1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Core registration and callback routines for MTD
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
37 struct backing_dev_info
*mtd_bdi
;
39 #ifdef CONFIG_PM_SLEEP
41 static int mtd_cls_suspend(struct device
*dev
)
43 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
45 return mtd
? mtd_suspend(mtd
) : 0;
48 static int mtd_cls_resume(struct device
*dev
)
50 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops
, mtd_cls_suspend
, mtd_cls_resume
);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60 #define MTD_CLS_PM_OPS NULL
63 static struct class mtd_class
= {
69 static DEFINE_IDR(mtd_idr
);
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex
);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex
);
76 struct mtd_info
*__mtd_next_device(int i
)
78 return idr_get_next(&mtd_idr
, &i
);
80 EXPORT_SYMBOL_GPL(__mtd_next_device
);
82 static LIST_HEAD(mtd_notifiers
);
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
90 static void mtd_release(struct device
*dev
)
92 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
93 dev_t index
= MTD_DEVT(mtd
->index
);
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class
, index
+ 1);
99 static ssize_t
mtd_type_show(struct device
*dev
,
100 struct device_attribute
*attr
, char *buf
)
102 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
127 case MTD_MLCNANDFLASH
:
134 return snprintf(buf
, PAGE_SIZE
, "%s\n", type
);
136 static DEVICE_ATTR(type
, S_IRUGO
, mtd_type_show
, NULL
);
138 static ssize_t
mtd_flags_show(struct device
*dev
,
139 struct device_attribute
*attr
, char *buf
)
141 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
143 return snprintf(buf
, PAGE_SIZE
, "0x%lx\n", (unsigned long)mtd
->flags
);
145 static DEVICE_ATTR(flags
, S_IRUGO
, mtd_flags_show
, NULL
);
147 static ssize_t
mtd_size_show(struct device
*dev
,
148 struct device_attribute
*attr
, char *buf
)
150 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
152 return snprintf(buf
, PAGE_SIZE
, "%llu\n",
153 (unsigned long long)mtd
->size
);
155 static DEVICE_ATTR(size
, S_IRUGO
, mtd_size_show
, NULL
);
157 static ssize_t
mtd_erasesize_show(struct device
*dev
,
158 struct device_attribute
*attr
, char *buf
)
160 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
162 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->erasesize
);
164 static DEVICE_ATTR(erasesize
, S_IRUGO
, mtd_erasesize_show
, NULL
);
166 static ssize_t
mtd_writesize_show(struct device
*dev
,
167 struct device_attribute
*attr
, char *buf
)
169 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
171 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->writesize
);
173 static DEVICE_ATTR(writesize
, S_IRUGO
, mtd_writesize_show
, NULL
);
175 static ssize_t
mtd_subpagesize_show(struct device
*dev
,
176 struct device_attribute
*attr
, char *buf
)
178 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
179 unsigned int subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
181 return snprintf(buf
, PAGE_SIZE
, "%u\n", subpagesize
);
183 static DEVICE_ATTR(subpagesize
, S_IRUGO
, mtd_subpagesize_show
, NULL
);
185 static ssize_t
mtd_oobsize_show(struct device
*dev
,
186 struct device_attribute
*attr
, char *buf
)
188 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
190 return snprintf(buf
, PAGE_SIZE
, "%lu\n", (unsigned long)mtd
->oobsize
);
192 static DEVICE_ATTR(oobsize
, S_IRUGO
, mtd_oobsize_show
, NULL
);
194 static ssize_t
mtd_oobavail_show(struct device
*dev
,
195 struct device_attribute
*attr
, char *buf
)
197 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
199 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->oobavail
);
201 static DEVICE_ATTR(oobavail
, S_IRUGO
, mtd_oobavail_show
, NULL
);
203 static ssize_t
mtd_numeraseregions_show(struct device
*dev
,
204 struct device_attribute
*attr
, char *buf
)
206 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
208 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->numeraseregions
);
210 static DEVICE_ATTR(numeraseregions
, S_IRUGO
, mtd_numeraseregions_show
,
213 static ssize_t
mtd_name_show(struct device
*dev
,
214 struct device_attribute
*attr
, char *buf
)
216 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
218 return snprintf(buf
, PAGE_SIZE
, "%s\n", mtd
->name
);
220 static DEVICE_ATTR(name
, S_IRUGO
, mtd_name_show
, NULL
);
222 static ssize_t
mtd_ecc_strength_show(struct device
*dev
,
223 struct device_attribute
*attr
, char *buf
)
225 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
227 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_strength
);
229 static DEVICE_ATTR(ecc_strength
, S_IRUGO
, mtd_ecc_strength_show
, NULL
);
231 static ssize_t
mtd_bitflip_threshold_show(struct device
*dev
,
232 struct device_attribute
*attr
,
235 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
237 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->bitflip_threshold
);
240 static ssize_t
mtd_bitflip_threshold_store(struct device
*dev
,
241 struct device_attribute
*attr
,
242 const char *buf
, size_t count
)
244 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
245 unsigned int bitflip_threshold
;
248 retval
= kstrtouint(buf
, 0, &bitflip_threshold
);
252 mtd
->bitflip_threshold
= bitflip_threshold
;
255 static DEVICE_ATTR(bitflip_threshold
, S_IRUGO
| S_IWUSR
,
256 mtd_bitflip_threshold_show
,
257 mtd_bitflip_threshold_store
);
259 static ssize_t
mtd_ecc_step_size_show(struct device
*dev
,
260 struct device_attribute
*attr
, char *buf
)
262 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
264 return snprintf(buf
, PAGE_SIZE
, "%u\n", mtd
->ecc_step_size
);
267 static DEVICE_ATTR(ecc_step_size
, S_IRUGO
, mtd_ecc_step_size_show
, NULL
);
269 static ssize_t
mtd_ecc_stats_corrected_show(struct device
*dev
,
270 struct device_attribute
*attr
, char *buf
)
272 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
273 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
275 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->corrected
);
277 static DEVICE_ATTR(corrected_bits
, S_IRUGO
,
278 mtd_ecc_stats_corrected_show
, NULL
);
280 static ssize_t
mtd_ecc_stats_errors_show(struct device
*dev
,
281 struct device_attribute
*attr
, char *buf
)
283 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
284 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
286 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->failed
);
288 static DEVICE_ATTR(ecc_failures
, S_IRUGO
, mtd_ecc_stats_errors_show
, NULL
);
290 static ssize_t
mtd_badblocks_show(struct device
*dev
,
291 struct device_attribute
*attr
, char *buf
)
293 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
294 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
296 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->badblocks
);
298 static DEVICE_ATTR(bad_blocks
, S_IRUGO
, mtd_badblocks_show
, NULL
);
300 static ssize_t
mtd_bbtblocks_show(struct device
*dev
,
301 struct device_attribute
*attr
, char *buf
)
303 struct mtd_info
*mtd
= dev_get_drvdata(dev
);
304 struct mtd_ecc_stats
*ecc_stats
= &mtd
->ecc_stats
;
306 return snprintf(buf
, PAGE_SIZE
, "%u\n", ecc_stats
->bbtblocks
);
308 static DEVICE_ATTR(bbt_blocks
, S_IRUGO
, mtd_bbtblocks_show
, NULL
);
310 static struct attribute
*mtd_attrs
[] = {
312 &dev_attr_flags
.attr
,
314 &dev_attr_erasesize
.attr
,
