 return -ENODEV;
987 if (master->_get_device) {
988 err = master->_get_device(mtd);
990 if (err) {
991 module_put(master->owner);
992 return err;
996 master->usecount++;
998 while (mtd->parent) {
999 mtd->usecount++;
1000 mtd = mtd->parent;
1003 return 0;
1005 EXPORT_SYMBOL_GPL(__get_mtd_device);
1008 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1009 * device name
1010 * @name: MTD device name to open
1012 * This function returns MTD device description structure in case of
1013 * success and an error code in case of failure.
1015 struct mtd_info *get_mtd_device_nm(const char *name)
1017 int err = -ENODEV;
1018 struct mtd_info *mtd = NULL, *other;
1020 mutex_lock(&mtd_table_mutex);
1022 mtd_for_each_device(other) {
1023 if (!strcmp(name, other->name)) {
1024 mtd = other;
1025 break;
1029 if (!mtd)
1030 goto out_unlock;
1032 err = __get_mtd_device(mtd);
1033 if (err)
1034 goto out_unlock;
1036 mutex_unlock(&mtd_table_mutex);
1037 return mtd;
1039 out_unlock:
1040 mutex_unlock(&mtd_table_mutex);
1041 return ERR_PTR(err);
1043 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1045 void put_mtd_device(struct mtd_info *mtd)
1047 mutex_lock(&mtd_table_mutex);
1048 __put_mtd_device(mtd);
1049 mutex_unlock(&mtd_table_mutex);
1052 EXPORT_SYMBOL_GPL(put_mtd_device);
1054 void __put_mtd_device(struct mtd_info *mtd)
1056 struct mtd_info *master = mtd_get_master(mtd);
1058 while (mtd->parent) {
1059 --mtd->usecount;
1060 BUG_ON(mtd->usecount < 0);
1061 mtd = mtd->parent;
1064 master->usecount--;
1066 if (master->_put_device)
1067 master->_put_device(master);
1069 module_put(master->owner);
1071 EXPORT_SYMBOL_GPL(__put_mtd_device);
1074 * Erase is an synchronous operation. Device drivers are epected to return a
1075 * negative error code if the operation failed and update instr->fail_addr
1076 * to point the portion that was not properly erased.
1078 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1080 struct mtd_info *master = mtd_get_master(mtd);
1081 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1082 struct erase_info adjinstr;
1083 int ret;
1085 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1086 adjinstr = *instr;
1088 if (!mtd->erasesize || !master->_erase)
1089 return -ENOTSUPP;
1091 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1092 return -EINVAL;
1093 if (!(mtd->flags & MTD_WRITEABLE))
1094 return -EROFS;
1096 if (!instr->len)
1097 return 0;
1099 ledtrig_mtd_activity();
1101 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1102 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1103 master->erasesize;
1104 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1105 master->erasesize) -
1106 adjinstr.addr;
1109 adjinstr.addr += mst_ofs;
1111 ret = master->_erase(master, &adjinstr);
1113 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1114 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1115 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1116 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1117 master);
1118 instr->fail_addr *= mtd->erasesize;
1122 return ret;
1124 EXPORT_SYMBOL_GPL(mtd_erase);
1127 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1129 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1130 void **virt, resource_size_t *phys)
1132 struct mtd_info *master = mtd_get_master(mtd);
1134 *retlen = 0;
1135 *virt = NULL;
1136 if (phys)
1137 *phys = 0;
1138 if (!master->_point)
1139 return -EOPNOTSUPP;
