LiteX: driver for MMCM
[linux/fpc-iii.git] / mm / hugetlb.c
bloba2602969873dcf6c6bc989bcccb2136bc45348b0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
61 __initdata LIST_HEAD(huge_boot_pages);
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
73 DEFINE_SPINLOCK(hugetlb_lock);
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
87 bool free = (spool->count == 0) && (spool->used_hpages == 0);
89 spin_unlock(&spool->lock);
91 /* If no pages are used, and no other handles to the subpool
92 * remain, give up any reservations based on minimum size and
93 * free the subpool */
94 if (free) {
95 if (spool->min_hpages != -1)
96 hugetlb_acct_memory(spool->hstate,
97 -spool->min_hpages);
98 kfree(spool);
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 long min_hpages)
105 struct hugepage_subpool *spool;
107 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 if (!spool)
109 return NULL;
111 spin_lock_init(&spool->lock);
112 spool->count = 1;
113 spool->max_hpages = max_hpages;
114 spool->hstate = h;
115 spool->min_hpages = min_hpages;
117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 kfree(spool);
119 return NULL;
121 spool->rsv_hpages = min_hpages;
123 return spool;
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
128 spin_lock(&spool->lock);
129 BUG_ON(!spool->count);
130 spool->count--;
131 unlock_or_release_subpool(spool);
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
137 * request. Otherwise, return the number of pages by which the
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
140 * a subpool minimum size must be maintained.
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 long delta)
145 long ret = delta;
147 if (!spool)
148 return ret;
150 spin_lock(&spool->lock);
152 if (spool->max_hpages != -1) { /* maximum size accounting */
153 if ((spool->used_hpages + delta) <= spool->max_hpages)
154 spool->used_hpages += delta;
155 else {
156 ret = -ENOMEM;
157 goto unlock_ret;
161 /* minimum size accounting */
162 if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 if (delta > spool->rsv_hpages) {
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
168 ret = delta - spool->rsv_hpages;
169 spool->rsv_hpages = 0;
170 } else {
171 ret = 0; /* reserves already accounted for */
172 spool->rsv_hpages -= delta;
176 unlock_ret:
177 spin_unlock(&spool->lock);
178 return ret;
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 long delta)
190 long ret = delta;
192 if (!spool)
193 return delta;
195 spin_lock(&spool->lock);
197 if (spool->max_hpages != -1) /* maximum size accounting */
198 spool->used_hpages -= delta;
200 /* minimum size accounting */
201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
216 unlock_or_release_subpool(spool);
218 return ret;
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
223 return HUGETLBFS_SB(inode->i_sb)->spool;
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
228 return subpool_inode(file_inode(vma->vm_file));
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232 * it for use.
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
237 struct file_region *nrg = NULL;
239 VM_BUG_ON(resv->region_cache_count <= 0);
241 resv->region_cache_count--;
242 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 list_del(&nrg->link);
245 nrg->from = from;
246 nrg->to = to;
248 return nrg;
251 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
252 struct file_region *rg)
254 #ifdef CONFIG_CGROUP_HUGETLB
255 nrg->reservation_counter = rg->reservation_counter;
256 nrg->css = rg->css;
257 if (rg->css)
258 css_get(rg->css);
259 #endif
262 /* Helper that records hugetlb_cgroup uncharge info. */
263 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
264 struct hstate *h,
265 struct resv_map *resv,
266 struct file_region *nrg)
268 #ifdef CONFIG_CGROUP_HUGETLB
269 if (h_cg) {
270 nrg->reservation_counter =
271 &h_cg->rsvd_hugepage[hstate_index(h)];
272 nrg->css = &h_cg->css;
273 if (!resv->pages_per_hpage)
274 resv->pages_per_hpage = pages_per_huge_page(h);
275 /* pages_per_hpage should be the same for all entries in
276 * a resv_map.
278 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
279 } else {
280 nrg->reservation_counter = NULL;
281 nrg->css = NULL;
283 #endif
286 static bool has_same_uncharge_info(struct file_region *rg,
287 struct file_region *org)
289 #ifdef CONFIG_CGROUP_HUGETLB
290 return rg && org &&
291 rg->reservation_counter == org->reservation_counter &&
292 rg->css == org->css;
294 #else
295 return true;
296 #endif
299 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
301 struct file_region *nrg = NULL, *prg = NULL;
303 prg = list_prev_entry(rg, link);
304 if (&prg->link != &resv->regions && prg->to == rg->from &&
305 has_same_uncharge_info(prg, rg)) {
306 prg->to = rg->to;
308 list_del(&rg->link);
309 kfree(rg);
311 rg = prg;
314 nrg = list_next_entry(rg, link);
315 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
316 has_same_uncharge_info(nrg, rg)) {
317 nrg->from = rg->from;
319 list_del(&rg->link);
320 kfree(rg);
325 * Must be called with resv->lock held.
327 * Calling this with regions_needed != NULL will count the number of pages
328 * to be added but will not modify the linked list. And regions_needed will
329 * indicate the number of file_regions needed in the cache to carry out to add
330 * the regions for this range.
332 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
333 struct hugetlb_cgroup *h_cg,
334 struct hstate *h, long *regions_needed)
336 long add = 0;
337 struct list_head *head = &resv->regions;
338 long last_accounted_offset = f;
339 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
341 if (regions_needed)
342 *regions_needed = 0;
344 /* In this loop, we essentially handle an entry for the range
345 * [last_accounted_offset, rg->from), at every iteration, with some
346 * bounds checking.
348 list_for_each_entry_safe(rg, trg, head, link) {
349 /* Skip irrelevant regions that start before our range. */
350 if (rg->from < f) {
351 /* If this region ends after the last accounted offset,
352 * then we need to update last_accounted_offset.
354 if (rg->to > last_accounted_offset)
355 last_accounted_offset = rg->to;
356 continue;
359 /* When we find a region that starts beyond our range, we've
360 * finished.
362 if (rg->from > t)
363 break;
365 /* Add an entry for last_accounted_offset -> rg->from, and
366 * update last_accounted_offset.
368 if (rg->from > last_accounted_offset) {
369 add += rg->from - last_accounted_offset;
370 if (!regions_needed) {
371 nrg = get_file_region_entry_from_cache(
372 resv, last_accounted_offset, rg->from);
373 record_hugetlb_cgroup_uncharge_info(h_cg, h,
374 resv, nrg);
375 list_add(&nrg->link, rg->link.prev);
376 coalesce_file_region(resv, nrg);
377 } else
378 *regions_needed += 1;
381 last_accounted_offset = rg->to;
384 /* Handle the case where our range extends beyond
385 * last_accounted_offset.
387 if (last_accounted_offset < t) {
388 add += t - last_accounted_offset;
389 if (!regions_needed) {
390 nrg = get_file_region_entry_from_cache(
391 resv, last_accounted_offset, t);
392 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
393 list_add(&nrg->link, rg->link.prev);
394 coalesce_file_region(resv, nrg);
395 } else
396 *regions_needed += 1;
399 VM_BUG_ON(add < 0);
400 return add;
403 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
405 static int allocate_file_region_entries(struct resv_map *resv,
406 int regions_needed)
407 __must_hold(&resv->lock)
409 struct list_head allocated_regions;
410 int to_allocate = 0, i = 0;
411 struct file_region *trg = NULL, *rg = NULL;
413 VM_BUG_ON(regions_needed < 0);
415 INIT_LIST_HEAD(&allocated_regions);
418 * Check for sufficient descriptors in the cache to accommodate
419 * the number of in progress add operations plus regions_needed.
421 * This is a while loop because when we drop the lock, some other call
422 * to region_add or region_del may have consumed some region_entries,
423 * so we keep looping here until we finally have enough entries for
424 * (adds_in_progress + regions_needed).
426 while (resv->region_cache_count <
427 (resv->adds_in_progress + regions_needed)) {
428 to_allocate = resv->adds_in_progress + regions_needed -
429 resv->region_cache_count;
431 /* At this point, we should have enough entries in the cache
432 * for all the existings adds_in_progress. We should only be
433 * needing to allocate for regions_needed.
435 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
437 spin_unlock(&resv->lock);
438 for (i = 0; i < to_allocate; i++) {
439 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
440 if (!trg)
441 goto out_of_memory;
442 list_add(&trg->link, &allocated_regions);
445 spin_lock(&resv->lock);
447 list_splice(&allocated_regions, &resv->region_cache);
448 resv->region_cache_count += to_allocate;
451 return 0;
453 out_of_memory:
454 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
455 list_del(&rg->link);
456 kfree(rg);
458 return -ENOMEM;
462 * Add the huge page range represented by [f, t) to the reserve
463 * map. Regions will be taken from the cache to fill in this range.
464 * Sufficient regions should exist in the cache due to the previous
465 * call to region_chg with the same range, but in some cases the cache will not
466 * have sufficient entries due to races with other code doing region_add or
467 * region_del. The extra needed entries will be allocated.
469 * regions_needed is the out value provided by a previous call to region_chg.
471 * Return the number of new huge pages added to the map. This number is greater
472 * than or equal to zero. If file_region entries needed to be allocated for
473 * this operation and we were not able to allocate, it returns -ENOMEM.
474 * region_add of regions of length 1 never allocate file_regions and cannot
475 * fail; region_chg will always allocate at least 1 entry and a region_add for
476 * 1 page will only require at most 1 entry.
478 static long region_add(struct resv_map *resv, long f, long t,
479 long in_regions_needed, struct hstate *h,
480 struct hugetlb_cgroup *h_cg)
482 long add = 0, actual_regions_needed = 0;
484 spin_lock(&resv->lock);
485 retry:
487 /* Count how many regions are actually needed to execute this add. */
488 add_reservation_in_range(resv, f, t, NULL, NULL,
489 &actual_regions_needed);
492 * Check for sufficient descriptors in the cache to accommodate
493 * this add operation. Note that actual_regions_needed may be greater
494 * than in_regions_needed, as the resv_map may have been modified since
495 * the region_chg call. In this case, we need to make sure that we
496 * allocate extra entries, such that we have enough for all the
497 * existing adds_in_progress, plus the excess needed for this
498 * operation.
500 if (actual_regions_needed > in_regions_needed &&
501 resv->region_cache_count <
502 resv->adds_in_progress +
503 (actual_regions_needed - in_regions_needed)) {
504 /* region_add operation of range 1 should never need to
505 * allocate file_region entries.
507 VM_BUG_ON(t - f <= 1);
509 if (allocate_file_region_entries(
510 resv, actual_regions_needed - in_regions_needed)) {
511 return -ENOMEM;
514 goto retry;
517 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
519 resv->adds_in_progress -= in_regions_needed;
521 spin_unlock(&resv->lock);
522 VM_BUG_ON(add < 0);
523 return add;
527 * Examine the existing reserve map and determine how many
528 * huge pages in the specified range [f, t) are NOT currently
529 * represented. This routine is called before a subsequent
530 * call to region_add that will actually modify the reserve
531 * map to add the specified range [f, t). region_chg does
532 * not change the number of huge pages represented by the
533 * map. A number of new file_region structures is added to the cache as a
534 * placeholder, for the subsequent region_add call to use. At least 1
535 * file_region structure is added.
537 * out_regions_needed is the number of regions added to the
538 * resv->adds_in_progress. This value needs to be provided to a follow up call
539 * to region_add or region_abort for proper accounting.
541 * Returns the number of huge pages that need to be added to the existing
542 * reservation map for the range [f, t). This number is greater or equal to
543 * zero. -ENOMEM is returned if a new file_region structure or cache entry
544 * is needed and can not be allocated.
546 static long region_chg(struct resv_map *resv, long f, long t,
547 long *out_regions_needed)
549 long chg = 0;
551 spin_lock(&resv->lock);
553 /* Count how many hugepages in this range are NOT represented. */
554 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
555 out_regions_needed);
557 if (*out_regions_needed == 0)
558 *out_regions_needed = 1;
560 if (allocate_file_region_entries(resv, *out_regions_needed))
561 return -ENOMEM;
563 resv->adds_in_progress += *out_regions_needed;
565 spin_unlock(&resv->lock);
566 return chg;
570 * Abort the in progress add operation. The adds_in_progress field
571 * of the resv_map keeps track of the operations in progress between
572 * calls to region_chg and region_add. Operations are sometimes
573 * aborted after the call to region_chg. In such cases, region_abort
574 * is called to decrement the adds_in_progress counter. regions_needed
575 * is the value returned by the region_chg call, it is used to decrement
576 * the adds_in_progress counter.
578 * NOTE: The range arguments [f, t) are not needed or used in this
579 * routine. They are kept to make reading the calling code easier as
580 * arguments will match the associated region_chg call.
582 static void region_abort(struct resv_map *resv, long f, long t,
583 long regions_needed)
585 spin_lock(&resv->lock);
586 VM_BUG_ON(!resv->region_cache_count);
587 resv->adds_in_progress -= regions_needed;
588 spin_unlock(&resv->lock);
592 * Delete the specified range [f, t) from the reserve map. If the
593 * t parameter is LONG_MAX, this indicates that ALL regions after f
594 * should be deleted. Locate the regions which intersect [f, t)
595 * and either trim, delete or split the existing regions.
597 * Returns the number of huge pages deleted from the reserve map.
