LiteX: driver for MMCM
[linux/fpc-iii.git] / drivers / scsi / bnx2fc / bnx2fc_io.c
blob1a0dc18d6915567d3be040a7fbe8212e6cc85990
1 /* bnx2fc_io.c: QLogic Linux FCoE offload driver.
2 * IO manager and SCSI IO processing.
4 * Copyright (c) 2008-2013 Broadcom Corporation
5 * Copyright (c) 2014-2016 QLogic Corporation
6 * Copyright (c) 2016-2017 Cavium Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation.
12 * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
15 #include "bnx2fc.h"
17 #define RESERVE_FREE_LIST_INDEX num_possible_cpus()
19 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
20 int bd_index);
21 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req);
22 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req);
23 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req);
24 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req);
25 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
26 struct fcoe_fcp_rsp_payload *fcp_rsp,
27 u8 num_rq, unsigned char *rq_data);
29 void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req,
30 unsigned int timer_msec)
32 struct bnx2fc_interface *interface = io_req->port->priv;
34 if (queue_delayed_work(interface->timer_work_queue,
35 &io_req->timeout_work,
36 msecs_to_jiffies(timer_msec)))
37 kref_get(&io_req->refcount);
40 static void bnx2fc_cmd_timeout(struct work_struct *work)
42 struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd,
43 timeout_work.work);
44 u8 cmd_type = io_req->cmd_type;
45 struct bnx2fc_rport *tgt = io_req->tgt;
46 int rc;
48 BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d,"
49 "req_flags = %lx\n", cmd_type, io_req->req_flags);
51 spin_lock_bh(&tgt->tgt_lock);
52 if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) {
53 clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
55 * ideally we should hold the io_req until RRQ complets,
56 * and release io_req from timeout hold.
58 spin_unlock_bh(&tgt->tgt_lock);
59 bnx2fc_send_rrq(io_req);
60 return;
62 if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) {
63 BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n");
64 goto done;
67 switch (cmd_type) {
68 case BNX2FC_SCSI_CMD:
69 if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
70 &io_req->req_flags)) {
71 /* Handle eh_abort timeout */
72 BNX2FC_IO_DBG(io_req, "eh_abort timed out\n");
73 complete(&io_req->abts_done);
74 } else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS,
75 &io_req->req_flags)) {
76 /* Handle internally generated ABTS timeout */
77 BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n",
78 kref_read(&io_req->refcount));
79 if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
80 &io_req->req_flags))) {
82 * Cleanup and return original command to
83 * mid-layer.
85 bnx2fc_initiate_cleanup(io_req);
86 kref_put(&io_req->refcount, bnx2fc_cmd_release);
87 spin_unlock_bh(&tgt->tgt_lock);
89 return;
91 } else {
92 /* Hanlde IO timeout */
93 BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n");
94 if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL,
95 &io_req->req_flags)) {
96 BNX2FC_IO_DBG(io_req, "IO completed before "
97 " timer expiry\n");
98 goto done;
101 if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
102 &io_req->req_flags)) {
103 rc = bnx2fc_initiate_abts(io_req);
104 if (rc == SUCCESS)
105 goto done;
107 kref_put(&io_req->refcount, bnx2fc_cmd_release);
108 spin_unlock_bh(&tgt->tgt_lock);
110 return;
111 } else {
112 BNX2FC_IO_DBG(io_req, "IO already in "
113 "ABTS processing\n");
116 break;
117 case BNX2FC_ELS:
119 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
120 BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n");
122 if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
123 &io_req->req_flags)) {
124 kref_put(&io_req->refcount, bnx2fc_cmd_release);
125 spin_unlock_bh(&tgt->tgt_lock);
127 return;
129 } else {
131 * Handle ELS timeout.
132 * tgt_lock is used to sync compl path and timeout
133 * path. If els compl path is processing this IO, we
134 * have nothing to do here, just release the timer hold
136 BNX2FC_IO_DBG(io_req, "ELS timed out\n");
137 if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE,
138 &io_req->req_flags))
139 goto done;
141 /* Indicate the cb_func that this ELS is timed out */
142 set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags);
144 if ((io_req->cb_func) && (io_req->cb_arg)) {
145 io_req->cb_func(io_req->cb_arg);
146 io_req->cb_arg = NULL;
149 break;
150 default:
151 printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n",
152 cmd_type);
153 break;
156 done:
157 /* release the cmd that was held when timer was set */
158 kref_put(&io_req->refcount, bnx2fc_cmd_release);
159 spin_unlock_bh(&tgt->tgt_lock);
162 static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code)
164 /* Called with host lock held */
165 struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
168 * active_cmd_queue may have other command types as well,
169 * and during flush operation, we want to error back only
170 * scsi commands.
172 if (io_req->cmd_type != BNX2FC_SCSI_CMD)
173 return;
175 BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code);
176 if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) {
177 /* Do not call scsi done for this IO */
178 return;
181 bnx2fc_unmap_sg_list(io_req);
182 io_req->sc_cmd = NULL;
184 /* Sanity checks before returning command to mid-layer */
185 if (!sc_cmd) {
186 printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. "
187 "IO(0x%x) already cleaned up\n",
188 io_req->xid);
189 return;
191 if (!sc_cmd->device) {
192 pr_err(PFX "0x%x: sc_cmd->device is NULL.\n", io_req->xid);
193 return;
195 if (!sc_cmd->device->host) {
196 pr_err(PFX "0x%x: sc_cmd->device->host is NULL.\n",
197 io_req->xid);
198 return;
201 sc_cmd->result = err_code << 16;
203 BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n",
204 sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries,
205 sc_cmd->allowed);
206 scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
207 sc_cmd->SCp.ptr = NULL;
208 sc_cmd->scsi_done(sc_cmd);
211 struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba)
213 struct bnx2fc_cmd_mgr *cmgr;
214 struct io_bdt *bdt_info;
215 struct bnx2fc_cmd *io_req;
216 size_t len;
217 u32 mem_size;
218 u16 xid;
219 int i;
220 int num_ios, num_pri_ios;
221 size_t bd_tbl_sz;
222 int arr_sz = num_possible_cpus() + 1;
223 u16 min_xid = BNX2FC_MIN_XID;
224 u16 max_xid = hba->max_xid;
226 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
227 printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \
228 and max_xid 0x%x\n", min_xid, max_xid);
229 return NULL;
231 BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid);
233 num_ios = max_xid - min_xid + 1;
234 len = (num_ios * (sizeof(struct bnx2fc_cmd *)));
235 len += sizeof(struct bnx2fc_cmd_mgr);
237 cmgr = kzalloc(len, GFP_KERNEL);
238 if (!cmgr) {
239 printk(KERN_ERR PFX "failed to alloc cmgr\n");
240 return NULL;
243 cmgr->hba = hba;
244 cmgr->free_list = kcalloc(arr_sz, sizeof(*cmgr->free_list),
245 GFP_KERNEL);
246 if (!cmgr->free_list) {
247 printk(KERN_ERR PFX "failed to alloc free_list\n");
248 goto mem_err;
251 cmgr->free_list_lock = kcalloc(arr_sz, sizeof(*cmgr->free_list_lock),
252 GFP_KERNEL);
253 if (!cmgr->free_list_lock) {
254 printk(KERN_ERR PFX "failed to alloc free_list_lock\n");
255 kfree(cmgr->free_list);
256 cmgr->free_list = NULL;
257 goto mem_err;
260 cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1);
262 for (i = 0; i < arr_sz; i++) {
263 INIT_LIST_HEAD(&cmgr->free_list[i]);
264 spin_lock_init(&cmgr->free_list_lock[i]);
268 * Pre-allocated pool of bnx2fc_cmds.
269 * Last entry in the free list array is the free list
270 * of slow path requests.