1140 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1141 return -EINVAL;
1142 if (!len)
1143 return 0;
1145 from = mtd_get_master_ofs(mtd, from);
1146 return master->_point(master, from, len, retlen, virt, phys);
1148 EXPORT_SYMBOL_GPL(mtd_point);
1150 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1151 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1153 struct mtd_info *master = mtd_get_master(mtd);
1155 if (!master->_unpoint)
1156 return -EOPNOTSUPP;
1157 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1158 return -EINVAL;
1159 if (!len)
1160 return 0;
1161 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1163 EXPORT_SYMBOL_GPL(mtd_unpoint);
1166 * Allow NOMMU mmap() to directly map the device (if not NULL)
1167 * - return the address to which the offset maps
1168 * - return -ENOSYS to indicate refusal to do the mapping
1170 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1171 unsigned long offset, unsigned long flags)
1173 size_t retlen;
1174 void *virt;
1175 int ret;
1177 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1178 if (ret)
1179 return ret;
1180 if (retlen != len) {
1181 mtd_unpoint(mtd, offset, retlen);
1182 return -ENOSYS;
1184 return (unsigned long)virt;
1186 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1188 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1189 const struct mtd_ecc_stats *old_stats)
1191 struct mtd_ecc_stats diff;
1193 if (master == mtd)
1194 return;
1196 diff = master->ecc_stats;
1197 diff.failed -= old_stats->failed;
1198 diff.corrected -= old_stats->corrected;
1200 while (mtd->parent) {
1201 mtd->ecc_stats.failed += diff.failed;
1202 mtd->ecc_stats.corrected += diff.corrected;
1203 mtd = mtd->parent;
1207 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1208 u_char *buf)
1210 struct mtd_oob_ops ops = {
1211 .len = len,
1212 .datbuf = buf,
1214 int ret;
1216 ret = mtd_read_oob(mtd, from, &ops);
1217 *retlen = ops.retlen;
1219 return ret;
1221 EXPORT_SYMBOL_GPL(mtd_read);
1223 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1224 const u_char *buf)
1226 struct mtd_oob_ops ops = {
1227 .len = len,
1228 .datbuf = (u8 *)buf,
1230 int ret;
1232 ret = mtd_write_oob(mtd, to, &ops);
1233 *retlen = ops.retlen;
1235 return ret;
1237 EXPORT_SYMBOL_GPL(mtd_write);
1240 * In blackbox flight recorder like scenarios we want to make successful writes
1241 * in interrupt context. panic_write() is only intended to be called when its
1242 * known the kernel is about to panic and we need the write to succeed. Since
1243 * the kernel is not going to be running for much longer, this function can
1244 * break locks and delay to ensure the write succeeds (but not sleep).
1246 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1247 const u_char *buf)
1249 struct mtd_info *master = mtd_get_master(mtd);
1251 *retlen = 0;
1252 if (!master->_panic_write)
1253 return -EOPNOTSUPP;
1254 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1255 return -EINVAL;
1256 if (!(mtd->flags & MTD_WRITEABLE))
1257 return -EROFS;
1258 if (!len)
1259 return 0;
1260 if (!master->oops_panic_write)
1261 master->oops_panic_write = true;
1263 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1264 retlen, buf);
1266 EXPORT_SYMBOL_GPL(mtd_panic_write);
1268 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1269 struct mtd_oob_ops *ops)
1272 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1273 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1274 * this case.