598 * In the normal case, the return value is zero or more. In the
599 * case where a region must be split, a new region descriptor must
600 * be allocated. If the allocation fails, -ENOMEM will be returned.
601 * NOTE: If the parameter t == LONG_MAX, then we will never split
602 * a region and possibly return -ENOMEM. Callers specifying
603 * t == LONG_MAX do not need to check for -ENOMEM error.
605 static long region_del(struct resv_map *resv, long f, long t)
607 struct list_head *head = &resv->regions;
608 struct file_region *rg, *trg;
609 struct file_region *nrg = NULL;
610 long del = 0;
612 retry:
613 spin_lock(&resv->lock);
614 list_for_each_entry_safe(rg, trg, head, link) {
616 * Skip regions before the range to be deleted. file_region
617 * ranges are normally of the form [from, to). However, there
618 * may be a "placeholder" entry in the map which is of the form
619 * (from, to) with from == to. Check for placeholder entries
620 * at the beginning of the range to be deleted.
622 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
623 continue;
625 if (rg->from >= t)
626 break;
628 if (f > rg->from && t < rg->to) { /* Must split region */
630 * Check for an entry in the cache before dropping
631 * lock and attempting allocation.
633 if (!nrg &&
634 resv->region_cache_count > resv->adds_in_progress) {
635 nrg = list_first_entry(&resv->region_cache,
636 struct file_region,
637 link);
638 list_del(&nrg->link);
639 resv->region_cache_count--;
642 if (!nrg) {
643 spin_unlock(&resv->lock);
644 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
645 if (!nrg)
646 return -ENOMEM;
647 goto retry;
650 del += t - f;
651 hugetlb_cgroup_uncharge_file_region(
652 resv, rg, t - f);
654 /* New entry for end of split region */
655 nrg->from = t;
656 nrg->to = rg->to;
658 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
660 INIT_LIST_HEAD(&nrg->link);
662 /* Original entry is trimmed */
663 rg->to = f;
665 list_add(&nrg->link, &rg->link);
666 nrg = NULL;
667 break;
670 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
671 del += rg->to - rg->from;
672 hugetlb_cgroup_uncharge_file_region(resv, rg,
673 rg->to - rg->from);
674 list_del(&rg->link);
675 kfree(rg);
676 continue;
679 if (f <= rg->from) { /* Trim beginning of region */
680 hugetlb_cgroup_uncharge_file_region(resv, rg,
681 t - rg->from);
683 del += t - rg->from;
684 rg->from = t;
685 } else { /* Trim end of region */
686 hugetlb_cgroup_uncharge_file_region(resv, rg,
687 rg->to - f);
689 del += rg->to - f;
690 rg->to = f;
694 spin_unlock(&resv->lock);
695 kfree(nrg);
696 return del;
700 * A rare out of memory error was encountered which prevented removal of
701 * the reserve map region for a page. The huge page itself was free'ed
702 * and removed from the page cache. This routine will adjust the subpool
703 * usage count, and the global reserve count if needed. By incrementing
704 * these counts, the reserve map entry which could not be deleted will
705 * appear as a "reserved" entry instead of simply dangling with incorrect
706 * counts.
708 void hugetlb_fix_reserve_counts(struct inode *inode)
710 struct hugepage_subpool *spool = subpool_inode(inode);
711 long rsv_adjust;
713 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
714 if (rsv_adjust) {
715 struct hstate *h = hstate_inode(inode);
717 hugetlb_acct_memory(h, 1);
722 * Count and return the number of huge pages in the reserve map
723 * that intersect with the range [f, t).
725 static long region_count(struct resv_map *resv, long f, long t)
727 struct list_head *head = &resv->regions;
728 struct file_region *rg;
729 long chg = 0;
731 spin_lock(&resv->lock);
732 /* Locate each segment we overlap with, and count that overlap. */
733 list_for_each_entry(rg, head, link) {
734 long seg_from;
735 long seg_to;
737 if (rg->to <= f)
738 continue;
739 if (rg->from >= t)
740 break;
742 seg_from = max(rg->from, f);
743 seg_to = min(rg->to, t);
745 chg += seg_to - seg_from;
747 spin_unlock(&resv->lock);
749 return chg;
753 * Convert the address within this vma to the page offset within
754 * the mapping, in pagecache page units; huge pages here.
756 static pgoff_t vma_hugecache_offset(struct hstate *h,
757 struct vm_area_struct *vma, unsigned long address)
759 return ((address - vma->vm_start) >> huge_page_shift(h)) +
760 (vma->vm_pgoff >> huge_page_order(h));
763 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
764 unsigned long address)
766 return vma_hugecache_offset(hstate_vma(vma), vma, address);
768 EXPORT_SYMBOL_GPL(linear_hugepage_index);
771 * Return the size of the pages allocated when backing a VMA. In the majority
772 * cases this will be same size as used by the page table entries.
774 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
776 if (vma->vm_ops && vma->vm_ops->pagesize)
777 return vma->vm_ops->pagesize(vma);
778 return PAGE_SIZE;
780 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
783 * Return the page size being used by the MMU to back a VMA. In the majority
784 * of cases, the page size used by the kernel matches the MMU size. On
785 * architectures where it differs, an architecture-specific 'strong'
786 * version of this symbol is required.
788 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
790 return vma_kernel_pagesize(vma);
794 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
795 * bits of the reservation map pointer, which are always clear due to
796 * alignment.
798 #define HPAGE_RESV_OWNER (1UL << 0)
799 #define HPAGE_RESV_UNMAPPED (1UL << 1)
800 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
803 * These helpers are used to track how many pages are reserved for
804 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
805 * is guaranteed to have their future faults succeed.
807 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
808 * the reserve counters are updated with the hugetlb_lock held. It is safe
809 * to reset the VMA at fork() time as it is not in use yet and there is no
810 * chance of the global counters getting corrupted as a result of the values.
812 * The private mapping reservation is represented in a subtly different
813 * manner to a shared mapping. A shared mapping has a region map associated
814 * with the underlying file, this region map represents the backing file
815 * pages which have ever had a reservation assigned which this persists even
816 * after the page is instantiated. A private mapping has a region map
817 * associated with the original mmap which is attached to all VMAs which
818 * reference it, this region map represents those offsets which have consumed
819 * reservation ie. where pages have been instantiated.
821 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
823 return (unsigned long)vma->vm_private_data;
826 static void set_vma_private_data(struct vm_area_struct *vma,
827 unsigned long value)
829 vma->vm_private_data = (void *)value;
832 static void
833 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
834 struct hugetlb_cgroup *h_cg,
835 struct hstate *h)
837 #ifdef CONFIG_CGROUP_HUGETLB
838 if (!h_cg || !h) {
839 resv_map->reservation_counter = NULL;
840 resv_map->pages_per_hpage = 0;
841 resv_map->css = NULL;
842 } else {
843 resv_map->reservation_counter =
844 &h_cg->rsvd_hugepage[hstate_index(h)];
845 resv_map->pages_per_hpage = pages_per_huge_page(h);
846 resv_map->css = &h_cg->css;
848 #endif
851 struct resv_map *resv_map_alloc(void)
853 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
854 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
856 if (!resv_map || !rg) {
857 kfree(resv_map);
858 kfree(rg);
859 return NULL;
862 kref_init(&resv_map->refs);
863 spin_lock_init(&resv_map->lock);
864 INIT_LIST_HEAD(&resv_map->regions);
866 resv_map->adds_in_progress = 0;
868 * Initialize these to 0. On shared mappings, 0's here indicate these
869 * fields don't do cgroup accounting. On private mappings, these will be
870 * re-initialized to the proper values, to indicate that hugetlb cgroup
871 * reservations are to be un-charged from here.
873 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
875 INIT_LIST_HEAD(&resv_map->region_cache);
876 list_add(&rg->link, &resv_map->region_cache);
877 resv_map->region_cache_count = 1;
879 return resv_map;
882 void resv_map_release(struct kref *ref)
884 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
885 struct list_head *head = &resv_map->region_cache;
886 struct file_region *rg, *trg;
888 /* Clear out any active regions before we release the map. */
889 region_del(resv_map, 0, LONG_MAX);
891 /* ... and any entries left in the cache */
892 list_for_each_entry_safe(rg, trg, head, link) {
893 list_del(&rg->link);
894 kfree(rg);
897 VM_BUG_ON(resv_map->adds_in_progress);
899 kfree(resv_map);
902 static inline struct resv_map *inode_resv_map(struct inode *inode)
905 * At inode evict time, i_mapping may not point to the original
906 * address space within the inode. This original address space
907 * contains the pointer to the resv_map. So, always use the
908 * address space embedded within the inode.
909 * The VERY common case is inode->mapping == &inode->i_data but,
910 * this may not be true for device special inodes.
912 return (struct resv_map *)(&inode->i_data)->private_data;
915 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
917 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
918 if (vma->vm_flags & VM_MAYSHARE) {
919 struct address_space *mapping = vma->vm_file->f_mapping;
920 struct inode *inode = mapping->host;
922 return inode_resv_map(inode);
924 } else {
925 return (struct resv_map *)(get_vma_private_data(vma) &
926 ~HPAGE_RESV_MASK);
930 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
932 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
933 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
935 set_vma_private_data(vma, (get_vma_private_data(vma) &
936 HPAGE_RESV_MASK) | (unsigned long)map);
939 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
941 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
942 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
947 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
951 return (get_vma_private_data(vma) & flag) != 0;
954 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
955 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
958 if (!(vma->vm_flags & VM_MAYSHARE))
959 vma->vm_private_data = (void *)0;
962 /* Returns true if the VMA has associated reserve pages */
963 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
965 if (vma->vm_flags & VM_NORESERVE) {
967 * This address is already reserved by other process(chg == 0),
968 * so, we should decrement reserved count. Without decrementing,
969 * reserve count remains after releasing inode, because this
970 * allocated page will go into page cache and is regarded as
971 * coming from reserved pool in releasing step. Currently, we
972 * don't have any other solution to deal with this situation
973 * properly, so add work-around here.
975 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
976 return true;
977 else
978 return false;
981 /* Shared mappings always use reserves */
982 if (vma->vm_flags & VM_MAYSHARE) {
984 * We know VM_NORESERVE is not set. Therefore, there SHOULD
985 * be a region map for all pages. The only situation where
986 * there is no region map is if a hole was punched via
987 * fallocate. In this case, there really are no reserves to
988 * use. This situation is indicated if chg != 0.
990 if (chg)
991 return false;
992 else
993 return true;
997 * Only the process that called mmap() has reserves for
998 * private mappings.
1000 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002 * Like the shared case above, a hole punch or truncate
1003 * could have been performed on the private mapping.
1004 * Examine the value of chg to determine if reserves
1005 * actually exist or were previously consumed.
1006 * Very Subtle - The value of chg comes from a previous
1007 * call to vma_needs_reserves(). The reserve map for
1008 * private mappings has different (opposite) semantics
1009 * than that of shared mappings. vma_needs_reserves()
1010 * has already taken this difference in semantics into
1011 * account. Therefore, the meaning of chg is the same
1012 * as in the shared case above. Code could easily be
1013 * combined, but keeping it separate draws attention to
1014 * subtle differences.
1016 if (chg)
1017 return false;
1018 else
1019 return true;
1022 return false;
1025 static void enqueue_huge_page(struct hstate *h, struct page *page)
1027 int nid = page_to_nid(page);
1028 list_move(&page->lru, &h->hugepage_freelists[nid]);
1029 h->free_huge_pages++;
1030 h->free_huge_pages_node[nid]++;
1033 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1035 struct page *page;
1036 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1038 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1039 if (nocma && is_migrate_cma_page(page))
1040 continue;
1042 if (PageHWPoison(page))
1043 continue;
1045 list_move(&page->lru, &h->hugepage_activelist);
1046 set_page_refcounted(page);
1047 h->free_huge_pages--;
1048 h->free_huge_pages_node[nid]--;
1049 return page;
1052 return NULL;
1055 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1056 nodemask_t *nmask)
1058 unsigned int cpuset_mems_cookie;
1059 struct zonelist *zonelist;
1060 struct zone *zone;
1061 struct zoneref *z;
1062 int node = NUMA_NO_NODE;
1064 zonelist = node_zonelist(nid, gfp_mask);
1066 retry_cpuset:
1067 cpuset_mems_cookie = read_mems_allowed_begin();
1068 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1069 struct page *page;
1071 if (!cpuset_zone_allowed(zone, gfp_mask))
1072 continue;
1074 * no need to ask again on the same node. Pool is node rather than
1075 * zone aware
1077 if (zone_to_nid(zone) == node)
1078 continue;
1079 node = zone_to_nid(zone);
1081 page = dequeue_huge_page_node_exact(h, node);
1082 if (page)
1083 return page;
1085 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1086 goto retry_cpuset;
1088 return NULL;
1091 static struct page *dequeue_huge_page_vma(struct hstate *h,
1092 struct vm_area_struct *vma,
1093 unsigned long address, int avoid_reserve,
1094 long chg)
1096 struct page *page;
1097 struct mempolicy *mpol;
1098 gfp_t gfp_mask;
1099 nodemask_t *nodemask;
1100 int nid;
1103 * A child process with MAP_PRIVATE mappings created by their parent
1104 * have no page reserves. This check ensures that reservations are
1105 * not "stolen". The child may still get SIGKILLed
1107 if (!vma_has_reserves(vma, chg) &&
1108 h->free_huge_pages - h->resv_huge_pages == 0)
1109 goto err;
1111 /* If reserves cannot be used, ensure enough pages are in the pool */
1112 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1113 goto err;
1115 gfp_mask = htlb_alloc_mask(h);
1116 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1117 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1118 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1119 SetPagePrivate(page);
1120 h->resv_huge_pages--;
1123 mpol_cond_put(mpol);
1124 return page;
1126 err:
1127 return NULL;
1131 * common helper functions for hstate_next_node_to_{alloc|free}.