272 xid = BNX2FC_MIN_XID;
273 num_pri_ios = num_ios - hba->elstm_xids;
274 for (i = 0; i < num_ios; i++) {
275 io_req = kzalloc(sizeof(*io_req), GFP_KERNEL);
277 if (!io_req) {
278 printk(KERN_ERR PFX "failed to alloc io_req\n");
279 goto mem_err;
282 INIT_LIST_HEAD(&io_req->link);
283 INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout);
285 io_req->xid = xid++;
286 if (i < num_pri_ios)
287 list_add_tail(&io_req->link,
288 &cmgr->free_list[io_req->xid %
289 num_possible_cpus()]);
290 else
291 list_add_tail(&io_req->link,
292 &cmgr->free_list[num_possible_cpus()]);
293 io_req++;
296 /* Allocate pool of io_bdts - one for each bnx2fc_cmd */
297 mem_size = num_ios * sizeof(struct io_bdt *);
298 cmgr->io_bdt_pool = kzalloc(mem_size, GFP_KERNEL);
299 if (!cmgr->io_bdt_pool) {
300 printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n");
301 goto mem_err;
304 mem_size = sizeof(struct io_bdt);
305 for (i = 0; i < num_ios; i++) {
306 cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL);
307 if (!cmgr->io_bdt_pool[i]) {
308 printk(KERN_ERR PFX "failed to alloc "
309 "io_bdt_pool[%d]\n", i);
310 goto mem_err;
314 /* Allocate an map fcoe_bdt_ctx structures */
315 bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
316 for (i = 0; i < num_ios; i++) {
317 bdt_info = cmgr->io_bdt_pool[i];
318 bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
319 bd_tbl_sz,
320 &bdt_info->bd_tbl_dma,
321 GFP_KERNEL);
322 if (!bdt_info->bd_tbl) {
323 printk(KERN_ERR PFX "failed to alloc "
324 "bdt_tbl[%d]\n", i);
325 goto mem_err;
329 return cmgr;
331 mem_err:
332 bnx2fc_cmd_mgr_free(cmgr);
333 return NULL;
336 void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr)
338 struct io_bdt *bdt_info;
339 struct bnx2fc_hba *hba = cmgr->hba;
340 size_t bd_tbl_sz;
341 u16 min_xid = BNX2FC_MIN_XID;
342 u16 max_xid = hba->max_xid;
343 int num_ios;
344 int i;
346 num_ios = max_xid - min_xid + 1;
348 /* Free fcoe_bdt_ctx structures */
349 if (!cmgr->io_bdt_pool)
350 goto free_cmd_pool;
352 bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
353 for (i = 0; i < num_ios; i++) {
354 bdt_info = cmgr->io_bdt_pool[i];
355 if (bdt_info->bd_tbl) {
356 dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz,
357 bdt_info->bd_tbl,
358 bdt_info->bd_tbl_dma);
359 bdt_info->bd_tbl = NULL;
363 /* Destroy io_bdt pool */
364 for (i = 0; i < num_ios; i++) {
365 kfree(cmgr->io_bdt_pool[i]);
366 cmgr->io_bdt_pool[i] = NULL;
369 kfree(cmgr->io_bdt_pool);
370 cmgr->io_bdt_pool = NULL;
372 free_cmd_pool:
373 kfree(cmgr->free_list_lock);
375 /* Destroy cmd pool */
376 if (!cmgr->free_list)
377 goto free_cmgr;
379 for (i = 0; i < num_possible_cpus() + 1; i++) {
380 struct bnx2fc_cmd *tmp, *io_req;
382 list_for_each_entry_safe(io_req, tmp,
383 &cmgr->free_list[i], link) {
384 list_del(&io_req->link);
385 kfree(io_req);
388 kfree(cmgr->free_list);
389 free_cmgr:
390 /* Free command manager itself */
391 kfree(cmgr);
394 struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type)
396 struct fcoe_port *port = tgt->port;
397 struct bnx2fc_interface *interface = port->priv;
398 struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
399 struct bnx2fc_cmd *io_req;
400 struct list_head *listp;
401 struct io_bdt *bd_tbl;
402 int index = RESERVE_FREE_LIST_INDEX;
403 u32 free_sqes;
404 u32 max_sqes;
405 u16 xid;
407 max_sqes = tgt->max_sqes;
408 switch (type) {
409 case BNX2FC_TASK_MGMT_CMD:
410 max_sqes = BNX2FC_TM_MAX_SQES;
411 break;
412 case BNX2FC_ELS:
413 max_sqes = BNX2FC_ELS_MAX_SQES;
414 break;
415 default:
416 break;
420 * NOTE: Free list insertions and deletions are protected with
421 * cmgr lock
423 spin_lock_bh(&cmd_mgr->free_list_lock[index]);
424 free_sqes = atomic_read(&tgt->free_sqes);
425 if ((list_empty(&(cmd_mgr->free_list[index]))) ||
426 (tgt->num_active_ios.counter >= max_sqes) ||
427 (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
428 BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available "
429 "ios(%d):sqes(%d)\n",
430 tgt->num_active_ios.counter, tgt->max_sqes);
431 if (list_empty(&(cmd_mgr->free_list[index])))
432 printk(KERN_ERR PFX "elstm_alloc: list_empty\n");
433 spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
434 return NULL;
437 listp = (struct list_head *)
438 cmd_mgr->free_list[index].next;
439 list_del_init(listp);
440 io_req = (struct bnx2fc_cmd *) listp;
441 xid = io_req->xid;
442 cmd_mgr->cmds[xid] = io_req;
443 atomic_inc(&tgt->num_active_ios);
444 atomic_dec(&tgt->free_sqes);
445 spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
447 INIT_LIST_HEAD(&io_req->link);
449 io_req->port = port;
450 io_req->cmd_mgr = cmd_mgr;
451 io_req->req_flags = 0;
452 io_req->cmd_type = type;
454 /* Bind io_bdt for this io_req */
455 /* Have a static link between io_req and io_bdt_pool */
456 bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
457 bd_tbl->io_req = io_req;
459 /* Hold the io_req against deletion */
460 kref_init(&io_req->refcount);
461 return io_req;
464 struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt)
466 struct fcoe_port *port = tgt->port;
467 struct bnx2fc_interface *interface = port->priv;
468 struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
469 struct bnx2fc_cmd *io_req;
470 struct list_head *listp;
471 struct io_bdt *bd_tbl;
472 u32 free_sqes;
473 u32 max_sqes;
474 u16 xid;
475 int index = get_cpu();
477 max_sqes = BNX2FC_SCSI_MAX_SQES;
479 * NOTE: Free list insertions and deletions are protected with
480 * cmgr lock
482 spin_lock_bh(&cmd_mgr->free_list_lock[index]);
483 free_sqes = atomic_read(&tgt->free_sqes);
484 if ((list_empty(&cmd_mgr->free_list[index])) ||
485 (tgt->num_active_ios.counter >= max_sqes) ||
486 (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
487 spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
488 put_cpu();
489 return NULL;
492 listp = (struct list_head *)
493 cmd_mgr->free_list[index].next;
494 list_del_init(listp);
495 io_req = (struct bnx2fc_cmd *) listp;
496 xid = io_req->xid;
497 cmd_mgr->cmds[xid] = io_req;
498 atomic_inc(&tgt->num_active_ios);
499 atomic_dec(&tgt->free_sqes);
500 spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
501 put_cpu();
503 INIT_LIST_HEAD(&io_req->link);
505 io_req->port = port;
506 io_req->cmd_mgr = cmd_mgr;
507 io_req->req_flags = 0;
509 /* Bind io_bdt for this io_req */
510 /* Have a static link between io_req and io_bdt_pool */
511 bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
512 bd_tbl->io_req = io_req;
514 /* Hold the io_req against deletion */
515 kref_init(&io_req->refcount);
516 return io_req;
519 void bnx2fc_cmd_release(struct kref *ref)
521 struct bnx2fc_cmd *io_req = container_of(ref,
522 struct bnx2fc_cmd, refcount);
523 struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
524 int index;
526 if (io_req->cmd_type == BNX2FC_SCSI_CMD)
527 index = io_req->xid % num_possible_cpus();
528 else
529 index = RESERVE_FREE_LIST_INDEX;
532 spin_lock_bh(&cmd_mgr->free_list_lock[index]);
533 if (io_req->cmd_type != BNX2FC_SCSI_CMD)
534 bnx2fc_free_mp_resc(io_req);
535 cmd_mgr->cmds[io_req->xid] = NULL;
536 /* Delete IO from retire queue */
537 list_del_init(&io_req->link);
538 /* Add it to the free list */
539 list_add(&io_req->link,
540 &cmd_mgr->free_list[index]);
541 atomic_dec(&io_req->tgt->num_active_ios);
542 spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
546 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req)
548 struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
549 struct bnx2fc_interface *interface = io_req->port->priv;
550 struct bnx2fc_hba *hba = interface->hba;
551 size_t sz = sizeof(struct fcoe_bd_ctx);
553 /* clear tm flags */
554 mp_req->tm_flags = 0;
555 if (mp_req->mp_req_bd) {
556 dma_free_coherent(&hba->pcidev->dev, sz,
557 mp_req->mp_req_bd,
558 mp_req->mp_req_bd_dma);
559 mp_req->mp_req_bd = NULL;