1276 if (!ops->datbuf)
1277 ops->len = 0;
1279 if (!ops->oobbuf)
1280 ops->ooblen = 0;
1282 if (offs < 0 || offs + ops->len > mtd->size)
1283 return -EINVAL;
1285 if (ops->ooblen) {
1286 size_t maxooblen;
1288 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1289 return -EINVAL;
1291 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1292 mtd_div_by_ws(offs, mtd)) *
1293 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1294 if (ops->ooblen > maxooblen)
1295 return -EINVAL;
1298 return 0;
1301 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1302 struct mtd_oob_ops *ops)
1304 struct mtd_info *master = mtd_get_master(mtd);
1305 int ret;
1307 from = mtd_get_master_ofs(mtd, from);
1308 if (master->_read_oob)
1309 ret = master->_read_oob(master, from, ops);
1310 else
1311 ret = master->_read(master, from, ops->len, &ops->retlen,
1312 ops->datbuf);
1314 return ret;
1317 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1318 struct mtd_oob_ops *ops)
1320 struct mtd_info *master = mtd_get_master(mtd);
1321 int ret;
1323 to = mtd_get_master_ofs(mtd, to);
1324 if (master->_write_oob)
1325 ret = master->_write_oob(master, to, ops);
1326 else
1327 ret = master->_write(master, to, ops->len, &ops->retlen,
1328 ops->datbuf);
1330 return ret;
1333 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1334 struct mtd_oob_ops *ops)
1336 struct mtd_info *master = mtd_get_master(mtd);
1337 int ngroups = mtd_pairing_groups(master);
1338 int npairs = mtd_wunit_per_eb(master) / ngroups;
1339 struct mtd_oob_ops adjops = *ops;
1340 unsigned int wunit, oobavail;
1341 struct mtd_pairing_info info;
1342 int max_bitflips = 0;
1343 u32 ebofs, pageofs;
1344 loff_t base, pos;
1346 ebofs = mtd_mod_by_eb(start, mtd);
1347 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1348 info.group = 0;
1349 info.pair = mtd_div_by_ws(ebofs, mtd);
1350 pageofs = mtd_mod_by_ws(ebofs, mtd);
1351 oobavail = mtd_oobavail(mtd, ops);
1353 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1354 int ret;
1356 if (info.pair >= npairs) {
1357 info.pair = 0;
1358 base += master->erasesize;
1361 wunit = mtd_pairing_info_to_wunit(master, &info);
1362 pos = mtd_wunit_to_offset(mtd, base, wunit);
1364 adjops.len = ops->len - ops->retlen;
1365 if (adjops.len > mtd->writesize - pageofs)
1366 adjops.len = mtd->writesize - pageofs;
1368 adjops.ooblen = ops->ooblen - ops->oobretlen;
1369 if (adjops.ooblen > oobavail - adjops.ooboffs)
1370 adjops.ooblen = oobavail - adjops.ooboffs;
1372 if (read) {
1373 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1374 if (ret > 0)
1375 max_bitflips = max(max_bitflips, ret);
1376 } else {
1377 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1380 if (ret < 0)
1381 return ret;
1383 max_bitflips = max(max_bitflips, ret);
1384 ops->retlen += adjops.retlen;
1385 ops->oobretlen += adjops.oobretlen;
1386 adjops.datbuf += adjops.retlen;
1387 adjops.oobbuf += adjops.oobretlen;
1388 adjops.ooboffs = 0;
1389 pageofs = 0;
1390 info.pair++;
1393 return max_bitflips;
1396 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1398 struct mtd_info *master = mtd_get_master(mtd);
1399 struct mtd_ecc_stats old_stats = master->ecc_stats;
1400 int ret_code;
1402 ops->retlen = ops->oobretlen = 0;
1404 ret_code = mtd_check_oob_ops(mtd, from, ops);
1405 if (ret_code)
1406 return ret_code;
1408 ledtrig_mtd_activity();
1410 /* Check the validity of a potential fallback on mtd->_read */
1411 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1412 return -EOPNOTSUPP;
1414 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1415 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1416 else
1417 ret_code = mtd_read_oob_std(mtd, from, ops);
1419 mtd_update_ecc_stats(mtd, master, &old_stats);
1422 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1423 * similar to mtd->_read(), returning a non-negative integer
1424 * representing max bitflips. In other cases, mtd->_read_oob() may
1425 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1427 if (unlikely(ret_code < 0))
1428 return ret_code;
1429 if (mtd->ecc_strength == 0)
1430 return 0; /* device lacks ecc */
1431 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1433 EXPORT_SYMBOL_GPL(mtd_read_oob);
1435 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1436 struct mtd_oob_ops *ops)
1438 struct mtd_info *master = mtd_get_master(mtd);
1439 int ret;
1441 ops->retlen = ops->oobretlen = 0;
1443 if (!(mtd->flags & MTD_WRITEABLE))
1444 return -EROFS;
1446 ret = mtd_check_oob_ops(mtd, to, ops);
1447 if (ret)
1448 return ret;
1450 ledtrig_mtd_activity();
1452 /* Check the validity of a potential fallback on mtd->_write */
1453 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1454 return -EOPNOTSUPP;
1456 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1457 return mtd_io_emulated_slc(mtd, to, false, ops);
1459 return mtd_write_oob_std(mtd, to, ops);
1461 EXPORT_SYMBOL_GPL(mtd_write_oob);
1464 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1465 * @mtd: MTD device structure
1466 * @section: ECC section. Depending on the layout you may have all the ECC
1467 * bytes stored in a single contiguous section, or one section
1468 * per ECC chunk (and sometime several sections for a single ECC
1469 * ECC chunk)
1470 * @oobecc: OOB region struct filled with the appropriate ECC position
1471 * information
1473 * This function returns ECC section information in the OOB area. If you want
1474 * to get all the ECC bytes information, then you should call
1475 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1477 * Returns zero on success, a negative error code otherwise.