315 &dev_attr_writesize
.attr
,
316 &dev_attr_subpagesize
.attr
,
317 &dev_attr_oobsize
.attr
,
318 &dev_attr_oobavail
.attr
,
319 &dev_attr_numeraseregions
.attr
,
321 &dev_attr_ecc_strength
.attr
,
322 &dev_attr_ecc_step_size
.attr
,
323 &dev_attr_corrected_bits
.attr
,
324 &dev_attr_ecc_failures
.attr
,
325 &dev_attr_bad_blocks
.attr
,
326 &dev_attr_bbt_blocks
.attr
,
327 &dev_attr_bitflip_threshold
.attr
,
330 ATTRIBUTE_GROUPS(mtd
);
332 static const struct device_type mtd_devtype
= {
334 .groups
= mtd_groups
,
335 .release
= mtd_release
,
338 static int mtd_partid_debug_show(struct seq_file
*s
, void *p
)
340 struct mtd_info
*mtd
= s
->private;
342 seq_printf(s
, "%s\n", mtd
->dbg
.partid
);
347 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug
);
349 static int mtd_partname_debug_show(struct seq_file
*s
, void *p
)
351 struct mtd_info
*mtd
= s
->private;
353 seq_printf(s
, "%s\n", mtd
->dbg
.partname
);
358 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug
);
360 static struct dentry
*dfs_dir_mtd
;
362 static void mtd_debugfs_populate(struct mtd_info
*mtd
)
364 struct device
*dev
= &mtd
->dev
;
367 if (IS_ERR_OR_NULL(dfs_dir_mtd
))
370 root
= debugfs_create_dir(dev_name(dev
), dfs_dir_mtd
);
371 mtd
->dbg
.dfs_dir
= root
;
374 debugfs_create_file("partid", 0400, root
, mtd
,
375 &mtd_partid_debug_fops
);
377 if (mtd
->dbg
.partname
)
378 debugfs_create_file("partname", 0400, root
, mtd
,
379 &mtd_partname_debug_fops
);
383 unsigned mtd_mmap_capabilities(struct mtd_info
*mtd
)
387 return NOMMU_MAP_COPY
| NOMMU_MAP_DIRECT
| NOMMU_MAP_EXEC
|
388 NOMMU_MAP_READ
| NOMMU_MAP_WRITE
;
390 return NOMMU_MAP_COPY
| NOMMU_MAP_DIRECT
| NOMMU_MAP_EXEC
|
393 return NOMMU_MAP_COPY
;
396 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities
);
399 static int mtd_reboot_notifier(struct notifier_block
*n
, unsigned long state
,
402 struct mtd_info
*mtd
;
404 mtd
= container_of(n
, struct mtd_info
, reboot_notifier
);
411 * mtd_wunit_to_pairing_info - get pairing information of a wunit
412 * @mtd: pointer to new MTD device info structure
413 * @wunit: write unit we are interested in
414 * @info: returned pairing information
416 * Retrieve pairing information associated to the wunit.
417 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
418 * paired together, and where programming a page may influence the page it is
420 * The notion of page is replaced by the term wunit (write-unit) to stay
421 * consistent with the ->writesize field.
423 * The @wunit argument can be extracted from an absolute offset using
424 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
427 * From the pairing info the MTD user can find all the wunits paired with
428 * @wunit using the following loop:
430 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
432 * mtd_pairing_info_to_wunit(mtd, &info);
436 int mtd_wunit_to_pairing_info(struct mtd_info
*mtd
, int wunit
,
437 struct mtd_pairing_info
*info
)
439 struct mtd_info
*master
= mtd_get_master(mtd
);
440 int npairs
= mtd_wunit_per_eb(master
) / mtd_pairing_groups(master
);
442 if (wunit
< 0 || wunit
>= npairs
)
445 if (master
->pairing
&& master
->pairing
->get_info
)
446 return master
->pairing
->get_info(master
, wunit
, info
);
453 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info
);
456 * mtd_pairing_info_to_wunit - get wunit from pairing information
457 * @mtd: pointer to new MTD device info structure
458 * @info: pairing information struct
460 * Returns a positive number representing the wunit associated to the info
461 * struct, or a negative error code.
463 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
464 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
467 * It can also be used to only program the first page of each pair (i.e.
468 * page attached to group 0), which allows one to use an MLC NAND in
469 * software-emulated SLC mode:
472 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
473 * for (info.pair = 0; info.pair < npairs; info.pair++) {
474 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
475 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
476 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
479 int mtd_pairing_info_to_wunit(struct mtd_info
*mtd
,
480 const struct mtd_pairing_info
*info
)
482 struct mtd_info
*master
= mtd_get_master(mtd
);
483 int ngroups
= mtd_pairing_groups(master
);
484 int npairs
= mtd_wunit_per_eb(master
) / ngroups
;
486 if (!info
|| info
->pair
< 0 || info
->pair
>= npairs
||
487 info
->group
< 0 || info
->group
>= ngroups
)
490 if (master
->pairing
&& master
->pairing
->get_wunit
)
491 return mtd
->pairing
->get_wunit(master
, info
);
495 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit
);
498 * mtd_pairing_groups - get the number of pairing groups
499 * @mtd: pointer to new MTD device info structure
501 * Returns the number of pairing groups.
503 * This number is usually equal to the number of bits exposed by a single
504 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
505 * to iterate over all pages of a given pair.
507 int mtd_pairing_groups(struct mtd_info
*mtd
)
509 struct mtd_info
*master
= mtd_get_master(mtd
);
511 if (!master
->pairing
|| !master
->pairing
->ngroups
)
514 return master
->pairing
->ngroups
;
516 EXPORT_SYMBOL_GPL(mtd_pairing_groups
);
518 static int mtd_nvmem_reg_read(void *priv
, unsigned int offset
,
519 void *val
, size_t bytes
)
521 struct mtd_info
*mtd
= priv
;
525 err
= mtd_read(mtd
, offset
, bytes
, &retlen
, val
);
526 if (err
&& err
!= -EUCLEAN
)
529 return retlen
== bytes
? 0 : -EIO
;
532 static int mtd_nvmem_add(struct mtd_info
*mtd
)
534 struct nvmem_config config
= {};
537 config
.dev
= &mtd
->dev
;
538 config
.name
= dev_name(&mtd
->dev
);
539 config
.owner
= THIS_MODULE
;
540 config
.reg_read
= mtd_nvmem_reg_read
;
541 config
.size
= mtd
->size
;
542 config
.word_size
= 1;
544 config
.read_only
= true;
545 config
.root_only
= true;
546 config
.no_of_node
= true;
549 mtd
->nvmem
= nvmem_register(&config
);
550 if (IS_ERR(mtd
->nvmem
)) {
551 /* Just ignore if there is no NVMEM support in the kernel */
552 if (PTR_ERR(mtd
->nvmem
) == -EOPNOTSUPP
) {
555 dev_err(&mtd
->dev
, "Failed to register NVMEM device\n");
556 return PTR_ERR(mtd
->nvmem
);
564 * add_mtd_device - register an MTD device
565 * @mtd: pointer to new MTD device info structure
567 * Add a device to the list of MTD devices present in the system, and
568 * notify each currently active MTD 'user' of its arrival. Returns
569 * zero on success or non-zero on failure.
572 int add_mtd_device(struct mtd_info
*mtd
)
574 struct mtd_info
*master
= mtd_get_master(mtd
);
575 struct mtd_notifier
*not;
579 * May occur, for instance, on buggy drivers which call
580 * mtd_device_parse_register() multiple times on the same master MTD,
581 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
583 if (WARN_ONCE(mtd
->dev
.type
, "MTD already registered\n"))
586 BUG_ON(mtd
->writesize
== 0);
589 * MTD drivers should implement ->_{write,read}() or
590 * ->_{write,read}_oob(), but not both.
592 if (WARN_ON((mtd
->_write
&& mtd
->_write_oob
) ||
593 (mtd
->_read
&& mtd
->_read_oob
)))
596 if (WARN_ON((!mtd
->erasesize
|| !master
->_erase
) &&
597 !(mtd
->flags
& MTD_NO_ERASE
)))
601 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
602 * master is an MLC NAND and has a proper pairing scheme defined.