1132 * We may have allocated or freed a huge page based on a different
1133 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1134 * be outside of *nodes_allowed. Ensure that we use an allowed
1135 * node for alloc or free.
1137 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1139 nid = next_node_in(nid, *nodes_allowed);
1140 VM_BUG_ON(nid >= MAX_NUMNODES);
1142 return nid;
1145 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1147 if (!node_isset(nid, *nodes_allowed))
1148 nid = next_node_allowed(nid, nodes_allowed);
1149 return nid;
1153 * returns the previously saved node ["this node"] from which to
1154 * allocate a persistent huge page for the pool and advance the
1155 * next node from which to allocate, handling wrap at end of node
1156 * mask.
1158 static int hstate_next_node_to_alloc(struct hstate *h,
1159 nodemask_t *nodes_allowed)
1161 int nid;
1163 VM_BUG_ON(!nodes_allowed);
1165 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1166 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1168 return nid;
1172 * helper for free_pool_huge_page() - return the previously saved
1173 * node ["this node"] from which to free a huge page. Advance the
1174 * next node id whether or not we find a free huge page to free so
1175 * that the next attempt to free addresses the next node.
1177 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1179 int nid;
1181 VM_BUG_ON(!nodes_allowed);
1183 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1184 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1186 return nid;
1189 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1190 for (nr_nodes = nodes_weight(*mask); \
1191 nr_nodes > 0 && \
1192 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1193 nr_nodes--)
1195 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1196 for (nr_nodes = nodes_weight(*mask); \
1197 nr_nodes > 0 && \
1198 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1199 nr_nodes--)
1201 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1202 static void destroy_compound_gigantic_page(struct page *page,
1203 unsigned int order)
1205 int i;
1206 int nr_pages = 1 << order;
1207 struct page *p = page + 1;
1209 atomic_set(compound_mapcount_ptr(page), 0);
1210 if (hpage_pincount_available(page))
1211 atomic_set(compound_pincount_ptr(page), 0);
1213 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1214 clear_compound_head(p);
1215 set_page_refcounted(p);
1218 set_compound_order(page, 0);
1219 page[1].compound_nr = 0;
1220 __ClearPageHead(page);
1223 static void free_gigantic_page(struct page *page, unsigned int order)
1226 * If the page isn't allocated using the cma allocator,
1227 * cma_release() returns false.
1229 #ifdef CONFIG_CMA
1230 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1231 return;
1232 #endif
1234 free_contig_range(page_to_pfn(page), 1 << order);
1237 #ifdef CONFIG_CONTIG_ALLOC
1238 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1239 int nid, nodemask_t *nodemask)
1241 unsigned long nr_pages = 1UL << huge_page_order(h);
1242 if (nid == NUMA_NO_NODE)
1243 nid = numa_mem_id();
1245 #ifdef CONFIG_CMA
1247 struct page *page;
1248 int node;
1250 if (hugetlb_cma[nid]) {
1251 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1252 huge_page_order(h), true);
1253 if (page)
1254 return page;
1257 if (!(gfp_mask & __GFP_THISNODE)) {
1258 for_each_node_mask(node, *nodemask) {
1259 if (node == nid || !hugetlb_cma[node])
1260 continue;
1262 page = cma_alloc(hugetlb_cma[node], nr_pages,
1263 huge_page_order(h), true);
1264 if (page)
1265 return page;
1269 #endif
1271 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1274 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276 #else /* !CONFIG_CONTIG_ALLOC */
1277 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278 int nid, nodemask_t *nodemask)
1280 return NULL;
1282 #endif /* CONFIG_CONTIG_ALLOC */
1284 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 int nid, nodemask_t *nodemask)
1288 return NULL;
1290 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291 static inline void destroy_compound_gigantic_page(struct page *page,
1292 unsigned int order) { }
1293 #endif
1295 static void update_and_free_page(struct hstate *h, struct page *page)
1297 int i;
1299 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300 return;
1302 h->nr_huge_pages--;
1303 h->nr_huge_pages_node[page_to_nid(page)]--;
1304 for (i = 0; i < pages_per_huge_page(h); i++) {
1305 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306 1 << PG_referenced | 1 << PG_dirty |
1307 1 << PG_active | 1 << PG_private |
1308 1 << PG_writeback);
1310 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1313 set_page_refcounted(page);
1314 if (hstate_is_gigantic(h)) {
1316 * Temporarily drop the hugetlb_lock, because
1317 * we might block in free_gigantic_page().
1319 spin_unlock(&hugetlb_lock);
1320 destroy_compound_gigantic_page(page, huge_page_order(h));
1321 free_gigantic_page(page, huge_page_order(h));
1322 spin_lock(&hugetlb_lock);
1323 } else {
1324 __free_pages(page, huge_page_order(h));
1328 struct hstate *size_to_hstate(unsigned long size)
1330 struct hstate *h;
1332 for_each_hstate(h) {
1333 if (huge_page_size(h) == size)
1334 return h;
1336 return NULL;
1340 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341 * to hstate->hugepage_activelist.)
1343 * This function can be called for tail pages, but never returns true for them.
1345 bool page_huge_active(struct page *page)
1347 VM_BUG_ON_PAGE(!PageHuge(page), page);
1348 return PageHead(page) && PagePrivate(&page[1]);
1351 /* never called for tail page */
1352 static void set_page_huge_active(struct page *page)
1354 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355 SetPagePrivate(&page[1]);
1358 static void clear_page_huge_active(struct page *page)
1360 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361 ClearPagePrivate(&page[1]);
1365 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366 * code
1368 static inline bool PageHugeTemporary(struct page *page)
1370 if (!PageHuge(page))
1371 return false;
1373 return (unsigned long)page[2].mapping == -1U;
1376 static inline void SetPageHugeTemporary(struct page *page)
1378 page[2].mapping = (void *)-1U;
1381 static inline void ClearPageHugeTemporary(struct page *page)
1383 page[2].mapping = NULL;
1386 static void __free_huge_page(struct page *page)
1389 * Can't pass hstate in here because it is called from the
1390 * compound page destructor.
1392 struct hstate *h = page_hstate(page);
1393 int nid = page_to_nid(page);
1394 struct hugepage_subpool *spool =
1395 (struct hugepage_subpool *)page_private(page);
1396 bool restore_reserve;
1398 VM_BUG_ON_PAGE(page_count(page), page);
1399 VM_BUG_ON_PAGE(page_mapcount(page), page);
1401 set_page_private(page, 0);
1402 page->mapping = NULL;
1403 restore_reserve = PagePrivate(page);
1404 ClearPagePrivate(page);
1407 * If PagePrivate() was set on page, page allocation consumed a
1408 * reservation. If the page was associated with a subpool, there
1409 * would have been a page reserved in the subpool before allocation
1410 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1411 * reservtion, do not call hugepage_subpool_put_pages() as this will
1412 * remove the reserved page from the subpool.
1414 if (!restore_reserve) {
1416 * A return code of zero implies that the subpool will be
1417 * under its minimum size if the reservation is not restored
1418 * after page is free. Therefore, force restore_reserve
1419 * operation.
1421 if (hugepage_subpool_put_pages(spool, 1) == 0)
1422 restore_reserve = true;
1425 spin_lock(&hugetlb_lock);
1426 clear_page_huge_active(page);
1427 hugetlb_cgroup_uncharge_page(hstate_index(h),
1428 pages_per_huge_page(h), page);
1429 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430 pages_per_huge_page(h), page);
1431 if (restore_reserve)
1432 h->resv_huge_pages++;
1434 if (PageHugeTemporary(page)) {
1435 list_del(&page->lru);
1436 ClearPageHugeTemporary(page);
1437 update_and_free_page(h, page);
1438 } else if (h->surplus_huge_pages_node[nid]) {
1439 /* remove the page from active list */
1440 list_del(&page->lru);
1441 update_and_free_page(h, page);
1442 h->surplus_huge_pages--;
1443 h->surplus_huge_pages_node[nid]--;
1444 } else {
1445 arch_clear_hugepage_flags(page);
1446 enqueue_huge_page(h, page);
1448 spin_unlock(&hugetlb_lock);
1452 * As free_huge_page() can be called from a non-task context, we have
1453 * to defer the actual freeing in a workqueue to prevent potential
1454 * hugetlb_lock deadlock.
1456 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457 * be freed and frees them one-by-one. As the page->mapping pointer is
1458 * going to be cleared in __free_huge_page() anyway, it is reused as the
1459 * llist_node structure of a lockless linked list of huge pages to be freed.
1461 static LLIST_HEAD(hpage_freelist);
1463 static void free_hpage_workfn(struct work_struct *work)
1465 struct llist_node *node;
1466 struct page *page;
1468 node = llist_del_all(&hpage_freelist);
1470 while (node) {
1471 page = container_of((struct address_space **)node,
1472 struct page, mapping);
1473 node = node->next;
1474 __free_huge_page(page);
1477 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1479 void free_huge_page(struct page *page)
1482 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1484 if (!in_task()) {
1486 * Only call schedule_work() if hpage_freelist is previously
1487 * empty. Otherwise, schedule_work() had been called but the
1488 * workfn hasn't retrieved the list yet.
1490 if (llist_add((struct llist_node *)&page->mapping,
1491 &hpage_freelist))
1492 schedule_work(&free_hpage_work);
1493 return;
1496 __free_huge_page(page);
1499 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1501 INIT_LIST_HEAD(&page->lru);
1502 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503 set_hugetlb_cgroup(page, NULL);
1504 set_hugetlb_cgroup_rsvd(page, NULL);
1505 spin_lock(&hugetlb_lock);
1506 h->nr_huge_pages++;
1507 h->nr_huge_pages_node[nid]++;
1508 spin_unlock(&hugetlb_lock);
1511 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1513 int i;
1514 int nr_pages = 1 << order;
1515 struct page *p = page + 1;
1517 /* we rely on prep_new_huge_page to set the destructor */
1518 set_compound_order(page, order);
1519 __ClearPageReserved(page);
1520 __SetPageHead(page);
1521 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1523 * For gigantic hugepages allocated through bootmem at
1524 * boot, it's safer to be consistent with the not-gigantic
1525 * hugepages and clear the PG_reserved bit from all tail pages
1526 * too. Otherwise drivers using get_user_pages() to access tail
1527 * pages may get the reference counting wrong if they see
1528 * PG_reserved set on a tail page (despite the head page not
1529 * having PG_reserved set). Enforcing this consistency between
1530 * head and tail pages allows drivers to optimize away a check
1531 * on the head page when they need know if put_page() is needed
1532 * after get_user_pages().
1534 __ClearPageReserved(p);
1535 set_page_count(p, 0);
1536 set_compound_head(p, page);
1538 atomic_set(compound_mapcount_ptr(page), -1);
1540 if (hpage_pincount_available(page))
1541 atomic_set(compound_pincount_ptr(page), 0);
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages. See the PageTransHuge() documentation for more
1547 * details.
1549 int PageHuge(struct page *page)
1551 if (!PageCompound(page))
1552 return 0;
1554 page = compound_head(page);
1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1557 EXPORT_SYMBOL_GPL(PageHuge);
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1563 int PageHeadHuge(struct page *page_head)
1565 if (!PageHead(page_head))
1566 return 0;
1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1572 * Find and lock address space (mapping) in write mode.
1574 * Upon entry, the page is locked which means that page_mapping() is
1575 * stable. Due to locking order, we can only trylock_write. If we can
1576 * not get the lock, simply return NULL to caller.
1578 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1580 struct address_space *mapping = page_mapping(hpage);
1582 if (!mapping)
1583 return mapping;
1585 if (i_mmap_trylock_write(mapping))
1586 return mapping;
1588 return NULL;
1591 pgoff_t __basepage_index(struct page *page)
1593 struct page *page_head = compound_head(page);
1594 pgoff_t index = page_index(page_head);
1595 unsigned long compound_idx;
1597 if (!PageHuge(page_head))
1598 return page_index(page);
1600 if (compound_order(page_head) >= MAX_ORDER)
1601 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602 else
1603 compound_idx = page - page_head;
1605 return (index << compound_order(page_head)) + compound_idx;
1608 static struct page *alloc_buddy_huge_page(struct hstate *h,
1609 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610 nodemask_t *node_alloc_noretry)
1612 int order = huge_page_order(h);
1613 struct page *page;
1614 bool alloc_try_hard = true;
1617 * By default we always try hard to allocate the page with
1618 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1619 * a loop (to adjust global huge page counts) and previous allocation
1620 * failed, do not continue to try hard on the same node. Use the
1621 * node_alloc_noretry bitmap to manage this state information.