1479 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1480 struct mtd_oob_region *oobecc)
1482 struct mtd_info *master = mtd_get_master(mtd);
1484 memset(oobecc, 0, sizeof(*oobecc));
1486 if (!master || section < 0)
1487 return -EINVAL;
1489 if (!master->ooblayout || !master->ooblayout->ecc)
1490 return -ENOTSUPP;
1492 return master->ooblayout->ecc(master, section, oobecc);
1494 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1497 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1498 * section
1499 * @mtd: MTD device structure
1500 * @section: Free section you are interested in. Depending on the layout
1501 * you may have all the free bytes stored in a single contiguous
1502 * section, or one section per ECC chunk plus an extra section
1503 * for the remaining bytes (or other funky layout).
1504 * @oobfree: OOB region struct filled with the appropriate free position
1505 * information
1507 * This function returns free bytes position in the OOB area. If you want
1508 * to get all the free bytes information, then you should call
1509 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1511 * Returns zero on success, a negative error code otherwise.
1513 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1514 struct mtd_oob_region *oobfree)
1516 struct mtd_info *master = mtd_get_master(mtd);
1518 memset(oobfree, 0, sizeof(*oobfree));
1520 if (!master || section < 0)
1521 return -EINVAL;
1523 if (!master->ooblayout || !master->ooblayout->free)
1524 return -ENOTSUPP;
1526 return master->ooblayout->free(master, section, oobfree);
1528 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1531 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1532 * @mtd: mtd info structure
1533 * @byte: the byte we are searching for
1534 * @sectionp: pointer where the section id will be stored
1535 * @oobregion: used to retrieve the ECC position
1536 * @iter: iterator function. Should be either mtd_ooblayout_free or
1537 * mtd_ooblayout_ecc depending on the region type you're searching for
1539 * This function returns the section id and oobregion information of a
1540 * specific byte. For example, say you want to know where the 4th ECC byte is
1541 * stored, you'll use:
1543 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1545 * Returns zero on success, a negative error code otherwise.
1547 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1548 int *sectionp, struct mtd_oob_region *oobregion,
1549 int (*iter)(struct mtd_info *,
1550 int section,
1551 struct mtd_oob_region *oobregion))
1553 int pos = 0, ret, section = 0;
1555 memset(oobregion, 0, sizeof(*oobregion));
1557 while (1) {
1558 ret = iter(mtd, section, oobregion);
1559 if (ret)
1560 return ret;
1562 if (pos + oobregion->length > byte)
1563 break;
1565 pos += oobregion->length;
1566 section++;
1570 * Adjust region info to make it start at the beginning at the
1571 * 'start' ECC byte.
1573 oobregion->offset += byte - pos;
1574 oobregion->length -= byte - pos;
1575 *sectionp = section;
1577 return 0;
1581 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1582 * ECC byte
1583 * @mtd: mtd info structure
1584 * @eccbyte: the byte we are searching for
1585 * @section: pointer where the section id will be stored
1586 * @oobregion: OOB region information
1588 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1589 * byte.