603 * We also reject masters that implement ->_writev() for now, because
604 * NAND controller drivers don't implement this hook, and adding the
605 * SLC -> MLC address/length conversion to this path is useless if we
608 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
&&
609 (!mtd_is_partition(mtd
) || master
->type
!= MTD_MLCNANDFLASH
||
610 !master
->pairing
|| master
->_writev
))
613 mutex_lock(&mtd_table_mutex
);
615 i
= idr_alloc(&mtd_idr
, mtd
, 0, 0, GFP_KERNEL
);
624 /* default value if not set by driver */
625 if (mtd
->bitflip_threshold
== 0)
626 mtd
->bitflip_threshold
= mtd
->ecc_strength
;
628 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
) {
629 int ngroups
= mtd_pairing_groups(master
);
631 mtd
->erasesize
/= ngroups
;
632 mtd
->size
= (u64
)mtd_div_by_eb(mtd
->size
, master
) *
636 if (is_power_of_2(mtd
->erasesize
))
637 mtd
->erasesize_shift
= ffs(mtd
->erasesize
) - 1;
639 mtd
->erasesize_shift
= 0;
641 if (is_power_of_2(mtd
->writesize
))
642 mtd
->writesize_shift
= ffs(mtd
->writesize
) - 1;
644 mtd
->writesize_shift
= 0;
646 mtd
->erasesize_mask
= (1 << mtd
->erasesize_shift
) - 1;
647 mtd
->writesize_mask
= (1 << mtd
->writesize_shift
) - 1;
649 /* Some chips always power up locked. Unlock them now */
650 if ((mtd
->flags
& MTD_WRITEABLE
) && (mtd
->flags
& MTD_POWERUP_LOCK
)) {
651 error
= mtd_unlock(mtd
, 0, mtd
->size
);
652 if (error
&& error
!= -EOPNOTSUPP
)
654 "%s: unlock failed, writes may not work\n",
656 /* Ignore unlock failures? */
660 /* Caller should have set dev.parent to match the
661 * physical device, if appropriate.
663 mtd
->dev
.type
= &mtd_devtype
;
664 mtd
->dev
.class = &mtd_class
;
665 mtd
->dev
.devt
= MTD_DEVT(i
);
666 dev_set_name(&mtd
->dev
, "mtd%d", i
);
667 dev_set_drvdata(&mtd
->dev
, mtd
);
668 of_node_get(mtd_get_of_node(mtd
));
669 error
= device_register(&mtd
->dev
);
673 /* Add the nvmem provider */
674 error
= mtd_nvmem_add(mtd
);
678 mtd_debugfs_populate(mtd
);
680 device_create(&mtd_class
, mtd
->dev
.parent
, MTD_DEVT(i
) + 1, NULL
,
683 pr_debug("mtd: Giving out device %d to %s\n", i
, mtd
->name
);
684 /* No need to get a refcount on the module containing
685 the notifier, since we hold the mtd_table_mutex */
686 list_for_each_entry(not, &mtd_notifiers
, list
)
689 mutex_unlock(&mtd_table_mutex
);
690 /* We _know_ we aren't being removed, because
691 our caller is still holding us here. So none
692 of this try_ nonsense, and no bitching about it
694 __module_get(THIS_MODULE
);
698 device_unregister(&mtd
->dev
);
700 of_node_put(mtd_get_of_node(mtd
));
701 idr_remove(&mtd_idr
, i
);
703 mutex_unlock(&mtd_table_mutex
);
708 * del_mtd_device - unregister an MTD device
709 * @mtd: pointer to MTD device info structure
711 * Remove a device from the list of MTD devices present in the system,
712 * and notify each currently active MTD 'user' of its departure.
713 * Returns zero on success or 1 on failure, which currently will happen
714 * if the requested device does not appear to be present in the list.
717 int del_mtd_device(struct mtd_info
*mtd
)
720 struct mtd_notifier
*not;
722 mutex_lock(&mtd_table_mutex
);
724 debugfs_remove_recursive(mtd
->dbg
.dfs_dir
);
726 if (idr_find(&mtd_idr
, mtd
->index
) != mtd
) {
731 /* No need to get a refcount on the module containing
732 the notifier, since we hold the mtd_table_mutex */
733 list_for_each_entry(not, &mtd_notifiers
, list
)
737 printk(KERN_NOTICE
"Removing MTD device #%d (%s) with use count %d\n",
738 mtd
->index
, mtd
->name
, mtd
->usecount
);
741 /* Try to remove the NVMEM provider */
743 nvmem_unregister(mtd
->nvmem
);
745 device_unregister(&mtd
->dev
);
747 idr_remove(&mtd_idr
, mtd
->index
);
748 of_node_put(mtd_get_of_node(mtd
));
750 module_put(THIS_MODULE
);
755 mutex_unlock(&mtd_table_mutex
);
760 * Set a few defaults based on the parent devices, if not provided by the
763 static void mtd_set_dev_defaults(struct mtd_info
*mtd
)
765 if (mtd
->dev
.parent
) {
766 if (!mtd
->owner
&& mtd
->dev
.parent
->driver
)
767 mtd
->owner
= mtd
->dev
.parent
->driver
->owner
;
769 mtd
->name
= dev_name(mtd
->dev
.parent
);
771 pr_debug("mtd device won't show a device symlink in sysfs\n");
774 INIT_LIST_HEAD(&mtd
->partitions
);
775 mutex_init(&mtd
->master
.partitions_lock
);
779 * mtd_device_parse_register - parse partitions and register an MTD device.
781 * @mtd: the MTD device to register
782 * @types: the list of MTD partition probes to try, see
783 * 'parse_mtd_partitions()' for more information
784 * @parser_data: MTD partition parser-specific data
785 * @parts: fallback partition information to register, if parsing fails;
786 * only valid if %nr_parts > %0
787 * @nr_parts: the number of partitions in parts, if zero then the full
788 * MTD device is registered if no partition info is found
790 * This function aggregates MTD partitions parsing (done by
791 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
792 * basically follows the most common pattern found in many MTD drivers:
794 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
796 * * Then It tries to probe partitions on MTD device @mtd using parsers
797 * specified in @types (if @types is %NULL, then the default list of parsers
798 * is used, see 'parse_mtd_partitions()' for more information). If none are
799 * found this functions tries to fallback to information specified in
801 * * If no partitions were found this function just registers the MTD device
804 * Returns zero in case of success and a negative error code in case of failure.
806 int mtd_device_parse_register(struct mtd_info
*mtd
, const char * const *types
,
807 struct mtd_part_parser_data
*parser_data
,
808 const struct mtd_partition
*parts
,
813 mtd_set_dev_defaults(mtd
);
815 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER
)) {
816 ret
= add_mtd_device(mtd
);
821 /* Prefer parsed partitions over driver-provided fallback */
822 ret
= parse_mtd_partitions(mtd
, types
, parser_data
);
826 ret
= add_mtd_partitions(mtd
, parts
, nr_parts
);
827 else if (!device_is_registered(&mtd
->dev
))
828 ret
= add_mtd_device(mtd
);
836 * FIXME: some drivers unfortunately call this function more than once.
837 * So we have to check if we've already assigned the reboot notifier.
839 * Generally, we can make multiple calls work for most cases, but it
840 * does cause problems with parse_mtd_partitions() above (e.g.,
841 * cmdlineparts will register partitions more than once).