561 if (mp_req->mp_resp_bd) {
562 dma_free_coherent(&hba->pcidev->dev, sz,
563 mp_req->mp_resp_bd,
564 mp_req->mp_resp_bd_dma);
565 mp_req->mp_resp_bd = NULL;
567 if (mp_req->req_buf) {
568 dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
569 mp_req->req_buf,
570 mp_req->req_buf_dma);
571 mp_req->req_buf = NULL;
573 if (mp_req->resp_buf) {
574 dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
575 mp_req->resp_buf,
576 mp_req->resp_buf_dma);
577 mp_req->resp_buf = NULL;
581 int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req)
583 struct bnx2fc_mp_req *mp_req;
584 struct fcoe_bd_ctx *mp_req_bd;
585 struct fcoe_bd_ctx *mp_resp_bd;
586 struct bnx2fc_interface *interface = io_req->port->priv;
587 struct bnx2fc_hba *hba = interface->hba;
588 dma_addr_t addr;
589 size_t sz;
591 mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
592 memset(mp_req, 0, sizeof(struct bnx2fc_mp_req));
594 if (io_req->cmd_type != BNX2FC_ELS) {
595 mp_req->req_len = sizeof(struct fcp_cmnd);
596 io_req->data_xfer_len = mp_req->req_len;
597 } else
598 mp_req->req_len = io_req->data_xfer_len;
600 mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
601 &mp_req->req_buf_dma,
602 GFP_ATOMIC);
603 if (!mp_req->req_buf) {
604 printk(KERN_ERR PFX "unable to alloc MP req buffer\n");
605 bnx2fc_free_mp_resc(io_req);
606 return FAILED;
609 mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
610 &mp_req->resp_buf_dma,
611 GFP_ATOMIC);
612 if (!mp_req->resp_buf) {
613 printk(KERN_ERR PFX "unable to alloc TM resp buffer\n");
614 bnx2fc_free_mp_resc(io_req);
615 return FAILED;
617 memset(mp_req->req_buf, 0, CNIC_PAGE_SIZE);
618 memset(mp_req->resp_buf, 0, CNIC_PAGE_SIZE);
620 /* Allocate and map mp_req_bd and mp_resp_bd */
621 sz = sizeof(struct fcoe_bd_ctx);
622 mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
623 &mp_req->mp_req_bd_dma,
624 GFP_ATOMIC);
625 if (!mp_req->mp_req_bd) {
626 printk(KERN_ERR PFX "unable to alloc MP req bd\n");
627 bnx2fc_free_mp_resc(io_req);
628 return FAILED;
630 mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
631 &mp_req->mp_resp_bd_dma,
632 GFP_ATOMIC);
633 if (!mp_req->mp_resp_bd) {
634 printk(KERN_ERR PFX "unable to alloc MP resp bd\n");
635 bnx2fc_free_mp_resc(io_req);
636 return FAILED;
638 /* Fill bd table */
639 addr = mp_req->req_buf_dma;
640 mp_req_bd = mp_req->mp_req_bd;
641 mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff;
642 mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32);
643 mp_req_bd->buf_len = CNIC_PAGE_SIZE;
644 mp_req_bd->flags = 0;
647 * MP buffer is either a task mgmt command or an ELS.
648 * So the assumption is that it consumes a single bd
649 * entry in the bd table
651 mp_resp_bd = mp_req->mp_resp_bd;
652 addr = mp_req->resp_buf_dma;
653 mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff;
654 mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32);
655 mp_resp_bd->buf_len = CNIC_PAGE_SIZE;
656 mp_resp_bd->flags = 0;
658 return SUCCESS;
661 static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
663 struct fc_lport *lport;
664 struct fc_rport *rport;
665 struct fc_rport_libfc_priv *rp;
666 struct fcoe_port *port;
667 struct bnx2fc_interface *interface;
668 struct bnx2fc_rport *tgt;
669 struct bnx2fc_cmd *io_req;
670 struct bnx2fc_mp_req *tm_req;
671 struct fcoe_task_ctx_entry *task;
672 struct fcoe_task_ctx_entry *task_page;
673 struct Scsi_Host *host = sc_cmd->device->host;
674 struct fc_frame_header *fc_hdr;
675 struct fcp_cmnd *fcp_cmnd;
676 int task_idx, index;
677 int rc = SUCCESS;
678 u16 xid;
679 u32 sid, did;
680 unsigned long start = jiffies;
682 lport = shost_priv(host);
683 rport = starget_to_rport(scsi_target(sc_cmd->device));
684 port = lport_priv(lport);
685 interface = port->priv;
687 if (rport == NULL) {
688 printk(KERN_ERR PFX "device_reset: rport is NULL\n");
689 rc = FAILED;
690 goto tmf_err;
692 rp = rport->dd_data;
694 rc = fc_block_scsi_eh(sc_cmd);
695 if (rc)
696 return rc;
698 if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
699 printk(KERN_ERR PFX "device_reset: link is not ready\n");
700 rc = FAILED;
701 goto tmf_err;
703 /* rport and tgt are allocated together, so tgt should be non-NULL */
704 tgt = (struct bnx2fc_rport *)&rp[1];
706 if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) {
707 printk(KERN_ERR PFX "device_reset: tgt not offloaded\n");
708 rc = FAILED;
709 goto tmf_err;
711 retry_tmf:
712 io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD);
713 if (!io_req) {
714 if (time_after(jiffies, start + HZ)) {
715 printk(KERN_ERR PFX "tmf: Failed TMF");
716 rc = FAILED;
717 goto tmf_err;
719 msleep(20);
720 goto retry_tmf;
722 /* Initialize rest of io_req fields */
723 io_req->sc_cmd = sc_cmd;
724 io_req->port = port;
725 io_req->tgt = tgt;
727 tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
729 rc = bnx2fc_init_mp_req(io_req);
730 if (rc == FAILED) {
731 printk(KERN_ERR PFX "Task mgmt MP request init failed\n");
732 spin_lock_bh(&tgt->tgt_lock);
733 kref_put(&io_req->refcount, bnx2fc_cmd_release);
734 spin_unlock_bh(&tgt->tgt_lock);
735 goto tmf_err;
738 /* Set TM flags */
739 io_req->io_req_flags = 0;
740 tm_req->tm_flags = tm_flags;
742 /* Fill FCP_CMND */
743 bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf);
744 fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf;
745 memset(fcp_cmnd->fc_cdb, 0, sc_cmd->cmd_len);
746 fcp_cmnd->fc_dl = 0;
748 /* Fill FC header */
749 fc_hdr = &(tm_req->req_fc_hdr);
750 sid = tgt->sid;
751 did = rport->port_id;
752 __fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid,
753 FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
754 FC_FC_SEQ_INIT, 0);
755 /* Obtain exchange id */
756 xid = io_req->xid;
758 BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid);
759 task_idx = xid/BNX2FC_TASKS_PER_PAGE;
760 index = xid % BNX2FC_TASKS_PER_PAGE;
762 /* Initialize task context for this IO request */
763 task_page = (struct fcoe_task_ctx_entry *)
764 interface->hba->task_ctx[task_idx];
765 task = &(task_page[index]);
766 bnx2fc_init_mp_task(io_req, task);
768 sc_cmd->SCp.ptr = (char *)io_req;
770 /* Obtain free SQ entry */
771 spin_lock_bh(&tgt->tgt_lock);
772 bnx2fc_add_2_sq(tgt, xid);
774 /* Enqueue the io_req to active_tm_queue */
775 io_req->on_tmf_queue = 1;
776 list_add_tail(&io_req->link, &tgt->active_tm_queue);
778 init_completion(&io_req->abts_done);
779 io_req->wait_for_abts_comp = 1;
781 /* Ring doorbell */
782 bnx2fc_ring_doorbell(tgt);
783 spin_unlock_bh(&tgt->tgt_lock);
785 rc = wait_for_completion_timeout(&io_req->abts_done,
786 interface->tm_timeout * HZ);
787 spin_lock_bh(&tgt->tgt_lock);
789 io_req->wait_for_abts_comp = 0;
790 if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags))) {
791 set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags);
792 if (io_req->on_tmf_queue) {
793 list_del_init(&io_req->link);
794 io_req->on_tmf_queue = 0;
796 io_req->wait_for_cleanup_comp = 1;
797 init_completion(&io_req->cleanup_done);
798 bnx2fc_initiate_cleanup(io_req);
799 spin_unlock_bh(&tgt->tgt_lock);
800 rc = wait_for_completion_timeout(&io_req->cleanup_done,
801 BNX2FC_FW_TIMEOUT);
802 spin_lock_bh(&tgt->tgt_lock);
803 io_req->wait_for_cleanup_comp = 0;
804 if (!rc)
805 kref_put(&io_req->refcount, bnx2fc_cmd_release);
808 spin_unlock_bh(&tgt->tgt_lock);
810 if (!rc) {
811 BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n");
812 rc = FAILED;
813 } else {
814 BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n");
815 rc = SUCCESS;
817 tmf_err:
818 return rc;
821 int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req)
823 struct fc_lport *lport;
824 struct bnx2fc_rport *tgt = io_req->tgt;
825 struct fc_rport *rport = tgt->rport;
826 struct fc_rport_priv *rdata = tgt->rdata;
827 struct bnx2fc_interface *interface;
828 struct fcoe_port *port;
829 struct bnx2fc_cmd *abts_io_req;