1591 * Returns zero on success, a negative error code otherwise.
1593 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1594 int *section,
1595 struct mtd_oob_region *oobregion)
1597 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1598 mtd_ooblayout_ecc);
1600 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1603 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1604 * @mtd: mtd info structure
1605 * @buf: destination buffer to store OOB bytes
1606 * @oobbuf: OOB buffer
1607 * @start: first byte to retrieve
1608 * @nbytes: number of bytes to retrieve
1609 * @iter: section iterator
1611 * Extract bytes attached to a specific category (ECC or free)
1612 * from the OOB buffer and copy them into buf.
1614 * Returns zero on success, a negative error code otherwise.
1616 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1617 const u8 *oobbuf, int start, int nbytes,
1618 int (*iter)(struct mtd_info *,
1619 int section,
1620 struct mtd_oob_region *oobregion))
1622 struct mtd_oob_region oobregion;
1623 int section, ret;
1625 ret = mtd_ooblayout_find_region(mtd, start, &section,
1626 &oobregion, iter);
1628 while (!ret) {
1629 int cnt;
1631 cnt = min_t(int, nbytes, oobregion.length);
1632 memcpy(buf, oobbuf + oobregion.offset, cnt);
1633 buf += cnt;
1634 nbytes -= cnt;
1636 if (!nbytes)
1637 break;
1639 ret = iter(mtd, ++section, &oobregion);
1642 return ret;
1646 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1647 * @mtd: mtd info structure
1648 * @buf: source buffer to get OOB bytes from
1649 * @oobbuf: OOB buffer
1650 * @start: first OOB byte to set
1651 * @nbytes: number of OOB bytes to set
1652 * @iter: section iterator
1654 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1655 * is selected by passing the appropriate iterator.
1657 * Returns zero on success, a negative error code otherwise.
1659 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1660 u8 *oobbuf, int start, int nbytes,
1661 int (*iter)(struct mtd_info *,
1662 int section,
1663 struct mtd_oob_region *oobregion))
1665 struct mtd_oob_region oobregion;
1666 int section, ret;
1668 ret = mtd_ooblayout_find_region(mtd, start, &section,
1669 &oobregion, iter);
1671 while (!ret) {
1672 int cnt;
1674 cnt = min_t(int, nbytes, oobregion.length);
1675 memcpy(oobbuf + oobregion.offset, buf, cnt);
1676 buf += cnt;
1677 nbytes -= cnt;
1679 if (!nbytes)
1680 break;
1682 ret = iter(mtd, ++section, &oobregion);
1685 return ret;
1689 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1690 * @mtd: mtd info structure
1691 * @iter: category iterator
1693 * Count the number of bytes in a given category.
1695 * Returns a positive value on success, a negative error code otherwise.
1697 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1698 int (*iter)(struct mtd_info *,
1699 int section,
1700 struct mtd_oob_region *oobregion))
1702 struct mtd_oob_region oobregion;
1703 int section = 0, ret, nbytes = 0;
1705 while (1) {
1706 ret = iter(mtd, section++, &oobregion);
1707 if (ret) {
1708 if (ret == -ERANGE)
1709 ret = nbytes;
1710 break;
1713 nbytes += oobregion.length;
1716 return ret;
1720 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1721 * @mtd: mtd info structure
1722 * @eccbuf: destination buffer to store ECC bytes
1723 * @oobbuf: OOB buffer
1724 * @start: first ECC byte to retrieve
1725 * @nbytes: number of ECC bytes to retrieve
1727 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1729 * Returns zero on success, a negative error code otherwise.
1731 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1732 const u8 *oobbuf, int start, int nbytes)
1734 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1735 mtd_ooblayout_ecc);
1737 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1740 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1741 * @mtd: mtd info structure
1742 * @eccbuf: source buffer to get ECC bytes from
1743 * @oobbuf: OOB buffer
1744 * @start: first ECC byte to set
1745 * @nbytes: number of ECC bytes to set
1747 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1749 * Returns zero on success, a negative error code otherwise.