843 WARN_ONCE(mtd
->_reboot
&& mtd
->reboot_notifier
.notifier_call
,
844 "MTD already registered\n");
845 if (mtd
->_reboot
&& !mtd
->reboot_notifier
.notifier_call
) {
846 mtd
->reboot_notifier
.notifier_call
= mtd_reboot_notifier
;
847 register_reboot_notifier(&mtd
->reboot_notifier
);
851 if (ret
&& device_is_registered(&mtd
->dev
))
856 EXPORT_SYMBOL_GPL(mtd_device_parse_register
);
859 * mtd_device_unregister - unregister an existing MTD device.
861 * @master: the MTD device to unregister. This will unregister both the master
862 * and any partitions if registered.
864 int mtd_device_unregister(struct mtd_info
*master
)
869 unregister_reboot_notifier(&master
->reboot_notifier
);
871 err
= del_mtd_partitions(master
);
875 if (!device_is_registered(&master
->dev
))
878 return del_mtd_device(master
);
880 EXPORT_SYMBOL_GPL(mtd_device_unregister
);
883 * register_mtd_user - register a 'user' of MTD devices.
884 * @new: pointer to notifier info structure
886 * Registers a pair of callbacks function to be called upon addition
887 * or removal of MTD devices. Causes the 'add' callback to be immediately
888 * invoked for each MTD device currently present in the system.
890 void register_mtd_user (struct mtd_notifier
*new)
892 struct mtd_info
*mtd
;
894 mutex_lock(&mtd_table_mutex
);
896 list_add(&new->list
, &mtd_notifiers
);
898 __module_get(THIS_MODULE
);
900 mtd_for_each_device(mtd
)
903 mutex_unlock(&mtd_table_mutex
);
905 EXPORT_SYMBOL_GPL(register_mtd_user
);
908 * unregister_mtd_user - unregister a 'user' of MTD devices.
909 * @old: pointer to notifier info structure
911 * Removes a callback function pair from the list of 'users' to be
912 * notified upon addition or removal of MTD devices. Causes the
913 * 'remove' callback to be immediately invoked for each MTD device
914 * currently present in the system.
916 int unregister_mtd_user (struct mtd_notifier
*old
)
918 struct mtd_info
*mtd
;
920 mutex_lock(&mtd_table_mutex
);
922 module_put(THIS_MODULE
);
924 mtd_for_each_device(mtd
)
927 list_del(&old
->list
);
928 mutex_unlock(&mtd_table_mutex
);
931 EXPORT_SYMBOL_GPL(unregister_mtd_user
);
934 * get_mtd_device - obtain a validated handle for an MTD device
935 * @mtd: last known address of the required MTD device
936 * @num: internal device number of the required MTD device
938 * Given a number and NULL address, return the num'th entry in the device
939 * table, if any. Given an address and num == -1, search the device table
940 * for a device with that address and return if it's still present. Given
941 * both, return the num'th driver only if its address matches. Return
944 struct mtd_info
*get_mtd_device(struct mtd_info
*mtd
, int num
)
946 struct mtd_info
*ret
= NULL
, *other
;
949 mutex_lock(&mtd_table_mutex
);
952 mtd_for_each_device(other
) {
958 } else if (num
>= 0) {
959 ret
= idr_find(&mtd_idr
, num
);
960 if (mtd
&& mtd
!= ret
)
969 err
= __get_mtd_device(ret
);
973 mutex_unlock(&mtd_table_mutex
);
976 EXPORT_SYMBOL_GPL(get_mtd_device
);
979 int __get_mtd_device(struct mtd_info
*mtd
)
981 struct mtd_info
*master
= mtd_get_master(mtd
);
984 if (!try_module_get(master
->owner
))
987 if (master
->_get_device
) {
988 err
= master
->_get_device(mtd
);
991 module_put(master
->owner
);
998 while (mtd
->parent
) {
1005 EXPORT_SYMBOL_GPL(__get_mtd_device
);
1008 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1010 * @name: MTD device name to open
1012 * This function returns MTD device description structure in case of
1013 * success and an error code in case of failure.
1015 struct mtd_info
*get_mtd_device_nm(const char *name
)
1018 struct mtd_info
*mtd
= NULL
, *other
;
1020 mutex_lock(&mtd_table_mutex
);
1022 mtd_for_each_device(other
) {
1023 if (!strcmp(name
, other
->name
)) {
1032 err
= __get_mtd_device(mtd
);
1036 mutex_unlock(&mtd_table_mutex
);
1040 mutex_unlock(&mtd_table_mutex
);
1041 return ERR_PTR(err
);
1043 EXPORT_SYMBOL_GPL(get_mtd_device_nm
);
1045 void put_mtd_device(struct mtd_info
*mtd
)
1047 mutex_lock(&mtd_table_mutex
);
1048 __put_mtd_device(mtd
);
1049 mutex_unlock(&mtd_table_mutex
);
1052 EXPORT_SYMBOL_GPL(put_mtd_device
);
1054 void __put_mtd_device(struct mtd_info
*mtd
)
1056 struct mtd_info
*master
= mtd_get_master(mtd
);
1058 while (mtd
->parent
) {
1060 BUG_ON(mtd
->usecount
< 0);
1066 if (master
->_put_device
)
1067 master
->_put_device(master
);
1069 module_put(master
->owner
);
1071 EXPORT_SYMBOL_GPL(__put_mtd_device
);
1074 * Erase is an synchronous operation. Device drivers are epected to return a
1075 * negative error code if the operation failed and update instr->fail_addr
1076 * to point the portion that was not properly erased.
1078 int mtd_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
1080 struct mtd_info
*master
= mtd_get_master(mtd
);
1081 u64 mst_ofs
= mtd_get_master_ofs(mtd
, 0);
1082 struct erase_info adjinstr
;
1085 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
1088 if (!mtd
->erasesize
|| !master
->_erase
)
1091 if (instr
->addr
>= mtd
->size
|| instr
->len
> mtd
->size
- instr
->addr
)
1093 if (!(mtd
->flags
& MTD_WRITEABLE
))
1099 ledtrig_mtd_activity();
1101 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
) {
1102 adjinstr
.addr
= (loff_t
)mtd_div_by_eb(instr
->addr
, mtd
) *
1104 adjinstr
.len
= ((u64
)mtd_div_by_eb(instr
->addr
+ instr
->len
, mtd
) *
1105 master
->erasesize
) -
1109 adjinstr
.addr
+= mst_ofs
;
1111 ret
= master
->_erase(master
, &adjinstr
);
1113 if (adjinstr
.fail_addr
!= MTD_FAIL_ADDR_UNKNOWN
) {
1114 instr
->fail_addr
= adjinstr
.fail_addr
- mst_ofs
;
1115 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
) {
1116 instr
->fail_addr
= mtd_div_by_eb(instr
->fail_addr
,
1118 instr
->fail_addr
*= mtd
->erasesize
;
1124 EXPORT_SYMBOL_GPL(mtd_erase
);
1127 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1129 int mtd_point(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
1130 void **virt
, resource_size_t
*phys
)
1132 struct mtd_info
*master
= mtd_get_master(mtd
);
1138 if (!master
->_point
)
1140 if (from
< 0 || from
>= mtd
->size
|| len
> mtd
->size
- from
)
1145 from
= mtd_get_master_ofs(mtd
, from
);
1146 return master
->_point(master
, from
, len
, retlen
, virt
, phys
);
1148 EXPORT_SYMBOL_GPL(mtd_point
);
1150 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1151 int mtd_unpoint(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1153 struct mtd_info
*master
= mtd_get_master(mtd
);
1155 if (!master
->_unpoint
)
1157 if (from
< 0 || from
>= mtd
->size
|| len
> mtd
->size
- from
)
1161 return master
->_unpoint(master
, mtd_get_master_ofs(mtd
, from
), len
);
1163 EXPORT_SYMBOL_GPL(mtd_unpoint
);
1166 * Allow NOMMU mmap() to directly map the device (if not NULL)
1167 * - return the address to which the offset maps
1168 * - return -ENOSYS to indicate refusal to do the mapping
1170 unsigned long mtd_get_unmapped_area(struct mtd_info
*mtd
, unsigned long len
,
1171 unsigned long offset
, unsigned long flags
)
1177 ret
= mtd_point(mtd
, offset
, len
, &retlen
, &virt
, NULL
);
1180 if (retlen
!= len
) {
1181 mtd_unpoint(mtd
, offset
, retlen
);
1184 return (unsigned long)virt
;
1186 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area
);
1188 static void mtd_update_ecc_stats(struct mtd_info
*mtd
, struct mtd_info
*master
,
1189 const struct mtd_ecc_stats
*old_stats
)
1191 struct mtd_ecc_stats diff
;
1196 diff
= master
->ecc_stats
;
1197 diff
.failed
-= old_stats
->failed
;
1198 diff
.corrected
-= old_stats
->corrected
;
1200 while (mtd
->parent
) {
1201 mtd
->ecc_stats
.failed
+= diff
.failed
;
1202 mtd
->ecc_stats
.corrected
+= diff
.corrected
;
1207 int mtd_read(struct mtd_info
*mtd
, loff_t from
, size_t len
, size_t *retlen
,
1210 struct mtd_oob_ops ops
= {
1216 ret
= mtd_read_oob(mtd
, from
, &ops
);
1217 *retlen
= ops
.retlen
;
1221 EXPORT_SYMBOL_GPL(mtd_read
);
1223 int mtd_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
1226 struct mtd_oob_ops ops
= {
1228 .datbuf
= (u8
*)buf
,
1232 ret
= mtd_write_oob(mtd
, to
, &ops
);
1233 *retlen
= ops
.retlen
;
1237 EXPORT_SYMBOL_GPL(mtd_write
);
1240 * In blackbox flight recorder like scenarios we want to make successful writes
1241 * in interrupt context. panic_write() is only intended to be called when its
1242 * known the kernel is about to panic and we need the write to succeed. Since
1243 * the kernel is not going to be running for much longer, this function can
1244 * break locks and delay to ensure the write succeeds (but not sleep).