830 struct fcoe_task_ctx_entry *task;
831 struct fcoe_task_ctx_entry *task_page;
832 struct fc_frame_header *fc_hdr;
833 struct bnx2fc_mp_req *abts_req;
834 int task_idx, index;
835 u32 sid, did;
836 u16 xid;
837 int rc = SUCCESS;
838 u32 r_a_tov = rdata->r_a_tov;
840 /* called with tgt_lock held */
841 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n");
843 port = io_req->port;
844 interface = port->priv;
845 lport = port->lport;
847 if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
848 printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n");
849 rc = FAILED;
850 goto abts_err;
853 if (rport == NULL) {
854 printk(KERN_ERR PFX "initiate_abts: rport is NULL\n");
855 rc = FAILED;
856 goto abts_err;
859 if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
860 printk(KERN_ERR PFX "initiate_abts: link is not ready\n");
861 rc = FAILED;
862 goto abts_err;
865 abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS);
866 if (!abts_io_req) {
867 printk(KERN_ERR PFX "abts: couldn't allocate cmd\n");
868 rc = FAILED;
869 goto abts_err;
872 /* Initialize rest of io_req fields */
873 abts_io_req->sc_cmd = NULL;
874 abts_io_req->port = port;
875 abts_io_req->tgt = tgt;
876 abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */
878 abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req);
879 memset(abts_req, 0, sizeof(struct bnx2fc_mp_req));
881 /* Fill FC header */
882 fc_hdr = &(abts_req->req_fc_hdr);
884 /* Obtain oxid and rxid for the original exchange to be aborted */
885 fc_hdr->fh_ox_id = htons(io_req->xid);
886 fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id);
888 sid = tgt->sid;
889 did = rport->port_id;
891 __fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid,
892 FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
893 FC_FC_SEQ_INIT, 0);
895 xid = abts_io_req->xid;
896 BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n");
897 task_idx = xid/BNX2FC_TASKS_PER_PAGE;
898 index = xid % BNX2FC_TASKS_PER_PAGE;
900 /* Initialize task context for this IO request */
901 task_page = (struct fcoe_task_ctx_entry *)
902 interface->hba->task_ctx[task_idx];
903 task = &(task_page[index]);
904 bnx2fc_init_mp_task(abts_io_req, task);
907 * ABTS task is a temporary task that will be cleaned up
908 * irrespective of ABTS response. We need to start the timer
909 * for the original exchange, as the CQE is posted for the original
910 * IO request.
912 * Timer for ABTS is started only when it is originated by a
913 * TM request. For the ABTS issued as part of ULP timeout,
914 * scsi-ml maintains the timers.
917 /* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/
918 bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov);
920 /* Obtain free SQ entry */
921 bnx2fc_add_2_sq(tgt, xid);
923 /* Ring doorbell */
924 bnx2fc_ring_doorbell(tgt);
926 abts_err:
927 return rc;
930 int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset,
931 enum fc_rctl r_ctl)
933 struct bnx2fc_rport *tgt = orig_io_req->tgt;
934 struct bnx2fc_interface *interface;
935 struct fcoe_port *port;
936 struct bnx2fc_cmd *seq_clnp_req;
937 struct fcoe_task_ctx_entry *task;
938 struct fcoe_task_ctx_entry *task_page;
939 struct bnx2fc_els_cb_arg *cb_arg = NULL;
940 int task_idx, index;
941 u16 xid;
942 int rc = 0;
944 BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n",
945 orig_io_req->xid);
946 kref_get(&orig_io_req->refcount);
948 port = orig_io_req->port;
949 interface = port->priv;
951 cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC);
952 if (!cb_arg) {
953 printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n");
954 rc = -ENOMEM;
955 goto cleanup_err;
958 seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP);
959 if (!seq_clnp_req) {
960 printk(KERN_ERR PFX "cleanup: couldn't allocate cmd\n");
961 rc = -ENOMEM;
962 kfree(cb_arg);
963 goto cleanup_err;
965 /* Initialize rest of io_req fields */
966 seq_clnp_req->sc_cmd = NULL;
967 seq_clnp_req->port = port;
968 seq_clnp_req->tgt = tgt;
969 seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */
971 xid = seq_clnp_req->xid;
973 task_idx = xid/BNX2FC_TASKS_PER_PAGE;
974 index = xid % BNX2FC_TASKS_PER_PAGE;
976 /* Initialize task context for this IO request */
977 task_page = (struct fcoe_task_ctx_entry *)
978 interface->hba->task_ctx[task_idx];
979 task = &(task_page[index]);
980 cb_arg->aborted_io_req = orig_io_req;
981 cb_arg->io_req = seq_clnp_req;
982 cb_arg->r_ctl = r_ctl;
983 cb_arg->offset = offset;
984 seq_clnp_req->cb_arg = cb_arg;
986 printk(KERN_ERR PFX "call init_seq_cleanup_task\n");
987 bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset);
989 /* Obtain free SQ entry */
990 bnx2fc_add_2_sq(tgt, xid);
992 /* Ring doorbell */
993 bnx2fc_ring_doorbell(tgt);
994 cleanup_err:
995 return rc;
998 int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req)
1000 struct bnx2fc_rport *tgt = io_req->tgt;
1001 struct bnx2fc_interface *interface;
1002 struct fcoe_port *port;
1003 struct bnx2fc_cmd *cleanup_io_req;
1004 struct fcoe_task_ctx_entry *task;
1005 struct fcoe_task_ctx_entry *task_page;
1006 int task_idx, index;
1007 u16 xid, orig_xid;
1008 int rc = 0;
1010 /* ASSUMPTION: called with tgt_lock held */
1011 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n");
1013 port = io_req->port;
1014 interface = port->priv;
1016 cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP);
1017 if (!cleanup_io_req) {
1018 printk(KERN_ERR PFX "cleanup: couldn't allocate cmd\n");
1019 rc = -1;
1020 goto cleanup_err;
1023 /* Initialize rest of io_req fields */
1024 cleanup_io_req->sc_cmd = NULL;
1025 cleanup_io_req->port = port;
1026 cleanup_io_req->tgt = tgt;
1027 cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */
1029 xid = cleanup_io_req->xid;
1031 task_idx = xid/BNX2FC_TASKS_PER_PAGE;
1032 index = xid % BNX2FC_TASKS_PER_PAGE;
1034 /* Initialize task context for this IO request */
1035 task_page = (struct fcoe_task_ctx_entry *)
1036 interface->hba->task_ctx[task_idx];
1037 task = &(task_page[index]);
1038 orig_xid = io_req->xid;
1040 BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid);
1042 bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid);
1044 /* Obtain free SQ entry */
1045 bnx2fc_add_2_sq(tgt, xid);
1047 /* Set flag that cleanup request is pending with the firmware */
1048 set_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags);
1050 /* Ring doorbell */
1051 bnx2fc_ring_doorbell(tgt);
1053 cleanup_err:
1054 return rc;
1058 * bnx2fc_eh_target_reset: Reset a target
1060 * @sc_cmd: SCSI command
1062 * Set from SCSI host template to send task mgmt command to the target
1063 * and wait for the response
1065 int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd)
1067 return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
1071 * bnx2fc_eh_device_reset - Reset a single LUN
1073 * @sc_cmd: SCSI command
1075 * Set from SCSI host template to send task mgmt command to the target
1076 * and wait for the response
1078 int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd)
1080 return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
1083 static int bnx2fc_abts_cleanup(struct bnx2fc_cmd *io_req)
1084 __must_hold(&tgt->tgt_lock)
1086 struct bnx2fc_rport *tgt = io_req->tgt;
1087 unsigned int time_left;
1089 init_completion(&io_req->cleanup_done);
1090 io_req->wait_for_cleanup_comp = 1;
1091 bnx2fc_initiate_cleanup(io_req);
1093 spin_unlock_bh(&tgt->tgt_lock);
1096 * Can't wait forever on cleanup response lest we let the SCSI error
1097 * handler wait forever
1099 time_left = wait_for_completion_timeout(&io_req->cleanup_done,
1100 BNX2FC_FW_TIMEOUT);
1101 if (!time_left) {
1102 BNX2FC_IO_DBG(io_req, "%s(): Wait for cleanup timed out.\n",
1103 __func__);
1106 * Put the extra reference to the SCSI command since it would
1107 * not have been returned in this case.