1623 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624 alloc_try_hard = false;
1625 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626 if (alloc_try_hard)
1627 gfp_mask |= __GFP_RETRY_MAYFAIL;
1628 if (nid == NUMA_NO_NODE)
1629 nid = numa_mem_id();
1630 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1631 if (page)
1632 __count_vm_event(HTLB_BUDDY_PGALLOC);
1633 else
1634 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1637 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638 * indicates an overall state change. Clear bit so that we resume
1639 * normal 'try hard' allocations.
1641 if (node_alloc_noretry && page && !alloc_try_hard)
1642 node_clear(nid, *node_alloc_noretry);
1645 * If we tried hard to get a page but failed, set bit so that
1646 * subsequent attempts will not try as hard until there is an
1647 * overall state change.
1649 if (node_alloc_noretry && !page && alloc_try_hard)
1650 node_set(nid, *node_alloc_noretry);
1652 return page;
1656 * Common helper to allocate a fresh hugetlb page. All specific allocators
1657 * should use this function to get new hugetlb pages
1659 static struct page *alloc_fresh_huge_page(struct hstate *h,
1660 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661 nodemask_t *node_alloc_noretry)
1663 struct page *page;
1665 if (hstate_is_gigantic(h))
1666 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667 else
1668 page = alloc_buddy_huge_page(h, gfp_mask,
1669 nid, nmask, node_alloc_noretry);
1670 if (!page)
1671 return NULL;
1673 if (hstate_is_gigantic(h))
1674 prep_compound_gigantic_page(page, huge_page_order(h));
1675 prep_new_huge_page(h, page, page_to_nid(page));
1677 return page;
1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682 * manner.
1684 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685 nodemask_t *node_alloc_noretry)
1687 struct page *page;
1688 int nr_nodes, node;
1689 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1691 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1692 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693 node_alloc_noretry);
1694 if (page)
1695 break;
1698 if (!page)
1699 return 0;
1701 put_page(page); /* free it into the hugepage allocator */
1703 return 1;
1707 * Free huge page from pool from next node to free.
1708 * Attempt to keep persistent huge pages more or less
1709 * balanced over allowed nodes.
1710 * Called with hugetlb_lock locked.
1712 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1713 bool acct_surplus)
1715 int nr_nodes, node;
1716 int ret = 0;
1718 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1720 * If we're returning unused surplus pages, only examine
1721 * nodes with surplus pages.
1723 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1724 !list_empty(&h->hugepage_freelists[node])) {
1725 struct page *page =
1726 list_entry(h->hugepage_freelists[node].next,
1727 struct page, lru);
1728 list_del(&page->lru);
1729 h->free_huge_pages--;
1730 h->free_huge_pages_node[node]--;
1731 if (acct_surplus) {
1732 h->surplus_huge_pages--;
1733 h->surplus_huge_pages_node[node]--;
1735 update_and_free_page(h, page);
1736 ret = 1;
1737 break;
1741 return ret;
1745 * Dissolve a given free hugepage into free buddy pages. This function does
1746 * nothing for in-use hugepages and non-hugepages.
1747 * This function returns values like below:
1749 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1750 * (allocated or reserved.)
1751 * 0: successfully dissolved free hugepages or the page is not a
1752 * hugepage (considered as already dissolved)
1754 int dissolve_free_huge_page(struct page *page)
1756 int rc = -EBUSY;
1758 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1759 if (!PageHuge(page))
1760 return 0;
1762 spin_lock(&hugetlb_lock);
1763 if (!PageHuge(page)) {
1764 rc = 0;
1765 goto out;
1768 if (!page_count(page)) {
1769 struct page *head = compound_head(page);
1770 struct hstate *h = page_hstate(head);
1771 int nid = page_to_nid(head);
1772 if (h->free_huge_pages - h->resv_huge_pages == 0)
1773 goto out;
1775 * Move PageHWPoison flag from head page to the raw error page,
1776 * which makes any subpages rather than the error page reusable.
1778 if (PageHWPoison(head) && page != head) {
1779 SetPageHWPoison(page);
1780 ClearPageHWPoison(head);
1782 list_del(&head->lru);
1783 h->free_huge_pages--;
1784 h->free_huge_pages_node[nid]--;
1785 h->max_huge_pages--;
1786 update_and_free_page(h, head);
1787 rc = 0;
1789 out:
1790 spin_unlock(&hugetlb_lock);
1791 return rc;
1795 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1796 * make specified memory blocks removable from the system.
1797 * Note that this will dissolve a free gigantic hugepage completely, if any
1798 * part of it lies within the given range.
1799 * Also note that if dissolve_free_huge_page() returns with an error, all
1800 * free hugepages that were dissolved before that error are lost.
1802 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1804 unsigned long pfn;
1805 struct page *page;
1806 int rc = 0;
1808 if (!hugepages_supported())
1809 return rc;
1811 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1812 page = pfn_to_page(pfn);
1813 rc = dissolve_free_huge_page(page);
1814 if (rc)
1815 break;
1818 return rc;
1822 * Allocates a fresh surplus page from the page allocator.
1824 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1825 int nid, nodemask_t *nmask)
1827 struct page *page = NULL;
1829 if (hstate_is_gigantic(h))
1830 return NULL;
1832 spin_lock(&hugetlb_lock);
1833 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1834 goto out_unlock;
1835 spin_unlock(&hugetlb_lock);
1837 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1838 if (!page)
1839 return NULL;
1841 spin_lock(&hugetlb_lock);
1843 * We could have raced with the pool size change.
1844 * Double check that and simply deallocate the new page
1845 * if we would end up overcommiting the surpluses. Abuse
1846 * temporary page to workaround the nasty free_huge_page
1847 * codeflow
1849 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1850 SetPageHugeTemporary(page);
1851 spin_unlock(&hugetlb_lock);
1852 put_page(page);
1853 return NULL;
1854 } else {
1855 h->surplus_huge_pages++;
1856 h->surplus_huge_pages_node[page_to_nid(page)]++;
1859 out_unlock:
1860 spin_unlock(&hugetlb_lock);
1862 return page;
1865 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1866 int nid, nodemask_t *nmask)
1868 struct page *page;
1870 if (hstate_is_gigantic(h))
1871 return NULL;
1873 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1874 if (!page)
1875 return NULL;
1878 * We do not account these pages as surplus because they are only
1879 * temporary and will be released properly on the last reference
1881 SetPageHugeTemporary(page);
1883 return page;
1887 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1889 static
1890 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1891 struct vm_area_struct *vma, unsigned long addr)
1893 struct page *page;
1894 struct mempolicy *mpol;
1895 gfp_t gfp_mask = htlb_alloc_mask(h);
1896 int nid;
1897 nodemask_t *nodemask;
1899 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1900 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1901 mpol_cond_put(mpol);
1903 return page;
1906 /* page migration callback function */
1907 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1908 nodemask_t *nmask, gfp_t gfp_mask)
1910 spin_lock(&hugetlb_lock);
1911 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1912 struct page *page;
1914 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1915 if (page) {
1916 spin_unlock(&hugetlb_lock);
1917 return page;
1920 spin_unlock(&hugetlb_lock);
1922 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1925 /* mempolicy aware migration callback */
1926 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1927 unsigned long address)
1929 struct mempolicy *mpol;
1930 nodemask_t *nodemask;
1931 struct page *page;
1932 gfp_t gfp_mask;
1933 int node;
1935 gfp_mask = htlb_alloc_mask(h);
1936 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1937 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1938 mpol_cond_put(mpol);
1940 return page;
1944 * Increase the hugetlb pool such that it can accommodate a reservation
1945 * of size 'delta'.
1947 static int gather_surplus_pages(struct hstate *h, long delta)
1948 __must_hold(&hugetlb_lock)
1950 struct list_head surplus_list;
1951 struct page *page, *tmp;
1952 int ret;
1953 long i;
1954 long needed, allocated;
1955 bool alloc_ok = true;
1957 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1958 if (needed <= 0) {
1959 h->resv_huge_pages += delta;
1960 return 0;
1963 allocated = 0;
1964 INIT_LIST_HEAD(&surplus_list);
1966 ret = -ENOMEM;
1967 retry:
1968 spin_unlock(&hugetlb_lock);
1969 for (i = 0; i < needed; i++) {
1970 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1971 NUMA_NO_NODE, NULL);
1972 if (!page) {
1973 alloc_ok = false;
1974 break;
1976 list_add(&page->lru, &surplus_list);
1977 cond_resched();
1979 allocated += i;
1982 * After retaking hugetlb_lock, we need to recalculate 'needed'
1983 * because either resv_huge_pages or free_huge_pages may have changed.
1985 spin_lock(&hugetlb_lock);
1986 needed = (h->resv_huge_pages + delta) -
1987 (h->free_huge_pages + allocated);
1988 if (needed > 0) {
1989 if (alloc_ok)
1990 goto retry;
1992 * We were not able to allocate enough pages to
1993 * satisfy the entire reservation so we free what
1994 * we've allocated so far.
1996 goto free;
1999 * The surplus_list now contains _at_least_ the number of extra pages
2000 * needed to accommodate the reservation. Add the appropriate number
2001 * of pages to the hugetlb pool and free the extras back to the buddy
2002 * allocator. Commit the entire reservation here to prevent another
2003 * process from stealing the pages as they are added to the pool but
2004 * before they are reserved.
2006 needed += allocated;
2007 h->resv_huge_pages += delta;
2008 ret = 0;
2010 /* Free the needed pages to the hugetlb pool */
2011 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2012 if ((--needed) < 0)
2013 break;
2015 * This page is now managed by the hugetlb allocator and has
2016 * no users -- drop the buddy allocator's reference.
2018 VM_BUG_ON_PAGE(!put_page_testzero(page), page);
2019 enqueue_huge_page(h, page);
2021 free:
2022 spin_unlock(&hugetlb_lock);
2024 /* Free unnecessary surplus pages to the buddy allocator */
2025 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2026 put_page(page);
2027 spin_lock(&hugetlb_lock);
2029 return ret;
2033 * This routine has two main purposes:
2034 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2035 * in unused_resv_pages. This corresponds to the prior adjustments made
2036 * to the associated reservation map.
2037 * 2) Free any unused surplus pages that may have been allocated to satisfy
2038 * the reservation. As many as unused_resv_pages may be freed.
2040 * Called with hugetlb_lock held. However, the lock could be dropped (and
2041 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2042 * we must make sure nobody else can claim pages we are in the process of
2043 * freeing. Do this by ensuring resv_huge_page always is greater than the
2044 * number of huge pages we plan to free when dropping the lock.
2046 static void return_unused_surplus_pages(struct hstate *h,
2047 unsigned long unused_resv_pages)
2049 unsigned long nr_pages;
2051 /* Cannot return gigantic pages currently */
2052 if (hstate_is_gigantic(h))
2053 goto out;
2056 * Part (or even all) of the reservation could have been backed
2057 * by pre-allocated pages. Only free surplus pages.
2059 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2062 * We want to release as many surplus pages as possible, spread
2063 * evenly across all nodes with memory. Iterate across these nodes
2064 * until we can no longer free unreserved surplus pages. This occurs
2065 * when the nodes with surplus pages have no free pages.
2066 * free_pool_huge_page() will balance the freed pages across the
2067 * on-line nodes with memory and will handle the hstate accounting.
2069 * Note that we decrement resv_huge_pages as we free the pages. If
2070 * we drop the lock, resv_huge_pages will still be sufficiently large
2071 * to cover subsequent pages we may free.
2073 while (nr_pages--) {
2074 h->resv_huge_pages--;
2075 unused_resv_pages--;
2076 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2077 goto out;
2078 cond_resched_lock(&hugetlb_lock);
2081 out:
2082 /* Fully uncommit the reservation */
2083 h->resv_huge_pages -= unused_resv_pages;
2088 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2089 * are used by the huge page allocation routines to manage reservations.
2091 * vma_needs_reservation is called to determine if the huge page at addr
2092 * within the vma has an associated reservation. If a reservation is
2093 * needed, the value 1 is returned. The caller is then responsible for
2094 * managing the global reservation and subpool usage counts. After
2095 * the huge page has been allocated, vma_commit_reservation is called
2096 * to add the page to the reservation map. If the page allocation fails,
2097 * the reservation must be ended instead of committed. vma_end_reservation
2098 * is called in such cases.
2100 * In the normal case, vma_commit_reservation returns the same value
2101 * as the preceding vma_needs_reservation call. The only time this
2102 * is not the case is if a reserve map was changed between calls. It
2103 * is the responsibility of the caller to notice the difference and
2104 * take appropriate action.
2106 * vma_add_reservation is used in error paths where a reservation must
2107 * be restored when a newly allocated huge page must be freed. It is
2108 * to be called after calling vma_needs_reservation to determine if a
2109 * reservation exists.
2111 enum vma_resv_mode {
2112 VMA_NEEDS_RESV,
2113 VMA_COMMIT_RESV,
2114 VMA_END_RESV,
2115 VMA_ADD_RESV,
2117 static long __vma_reservation_common(struct hstate *h,
2118 struct vm_area_struct *vma, unsigned long addr,
2119 enum vma_resv_mode mode)
2121 struct resv_map *resv;
2122 pgoff_t idx;
2123 long ret;
2124 long dummy_out_regions_needed;
2126 resv = vma_resv_map(vma);
2127 if (!resv)
2128 return 1;
2130 idx = vma_hugecache_offset(h, vma, addr);
2131 switch (mode) {
2132 case VMA_NEEDS_RESV:
2133 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2134 /* We assume that vma_reservation_* routines always operate on
2135 * 1 page, and that adding to resv map a 1 page entry can only
2136 * ever require 1 region.