1246 int mtd_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
, size_t *retlen
,
1249 struct mtd_info
*master
= mtd_get_master(mtd
);
1252 if (!master
->_panic_write
)
1254 if (to
< 0 || to
>= mtd
->size
|| len
> mtd
->size
- to
)
1256 if (!(mtd
->flags
& MTD_WRITEABLE
))
1260 if (!master
->oops_panic_write
)
1261 master
->oops_panic_write
= true;
1263 return master
->_panic_write(master
, mtd_get_master_ofs(mtd
, to
), len
,
1266 EXPORT_SYMBOL_GPL(mtd_panic_write
);
1268 static int mtd_check_oob_ops(struct mtd_info
*mtd
, loff_t offs
,
1269 struct mtd_oob_ops
*ops
)
1272 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1273 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1282 if (offs
< 0 || offs
+ ops
->len
> mtd
->size
)
1288 if (ops
->ooboffs
>= mtd_oobavail(mtd
, ops
))
1291 maxooblen
= ((size_t)(mtd_div_by_ws(mtd
->size
, mtd
) -
1292 mtd_div_by_ws(offs
, mtd
)) *
1293 mtd_oobavail(mtd
, ops
)) - ops
->ooboffs
;
1294 if (ops
->ooblen
> maxooblen
)
1301 static int mtd_read_oob_std(struct mtd_info
*mtd
, loff_t from
,
1302 struct mtd_oob_ops
*ops
)
1304 struct mtd_info
*master
= mtd_get_master(mtd
);
1307 from
= mtd_get_master_ofs(mtd
, from
);
1308 if (master
->_read_oob
)
1309 ret
= master
->_read_oob(master
, from
, ops
);
1311 ret
= master
->_read(master
, from
, ops
->len
, &ops
->retlen
,
1317 static int mtd_write_oob_std(struct mtd_info
*mtd
, loff_t to
,
1318 struct mtd_oob_ops
*ops
)
1320 struct mtd_info
*master
= mtd_get_master(mtd
);
1323 to
= mtd_get_master_ofs(mtd
, to
);
1324 if (master
->_write_oob
)
1325 ret
= master
->_write_oob(master
, to
, ops
);
1327 ret
= master
->_write(master
, to
, ops
->len
, &ops
->retlen
,
1333 static int mtd_io_emulated_slc(struct mtd_info
*mtd
, loff_t start
, bool read
,
1334 struct mtd_oob_ops
*ops
)
1336 struct mtd_info
*master
= mtd_get_master(mtd
);
1337 int ngroups
= mtd_pairing_groups(master
);
1338 int npairs
= mtd_wunit_per_eb(master
) / ngroups
;
1339 struct mtd_oob_ops adjops
= *ops
;
1340 unsigned int wunit
, oobavail
;
1341 struct mtd_pairing_info info
;
1342 int max_bitflips
= 0;
1346 ebofs
= mtd_mod_by_eb(start
, mtd
);
1347 base
= (loff_t
)mtd_div_by_eb(start
, mtd
) * master
->erasesize
;
1349 info
.pair
= mtd_div_by_ws(ebofs
, mtd
);
1350 pageofs
= mtd_mod_by_ws(ebofs
, mtd
);
1351 oobavail
= mtd_oobavail(mtd
, ops
);
1353 while (ops
->retlen
< ops
->len
|| ops
->oobretlen
< ops
->ooblen
) {
1356 if (info
.pair
>= npairs
) {
1358 base
+= master
->erasesize
;
1361 wunit
= mtd_pairing_info_to_wunit(master
, &info
);
1362 pos
= mtd_wunit_to_offset(mtd
, base
, wunit
);
1364 adjops
.len
= ops
->len
- ops
->retlen
;
1365 if (adjops
.len
> mtd
->writesize
- pageofs
)
1366 adjops
.len
= mtd
->writesize
- pageofs
;
1368 adjops
.ooblen
= ops
->ooblen
- ops
->oobretlen
;
1369 if (adjops
.ooblen
> oobavail
- adjops
.ooboffs
)
1370 adjops
.ooblen
= oobavail
- adjops
.ooboffs
;
1373 ret
= mtd_read_oob_std(mtd
, pos
+ pageofs
, &adjops
);
1375 max_bitflips
= max(max_bitflips
, ret
);
1377 ret
= mtd_write_oob_std(mtd
, pos
+ pageofs
, &adjops
);
1383 max_bitflips
= max(max_bitflips
, ret
);
1384 ops
->retlen
+= adjops
.retlen
;
1385 ops
->oobretlen
+= adjops
.oobretlen
;
1386 adjops
.datbuf
+= adjops
.retlen
;
1387 adjops
.oobbuf
+= adjops
.oobretlen
;
1393 return max_bitflips
;
1396 int mtd_read_oob(struct mtd_info
*mtd
, loff_t from
, struct mtd_oob_ops
*ops
)
1398 struct mtd_info
*master
= mtd_get_master(mtd
);
1399 struct mtd_ecc_stats old_stats
= master
->ecc_stats
;
1402 ops
->retlen
= ops
->oobretlen
= 0;
1404 ret_code
= mtd_check_oob_ops(mtd
, from
, ops
);
1408 ledtrig_mtd_activity();
1410 /* Check the validity of a potential fallback on mtd->_read */
1411 if (!master
->_read_oob
&& (!master
->_read
|| ops
->oobbuf
))
1414 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
)
1415 ret_code
= mtd_io_emulated_slc(mtd
, from
, true, ops
);
1417 ret_code
= mtd_read_oob_std(mtd
, from
, ops
);
1419 mtd_update_ecc_stats(mtd
, master
, &old_stats
);
1422 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1423 * similar to mtd->_read(), returning a non-negative integer
1424 * representing max bitflips. In other cases, mtd->_read_oob() may
1425 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1427 if (unlikely(ret_code
< 0))
1429 if (mtd
->ecc_strength
== 0)
1430 return 0; /* device lacks ecc */
1431 return ret_code
>= mtd
->bitflip_threshold
? -EUCLEAN
: 0;
1433 EXPORT_SYMBOL_GPL(mtd_read_oob
);
1435 int mtd_write_oob(struct mtd_info
*mtd
, loff_t to
,
1436 struct mtd_oob_ops
*ops
)
1438 struct mtd_info
*master
= mtd_get_master(mtd
);
1441 ops
->retlen
= ops
->oobretlen
= 0;
1443 if (!(mtd
->flags
& MTD_WRITEABLE
))
1446 ret
= mtd_check_oob_ops(mtd
, to
, ops
);
1450 ledtrig_mtd_activity();
1452 /* Check the validity of a potential fallback on mtd->_write */
1453 if (!master
->_write_oob
&& (!master
->_write
|| ops
->oobbuf
))
1456 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
)
1457 return mtd_io_emulated_slc(mtd
, to
, false, ops
);
1459 return mtd_write_oob_std(mtd
, to
, ops
);
1461 EXPORT_SYMBOL_GPL(mtd_write_oob
);
1464 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1465 * @mtd: MTD device structure
1466 * @section: ECC section. Depending on the layout you may have all the ECC
1467 * bytes stored in a single contiguous section, or one section
1468 * per ECC chunk (and sometime several sections for a single ECC
1470 * @oobecc: OOB region struct filled with the appropriate ECC position
1473 * This function returns ECC section information in the OOB area. If you want
1474 * to get all the ECC bytes information, then you should call
1475 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1477 * Returns zero on success, a negative error code otherwise.