1751 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1752 u8 *oobbuf, int start, int nbytes)
1754 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1755 mtd_ooblayout_ecc);
1757 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1760 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1761 * @mtd: mtd info structure
1762 * @databuf: destination buffer to store ECC bytes
1763 * @oobbuf: OOB buffer
1764 * @start: first ECC byte to retrieve
1765 * @nbytes: number of ECC bytes to retrieve
1767 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1769 * Returns zero on success, a negative error code otherwise.
1771 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1772 const u8 *oobbuf, int start, int nbytes)
1774 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1775 mtd_ooblayout_free);
1777 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1780 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1781 * @mtd: mtd info structure
1782 * @databuf: source buffer to get data bytes from
1783 * @oobbuf: OOB buffer
1784 * @start: first ECC byte to set
1785 * @nbytes: number of ECC bytes to set
1787 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1789 * Returns zero on success, a negative error code otherwise.
1791 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1792 u8 *oobbuf, int start, int nbytes)
1794 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1795 mtd_ooblayout_free);
1797 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1800 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1801 * @mtd: mtd info structure
1803 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1805 * Returns zero on success, a negative error code otherwise.
1807 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1809 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1811 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1814 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1815 * @mtd: mtd info structure
1817 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1819 * Returns zero on success, a negative error code otherwise.
1821 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1823 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1825 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1828 * Method to access the protection register area, present in some flash
1829 * devices. The user data is one time programmable but the factory data is read
1830 * only.
1832 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1833 struct otp_info *buf)
1835 struct mtd_info *master = mtd_get_master(mtd);
1837 if (!master->_get_fact_prot_info)
1838 return -EOPNOTSUPP;
1839 if (!len)
1840 return 0;
1841 return master->_get_fact_prot_info(master, len, retlen, buf);
1843 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1845 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1846 size_t *retlen, u_char *buf)
1848 struct mtd_info *master = mtd_get_master(mtd);
1850 *retlen = 0;
1851 if (!master->_read_fact_prot_reg)
1852 return -EOPNOTSUPP;
1853 if (!len)
1854 return 0;
1855 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1857 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1859 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1860 struct otp_info *buf)
1862 struct mtd_info *master = mtd_get_master(mtd);
1864 if (!master->_get_user_prot_info)
1865 return -EOPNOTSUPP;
1866 if (!len)
1867 return 0;
1868 return master->_get_user_prot_info(master, len, retlen, buf);
1870 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1872 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1873 size_t *retlen, u_char *buf)
1875 struct mtd_info *master = mtd_get_master(mtd);
1877 *retlen = 0;
1878 if (!master->_read_user_prot_reg)
1879 return -EOPNOTSUPP;
1880 if (!len)
1881 return 0;
1882 return master->_read_user_prot_reg(master, from, len, retlen, buf);
1884 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1886 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1887 size_t *retlen, u_char *buf)
1889 struct mtd_info *master = mtd_get_master(mtd);
1890 int ret;
1892 *retlen = 0;
1893 if (!master->_write_user_prot_reg)
1894 return -EOPNOTSUPP;
1895 if (!len)
1896 return 0;
1897 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1898 if (ret)
1899 return ret;
1902 * If no data could be written at all, we are out of memory and
1903 * must return -ENOSPC.