1109 kref_put(&io_req->refcount, bnx2fc_cmd_release);
1112 spin_lock_bh(&tgt->tgt_lock);
1113 io_req->wait_for_cleanup_comp = 0;
1114 return SUCCESS;
1118 * bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding
1119 * SCSI command
1121 * @sc_cmd: SCSI_ML command pointer
1123 * SCSI abort request handler
1125 int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd)
1127 struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1128 struct fc_rport_libfc_priv *rp = rport->dd_data;
1129 struct bnx2fc_cmd *io_req;
1130 struct fc_lport *lport;
1131 struct bnx2fc_rport *tgt;
1132 int rc;
1133 unsigned int time_left;
1135 rc = fc_block_scsi_eh(sc_cmd);
1136 if (rc)
1137 return rc;
1139 lport = shost_priv(sc_cmd->device->host);
1140 if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1141 printk(KERN_ERR PFX "eh_abort: link not ready\n");
1142 return FAILED;
1145 tgt = (struct bnx2fc_rport *)&rp[1];
1147 BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n");
1149 spin_lock_bh(&tgt->tgt_lock);
1150 io_req = (struct bnx2fc_cmd *)sc_cmd->SCp.ptr;
1151 if (!io_req) {
1152 /* Command might have just completed */
1153 printk(KERN_ERR PFX "eh_abort: io_req is NULL\n");
1154 spin_unlock_bh(&tgt->tgt_lock);
1155 return SUCCESS;
1157 BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n",
1158 kref_read(&io_req->refcount));
1160 /* Hold IO request across abort processing */
1161 kref_get(&io_req->refcount);
1163 BUG_ON(tgt != io_req->tgt);
1165 /* Remove the io_req from the active_q. */
1167 * Task Mgmt functions (LUN RESET & TGT RESET) will not
1168 * issue an ABTS on this particular IO req, as the
1169 * io_req is no longer in the active_q.
1171 if (tgt->flush_in_prog) {
1172 printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1173 "flush in progress\n", io_req->xid);
1174 kref_put(&io_req->refcount, bnx2fc_cmd_release);
1175 spin_unlock_bh(&tgt->tgt_lock);
1176 return SUCCESS;
1179 if (io_req->on_active_queue == 0) {
1180 printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1181 "not on active_q\n", io_req->xid);
1183 * The IO is still with the FW.
1184 * Return failure and let SCSI-ml retry eh_abort.
1186 spin_unlock_bh(&tgt->tgt_lock);
1187 return FAILED;
1191 * Only eh_abort processing will remove the IO from
1192 * active_cmd_q before processing the request. this is
1193 * done to avoid race conditions between IOs aborted
1194 * as part of task management completion and eh_abort
1195 * processing
1197 list_del_init(&io_req->link);
1198 io_req->on_active_queue = 0;
1199 /* Move IO req to retire queue */
1200 list_add_tail(&io_req->link, &tgt->io_retire_queue);
1202 init_completion(&io_req->abts_done);
1203 init_completion(&io_req->cleanup_done);
1205 if (test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
1206 printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1207 "already in abts processing\n", io_req->xid);
1208 if (cancel_delayed_work(&io_req->timeout_work))
1209 kref_put(&io_req->refcount,
1210 bnx2fc_cmd_release); /* drop timer hold */
1212 * We don't want to hold off the upper layer timer so simply
1213 * cleanup the command and return that I/O was successfully
1214 * aborted.
1216 rc = bnx2fc_abts_cleanup(io_req);
1217 /* This only occurs when an task abort was requested while ABTS
1218 is in progress. Setting the IO_CLEANUP flag will skip the
1219 RRQ process in the case when the fw generated SCSI_CMD cmpl
1220 was a result from the ABTS request rather than the CLEANUP
1221 request */
1222 set_bit(BNX2FC_FLAG_IO_CLEANUP, &io_req->req_flags);
1223 goto done;
1226 /* Cancel the current timer running on this io_req */
1227 if (cancel_delayed_work(&io_req->timeout_work))
1228 kref_put(&io_req->refcount,
1229 bnx2fc_cmd_release); /* drop timer hold */
1230 set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags);
1231 io_req->wait_for_abts_comp = 1;
1232 rc = bnx2fc_initiate_abts(io_req);
1233 if (rc == FAILED) {
1234 io_req->wait_for_cleanup_comp = 1;
1235 bnx2fc_initiate_cleanup(io_req);
1236 spin_unlock_bh(&tgt->tgt_lock);
1237 wait_for_completion(&io_req->cleanup_done);
1238 spin_lock_bh(&tgt->tgt_lock);
1239 io_req->wait_for_cleanup_comp = 0;
1240 goto done;
1242 spin_unlock_bh(&tgt->tgt_lock);
1244 /* Wait 2 * RA_TOV + 1 to be sure timeout function hasn't fired */
1245 time_left = wait_for_completion_timeout(&io_req->abts_done,
1246 msecs_to_jiffies(2 * rp->r_a_tov + 1));
1247 if (time_left)
1248 BNX2FC_IO_DBG(io_req,
1249 "Timed out in eh_abort waiting for abts_done");
1251 spin_lock_bh(&tgt->tgt_lock);
1252 io_req->wait_for_abts_comp = 0;
1253 if (test_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1254 BNX2FC_IO_DBG(io_req, "IO completed in a different context\n");
1255 rc = SUCCESS;
1256 } else if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1257 &io_req->req_flags))) {
1258 /* Let the scsi-ml try to recover this command */
1259 printk(KERN_ERR PFX "abort failed, xid = 0x%x\n",
1260 io_req->xid);
1262 * Cleanup firmware residuals before returning control back
1263 * to SCSI ML.
1265 rc = bnx2fc_abts_cleanup(io_req);
1266 goto done;
1267 } else {
1269 * We come here even when there was a race condition
1270 * between timeout and abts completion, and abts
1271 * completion happens just in time.
1273 BNX2FC_IO_DBG(io_req, "abort succeeded\n");
1274 rc = SUCCESS;
1275 bnx2fc_scsi_done(io_req, DID_ABORT);
1276 kref_put(&io_req->refcount, bnx2fc_cmd_release);
1278 done:
1279 /* release the reference taken in eh_abort */
1280 kref_put(&io_req->refcount, bnx2fc_cmd_release);
1281 spin_unlock_bh(&tgt->tgt_lock);
1282 return rc;
1285 void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req,
1286 struct fcoe_task_ctx_entry *task,
1287 u8 rx_state)
1289 struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg;
1290 struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req;
1291 u32 offset = cb_arg->offset;
1292 enum fc_rctl r_ctl = cb_arg->r_ctl;
1293 int rc = 0;
1294 struct bnx2fc_rport *tgt = orig_io_req->tgt;
1296 BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x"
1297 "cmd_type = %d\n",
1298 seq_clnp_req->xid, seq_clnp_req->cmd_type);
1300 if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) {
1301 printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n",
1302 seq_clnp_req->xid);
1303 goto free_cb_arg;
1306 spin_unlock_bh(&tgt->tgt_lock);
1307 rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl);
1308 spin_lock_bh(&tgt->tgt_lock);
1310 if (rc)
1311 printk(KERN_ERR PFX "clnup_compl: Unable to send SRR"
1312 " IO will abort\n");
1313 seq_clnp_req->cb_arg = NULL;
1314 kref_put(&orig_io_req->refcount, bnx2fc_cmd_release);
1315 free_cb_arg:
1316 kfree(cb_arg);
1317 return;
1320 void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req,
1321 struct fcoe_task_ctx_entry *task,
1322 u8 num_rq)
1324 BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl "
1325 "refcnt = %d, cmd_type = %d\n",
1326 kref_read(&io_req->refcount), io_req->cmd_type);
1328 * Test whether there is a cleanup request pending. If not just
1329 * exit.