2138 VM_BUG_ON(dummy_out_regions_needed != 1);
2139 break;
2140 case VMA_COMMIT_RESV:
2141 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2142 /* region_add calls of range 1 should never fail. */
2143 VM_BUG_ON(ret < 0);
2144 break;
2145 case VMA_END_RESV:
2146 region_abort(resv, idx, idx + 1, 1);
2147 ret = 0;
2148 break;
2149 case VMA_ADD_RESV:
2150 if (vma->vm_flags & VM_MAYSHARE) {
2151 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2152 /* region_add calls of range 1 should never fail. */
2153 VM_BUG_ON(ret < 0);
2154 } else {
2155 region_abort(resv, idx, idx + 1, 1);
2156 ret = region_del(resv, idx, idx + 1);
2158 break;
2159 default:
2160 BUG();
2163 if (vma->vm_flags & VM_MAYSHARE)
2164 return ret;
2165 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2167 * In most cases, reserves always exist for private mappings.
2168 * However, a file associated with mapping could have been
2169 * hole punched or truncated after reserves were consumed.
2170 * As subsequent fault on such a range will not use reserves.
2171 * Subtle - The reserve map for private mappings has the
2172 * opposite meaning than that of shared mappings. If NO
2173 * entry is in the reserve map, it means a reservation exists.
2174 * If an entry exists in the reserve map, it means the
2175 * reservation has already been consumed. As a result, the
2176 * return value of this routine is the opposite of the
2177 * value returned from reserve map manipulation routines above.
2179 if (ret)
2180 return 0;
2181 else
2182 return 1;
2184 else
2185 return ret < 0 ? ret : 0;
2188 static long vma_needs_reservation(struct hstate *h,
2189 struct vm_area_struct *vma, unsigned long addr)
2191 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2194 static long vma_commit_reservation(struct hstate *h,
2195 struct vm_area_struct *vma, unsigned long addr)
2197 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2200 static void vma_end_reservation(struct hstate *h,
2201 struct vm_area_struct *vma, unsigned long addr)
2203 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2206 static long vma_add_reservation(struct hstate *h,
2207 struct vm_area_struct *vma, unsigned long addr)
2209 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2213 * This routine is called to restore a reservation on error paths. In the
2214 * specific error paths, a huge page was allocated (via alloc_huge_page)
2215 * and is about to be freed. If a reservation for the page existed,
2216 * alloc_huge_page would have consumed the reservation and set PagePrivate
2217 * in the newly allocated page. When the page is freed via free_huge_page,
2218 * the global reservation count will be incremented if PagePrivate is set.
2219 * However, free_huge_page can not adjust the reserve map. Adjust the
2220 * reserve map here to be consistent with global reserve count adjustments
2221 * to be made by free_huge_page.
2223 static void restore_reserve_on_error(struct hstate *h,
2224 struct vm_area_struct *vma, unsigned long address,
2225 struct page *page)
2227 if (unlikely(PagePrivate(page))) {
2228 long rc = vma_needs_reservation(h, vma, address);
2230 if (unlikely(rc < 0)) {
2232 * Rare out of memory condition in reserve map
2233 * manipulation. Clear PagePrivate so that
2234 * global reserve count will not be incremented
2235 * by free_huge_page. This will make it appear
2236 * as though the reservation for this page was
2237 * consumed. This may prevent the task from
2238 * faulting in the page at a later time. This
2239 * is better than inconsistent global huge page
2240 * accounting of reserve counts.
2242 ClearPagePrivate(page);
2243 } else if (rc) {
2244 rc = vma_add_reservation(h, vma, address);
2245 if (unlikely(rc < 0))
2247 * See above comment about rare out of
2248 * memory condition.
2250 ClearPagePrivate(page);
2251 } else
2252 vma_end_reservation(h, vma, address);
2256 struct page *alloc_huge_page(struct vm_area_struct *vma,
2257 unsigned long addr, int avoid_reserve)
2259 struct hugepage_subpool *spool = subpool_vma(vma);
2260 struct hstate *h = hstate_vma(vma);
2261 struct page *page;
2262 long map_chg, map_commit;
2263 long gbl_chg;
2264 int ret, idx;
2265 struct hugetlb_cgroup *h_cg;
2266 bool deferred_reserve;
2268 idx = hstate_index(h);
2270 * Examine the region/reserve map to determine if the process
2271 * has a reservation for the page to be allocated. A return
2272 * code of zero indicates a reservation exists (no change).
2274 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2275 if (map_chg < 0)
2276 return ERR_PTR(-ENOMEM);
2279 * Processes that did not create the mapping will have no
2280 * reserves as indicated by the region/reserve map. Check
2281 * that the allocation will not exceed the subpool limit.
2282 * Allocations for MAP_NORESERVE mappings also need to be
2283 * checked against any subpool limit.
2285 if (map_chg || avoid_reserve) {
2286 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2287 if (gbl_chg < 0) {
2288 vma_end_reservation(h, vma, addr);
2289 return ERR_PTR(-ENOSPC);
2293 * Even though there was no reservation in the region/reserve
2294 * map, there could be reservations associated with the
2295 * subpool that can be used. This would be indicated if the
2296 * return value of hugepage_subpool_get_pages() is zero.
2297 * However, if avoid_reserve is specified we still avoid even
2298 * the subpool reservations.
2300 if (avoid_reserve)
2301 gbl_chg = 1;
2304 /* If this allocation is not consuming a reservation, charge it now.
2306 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2307 if (deferred_reserve) {
2308 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2309 idx, pages_per_huge_page(h), &h_cg);
2310 if (ret)
2311 goto out_subpool_put;
2314 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2315 if (ret)
2316 goto out_uncharge_cgroup_reservation;
2318 spin_lock(&hugetlb_lock);
2320 * glb_chg is passed to indicate whether or not a page must be taken
2321 * from the global free pool (global change). gbl_chg == 0 indicates
2322 * a reservation exists for the allocation.
2324 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2325 if (!page) {
2326 spin_unlock(&hugetlb_lock);
2327 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2328 if (!page)
2329 goto out_uncharge_cgroup;
2330 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2331 SetPagePrivate(page);
2332 h->resv_huge_pages--;
2334 spin_lock(&hugetlb_lock);
2335 list_add(&page->lru, &h->hugepage_activelist);
2336 /* Fall through */
2338 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2339 /* If allocation is not consuming a reservation, also store the
2340 * hugetlb_cgroup pointer on the page.
2342 if (deferred_reserve) {
2343 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2344 h_cg, page);
2347 spin_unlock(&hugetlb_lock);
2349 set_page_private(page, (unsigned long)spool);
2351 map_commit = vma_commit_reservation(h, vma, addr);
2352 if (unlikely(map_chg > map_commit)) {
2354 * The page was added to the reservation map between
2355 * vma_needs_reservation and vma_commit_reservation.
2356 * This indicates a race with hugetlb_reserve_pages.
2357 * Adjust for the subpool count incremented above AND
2358 * in hugetlb_reserve_pages for the same page. Also,
2359 * the reservation count added in hugetlb_reserve_pages
2360 * no longer applies.
2362 long rsv_adjust;
2364 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2365 hugetlb_acct_memory(h, -rsv_adjust);
2366 if (deferred_reserve)
2367 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2368 pages_per_huge_page(h), page);
2370 return page;
2372 out_uncharge_cgroup:
2373 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2374 out_uncharge_cgroup_reservation:
2375 if (deferred_reserve)
2376 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2377 h_cg);
2378 out_subpool_put:
2379 if (map_chg || avoid_reserve)
2380 hugepage_subpool_put_pages(spool, 1);
2381 vma_end_reservation(h, vma, addr);
2382 return ERR_PTR(-ENOSPC);
2385 int alloc_bootmem_huge_page(struct hstate *h)
2386 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2387 int __alloc_bootmem_huge_page(struct hstate *h)
2389 struct huge_bootmem_page *m;
2390 int nr_nodes, node;
2392 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2393 void *addr;
2395 addr = memblock_alloc_try_nid_raw(
2396 huge_page_size(h), huge_page_size(h),
2397 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2398 if (addr) {
2400 * Use the beginning of the huge page to store the
2401 * huge_bootmem_page struct (until gather_bootmem
2402 * puts them into the mem_map).
2404 m = addr;
2405 goto found;
2408 return 0;
2410 found:
2411 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2412 /* Put them into a private list first because mem_map is not up yet */
2413 INIT_LIST_HEAD(&m->list);
2414 list_add(&m->list, &huge_boot_pages);
2415 m->hstate = h;
2416 return 1;
2419 static void __init prep_compound_huge_page(struct page *page,
2420 unsigned int order)
2422 if (unlikely(order > (MAX_ORDER - 1)))
2423 prep_compound_gigantic_page(page, order);
2424 else
2425 prep_compound_page(page, order);
2428 /* Put bootmem huge pages into the standard lists after mem_map is up */
2429 static void __init gather_bootmem_prealloc(void)
2431 struct huge_bootmem_page *m;
2433 list_for_each_entry(m, &huge_boot_pages, list) {
2434 struct page *page = virt_to_page(m);
2435 struct hstate *h = m->hstate;
2437 WARN_ON(page_count(page) != 1);
2438 prep_compound_huge_page(page, h->order);
2439 WARN_ON(PageReserved(page));
2440 prep_new_huge_page(h, page, page_to_nid(page));
2441 put_page(page); /* free it into the hugepage allocator */
2444 * If we had gigantic hugepages allocated at boot time, we need
2445 * to restore the 'stolen' pages to totalram_pages in order to
2446 * fix confusing memory reports from free(1) and another
2447 * side-effects, like CommitLimit going negative.
2449 if (hstate_is_gigantic(h))
2450 adjust_managed_page_count(page, 1 << h->order);
2451 cond_resched();
2455 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2457 unsigned long i;
2458 nodemask_t *node_alloc_noretry;
2460 if (!hstate_is_gigantic(h)) {
2462 * Bit mask controlling how hard we retry per-node allocations.
2463 * Ignore errors as lower level routines can deal with
2464 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2465 * time, we are likely in bigger trouble.
2467 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2468 GFP_KERNEL);
2469 } else {
2470 /* allocations done at boot time */
2471 node_alloc_noretry = NULL;
2474 /* bit mask controlling how hard we retry per-node allocations */
2475 if (node_alloc_noretry)
2476 nodes_clear(*node_alloc_noretry);
2478 for (i = 0; i < h->max_huge_pages; ++i) {
2479 if (hstate_is_gigantic(h)) {
2480 if (hugetlb_cma_size) {
2481 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2482 break;
2484 if (!alloc_bootmem_huge_page(h))
2485 break;
2486 } else if (!alloc_pool_huge_page(h,
2487 &node_states[N_MEMORY],
2488 node_alloc_noretry))
2489 break;
2490 cond_resched();
2492 if (i < h->max_huge_pages) {
2493 char buf[32];
2495 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2496 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2497 h->max_huge_pages, buf, i);
2498 h->max_huge_pages = i;
2501 kfree(node_alloc_noretry);
2504 static void __init hugetlb_init_hstates(void)
2506 struct hstate *h;
2508 for_each_hstate(h) {
2509 if (minimum_order > huge_page_order(h))
2510 minimum_order = huge_page_order(h);
2512 /* oversize hugepages were init'ed in early boot */
2513 if (!hstate_is_gigantic(h))
2514 hugetlb_hstate_alloc_pages(h);
2516 VM_BUG_ON(minimum_order == UINT_MAX);
2519 static void __init report_hugepages(void)
2521 struct hstate *h;
2523 for_each_hstate(h) {
2524 char buf[32];
2526 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2527 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2528 buf, h->free_huge_pages);
2532 #ifdef CONFIG_HIGHMEM
2533 static void try_to_free_low(struct hstate *h, unsigned long count,
2534 nodemask_t *nodes_allowed)
2536 int i;
2538 if (hstate_is_gigantic(h))
2539 return;
2541 for_each_node_mask(i, *nodes_allowed) {
2542 struct page *page, *next;
2543 struct list_head *freel = &h->hugepage_freelists[i];
2544 list_for_each_entry_safe(page, next, freel, lru) {
2545 if (count >= h->nr_huge_pages)
2546 return;
2547 if (PageHighMem(page))
2548 continue;
2549 list_del(&page->lru);
2550 update_and_free_page(h, page);
2551 h->free_huge_pages--;
2552 h->free_huge_pages_node[page_to_nid(page)]--;
2556 #else
2557 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2558 nodemask_t *nodes_allowed)
2561 #endif
2564 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2565 * balanced by operating on them in a round-robin fashion.
2566 * Returns 1 if an adjustment was made.