1479 int mtd_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
1480 struct mtd_oob_region
*oobecc
)
1482 struct mtd_info
*master
= mtd_get_master(mtd
);
1484 memset(oobecc
, 0, sizeof(*oobecc
));
1486 if (!master
|| section
< 0)
1489 if (!master
->ooblayout
|| !master
->ooblayout
->ecc
)
1492 return master
->ooblayout
->ecc(master
, section
, oobecc
);
1494 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc
);
1497 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1499 * @mtd: MTD device structure
1500 * @section: Free section you are interested in. Depending on the layout
1501 * you may have all the free bytes stored in a single contiguous
1502 * section, or one section per ECC chunk plus an extra section
1503 * for the remaining bytes (or other funky layout).
1504 * @oobfree: OOB region struct filled with the appropriate free position
1507 * This function returns free bytes position in the OOB area. If you want
1508 * to get all the free bytes information, then you should call
1509 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1511 * Returns zero on success, a negative error code otherwise.
1513 int mtd_ooblayout_free(struct mtd_info
*mtd
, int section
,
1514 struct mtd_oob_region
*oobfree
)
1516 struct mtd_info
*master
= mtd_get_master(mtd
);
1518 memset(oobfree
, 0, sizeof(*oobfree
));
1520 if (!master
|| section
< 0)
1523 if (!master
->ooblayout
|| !master
->ooblayout
->free
)
1526 return master
->ooblayout
->free(master
, section
, oobfree
);
1528 EXPORT_SYMBOL_GPL(mtd_ooblayout_free
);
1531 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1532 * @mtd: mtd info structure
1533 * @byte: the byte we are searching for
1534 * @sectionp: pointer where the section id will be stored
1535 * @oobregion: used to retrieve the ECC position
1536 * @iter: iterator function. Should be either mtd_ooblayout_free or
1537 * mtd_ooblayout_ecc depending on the region type you're searching for
1539 * This function returns the section id and oobregion information of a
1540 * specific byte. For example, say you want to know where the 4th ECC byte is
1541 * stored, you'll use:
1543 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1545 * Returns zero on success, a negative error code otherwise.
1547 static int mtd_ooblayout_find_region(struct mtd_info
*mtd
, int byte
,
1548 int *sectionp
, struct mtd_oob_region
*oobregion
,
1549 int (*iter
)(struct mtd_info
*,
1551 struct mtd_oob_region
*oobregion
))
1553 int pos
= 0, ret
, section
= 0;
1555 memset(oobregion
, 0, sizeof(*oobregion
));
1558 ret
= iter(mtd
, section
, oobregion
);
1562 if (pos
+ oobregion
->length
> byte
)
1565 pos
+= oobregion
->length
;
1570 * Adjust region info to make it start at the beginning at the
1573 oobregion
->offset
+= byte
- pos
;
1574 oobregion
->length
-= byte
- pos
;
1575 *sectionp
= section
;
1581 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1583 * @mtd: mtd info structure
1584 * @eccbyte: the byte we are searching for
1585 * @section: pointer where the section id will be stored
1586 * @oobregion: OOB region information
1588 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1591 * Returns zero on success, a negative error code otherwise.
1593 int mtd_ooblayout_find_eccregion(struct mtd_info
*mtd
, int eccbyte
,
1595 struct mtd_oob_region
*oobregion
)
1597 return mtd_ooblayout_find_region(mtd
, eccbyte
, section
, oobregion
,
1600 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion
);
1603 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1604 * @mtd: mtd info structure
1605 * @buf: destination buffer to store OOB bytes
1606 * @oobbuf: OOB buffer
1607 * @start: first byte to retrieve
1608 * @nbytes: number of bytes to retrieve
1609 * @iter: section iterator
1611 * Extract bytes attached to a specific category (ECC or free)
1612 * from the OOB buffer and copy them into buf.
1614 * Returns zero on success, a negative error code otherwise.
1616 static int mtd_ooblayout_get_bytes(struct mtd_info
*mtd
, u8
*buf
,
1617 const u8
*oobbuf
, int start
, int nbytes
,
1618 int (*iter
)(struct mtd_info
*,
1620 struct mtd_oob_region
*oobregion
))
1622 struct mtd_oob_region oobregion
;
1625 ret
= mtd_ooblayout_find_region(mtd
, start
, §ion
,
1631 cnt
= min_t(int, nbytes
, oobregion
.length
);
1632 memcpy(buf
, oobbuf
+ oobregion
.offset
, cnt
);
1639 ret
= iter(mtd
, ++section
, &oobregion
);
1646 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1647 * @mtd: mtd info structure
1648 * @buf: source buffer to get OOB bytes from
1649 * @oobbuf: OOB buffer
1650 * @start: first OOB byte to set
1651 * @nbytes: number of OOB bytes to set
1652 * @iter: section iterator
1654 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1655 * is selected by passing the appropriate iterator.
1657 * Returns zero on success, a negative error code otherwise.
1659 static int mtd_ooblayout_set_bytes(struct mtd_info
*mtd
, const u8
*buf
,
1660 u8
*oobbuf
, int start
, int nbytes
,
1661 int (*iter
)(struct mtd_info
*,
1663 struct mtd_oob_region
*oobregion
))
1665 struct mtd_oob_region oobregion
;
1668 ret
= mtd_ooblayout_find_region(mtd
, start
, §ion
,
1674 cnt
= min_t(int, nbytes
, oobregion
.length
);
1675 memcpy(oobbuf
+ oobregion
.offset
, buf
, cnt
);
1682 ret
= iter(mtd
, ++section
, &oobregion
);
1689 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1690 * @mtd: mtd info structure
1691 * @iter: category iterator
1693 * Count the number of bytes in a given category.
1695 * Returns a positive value on success, a negative error code otherwise.