1331 if (!test_and_clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ,
1332 &io_req->req_flags))
1333 return;
1335 * If we receive a cleanup completion for this request then the
1336 * firmware will not give us an abort completion for this request
1337 * so clear any ABTS pending flags.
1339 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags) &&
1340 !test_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) {
1341 set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags);
1342 if (io_req->wait_for_abts_comp)
1343 complete(&io_req->abts_done);
1346 bnx2fc_scsi_done(io_req, DID_ERROR);
1347 kref_put(&io_req->refcount, bnx2fc_cmd_release);
1348 if (io_req->wait_for_cleanup_comp)
1349 complete(&io_req->cleanup_done);
1352 void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req,
1353 struct fcoe_task_ctx_entry *task,
1354 u8 num_rq)
1356 u32 r_ctl;
1357 u32 r_a_tov = FC_DEF_R_A_TOV;
1358 u8 issue_rrq = 0;
1359 struct bnx2fc_rport *tgt = io_req->tgt;
1361 BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x"
1362 "refcnt = %d, cmd_type = %d\n",
1363 io_req->xid,
1364 kref_read(&io_req->refcount), io_req->cmd_type);
1366 if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1367 &io_req->req_flags)) {
1368 BNX2FC_IO_DBG(io_req, "Timer context finished processing"
1369 " this io\n");
1370 return;
1374 * If we receive an ABTS completion here then we will not receive
1375 * a cleanup completion so clear any cleanup pending flags.
1377 if (test_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags)) {
1378 clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags);
1379 if (io_req->wait_for_cleanup_comp)
1380 complete(&io_req->cleanup_done);
1383 /* Do not issue RRQ as this IO is already cleanedup */
1384 if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP,
1385 &io_req->req_flags))
1386 goto io_compl;
1389 * For ABTS issued due to SCSI eh_abort_handler, timeout
1390 * values are maintained by scsi-ml itself. Cancel timeout
1391 * in case ABTS issued as part of task management function
1392 * or due to FW error.
1394 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))
1395 if (cancel_delayed_work(&io_req->timeout_work))
1396 kref_put(&io_req->refcount,
1397 bnx2fc_cmd_release); /* drop timer hold */
1399 r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl;
1401 switch (r_ctl) {
1402 case FC_RCTL_BA_ACC:
1404 * Dont release this cmd yet. It will be relesed
1405 * after we get RRQ response
1407 BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n");
1408 issue_rrq = 1;
1409 break;
1411 case FC_RCTL_BA_RJT:
1412 BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n");
1413 break;
1414 default:
1415 printk(KERN_ERR PFX "Unknown ABTS response\n");
1416 break;
1419 if (issue_rrq) {
1420 BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n");
1421 set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags);
1423 set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
1424 bnx2fc_cmd_timer_set(io_req, r_a_tov);
1426 io_compl:
1427 if (io_req->wait_for_abts_comp) {
1428 if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1429 &io_req->req_flags))
1430 complete(&io_req->abts_done);
1431 } else {
1433 * We end up here when ABTS is issued as
1434 * in asynchronous context, i.e., as part
1435 * of task management completion, or
1436 * when FW error is received or when the
1437 * ABTS is issued when the IO is timed
1438 * out.
1441 if (io_req->on_active_queue) {
1442 list_del_init(&io_req->link);
1443 io_req->on_active_queue = 0;
1444 /* Move IO req to retire queue */
1445 list_add_tail(&io_req->link, &tgt->io_retire_queue);
1447 bnx2fc_scsi_done(io_req, DID_ERROR);
1448 kref_put(&io_req->refcount, bnx2fc_cmd_release);
1452 static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req)
1454 struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1455 struct bnx2fc_rport *tgt = io_req->tgt;
1456 struct bnx2fc_cmd *cmd, *tmp;
1457 u64 tm_lun = sc_cmd->device->lun;
1458 u64 lun;
1459 int rc = 0;
1461 /* called with tgt_lock held */
1462 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n");
1464 * Walk thru the active_ios queue and ABORT the IO
1465 * that matches with the LUN that was reset
1467 list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1468 BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n");
1469 lun = cmd->sc_cmd->device->lun;
1470 if (lun == tm_lun) {
1471 /* Initiate ABTS on this cmd */
1472 if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1473 &cmd->req_flags)) {
1474 /* cancel the IO timeout */
1475 if (cancel_delayed_work(&io_req->timeout_work))
1476 kref_put(&io_req->refcount,
1477 bnx2fc_cmd_release);
1478 /* timer hold */
1479 rc = bnx2fc_initiate_abts(cmd);
1480 /* abts shouldn't fail in this context */
1481 WARN_ON(rc != SUCCESS);
1482 } else
1483 printk(KERN_ERR PFX "lun_rst: abts already in"
1484 " progress for this IO 0x%x\n",
1485 cmd->xid);
1490 static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req)
1492 struct bnx2fc_rport *tgt = io_req->tgt;
1493 struct bnx2fc_cmd *cmd, *tmp;
1494 int rc = 0;
1496 /* called with tgt_lock held */
1497 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n");
1499 * Walk thru the active_ios queue and ABORT the IO
1500 * that matches with the LUN that was reset
1502 list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1503 BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n");
1504 /* Initiate ABTS */
1505 if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1506 &cmd->req_flags)) {
1507 /* cancel the IO timeout */
1508 if (cancel_delayed_work(&io_req->timeout_work))
1509 kref_put(&io_req->refcount,
1510 bnx2fc_cmd_release); /* timer hold */
1511 rc = bnx2fc_initiate_abts(cmd);
1512 /* abts shouldn't fail in this context */
1513 WARN_ON(rc != SUCCESS);
1515 } else
1516 printk(KERN_ERR PFX "tgt_rst: abts already in progress"
1517 " for this IO 0x%x\n", cmd->xid);
1521 void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req,
1522 struct fcoe_task_ctx_entry *task, u8 num_rq,
1523 unsigned char *rq_data)
1525 struct bnx2fc_mp_req *tm_req;
1526 struct fc_frame_header *fc_hdr;
1527 struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1528 u64 *hdr;
1529 u64 *temp_hdr;
1530 void *rsp_buf;
1532 /* Called with tgt_lock held */
1533 BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n");
1535 if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags)))
1536 set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags);
1537 else {
1538 /* TM has already timed out and we got
1539 * delayed completion. Ignore completion
1540 * processing.
1542 return;
1545 tm_req = &(io_req->mp_req);
1546 fc_hdr = &(tm_req->resp_fc_hdr);
1547 hdr = (u64 *)fc_hdr;
1548 temp_hdr = (u64 *)
1549 &task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr;
1550 hdr[0] = cpu_to_be64(temp_hdr[0]);
1551 hdr[1] = cpu_to_be64(temp_hdr[1]);
1552 hdr[2] = cpu_to_be64(temp_hdr[2]);
1554 tm_req->resp_len =
1555 task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len;
1557 rsp_buf = tm_req->resp_buf;
1559 if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) {
1560 bnx2fc_parse_fcp_rsp(io_req,
1561 (struct fcoe_fcp_rsp_payload *)
1562 rsp_buf, num_rq, rq_data);
1563 if (io_req->fcp_rsp_code == 0) {
1564 /* TM successful */
1565 if (tm_req->tm_flags & FCP_TMF_LUN_RESET)
1566 bnx2fc_lun_reset_cmpl(io_req);
1567 else if (tm_req->tm_flags & FCP_TMF_TGT_RESET)
1568 bnx2fc_tgt_reset_cmpl(io_req);
1570 } else {
1571 printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n",
1572 fc_hdr->fh_r_ctl);
1574 if (!sc_cmd->SCp.ptr) {
1575 printk(KERN_ERR PFX "tm_compl: SCp.ptr is NULL\n");
1576 return;
1578 switch (io_req->fcp_status) {
1579 case FC_GOOD:
1580 if (io_req->cdb_status == 0) {
1581 /* Good IO completion */
1582 sc_cmd->result = DID_OK << 16;
1583 } else {
1584 /* Transport status is good, SCSI status not good */
1585 sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1587 if (io_req->fcp_resid)
1588 scsi_set_resid(sc_cmd, io_req->fcp_resid);
1589 break;
1591 default:
1592 BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n",
1593 io_req->fcp_status);
1594 break;
1597 sc_cmd = io_req->sc_cmd;
1598 io_req->sc_cmd = NULL;
1600 /* check if the io_req exists in tgt's tmf_q */
1601 if (io_req->on_tmf_queue) {
1603 list_del_init(&io_req->link);
1604 io_req->on_tmf_queue = 0;
1605 } else {
1607 printk(KERN_ERR PFX "Command not on active_cmd_queue!\n");
1608 return;
1611 sc_cmd->SCp.ptr = NULL;
1612 sc_cmd->scsi_done(sc_cmd);
1614 kref_put(&io_req->refcount, bnx2fc_cmd_release);
1615 if (io_req->wait_for_abts_comp) {
1616 BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n");
1617 complete(&io_req->abts_done);
1621 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
1622 int bd_index)
1624 struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1625 int frag_size, sg_frags;
1627 sg_frags = 0;
1628 while (sg_len) {
1629 if (sg_len >= BNX2FC_BD_SPLIT_SZ)
1630 frag_size = BNX2FC_BD_SPLIT_SZ;
1631 else
1632 frag_size = sg_len;
1633 bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff;
1634 bd[bd_index + sg_frags].buf_addr_hi = addr >> 32;
1635 bd[bd_index + sg_frags].buf_len = (u16)frag_size;
1636 bd[bd_index + sg_frags].flags = 0;
1638 addr += (u64) frag_size;
1639 sg_frags++;
1640 sg_len -= frag_size;
1642 return sg_frags;
1646 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req)
1648 struct bnx2fc_interface *interface = io_req->port->priv;
1649 struct bnx2fc_hba *hba = interface->hba;
1650 struct scsi_cmnd *sc = io_req->sc_cmd;
1651 struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1652 struct scatterlist *sg;
1653 int byte_count = 0;
1654 int sg_count = 0;
1655 int bd_count = 0;
1656 int sg_frags;
1657 unsigned int sg_len;
1658 u64 addr;
1659 int i;
1661 WARN_ON(scsi_sg_count(sc) > BNX2FC_MAX_BDS_PER_CMD);
1663 * Use dma_map_sg directly to ensure we're using the correct
1664 * dev struct off of pcidev.