2568 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2569 int delta)
2571 int nr_nodes, node;
2573 VM_BUG_ON(delta != -1 && delta != 1);
2575 if (delta < 0) {
2576 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2577 if (h->surplus_huge_pages_node[node])
2578 goto found;
2580 } else {
2581 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2582 if (h->surplus_huge_pages_node[node] <
2583 h->nr_huge_pages_node[node])
2584 goto found;
2587 return 0;
2589 found:
2590 h->surplus_huge_pages += delta;
2591 h->surplus_huge_pages_node[node] += delta;
2592 return 1;
2595 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2596 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2597 nodemask_t *nodes_allowed)
2599 unsigned long min_count, ret;
2600 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2603 * Bit mask controlling how hard we retry per-node allocations.
2604 * If we can not allocate the bit mask, do not attempt to allocate
2605 * the requested huge pages.
2607 if (node_alloc_noretry)
2608 nodes_clear(*node_alloc_noretry);
2609 else
2610 return -ENOMEM;
2612 spin_lock(&hugetlb_lock);
2615 * Check for a node specific request.
2616 * Changing node specific huge page count may require a corresponding
2617 * change to the global count. In any case, the passed node mask
2618 * (nodes_allowed) will restrict alloc/free to the specified node.
2620 if (nid != NUMA_NO_NODE) {
2621 unsigned long old_count = count;
2623 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2625 * User may have specified a large count value which caused the
2626 * above calculation to overflow. In this case, they wanted
2627 * to allocate as many huge pages as possible. Set count to
2628 * largest possible value to align with their intention.
2630 if (count < old_count)
2631 count = ULONG_MAX;
2635 * Gigantic pages runtime allocation depend on the capability for large
2636 * page range allocation.
2637 * If the system does not provide this feature, return an error when
2638 * the user tries to allocate gigantic pages but let the user free the
2639 * boottime allocated gigantic pages.
2641 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2642 if (count > persistent_huge_pages(h)) {
2643 spin_unlock(&hugetlb_lock);
2644 NODEMASK_FREE(node_alloc_noretry);
2645 return -EINVAL;
2647 /* Fall through to decrease pool */
2651 * Increase the pool size
2652 * First take pages out of surplus state. Then make up the
2653 * remaining difference by allocating fresh huge pages.
2655 * We might race with alloc_surplus_huge_page() here and be unable
2656 * to convert a surplus huge page to a normal huge page. That is
2657 * not critical, though, it just means the overall size of the
2658 * pool might be one hugepage larger than it needs to be, but
2659 * within all the constraints specified by the sysctls.
2661 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2662 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2663 break;
2666 while (count > persistent_huge_pages(h)) {
2668 * If this allocation races such that we no longer need the
2669 * page, free_huge_page will handle it by freeing the page
2670 * and reducing the surplus.
2672 spin_unlock(&hugetlb_lock);
2674 /* yield cpu to avoid soft lockup */
2675 cond_resched();
2677 ret = alloc_pool_huge_page(h, nodes_allowed,
2678 node_alloc_noretry);
2679 spin_lock(&hugetlb_lock);
2680 if (!ret)
2681 goto out;
2683 /* Bail for signals. Probably ctrl-c from user */
2684 if (signal_pending(current))
2685 goto out;
2689 * Decrease the pool size
2690 * First return free pages to the buddy allocator (being careful
2691 * to keep enough around to satisfy reservations). Then place
2692 * pages into surplus state as needed so the pool will shrink
2693 * to the desired size as pages become free.
2695 * By placing pages into the surplus state independent of the
2696 * overcommit value, we are allowing the surplus pool size to
2697 * exceed overcommit. There are few sane options here. Since
2698 * alloc_surplus_huge_page() is checking the global counter,
2699 * though, we'll note that we're not allowed to exceed surplus
2700 * and won't grow the pool anywhere else. Not until one of the
2701 * sysctls are changed, or the surplus pages go out of use.
2703 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2704 min_count = max(count, min_count);
2705 try_to_free_low(h, min_count, nodes_allowed);
2706 while (min_count < persistent_huge_pages(h)) {
2707 if (!free_pool_huge_page(h, nodes_allowed, 0))
2708 break;
2709 cond_resched_lock(&hugetlb_lock);
2711 while (count < persistent_huge_pages(h)) {
2712 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2713 break;
2715 out:
2716 h->max_huge_pages = persistent_huge_pages(h);
2717 spin_unlock(&hugetlb_lock);
2719 NODEMASK_FREE(node_alloc_noretry);
2721 return 0;
2724 #define HSTATE_ATTR_RO(_name) \
2725 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2727 #define HSTATE_ATTR(_name) \
2728 static struct kobj_attribute _name##_attr = \
2729 __ATTR(_name, 0644, _name##_show, _name##_store)
2731 static struct kobject *hugepages_kobj;
2732 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2734 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2736 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2738 int i;
2740 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2741 if (hstate_kobjs[i] == kobj) {
2742 if (nidp)
2743 *nidp = NUMA_NO_NODE;
2744 return &hstates[i];
2747 return kobj_to_node_hstate(kobj, nidp);
2750 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2751 struct kobj_attribute *attr, char *buf)
2753 struct hstate *h;
2754 unsigned long nr_huge_pages;
2755 int nid;
2757 h = kobj_to_hstate(kobj, &nid);
2758 if (nid == NUMA_NO_NODE)
2759 nr_huge_pages = h->nr_huge_pages;
2760 else
2761 nr_huge_pages = h->nr_huge_pages_node[nid];
2763 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2766 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2767 struct hstate *h, int nid,
2768 unsigned long count, size_t len)
2770 int err;
2771 nodemask_t nodes_allowed, *n_mask;
2773 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2774 return -EINVAL;
2776 if (nid == NUMA_NO_NODE) {
2778 * global hstate attribute
2780 if (!(obey_mempolicy &&
2781 init_nodemask_of_mempolicy(&nodes_allowed)))
2782 n_mask = &node_states[N_MEMORY];
2783 else
2784 n_mask = &nodes_allowed;
2785 } else {
2787 * Node specific request. count adjustment happens in
2788 * set_max_huge_pages() after acquiring hugetlb_lock.
2790 init_nodemask_of_node(&nodes_allowed, nid);
2791 n_mask = &nodes_allowed;
2794 err = set_max_huge_pages(h, count, nid, n_mask);
2796 return err ? err : len;
2799 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2800 struct kobject *kobj, const char *buf,
2801 size_t len)
2803 struct hstate *h;
2804 unsigned long count;
2805 int nid;
2806 int err;
2808 err = kstrtoul(buf, 10, &count);
2809 if (err)
2810 return err;
2812 h = kobj_to_hstate(kobj, &nid);
2813 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2816 static ssize_t nr_hugepages_show(struct kobject *kobj,
2817 struct kobj_attribute *attr, char *buf)
2819 return nr_hugepages_show_common(kobj, attr, buf);
2822 static ssize_t nr_hugepages_store(struct kobject *kobj,
2823 struct kobj_attribute *attr, const char *buf, size_t len)
2825 return nr_hugepages_store_common(false, kobj, buf, len);
2827 HSTATE_ATTR(nr_hugepages);
2829 #ifdef CONFIG_NUMA
2832 * hstate attribute for optionally mempolicy-based constraint on persistent
2833 * huge page alloc/free.
2835 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2836 struct kobj_attribute *attr,
2837 char *buf)
2839 return nr_hugepages_show_common(kobj, attr, buf);
2842 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2843 struct kobj_attribute *attr, const char *buf, size_t len)
2845 return nr_hugepages_store_common(true, kobj, buf, len);
2847 HSTATE_ATTR(nr_hugepages_mempolicy);
2848 #endif
2851 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2852 struct kobj_attribute *attr, char *buf)
2854 struct hstate *h = kobj_to_hstate(kobj, NULL);
2855 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2858 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2859 struct kobj_attribute *attr, const char *buf, size_t count)
2861 int err;
2862 unsigned long input;
2863 struct hstate *h = kobj_to_hstate(kobj, NULL);
2865 if (hstate_is_gigantic(h))
2866 return -EINVAL;
2868 err = kstrtoul(buf, 10, &input);
2869 if (err)
2870 return err;
2872 spin_lock(&hugetlb_lock);
2873 h->nr_overcommit_huge_pages = input;
2874 spin_unlock(&hugetlb_lock);
2876 return count;
2878 HSTATE_ATTR(nr_overcommit_hugepages);
2880 static ssize_t free_hugepages_show(struct kobject *kobj,
2881 struct kobj_attribute *attr, char *buf)
2883 struct hstate *h;
2884 unsigned long free_huge_pages;
2885 int nid;
2887 h = kobj_to_hstate(kobj, &nid);
2888 if (nid == NUMA_NO_NODE)
2889 free_huge_pages = h->free_huge_pages;
2890 else
2891 free_huge_pages = h->free_huge_pages_node[nid];
2893 return sysfs_emit(buf, "%lu\n", free_huge_pages);
2895 HSTATE_ATTR_RO(free_hugepages);
2897 static ssize_t resv_hugepages_show(struct kobject *kobj,
2898 struct kobj_attribute *attr, char *buf)
2900 struct hstate *h = kobj_to_hstate(kobj, NULL);
2901 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2903 HSTATE_ATTR_RO(resv_hugepages);
2905 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2906 struct kobj_attribute *attr, char *buf)
2908 struct hstate *h;
2909 unsigned long surplus_huge_pages;
2910 int nid;
2912 h = kobj_to_hstate(kobj, &nid);
2913 if (nid == NUMA_NO_NODE)
2914 surplus_huge_pages = h->surplus_huge_pages;
2915 else
2916 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2918 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2920 HSTATE_ATTR_RO(surplus_hugepages);
2922 static struct attribute *hstate_attrs[] = {
2923 &nr_hugepages_attr.attr,
2924 &nr_overcommit_hugepages_attr.attr,
2925 &free_hugepages_attr.attr,
2926 &resv_hugepages_attr.attr,
2927 &surplus_hugepages_attr.attr,
2928 #ifdef CONFIG_NUMA
2929 &nr_hugepages_mempolicy_attr.attr,
2930 #endif
2931 NULL,
2934 static const struct attribute_group hstate_attr_group = {
2935 .attrs = hstate_attrs,
2938 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2939 struct kobject **hstate_kobjs,
2940 const struct attribute_group *hstate_attr_group)
2942 int retval;
2943 int hi = hstate_index(h);
2945 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2946 if (!hstate_kobjs[hi])
2947 return -ENOMEM;
2949 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2950 if (retval)
2951 kobject_put(hstate_kobjs[hi]);
2953 return retval;
2956 static void __init hugetlb_sysfs_init(void)
2958 struct hstate *h;
2959 int err;
2961 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2962 if (!hugepages_kobj)
2963 return;
2965 for_each_hstate(h) {
2966 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2967 hstate_kobjs, &hstate_attr_group);
2968 if (err)
2969 pr_err("HugeTLB: Unable to add hstate %s", h->name);
2973 #ifdef CONFIG_NUMA
2976 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2977 * with node devices in node_devices[] using a parallel array. The array
2978 * index of a node device or _hstate == node id.
2979 * This is here to avoid any static dependency of the node device driver, in
2980 * the base kernel, on the hugetlb module.
2982 struct node_hstate {
2983 struct kobject *hugepages_kobj;
2984 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2986 static struct node_hstate node_hstates[MAX_NUMNODES];
2989 * A subset of global hstate attributes for node devices
2991 static struct attribute *per_node_hstate_attrs[] = {
2992 &nr_hugepages_attr.attr,
2993 &free_hugepages_attr.attr,
2994 &surplus_hugepages_attr.attr,
2995 NULL,
2998 static const struct attribute_group per_node_hstate_attr_group = {
2999 .attrs = per_node_hstate_attrs,
3003 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3004 * Returns node id via non-NULL nidp.
3006 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3008 int nid;
3010 for (nid = 0; nid < nr_node_ids; nid++) {
3011 struct node_hstate *nhs = &node_hstates[nid];
3012 int i;
3013 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3014 if (nhs->hstate_kobjs[i] == kobj) {
3015 if (nidp)
3016 *nidp = nid;
3017 return &hstates[i];
3021 BUG();
3022 return NULL;
3026 * Unregister hstate attributes from a single node device.
3027 * No-op if no hstate attributes attached.
3029 static void hugetlb_unregister_node(struct node *node)
3031 struct hstate *h;
3032 struct node_hstate *nhs = &node_hstates[node->dev.id];
3034 if (!nhs->hugepages_kobj)
3035 return; /* no hstate attributes */
3037 for_each_hstate(h) {
3038 int idx = hstate_index(h);
3039 if (nhs->hstate_kobjs[idx]) {
3040 kobject_put(nhs->hstate_kobjs[idx]);
3041 nhs->hstate_kobjs[idx] = NULL;
3045 kobject_put(nhs->hugepages_kobj);
3046 nhs->hugepages_kobj = NULL;
3051 * Register hstate attributes for a single node device.
3052 * No-op if attributes already registered.
3054 static void hugetlb_register_node(struct node *node)
3056 struct hstate *h;
3057 struct node_hstate *nhs = &node_hstates[node->dev.id];
3058 int err;
3060 if (nhs->hugepages_kobj)
3061 return; /* already allocated */
3063 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3064 &node->dev.kobj);
3065 if (!nhs->hugepages_kobj)
3066 return;
3068 for_each_hstate(h) {
3069 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3070 nhs->hstate_kobjs,
3071 &per_node_hstate_attr_group);
3072 if (err) {
3073 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3074 h->name, node->dev.id);
3075 hugetlb_unregister_node(node);
3076 break;
3082 * hugetlb init time: register hstate attributes for all registered node
3083 * devices of nodes that have memory. All on-line nodes should have
3084 * registered their associated device by this time.