1697 static int mtd_ooblayout_count_bytes(struct mtd_info
*mtd
,
1698 int (*iter
)(struct mtd_info
*,
1700 struct mtd_oob_region
*oobregion
))
1702 struct mtd_oob_region oobregion
;
1703 int section
= 0, ret
, nbytes
= 0;
1706 ret
= iter(mtd
, section
++, &oobregion
);
1713 nbytes
+= oobregion
.length
;
1720 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1721 * @mtd: mtd info structure
1722 * @eccbuf: destination buffer to store ECC bytes
1723 * @oobbuf: OOB buffer
1724 * @start: first ECC byte to retrieve
1725 * @nbytes: number of ECC bytes to retrieve
1727 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1729 * Returns zero on success, a negative error code otherwise.
1731 int mtd_ooblayout_get_eccbytes(struct mtd_info
*mtd
, u8
*eccbuf
,
1732 const u8
*oobbuf
, int start
, int nbytes
)
1734 return mtd_ooblayout_get_bytes(mtd
, eccbuf
, oobbuf
, start
, nbytes
,
1737 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes
);
1740 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1741 * @mtd: mtd info structure
1742 * @eccbuf: source buffer to get ECC bytes from
1743 * @oobbuf: OOB buffer
1744 * @start: first ECC byte to set
1745 * @nbytes: number of ECC bytes to set
1747 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1749 * Returns zero on success, a negative error code otherwise.
1751 int mtd_ooblayout_set_eccbytes(struct mtd_info
*mtd
, const u8
*eccbuf
,
1752 u8
*oobbuf
, int start
, int nbytes
)
1754 return mtd_ooblayout_set_bytes(mtd
, eccbuf
, oobbuf
, start
, nbytes
,
1757 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes
);
1760 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1761 * @mtd: mtd info structure
1762 * @databuf: destination buffer to store ECC bytes
1763 * @oobbuf: OOB buffer
1764 * @start: first ECC byte to retrieve
1765 * @nbytes: number of ECC bytes to retrieve
1767 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1769 * Returns zero on success, a negative error code otherwise.
1771 int mtd_ooblayout_get_databytes(struct mtd_info
*mtd
, u8
*databuf
,
1772 const u8
*oobbuf
, int start
, int nbytes
)
1774 return mtd_ooblayout_get_bytes(mtd
, databuf
, oobbuf
, start
, nbytes
,
1775 mtd_ooblayout_free
);
1777 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes
);
1780 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1781 * @mtd: mtd info structure
1782 * @databuf: source buffer to get data bytes from
1783 * @oobbuf: OOB buffer
1784 * @start: first ECC byte to set
1785 * @nbytes: number of ECC bytes to set
1787 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1789 * Returns zero on success, a negative error code otherwise.
1791 int mtd_ooblayout_set_databytes(struct mtd_info
*mtd
, const u8
*databuf
,
1792 u8
*oobbuf
, int start
, int nbytes
)
1794 return mtd_ooblayout_set_bytes(mtd
, databuf
, oobbuf
, start
, nbytes
,
1795 mtd_ooblayout_free
);
1797 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes
);
1800 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1801 * @mtd: mtd info structure
1803 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1805 * Returns zero on success, a negative error code otherwise.
1807 int mtd_ooblayout_count_freebytes(struct mtd_info
*mtd
)
1809 return mtd_ooblayout_count_bytes(mtd
, mtd_ooblayout_free
);
1811 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes
);
1814 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1815 * @mtd: mtd info structure
1817 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1819 * Returns zero on success, a negative error code otherwise.
1821 int mtd_ooblayout_count_eccbytes(struct mtd_info
*mtd
)
1823 return mtd_ooblayout_count_bytes(mtd
, mtd_ooblayout_ecc
);
1825 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes
);
1828 * Method to access the protection register area, present in some flash
1829 * devices. The user data is one time programmable but the factory data is read
1832 int mtd_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
1833 struct otp_info
*buf
)
1835 struct mtd_info
*master
= mtd_get_master(mtd
);
1837 if (!master
->_get_fact_prot_info
)
1841 return master
->_get_fact_prot_info(master
, len
, retlen
, buf
);
1843 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info
);
1845 int mtd_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1846 size_t *retlen
, u_char
*buf
)
1848 struct mtd_info
*master
= mtd_get_master(mtd
);
1851 if (!master
->_read_fact_prot_reg
)
1855 return master
->_read_fact_prot_reg(master
, from
, len
, retlen
, buf
);
1857 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg
);
1859 int mtd_get_user_prot_info(struct mtd_info
*mtd
, size_t len
, size_t *retlen
,
1860 struct otp_info
*buf
)
1862 struct mtd_info
*master
= mtd_get_master(mtd
);
1864 if (!master
->_get_user_prot_info
)
1868 return master
->_get_user_prot_info(master
, len
, retlen
, buf
);
1870 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info
);
1872 int mtd_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1873 size_t *retlen
, u_char
*buf
)
1875 struct mtd_info
*master
= mtd_get_master(mtd
);
1878 if (!master
->_read_user_prot_reg
)
1882 return master
->_read_user_prot_reg(master
, from
, len
, retlen
, buf
);
1884 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg
);
1886 int mtd_write_user_prot_reg(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1887 size_t *retlen
, u_char
*buf
)
1889 struct mtd_info
*master
= mtd_get_master(mtd
);
1893 if (!master
->_write_user_prot_reg
)
1897 ret
= master
->_write_user_prot_reg(master
, to
, len
, retlen
, buf
);
1902 * If no data could be written at all, we are out of memory and
1903 * must return -ENOSPC.
1905 return (*retlen
) ? 0 : -ENOSPC
;
1907 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg
);
1909 int mtd_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
, size_t len
)
1911 struct mtd_info
*master
= mtd_get_master(mtd
);
1913 if (!master
->_lock_user_prot_reg
)
1917 return master
->_lock_user_prot_reg(master
, from
, len
);
1919 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg
);
1921 /* Chip-supported device locking */
1922 int mtd_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1924 struct mtd_info
*master
= mtd_get_master(mtd
);
1928 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1933 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
) {
1934 ofs
= (loff_t
)mtd_div_by_eb(ofs
, mtd
) * master
->erasesize
;
1935 len
= (u64
)mtd_div_by_eb(len
, mtd
) * master
->erasesize
;
1938 return master
->_lock(master
, mtd_get_master_ofs(mtd
, ofs
), len
);
1940 EXPORT_SYMBOL_GPL(mtd_lock
);
1942 int mtd_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1944 struct mtd_info
*master
= mtd_get_master(mtd
);
1946 if (!master
->_unlock
)
1948 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1953 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
) {
1954 ofs
= (loff_t
)mtd_div_by_eb(ofs
, mtd
) * master
->erasesize
;
1955 len
= (u64
)mtd_div_by_eb(len
, mtd
) * master
->erasesize
;
1958 return master
->_unlock(master
, mtd_get_master_ofs(mtd
, ofs
), len
);
1960 EXPORT_SYMBOL_GPL(mtd_unlock
);
1962 int mtd_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1964 struct mtd_info
*master
= mtd_get_master(mtd
);
1966 if (!master
->_is_locked
)
1968 if (ofs
< 0 || ofs
>= mtd
->size
|| len
> mtd
->size
- ofs
)
1973 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
) {
1974 ofs
= (loff_t
)mtd_div_by_eb(ofs
, mtd
) * master
->erasesize
;
1975 len
= (u64
)mtd_div_by_eb(len
, mtd
) * master
->erasesize
;
1978 return master
->_is_locked(master
, mtd_get_master_ofs(mtd
, ofs
), len
);
1980 EXPORT_SYMBOL_GPL(mtd_is_locked
);
1982 int mtd_block_isreserved(struct mtd_info
*mtd
, loff_t ofs
)
1984 struct mtd_info
*master
= mtd_get_master(mtd
);
1986 if (ofs
< 0 || ofs
>= mtd
->size
)
1988 if (!master
->_block_isreserved
)
1991 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
)
1992 ofs
= (loff_t
)mtd_div_by_eb(ofs
, mtd
) * master
->erasesize
;
1994 return master
->_block_isreserved(master
, mtd_get_master_ofs(mtd
, ofs
));
1996 EXPORT_SYMBOL_GPL(mtd_block_isreserved
);
1998 int mtd_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2000 struct mtd_info
*master
= mtd_get_master(mtd
);
2002 if (ofs
< 0 || ofs
>= mtd
->size
)
2004 if (!master
->_block_isbad
)
2007 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
)
2008 ofs
= (loff_t
)mtd_div_by_eb(ofs
, mtd
) * master
->erasesize
;
2010 return master
->_block_isbad(master
, mtd_get_master_ofs(mtd
, ofs
));
2012 EXPORT_SYMBOL_GPL(mtd_block_isbad
);
2014 int mtd_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2016 struct mtd_info
*master
= mtd_get_master(mtd
);
2019 if (!master
->_block_markbad
)
2021 if (ofs
< 0 || ofs
>= mtd
->size
)
2023 if (!(mtd
->flags
& MTD_WRITEABLE
))
2026 if (mtd
->flags
& MTD_SLC_ON_MLC_EMULATION
)
2027 ofs
= (loff_t
)mtd_div_by_eb(ofs
, mtd
) * master
->erasesize
;
2029 ret
= master
->_block_markbad(master
, mtd_get_master_ofs(mtd
, ofs
));
2033 while (mtd
->parent
) {
2034 mtd
->ecc_stats
.badblocks
++;
2040 EXPORT_SYMBOL_GPL(mtd_block_markbad
);
2043 * default_mtd_writev - the default writev method
2044 * @mtd: mtd device description object pointer
2045 * @vecs: the vectors to write
2046 * @count: count of vectors in @vecs
2047 * @to: the MTD device offset to write to
2048 * @retlen: on exit contains the count of bytes written to the MTD device.