1666 sg_count = dma_map_sg(&hba->pcidev->dev, scsi_sglist(sc),
1667 scsi_sg_count(sc), sc->sc_data_direction);
1668 scsi_for_each_sg(sc, sg, sg_count, i) {
1669 sg_len = sg_dma_len(sg);
1670 addr = sg_dma_address(sg);
1671 if (sg_len > BNX2FC_MAX_BD_LEN) {
1672 sg_frags = bnx2fc_split_bd(io_req, addr, sg_len,
1673 bd_count);
1674 } else {
1676 sg_frags = 1;
1677 bd[bd_count].buf_addr_lo = addr & 0xffffffff;
1678 bd[bd_count].buf_addr_hi = addr >> 32;
1679 bd[bd_count].buf_len = (u16)sg_len;
1680 bd[bd_count].flags = 0;
1682 bd_count += sg_frags;
1683 byte_count += sg_len;
1685 if (byte_count != scsi_bufflen(sc))
1686 printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, "
1687 "task_id = 0x%x\n", byte_count, scsi_bufflen(sc),
1688 io_req->xid);
1689 return bd_count;
1692 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req)
1694 struct scsi_cmnd *sc = io_req->sc_cmd;
1695 struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1696 int bd_count;
1698 if (scsi_sg_count(sc)) {
1699 bd_count = bnx2fc_map_sg(io_req);
1700 if (bd_count == 0)
1701 return -ENOMEM;
1702 } else {
1703 bd_count = 0;
1704 bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0;
1705 bd[0].buf_len = bd[0].flags = 0;
1707 io_req->bd_tbl->bd_valid = bd_count;
1710 * Return the command to ML if BD count exceeds the max number
1711 * that can be handled by FW.
1713 if (bd_count > BNX2FC_FW_MAX_BDS_PER_CMD) {
1714 pr_err("bd_count = %d exceeded FW supported max BD(255), task_id = 0x%x\n",
1715 bd_count, io_req->xid);
1716 return -ENOMEM;
1719 return 0;
1722 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req)
1724 struct scsi_cmnd *sc = io_req->sc_cmd;
1725 struct bnx2fc_interface *interface = io_req->port->priv;
1726 struct bnx2fc_hba *hba = interface->hba;
1729 * Use dma_unmap_sg directly to ensure we're using the correct
1730 * dev struct off of pcidev.
1732 if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) {
1733 dma_unmap_sg(&hba->pcidev->dev, scsi_sglist(sc),
1734 scsi_sg_count(sc), sc->sc_data_direction);
1735 io_req->bd_tbl->bd_valid = 0;
1739 void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req,
1740 struct fcp_cmnd *fcp_cmnd)
1742 struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1744 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
1746 int_to_scsilun(sc_cmd->device->lun, &fcp_cmnd->fc_lun);
1748 fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
1749 memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
1751 fcp_cmnd->fc_cmdref = 0;
1752 fcp_cmnd->fc_pri_ta = 0;
1753 fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags;
1754 fcp_cmnd->fc_flags = io_req->io_req_flags;
1755 fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
1758 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
1759 struct fcoe_fcp_rsp_payload *fcp_rsp,
1760 u8 num_rq, unsigned char *rq_data)
1762 struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1763 u8 rsp_flags = fcp_rsp->fcp_flags.flags;
1764 u32 rq_buff_len = 0;
1765 int fcp_sns_len = 0;
1766 int fcp_rsp_len = 0;
1768 io_req->fcp_status = FC_GOOD;
1769 io_req->fcp_resid = 0;
1770 if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER |
1771 FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER))
1772 io_req->fcp_resid = fcp_rsp->fcp_resid;
1774 io_req->scsi_comp_flags = rsp_flags;
1775 CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status =
1776 fcp_rsp->scsi_status_code;
1778 /* Fetch fcp_rsp_info and fcp_sns_info if available */
1779 if (num_rq) {
1782 * We do not anticipate num_rq >1, as the linux defined
1783 * SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO
1784 * 256 bytes of single rq buffer is good enough to hold this.
1787 if (rsp_flags &
1788 FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) {
1789 fcp_rsp_len = rq_buff_len
1790 = fcp_rsp->fcp_rsp_len;
1793 if (rsp_flags &
1794 FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) {
1795 fcp_sns_len = fcp_rsp->fcp_sns_len;
1796 rq_buff_len += fcp_rsp->fcp_sns_len;
1799 io_req->fcp_rsp_len = fcp_rsp_len;
1800 io_req->fcp_sns_len = fcp_sns_len;
1802 if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) {
1803 /* Invalid sense sense length. */
1804 printk(KERN_ERR PFX "invalid sns length %d\n",
1805 rq_buff_len);
1806 /* reset rq_buff_len */
1807 rq_buff_len = num_rq * BNX2FC_RQ_BUF_SZ;
1810 /* fetch fcp_rsp_code */
1811 if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
1812 /* Only for task management function */
1813 io_req->fcp_rsp_code = rq_data[3];
1814 BNX2FC_IO_DBG(io_req, "fcp_rsp_code = %d\n",
1815 io_req->fcp_rsp_code);
1818 /* fetch sense data */
1819 rq_data += fcp_rsp_len;
1821 if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
1822 printk(KERN_ERR PFX "Truncating sense buffer\n");
1823 fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
1826 memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1827 if (fcp_sns_len)
1828 memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len);
1834 * bnx2fc_queuecommand - Queuecommand function of the scsi template
1836 * @host: The Scsi_Host the command was issued to
1837 * @sc_cmd: struct scsi_cmnd to be executed
1839 * This is the IO strategy routine, called by SCSI-ML
1841 int bnx2fc_queuecommand(struct Scsi_Host *host,
1842 struct scsi_cmnd *sc_cmd)
1844 struct fc_lport *lport = shost_priv(host);
1845 struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1846 struct fc_rport_libfc_priv *rp = rport->dd_data;
1847 struct bnx2fc_rport *tgt;
1848 struct bnx2fc_cmd *io_req;
1849 int rc = 0;
1850 int rval;
1852 rval = fc_remote_port_chkready(rport);
1853 if (rval) {
1854 sc_cmd->result = rval;
1855 sc_cmd->scsi_done(sc_cmd);
1856 return 0;
1859 if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1860 rc = SCSI_MLQUEUE_HOST_BUSY;
1861 goto exit_qcmd;
1864 /* rport and tgt are allocated together, so tgt should be non-NULL */
1865 tgt = (struct bnx2fc_rport *)&rp[1];
1867 if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
1869 * Session is not offloaded yet. Let SCSI-ml retry
1870 * the command.