3086 static void __init hugetlb_register_all_nodes(void)
3088 int nid;
3090 for_each_node_state(nid, N_MEMORY) {
3091 struct node *node = node_devices[nid];
3092 if (node->dev.id == nid)
3093 hugetlb_register_node(node);
3097 * Let the node device driver know we're here so it can
3098 * [un]register hstate attributes on node hotplug.
3100 register_hugetlbfs_with_node(hugetlb_register_node,
3101 hugetlb_unregister_node);
3103 #else /* !CONFIG_NUMA */
3105 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3107 BUG();
3108 if (nidp)
3109 *nidp = -1;
3110 return NULL;
3113 static void hugetlb_register_all_nodes(void) { }
3115 #endif
3117 static int __init hugetlb_init(void)
3119 int i;
3121 if (!hugepages_supported()) {
3122 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3123 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3124 return 0;
3128 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3129 * architectures depend on setup being done here.
3131 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3132 if (!parsed_default_hugepagesz) {
3134 * If we did not parse a default huge page size, set
3135 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3136 * number of huge pages for this default size was implicitly
3137 * specified, set that here as well.
3138 * Note that the implicit setting will overwrite an explicit
3139 * setting. A warning will be printed in this case.
3141 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3142 if (default_hstate_max_huge_pages) {
3143 if (default_hstate.max_huge_pages) {
3144 char buf[32];
3146 string_get_size(huge_page_size(&default_hstate),
3147 1, STRING_UNITS_2, buf, 32);
3148 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3149 default_hstate.max_huge_pages, buf);
3150 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3151 default_hstate_max_huge_pages);
3153 default_hstate.max_huge_pages =
3154 default_hstate_max_huge_pages;
3158 hugetlb_cma_check();
3159 hugetlb_init_hstates();
3160 gather_bootmem_prealloc();
3161 report_hugepages();
3163 hugetlb_sysfs_init();
3164 hugetlb_register_all_nodes();
3165 hugetlb_cgroup_file_init();
3167 #ifdef CONFIG_SMP
3168 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3169 #else
3170 num_fault_mutexes = 1;
3171 #endif
3172 hugetlb_fault_mutex_table =
3173 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3174 GFP_KERNEL);
3175 BUG_ON(!hugetlb_fault_mutex_table);
3177 for (i = 0; i < num_fault_mutexes; i++)
3178 mutex_init(&hugetlb_fault_mutex_table[i]);
3179 return 0;
3181 subsys_initcall(hugetlb_init);
3183 /* Overwritten by architectures with more huge page sizes */
3184 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3186 return size == HPAGE_SIZE;
3189 void __init hugetlb_add_hstate(unsigned int order)
3191 struct hstate *h;
3192 unsigned long i;
3194 if (size_to_hstate(PAGE_SIZE << order)) {
3195 return;
3197 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3198 BUG_ON(order == 0);
3199 h = &hstates[hugetlb_max_hstate++];
3200 h->order = order;
3201 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3202 for (i = 0; i < MAX_NUMNODES; ++i)
3203 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3204 INIT_LIST_HEAD(&h->hugepage_activelist);
3205 h->next_nid_to_alloc = first_memory_node;
3206 h->next_nid_to_free = first_memory_node;
3207 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3208 huge_page_size(h)/1024);
3210 parsed_hstate = h;
3214 * hugepages command line processing
3215 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3216 * specification. If not, ignore the hugepages value. hugepages can also
3217 * be the first huge page command line option in which case it implicitly
3218 * specifies the number of huge pages for the default size.
3220 static int __init hugepages_setup(char *s)
3222 unsigned long *mhp;
3223 static unsigned long *last_mhp;
3225 if (!parsed_valid_hugepagesz) {
3226 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3227 parsed_valid_hugepagesz = true;
3228 return 0;
3232 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3233 * yet, so this hugepages= parameter goes to the "default hstate".
3234 * Otherwise, it goes with the previously parsed hugepagesz or
3235 * default_hugepagesz.
3237 else if (!hugetlb_max_hstate)
3238 mhp = &default_hstate_max_huge_pages;
3239 else
3240 mhp = &parsed_hstate->max_huge_pages;
3242 if (mhp == last_mhp) {
3243 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3244 return 0;
3247 if (sscanf(s, "%lu", mhp) <= 0)
3248 *mhp = 0;
3251 * Global state is always initialized later in hugetlb_init.
3252 * But we need to allocate >= MAX_ORDER hstates here early to still
3253 * use the bootmem allocator.
3255 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3256 hugetlb_hstate_alloc_pages(parsed_hstate);
3258 last_mhp = mhp;
3260 return 1;
3262 __setup("hugepages=", hugepages_setup);
3265 * hugepagesz command line processing
3266 * A specific huge page size can only be specified once with hugepagesz.
3267 * hugepagesz is followed by hugepages on the command line. The global
3268 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3269 * hugepagesz argument was valid.
3271 static int __init hugepagesz_setup(char *s)
3273 unsigned long size;
3274 struct hstate *h;
3276 parsed_valid_hugepagesz = false;
3277 size = (unsigned long)memparse(s, NULL);
3279 if (!arch_hugetlb_valid_size(size)) {
3280 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3281 return 0;
3284 h = size_to_hstate(size);
3285 if (h) {
3287 * hstate for this size already exists. This is normally
3288 * an error, but is allowed if the existing hstate is the
3289 * default hstate. More specifically, it is only allowed if
3290 * the number of huge pages for the default hstate was not
3291 * previously specified.
3293 if (!parsed_default_hugepagesz || h != &default_hstate ||
3294 default_hstate.max_huge_pages) {
3295 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3296 return 0;
3300 * No need to call hugetlb_add_hstate() as hstate already
3301 * exists. But, do set parsed_hstate so that a following
3302 * hugepages= parameter will be applied to this hstate.
3304 parsed_hstate = h;
3305 parsed_valid_hugepagesz = true;
3306 return 1;
3309 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3310 parsed_valid_hugepagesz = true;
3311 return 1;
3313 __setup("hugepagesz=", hugepagesz_setup);
3316 * default_hugepagesz command line input
3317 * Only one instance of default_hugepagesz allowed on command line.
3319 static int __init default_hugepagesz_setup(char *s)
3321 unsigned long size;
3323 parsed_valid_hugepagesz = false;
3324 if (parsed_default_hugepagesz) {
3325 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3326 return 0;
3329 size = (unsigned long)memparse(s, NULL);
3331 if (!arch_hugetlb_valid_size(size)) {
3332 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3333 return 0;
3336 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3337 parsed_valid_hugepagesz = true;
3338 parsed_default_hugepagesz = true;
3339 default_hstate_idx = hstate_index(size_to_hstate(size));
3342 * The number of default huge pages (for this size) could have been
3343 * specified as the first hugetlb parameter: hugepages=X. If so,
3344 * then default_hstate_max_huge_pages is set. If the default huge
3345 * page size is gigantic (>= MAX_ORDER), then the pages must be
3346 * allocated here from bootmem allocator.
3348 if (default_hstate_max_huge_pages) {
3349 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3350 if (hstate_is_gigantic(&default_hstate))
3351 hugetlb_hstate_alloc_pages(&default_hstate);
3352 default_hstate_max_huge_pages = 0;
3355 return 1;
3357 __setup("default_hugepagesz=", default_hugepagesz_setup);
3359 static unsigned int allowed_mems_nr(struct hstate *h)
3361 int node;
3362 unsigned int nr = 0;
3363 nodemask_t *mpol_allowed;
3364 unsigned int *array = h->free_huge_pages_node;
3365 gfp_t gfp_mask = htlb_alloc_mask(h);
3367 mpol_allowed = policy_nodemask_current(gfp_mask);
3369 for_each_node_mask(node, cpuset_current_mems_allowed) {
3370 if (!mpol_allowed ||
3371 (mpol_allowed && node_isset(node, *mpol_allowed)))
3372 nr += array[node];
3375 return nr;
3378 #ifdef CONFIG_SYSCTL
3379 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3380 void *buffer, size_t *length,
3381 loff_t *ppos, unsigned long *out)
3383 struct ctl_table dup_table;
3386 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3387 * can duplicate the @table and alter the duplicate of it.
3389 dup_table = *table;
3390 dup_table.data = out;
3392 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3395 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3396 struct ctl_table *table, int write,
3397 void *buffer, size_t *length, loff_t *ppos)
3399 struct hstate *h = &default_hstate;
3400 unsigned long tmp = h->max_huge_pages;
3401 int ret;
3403 if (!hugepages_supported())
3404 return -EOPNOTSUPP;
3406 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3407 &tmp);
3408 if (ret)
3409 goto out;
3411 if (write)
3412 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3413 NUMA_NO_NODE, tmp, *length);
3414 out:
3415 return ret;
3418 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3419 void *buffer, size_t *length, loff_t *ppos)
3422 return hugetlb_sysctl_handler_common(false, table, write,
3423 buffer, length, ppos);
3426 #ifdef CONFIG_NUMA
3427 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3428 void *buffer, size_t *length, loff_t *ppos)
3430 return hugetlb_sysctl_handler_common(true, table, write,
3431 buffer, length, ppos);
3433 #endif /* CONFIG_NUMA */
3435 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3436 void *buffer, size_t *length, loff_t *ppos)
3438 struct hstate *h = &default_hstate;
3439 unsigned long tmp;
3440 int ret;
3442 if (!hugepages_supported())
3443 return -EOPNOTSUPP;
3445 tmp = h->nr_overcommit_huge_pages;
3447 if (write && hstate_is_gigantic(h))
3448 return -EINVAL;
3450 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3451 &tmp);
3452 if (ret)
3453 goto out;
3455 if (write) {
3456 spin_lock(&hugetlb_lock);
3457 h->nr_overcommit_huge_pages = tmp;
3458 spin_unlock(&hugetlb_lock);
3460 out:
3461 return ret;
3464 #endif /* CONFIG_SYSCTL */
3466 void hugetlb_report_meminfo(struct seq_file *m)
3468 struct hstate *h;
3469 unsigned long total = 0;
3471 if (!hugepages_supported())
3472 return;
3474 for_each_hstate(h) {
3475 unsigned long count = h->nr_huge_pages;
3477 total += (PAGE_SIZE << huge_page_order(h)) * count;
3479 if (h == &default_hstate)
3480 seq_printf(m,
3481 "HugePages_Total: %5lu\n"
3482 "HugePages_Free: %5lu\n"
3483 "HugePages_Rsvd: %5lu\n"
3484 "HugePages_Surp: %5lu\n"
3485 "Hugepagesize: %8lu kB\n",
3486 count,
3487 h->free_huge_pages,
3488 h->resv_huge_pages,
3489 h->surplus_huge_pages,
3490 (PAGE_SIZE << huge_page_order(h)) / 1024);
3493 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3496 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3498 struct hstate *h = &default_hstate;
3500 if (!hugepages_supported())
3501 return 0;
3503 return sysfs_emit_at(buf, len,
3504 "Node %d HugePages_Total: %5u\n"
3505 "Node %d HugePages_Free: %5u\n"
3506 "Node %d HugePages_Surp: %5u\n",
3507 nid, h->nr_huge_pages_node[nid],
3508 nid, h->free_huge_pages_node[nid],
3509 nid, h->surplus_huge_pages_node[nid]);
3512 void hugetlb_show_meminfo(void)
3514 struct hstate *h;
3515 int nid;
3517 if (!hugepages_supported())
3518 return;
3520 for_each_node_state(nid, N_MEMORY)
3521 for_each_hstate(h)
3522 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3523 nid,
3524 h->nr_huge_pages_node[nid],
3525 h->free_huge_pages_node[nid],
3526 h->surplus_huge_pages_node[nid],
3527 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3530 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3532 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3533 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3536 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3537 unsigned long hugetlb_total_pages(void)
3539 struct hstate *h;
3540 unsigned long nr_total_pages = 0;
3542 for_each_hstate(h)
3543 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3544 return nr_total_pages;
3547 static int hugetlb_acct_memory(struct hstate *h, long delta)
3549 int ret = -ENOMEM;
3551 spin_lock(&hugetlb_lock);
3553 * When cpuset is configured, it breaks the strict hugetlb page
3554 * reservation as the accounting is done on a global variable. Such
3555 * reservation is completely rubbish in the presence of cpuset because
3556 * the reservation is not checked against page availability for the
3557 * current cpuset. Application can still potentially OOM'ed by kernel
3558 * with lack of free htlb page in cpuset that the task is in.
3559 * Attempt to enforce strict accounting with cpuset is almost
3560 * impossible (or too ugly) because cpuset is too fluid that
3561 * task or memory node can be dynamically moved between cpusets.
3563 * The change of semantics for shared hugetlb mapping with cpuset is
3564 * undesirable. However, in order to preserve some of the semantics,
3565 * we fall back to check against current free page availability as
3566 * a best attempt and hopefully to minimize the impact of changing
3567 * semantics that cpuset has.