1905 return (*retlen) ? 0 : -ENOSPC;
1907 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1909 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1911 struct mtd_info *master = mtd_get_master(mtd);
1913 if (!master->_lock_user_prot_reg)
1914 return -EOPNOTSUPP;
1915 if (!len)
1916 return 0;
1917 return master->_lock_user_prot_reg(master, from, len);
1919 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1921 /* Chip-supported device locking */
1922 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1924 struct mtd_info *master = mtd_get_master(mtd);
1926 if (!master->_lock)
1927 return -EOPNOTSUPP;
1928 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1929 return -EINVAL;
1930 if (!len)
1931 return 0;
1933 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1934 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1935 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1938 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1940 EXPORT_SYMBOL_GPL(mtd_lock);
1942 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1944 struct mtd_info *master = mtd_get_master(mtd);
1946 if (!master->_unlock)
1947 return -EOPNOTSUPP;
1948 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1949 return -EINVAL;
1950 if (!len)
1951 return 0;
1953 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1954 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1955 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1958 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1960 EXPORT_SYMBOL_GPL(mtd_unlock);
1962 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1964 struct mtd_info *master = mtd_get_master(mtd);
1966 if (!master->_is_locked)
1967 return -EOPNOTSUPP;
1968 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1969 return -EINVAL;
1970 if (!len)
1971 return 0;
1973 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1974 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1975 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1978 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1980 EXPORT_SYMBOL_GPL(mtd_is_locked);
1982 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1984 struct mtd_info *master = mtd_get_master(mtd);
1986 if (ofs < 0 || ofs >= mtd->size)
1987 return -EINVAL;
1988 if (!master->_block_isreserved)
1989 return 0;
1991 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1992 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1994 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
1996 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1998 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2000 struct mtd_info *master = mtd_get_master(mtd);
2002 if (ofs < 0 || ofs >= mtd->size)
2003 return -EINVAL;
2004 if (!master->_block_isbad)
2005 return 0;
2007 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2008 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2010 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2012 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2014 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2016 struct mtd_info *master = mtd_get_master(mtd);
2017 int ret;
2019 if (!master->_block_markbad)
2020 return -EOPNOTSUPP;
2021 if (ofs < 0 || ofs >= mtd->size)
2022 return -EINVAL;
2023 if (!(mtd->flags & MTD_WRITEABLE))
2024 return -EROFS;
2026 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2027 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2029 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2030 if (ret)
2031 return ret;
2033 while (mtd->parent) {
2034 mtd->ecc_stats.badblocks++;
2035 mtd = mtd->parent;
2038 return 0;
2040 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2043 * default_mtd_writev - the default writev method
2044 * @mtd: mtd device description object pointer
2045 * @vecs: the vectors to write
2046 * @count: count of vectors in @vecs
2047 * @to: the MTD device offset to write to
2048 * @retlen: on exit contains the count of bytes written to the MTD device.
2050 * This function returns zero in case of success and a negative error code in
2051 * case of failure.
2053 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2054 unsigned long count, loff_t to, size_t *retlen)
2056 unsigned long i;
2057 size_t totlen = 0, thislen;
2058 int ret = 0;
2060 for (i = 0; i < count; i++) {
2061 if (!vecs[i].iov_len)
2062 continue;
2063 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2064 vecs[i].iov_base);
2065 totlen += thislen;
2066 if (ret || thislen != vecs[i].iov_len)
2067 break;
2068 to += vecs[i].iov_len;
2070 *retlen = totlen;
2071 return ret;
2075 * mtd_writev - the vector-based MTD write method
2076 * @mtd: mtd device description object pointer
2077 * @vecs: the vectors to write
2078 * @count: count of vectors in @vecs
2079 * @to: the MTD device offset to write to
2080 * @retlen: on exit contains the count of bytes written to the MTD device.
2082 * This function returns zero in case of success and a negative error code in
2083 * case of failure.
2085 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2086 unsigned long count, loff_t to, size_t *retlen)
2088 struct mtd_info *master = mtd_get_master(mtd);
2090 *retlen = 0;
2091 if (!(mtd->flags & MTD_WRITEABLE))
2092 return -EROFS;
2094 if (!master->_writev)
2095 return default_mtd_writev(mtd, vecs, count, to, retlen);
2097 return master->_writev(master, vecs, count,
2098 mtd_get_master_ofs(mtd, to), retlen);
2100 EXPORT_SYMBOL_GPL(mtd_writev);
2103 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2104 * @mtd: mtd device description object pointer
2105 * @size: a pointer to the ideal or maximum size of the allocation, points
2106 * to the actual allocation size on success.