2050 * This function returns zero in case of success and a negative error code in
2053 static int default_mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
2054 unsigned long count
, loff_t to
, size_t *retlen
)
2057 size_t totlen
= 0, thislen
;
2060 for (i
= 0; i
< count
; i
++) {
2061 if (!vecs
[i
].iov_len
)
2063 ret
= mtd_write(mtd
, to
, vecs
[i
].iov_len
, &thislen
,
2066 if (ret
|| thislen
!= vecs
[i
].iov_len
)
2068 to
+= vecs
[i
].iov_len
;
2075 * mtd_writev - the vector-based MTD write method
2076 * @mtd: mtd device description object pointer
2077 * @vecs: the vectors to write
2078 * @count: count of vectors in @vecs
2079 * @to: the MTD device offset to write to
2080 * @retlen: on exit contains the count of bytes written to the MTD device.
2082 * This function returns zero in case of success and a negative error code in
2085 int mtd_writev(struct mtd_info
*mtd
, const struct kvec
*vecs
,
2086 unsigned long count
, loff_t to
, size_t *retlen
)
2088 struct mtd_info
*master
= mtd_get_master(mtd
);
2091 if (!(mtd
->flags
& MTD_WRITEABLE
))
2094 if (!master
->_writev
)
2095 return default_mtd_writev(mtd
, vecs
, count
, to
, retlen
);
2097 return master
->_writev(master
, vecs
, count
,
2098 mtd_get_master_ofs(mtd
, to
), retlen
);
2100 EXPORT_SYMBOL_GPL(mtd_writev
);
2103 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2104 * @mtd: mtd device description object pointer
2105 * @size: a pointer to the ideal or maximum size of the allocation, points
2106 * to the actual allocation size on success.
2108 * This routine attempts to allocate a contiguous kernel buffer up to
2109 * the specified size, backing off the size of the request exponentially
2110 * until the request succeeds or until the allocation size falls below
2111 * the system page size. This attempts to make sure it does not adversely
2112 * impact system performance, so when allocating more than one page, we
2113 * ask the memory allocator to avoid re-trying, swapping, writing back
2114 * or performing I/O.
2116 * Note, this function also makes sure that the allocated buffer is aligned to
2117 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2119 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2120 * to handle smaller (i.e. degraded) buffer allocations under low- or
2121 * fragmented-memory situations where such reduced allocations, from a
2122 * requested ideal, are allowed.
2124 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2126 void *mtd_kmalloc_up_to(const struct mtd_info
*mtd
, size_t *size
)
2128 gfp_t flags
= __GFP_NOWARN
| __GFP_DIRECT_RECLAIM
| __GFP_NORETRY
;
2129 size_t min_alloc
= max_t(size_t, mtd
->writesize
, PAGE_SIZE
);
2132 *size
= min_t(size_t, *size
, KMALLOC_MAX_SIZE
);
2134 while (*size
> min_alloc
) {
2135 kbuf
= kmalloc(*size
, flags
);
2140 *size
= ALIGN(*size
, mtd
->writesize
);
2144 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2145 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2147 return kmalloc(*size
, GFP_KERNEL
);
2149 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to
);
2151 #ifdef CONFIG_PROC_FS
2153 /*====================================================================*/
2154 /* Support for /proc/mtd */
2156 static int mtd_proc_show(struct seq_file
*m
, void *v
)
2158 struct mtd_info
*mtd
;
2160 seq_puts(m
, "dev: size erasesize name\n");
2161 mutex_lock(&mtd_table_mutex
);
2162 mtd_for_each_device(mtd
) {
2163 seq_printf(m
, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2164 mtd
->index
, (unsigned long long)mtd
->size
,
2165 mtd
->erasesize
, mtd
->name
);
2167 mutex_unlock(&mtd_table_mutex
);
2170 #endif /* CONFIG_PROC_FS */
2172 /*====================================================================*/
2175 static struct backing_dev_info
* __init
mtd_bdi_init(char *name
)
2177 struct backing_dev_info
*bdi
;
2180 bdi
= bdi_alloc(NUMA_NO_NODE
);
2182 return ERR_PTR(-ENOMEM
);
2187 * We put '-0' suffix to the name to get the same name format as we
2188 * used to get. Since this is called only once, we get a unique name.
2190 ret
= bdi_register(bdi
, "%.28s-0", name
);
2194 return ret
? ERR_PTR(ret
) : bdi
;
2197 static struct proc_dir_entry
*proc_mtd
;
2199 static int __init
init_mtd(void)
2203 ret
= class_register(&mtd_class
);
2207 mtd_bdi
= mtd_bdi_init("mtd");
2208 if (IS_ERR(mtd_bdi
)) {
2209 ret
= PTR_ERR(mtd_bdi
);
2213 proc_mtd
= proc_create_single("mtd", 0, NULL
, mtd_proc_show
);
2215 ret
= init_mtdchar();
2219 dfs_dir_mtd
= debugfs_create_dir("mtd", NULL
);
2225 remove_proc_entry("mtd", NULL
);
2228 class_unregister(&mtd_class
);
2230 pr_err("Error registering mtd class or bdi: %d\n", ret
);
2234 static void __exit
cleanup_mtd(void)
2236 debugfs_remove_recursive(dfs_dir_mtd
);
2239 remove_proc_entry("mtd", NULL
);
2240 class_unregister(&mtd_class
);
2242 idr_destroy(&mtd_idr
);
2245 module_init(init_mtd
);
2246 module_exit(cleanup_mtd
);
2248 MODULE_LICENSE("GPL");
2249 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2250 MODULE_DESCRIPTION("Core MTD registration and access routines");