1872 rc = SCSI_MLQUEUE_TARGET_BUSY;
1873 goto exit_qcmd;
1875 if (tgt->retry_delay_timestamp) {
1876 if (time_after(jiffies, tgt->retry_delay_timestamp)) {
1877 tgt->retry_delay_timestamp = 0;
1878 } else {
1879 /* If retry_delay timer is active, flow off the ML */
1880 rc = SCSI_MLQUEUE_TARGET_BUSY;
1881 goto exit_qcmd;
1885 spin_lock_bh(&tgt->tgt_lock);
1887 io_req = bnx2fc_cmd_alloc(tgt);
1888 if (!io_req) {
1889 rc = SCSI_MLQUEUE_HOST_BUSY;
1890 goto exit_qcmd_tgtlock;
1892 io_req->sc_cmd = sc_cmd;
1894 if (bnx2fc_post_io_req(tgt, io_req)) {
1895 printk(KERN_ERR PFX "Unable to post io_req\n");
1896 rc = SCSI_MLQUEUE_HOST_BUSY;
1897 goto exit_qcmd_tgtlock;
1900 exit_qcmd_tgtlock:
1901 spin_unlock_bh(&tgt->tgt_lock);
1902 exit_qcmd:
1903 return rc;
1906 void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req,
1907 struct fcoe_task_ctx_entry *task,
1908 u8 num_rq, unsigned char *rq_data)
1910 struct fcoe_fcp_rsp_payload *fcp_rsp;
1911 struct bnx2fc_rport *tgt = io_req->tgt;
1912 struct scsi_cmnd *sc_cmd;
1913 u16 scope = 0, qualifier = 0;
1915 /* scsi_cmd_cmpl is called with tgt lock held */
1917 if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1918 /* we will not receive ABTS response for this IO */
1919 BNX2FC_IO_DBG(io_req, "Timer context finished processing "
1920 "this scsi cmd\n");
1921 if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
1922 &io_req->req_flags)) {
1923 BNX2FC_IO_DBG(io_req,
1924 "Actual completion after cleanup request cleaning up\n");
1925 bnx2fc_process_cleanup_compl(io_req, task, num_rq);
1927 return;
1930 /* Cancel the timeout_work, as we received IO completion */
1931 if (cancel_delayed_work(&io_req->timeout_work))
1932 kref_put(&io_req->refcount,
1933 bnx2fc_cmd_release); /* drop timer hold */
1935 sc_cmd = io_req->sc_cmd;
1936 if (sc_cmd == NULL) {
1937 printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n");
1938 return;
1941 /* Fetch fcp_rsp from task context and perform cmd completion */
1942 fcp_rsp = (struct fcoe_fcp_rsp_payload *)
1943 &(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload);
1945 /* parse fcp_rsp and obtain sense data from RQ if available */
1946 bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq, rq_data);
1948 if (!sc_cmd->SCp.ptr) {
1949 printk(KERN_ERR PFX "SCp.ptr is NULL\n");
1950 return;
1953 if (io_req->on_active_queue) {
1954 list_del_init(&io_req->link);
1955 io_req->on_active_queue = 0;
1956 /* Move IO req to retire queue */
1957 list_add_tail(&io_req->link, &tgt->io_retire_queue);
1958 } else {
1959 /* This should not happen, but could have been pulled
1960 * by bnx2fc_flush_active_ios(), or during a race
1961 * between command abort and (late) completion.
1963 BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n");
1964 if (io_req->wait_for_abts_comp)
1965 if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1966 &io_req->req_flags))
1967 complete(&io_req->abts_done);
1970 bnx2fc_unmap_sg_list(io_req);
1971 io_req->sc_cmd = NULL;
1973 switch (io_req->fcp_status) {
1974 case FC_GOOD:
1975 if (io_req->cdb_status == 0) {
1976 /* Good IO completion */
1977 sc_cmd->result = DID_OK << 16;
1978 } else {
1979 /* Transport status is good, SCSI status not good */
1980 BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d"
1981 " fcp_resid = 0x%x\n",
1982 io_req->cdb_status, io_req->fcp_resid);
1983 sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1985 if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL ||
1986 io_req->cdb_status == SAM_STAT_BUSY) {
1987 /* Newer array firmware with BUSY or
1988 * TASK_SET_FULL may return a status that needs
1989 * the scope bits masked.
1990 * Or a huge delay timestamp up to 27 minutes
1991 * can result.
1993 if (fcp_rsp->retry_delay_timer) {
1994 /* Upper 2 bits */
1995 scope = fcp_rsp->retry_delay_timer
1996 & 0xC000;
1997 /* Lower 14 bits */
1998 qualifier = fcp_rsp->retry_delay_timer
1999 & 0x3FFF;
2001 if (scope > 0 && qualifier > 0 &&
2002 qualifier <= 0x3FEF) {
2003 /* Set the jiffies +
2004 * retry_delay_timer * 100ms
2005 * for the rport/tgt
2007 tgt->retry_delay_timestamp = jiffies +
2008 (qualifier * HZ / 10);
2012 if (io_req->fcp_resid)
2013 scsi_set_resid(sc_cmd, io_req->fcp_resid);
2014 break;
2015 default:
2016 printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n",
2017 io_req->fcp_status);
2018 break;
2020 sc_cmd->SCp.ptr = NULL;
2021 sc_cmd->scsi_done(sc_cmd);
2022 kref_put(&io_req->refcount, bnx2fc_cmd_release);
2025 int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
2026 struct bnx2fc_cmd *io_req)
2028 struct fcoe_task_ctx_entry *task;
2029 struct fcoe_task_ctx_entry *task_page;
2030 struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
2031 struct fcoe_port *port = tgt->port;
2032 struct bnx2fc_interface *interface = port->priv;
2033 struct bnx2fc_hba *hba = interface->hba;
2034 struct fc_lport *lport = port->lport;
2035 struct fc_stats *stats;
2036 int task_idx, index;
2037 u16 xid;
2039 /* bnx2fc_post_io_req() is called with the tgt_lock held */
2041 /* Initialize rest of io_req fields */
2042 io_req->cmd_type = BNX2FC_SCSI_CMD;
2043 io_req->port = port;
2044 io_req->tgt = tgt;
2045 io_req->data_xfer_len = scsi_bufflen(sc_cmd);
2046 sc_cmd->SCp.ptr = (char *)io_req;
2048 stats = per_cpu_ptr(lport->stats, get_cpu());
2049 if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
2050 io_req->io_req_flags = BNX2FC_READ;
2051 stats->InputRequests++;
2052 stats->InputBytes += io_req->data_xfer_len;
2053 } else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
2054 io_req->io_req_flags = BNX2FC_WRITE;
2055 stats->OutputRequests++;
2056 stats->OutputBytes += io_req->data_xfer_len;
2057 } else {
2058 io_req->io_req_flags = 0;
2059 stats->ControlRequests++;
2061 put_cpu();
2063 xid = io_req->xid;
2065 /* Build buffer descriptor list for firmware from sg list */
2066 if (bnx2fc_build_bd_list_from_sg(io_req)) {
2067 printk(KERN_ERR PFX "BD list creation failed\n");
2068 kref_put(&io_req->refcount, bnx2fc_cmd_release);
2069 return -EAGAIN;
2072 task_idx = xid / BNX2FC_TASKS_PER_PAGE;
2073 index = xid % BNX2FC_TASKS_PER_PAGE;
2075 /* Initialize task context for this IO request */
2076 task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
2077 task = &(task_page[index]);
2078 bnx2fc_init_task(io_req, task);
2080 if (tgt->flush_in_prog) {
2081 printk(KERN_ERR PFX "Flush in progress..Host Busy\n");
2082 kref_put(&io_req->refcount, bnx2fc_cmd_release);
2083 return -EAGAIN;
2086 if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
2087 printk(KERN_ERR PFX "Session not ready...post_io\n");
2088 kref_put(&io_req->refcount, bnx2fc_cmd_release);
2089 return -EAGAIN;
2092 /* Time IO req */
2093 if (tgt->io_timeout)
2094 bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT);
2095 /* Obtain free SQ entry */
2096 bnx2fc_add_2_sq(tgt, xid);
2098 /* Enqueue the io_req to active_cmd_queue */
2100 io_req->on_active_queue = 1;
2101 /* move io_req from pending_queue to active_queue */
2102 list_add_tail(&io_req->link, &tgt->active_cmd_queue);
2104 /* Ring doorbell */
2105 bnx2fc_ring_doorbell(tgt);
2106 return 0;