2108 * This routine attempts to allocate a contiguous kernel buffer up to
2109 * the specified size, backing off the size of the request exponentially
2110 * until the request succeeds or until the allocation size falls below
2111 * the system page size. This attempts to make sure it does not adversely
2112 * impact system performance, so when allocating more than one page, we
2113 * ask the memory allocator to avoid re-trying, swapping, writing back
2114 * or performing I/O.
2116 * Note, this function also makes sure that the allocated buffer is aligned to
2117 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2119 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2120 * to handle smaller (i.e. degraded) buffer allocations under low- or
2121 * fragmented-memory situations where such reduced allocations, from a
2122 * requested ideal, are allowed.
2124 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2126 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2128 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2129 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2130 void *kbuf;
2132 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2134 while (*size > min_alloc) {
2135 kbuf = kmalloc(*size, flags);
2136 if (kbuf)
2137 return kbuf;
2139 *size >>= 1;
2140 *size = ALIGN(*size, mtd->writesize);
2144 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2145 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2147 return kmalloc(*size, GFP_KERNEL);
2149 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2151 #ifdef CONFIG_PROC_FS
2153 /*====================================================================*/
2154 /* Support for /proc/mtd */
2156 static int mtd_proc_show(struct seq_file *m, void *v)
2158 struct mtd_info *mtd;
2160 seq_puts(m, "dev: size erasesize name\n");
2161 mutex_lock(&mtd_table_mutex);
2162 mtd_for_each_device(mtd) {
2163 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2164 mtd->index, (unsigned long long)mtd->size,
2165 mtd->erasesize, mtd->name);
2167 mutex_unlock(&mtd_table_mutex);
2168 return 0;
2170 #endif /* CONFIG_PROC_FS */
2172 /*====================================================================*/
2173 /* Init code */
2175 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2177 struct backing_dev_info *bdi;
2178 int ret;
2180 bdi = bdi_alloc(NUMA_NO_NODE);
2181 if (!bdi)
2182 return ERR_PTR(-ENOMEM);
2183 bdi->ra_pages = 0;
2184 bdi->io_pages = 0;
2187 * We put '-0' suffix to the name to get the same name format as we
2188 * used to get. Since this is called only once, we get a unique name.
2190 ret = bdi_register(bdi, "%.28s-0", name);
2191 if (ret)
2192 bdi_put(bdi);
2194 return ret ? ERR_PTR(ret) : bdi;
2197 static struct proc_dir_entry *proc_mtd;
2199 static int __init init_mtd(void)
2201 int ret;
2203 ret = class_register(&mtd_class);
2204 if (ret)
2205 goto err_reg;
2207 mtd_bdi = mtd_bdi_init("mtd");
2208 if (IS_ERR(mtd_bdi)) {
2209 ret = PTR_ERR(mtd_bdi);
2210 goto err_bdi;
2213 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2215 ret = init_mtdchar();
2216 if (ret)
2217 goto out_procfs;
2219 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2221 return 0;
2223 out_procfs:
2224 if (proc_mtd)
2225 remove_proc_entry("mtd", NULL);
2226 bdi_put(mtd_bdi);
2227 err_bdi:
2228 class_unregister(&mtd_class);
2229 err_reg:
2230 pr_err("Error registering mtd class or bdi: %d\n", ret);
2231 return ret;
2234 static void __exit cleanup_mtd(void)
2236 debugfs_remove_recursive(dfs_dir_mtd);
2237 cleanup_mtdchar();
2238 if (proc_mtd)
2239 remove_proc_entry("mtd", NULL);
2240 class_unregister(&mtd_class);
2241 bdi_put(mtd_bdi);
2242 idr_destroy(&mtd_idr);
2245 module_init(init_mtd);
2246 module_exit(cleanup_mtd);
2248 MODULE_LICENSE("GPL");
2249 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2250 MODULE_DESCRIPTION("Core MTD registration and access routines");