3569 * Apart from cpuset, we also have memory policy mechanism that
3570 * also determines from which node the kernel will allocate memory
3571 * in a NUMA system. So similar to cpuset, we also should consider
3572 * the memory policy of the current task. Similar to the description
3573 * above.
3575 if (delta > 0) {
3576 if (gather_surplus_pages(h, delta) < 0)
3577 goto out;
3579 if (delta > allowed_mems_nr(h)) {
3580 return_unused_surplus_pages(h, delta);
3581 goto out;
3585 ret = 0;
3586 if (delta < 0)
3587 return_unused_surplus_pages(h, (unsigned long) -delta);
3589 out:
3590 spin_unlock(&hugetlb_lock);
3591 return ret;
3594 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3596 struct resv_map *resv = vma_resv_map(vma);
3599 * This new VMA should share its siblings reservation map if present.
3600 * The VMA will only ever have a valid reservation map pointer where
3601 * it is being copied for another still existing VMA. As that VMA
3602 * has a reference to the reservation map it cannot disappear until
3603 * after this open call completes. It is therefore safe to take a
3604 * new reference here without additional locking.
3606 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3607 kref_get(&resv->refs);
3610 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3612 struct hstate *h = hstate_vma(vma);
3613 struct resv_map *resv = vma_resv_map(vma);
3614 struct hugepage_subpool *spool = subpool_vma(vma);
3615 unsigned long reserve, start, end;
3616 long gbl_reserve;
3618 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3619 return;
3621 start = vma_hugecache_offset(h, vma, vma->vm_start);
3622 end = vma_hugecache_offset(h, vma, vma->vm_end);
3624 reserve = (end - start) - region_count(resv, start, end);
3625 hugetlb_cgroup_uncharge_counter(resv, start, end);
3626 if (reserve) {
3628 * Decrement reserve counts. The global reserve count may be
3629 * adjusted if the subpool has a minimum size.
3631 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3632 hugetlb_acct_memory(h, -gbl_reserve);
3635 kref_put(&resv->refs, resv_map_release);
3638 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3640 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3641 return -EINVAL;
3642 return 0;
3645 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3647 struct hstate *hstate = hstate_vma(vma);
3649 return 1UL << huge_page_shift(hstate);
3653 * We cannot handle pagefaults against hugetlb pages at all. They cause
3654 * handle_mm_fault() to try to instantiate regular-sized pages in the
3655 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3656 * this far.
3658 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3660 BUG();
3661 return 0;
3665 * When a new function is introduced to vm_operations_struct and added
3666 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3667 * This is because under System V memory model, mappings created via
3668 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3669 * their original vm_ops are overwritten with shm_vm_ops.
3671 const struct vm_operations_struct hugetlb_vm_ops = {
3672 .fault = hugetlb_vm_op_fault,
3673 .open = hugetlb_vm_op_open,
3674 .close = hugetlb_vm_op_close,
3675 .may_split = hugetlb_vm_op_split,
3676 .pagesize = hugetlb_vm_op_pagesize,
3679 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3680 int writable)
3682 pte_t entry;
3684 if (writable) {
3685 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3686 vma->vm_page_prot)));
3687 } else {
3688 entry = huge_pte_wrprotect(mk_huge_pte(page,
3689 vma->vm_page_prot));
3691 entry = pte_mkyoung(entry);
3692 entry = pte_mkhuge(entry);
3693 entry = arch_make_huge_pte(entry, vma, page, writable);
3695 return entry;
3698 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3699 unsigned long address, pte_t *ptep)
3701 pte_t entry;
3703 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3704 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3705 update_mmu_cache(vma, address, ptep);
3708 bool is_hugetlb_entry_migration(pte_t pte)
3710 swp_entry_t swp;
3712 if (huge_pte_none(pte) || pte_present(pte))
3713 return false;
3714 swp = pte_to_swp_entry(pte);
3715 if (is_migration_entry(swp))
3716 return true;
3717 else
3718 return false;
3721 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3723 swp_entry_t swp;
3725 if (huge_pte_none(pte) || pte_present(pte))
3726 return false;
3727 swp = pte_to_swp_entry(pte);
3728 if (is_hwpoison_entry(swp))
3729 return true;
3730 else
3731 return false;
3734 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3735 struct vm_area_struct *vma)
3737 pte_t *src_pte, *dst_pte, entry, dst_entry;
3738 struct page *ptepage;
3739 unsigned long addr;
3740 int cow;
3741 struct hstate *h = hstate_vma(vma);
3742 unsigned long sz = huge_page_size(h);
3743 struct address_space *mapping = vma->vm_file->f_mapping;
3744 struct mmu_notifier_range range;
3745 int ret = 0;
3747 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3749 if (cow) {
3750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3751 vma->vm_start,
3752 vma->vm_end);
3753 mmu_notifier_invalidate_range_start(&range);
3754 } else {
3756 * For shared mappings i_mmap_rwsem must be held to call
3757 * huge_pte_alloc, otherwise the returned ptep could go
3758 * away if part of a shared pmd and another thread calls
3759 * huge_pmd_unshare.
3761 i_mmap_lock_read(mapping);
3764 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3765 spinlock_t *src_ptl, *dst_ptl;
3766 src_pte = huge_pte_offset(src, addr, sz);
3767 if (!src_pte)
3768 continue;
3769 dst_pte = huge_pte_alloc(dst, addr, sz);
3770 if (!dst_pte) {
3771 ret = -ENOMEM;
3772 break;
3776 * If the pagetables are shared don't copy or take references.
3777 * dst_pte == src_pte is the common case of src/dest sharing.
3779 * However, src could have 'unshared' and dst shares with
3780 * another vma. If dst_pte !none, this implies sharing.
3781 * Check here before taking page table lock, and once again
3782 * after taking the lock below.
3784 dst_entry = huge_ptep_get(dst_pte);
3785 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3786 continue;
3788 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3789 src_ptl = huge_pte_lockptr(h, src, src_pte);
3790 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3791 entry = huge_ptep_get(src_pte);
3792 dst_entry = huge_ptep_get(dst_pte);
3793 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3795 * Skip if src entry none. Also, skip in the
3796 * unlikely case dst entry !none as this implies
3797 * sharing with another vma.
3800 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3801 is_hugetlb_entry_hwpoisoned(entry))) {
3802 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3804 if (is_write_migration_entry(swp_entry) && cow) {
3806 * COW mappings require pages in both
3807 * parent and child to be set to read.
3809 make_migration_entry_read(&swp_entry);
3810 entry = swp_entry_to_pte(swp_entry);
3811 set_huge_swap_pte_at(src, addr, src_pte,
3812 entry, sz);
3814 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3815 } else {
3816 if (cow) {
3818 * No need to notify as we are downgrading page
3819 * table protection not changing it to point
3820 * to a new page.
3822 * See Documentation/vm/mmu_notifier.rst
3824 huge_ptep_set_wrprotect(src, addr, src_pte);
3826 entry = huge_ptep_get(src_pte);
3827 ptepage = pte_page(entry);
3828 get_page(ptepage);
3829 page_dup_rmap(ptepage, true);
3830 set_huge_pte_at(dst, addr, dst_pte, entry);
3831 hugetlb_count_add(pages_per_huge_page(h), dst);
3833 spin_unlock(src_ptl);
3834 spin_unlock(dst_ptl);
3837 if (cow)
3838 mmu_notifier_invalidate_range_end(&range);
3839 else
3840 i_mmap_unlock_read(mapping);
3842 return ret;
3845 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3846 unsigned long start, unsigned long end,
3847 struct page *ref_page)
3849 struct mm_struct *mm = vma->vm_mm;
3850 unsigned long address;
3851 pte_t *ptep;
3852 pte_t pte;
3853 spinlock_t *ptl;
3854 struct page *page;
3855 struct hstate *h = hstate_vma(vma);
3856 unsigned long sz = huge_page_size(h);
3857 struct mmu_notifier_range range;
3859 WARN_ON(!is_vm_hugetlb_page(vma));
3860 BUG_ON(start & ~huge_page_mask(h));
3861 BUG_ON(end & ~huge_page_mask(h));
3864 * This is a hugetlb vma, all the pte entries should point
3865 * to huge page.
3867 tlb_change_page_size(tlb, sz);
3868 tlb_start_vma(tlb, vma);
3871 * If sharing possible, alert mmu notifiers of worst case.
3873 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3874 end);
3875 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3876 mmu_notifier_invalidate_range_start(&range);
3877 address = start;
3878 for (; address < end; address += sz) {
3879 ptep = huge_pte_offset(mm, address, sz);
3880 if (!ptep)
3881 continue;
3883 ptl = huge_pte_lock(h, mm, ptep);
3884 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3885 spin_unlock(ptl);
3887 * We just unmapped a page of PMDs by clearing a PUD.
3888 * The caller's TLB flush range should cover this area.
3890 continue;
3893 pte = huge_ptep_get(ptep);
3894 if (huge_pte_none(pte)) {
3895 spin_unlock(ptl);
3896 continue;
3900 * Migrating hugepage or HWPoisoned hugepage is already
3901 * unmapped and its refcount is dropped, so just clear pte here.
3903 if (unlikely(!pte_present(pte))) {
3904 huge_pte_clear(mm, address, ptep, sz);
3905 spin_unlock(ptl);
3906 continue;
3909 page = pte_page(pte);
3911 * If a reference page is supplied, it is because a specific
3912 * page is being unmapped, not a range. Ensure the page we
3913 * are about to unmap is the actual page of interest.
3915 if (ref_page) {
3916 if (page != ref_page) {
3917 spin_unlock(ptl);
3918 continue;
3921 * Mark the VMA as having unmapped its page so that
3922 * future faults in this VMA will fail rather than
3923 * looking like data was lost
3925 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3928 pte = huge_ptep_get_and_clear(mm, address, ptep);
3929 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3930 if (huge_pte_dirty(pte))
3931 set_page_dirty(page);
3933 hugetlb_count_sub(pages_per_huge_page(h), mm);
3934 page_remove_rmap(page, true);
3936 spin_unlock(ptl);
3937 tlb_remove_page_size(tlb, page, huge_page_size(h));
3939 * Bail out after unmapping reference page if supplied
3941 if (ref_page)
3942 break;
3944 mmu_notifier_invalidate_range_end(&range);
3945 tlb_end_vma(tlb, vma);
3948 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3949 struct vm_area_struct *vma, unsigned long start,
3950 unsigned long end, struct page *ref_page)
3952 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3955 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3956 * test will fail on a vma being torn down, and not grab a page table
3957 * on its way out. We're lucky that the flag has such an appropriate
3958 * name, and can in fact be safely cleared here. We could clear it
3959 * before the __unmap_hugepage_range above, but all that's necessary
3960 * is to clear it before releasing the i_mmap_rwsem. This works
3961 * because in the context this is called, the VMA is about to be
3962 * destroyed and the i_mmap_rwsem is held.
3964 vma->vm_flags &= ~VM_MAYSHARE;
3967 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3968 unsigned long end, struct page *ref_page)
3970 struct mm_struct *mm;
3971 struct mmu_gather tlb;
3972 unsigned long tlb_start = start;
3973 unsigned long tlb_end = end;
3976 * If shared PMDs were possibly used within this vma range, adjust
3977 * start/end for worst case tlb flushing.
3978 * Note that we can not be sure if PMDs are shared until we try to
3979 * unmap pages. However, we want to make sure TLB flushing covers
3980 * the largest possible range.
3982 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3984 mm = vma->vm_mm;
3986 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3987 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3988 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3992 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3993 * mappping it owns the reserve page for. The intention is to unmap the page
3994 * from other VMAs and let the children be SIGKILLed if they are faulting the
3995 * same region.
3997 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3998 struct page *page, unsigned long address)
4000 struct hstate *h = hstate_vma(vma);
4001 struct vm_area_struct *iter_vma;
4002 struct address_space *mapping;
4003 pgoff_t pgoff;
4006 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4007 * from page cache lookup which is in HPAGE_SIZE units.
4009 address = address & huge_page_mask(h);
4010 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4011 vma->vm_pgoff;
4012 mapping = vma->vm_file->f_mapping;
4015 * Take the mapping lock for the duration of the table walk. As
4016 * this mapping should be shared between all the VMAs,
4017 * __unmap_hugepage_range() is called as the lock is already held
4019 i_mmap_lock_write(mapping);
4020 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4021 /* Do not unmap the current VMA */
4022 if (iter_vma == vma)
4023 continue;
4026 * Shared VMAs have their own reserves and do not affect
4027 * MAP_PRIVATE accounting but it is possible that a shared
4028 * VMA is using the same page so check and skip such VMAs.
4030 if (iter_vma->vm_flags & VM_MAYSHARE)
4031 continue;
4034 * Unmap the page from other VMAs without their own reserves.
4035 * They get marked to be SIGKILLed if they fault in these
4036 * areas. This is because a future no-page fault on this VMA
4037 * could insert a zeroed page instead of the data existing
4038 * from the time of fork. This would look like data corruption
4040 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4041 unmap_hugepage_range(iter_vma, address,
4042 address + huge_page_size(h), page);
4044 i_mmap_unlock_write(mapping);
4048 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4049 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4050 * cannot race with other handlers or page migration.
4051 * Keep the pte_same checks anyway to make transition from the mutex easier.
4053 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4054 unsigned long address, pte_t *ptep,
4055 struct page *pagecache_page, spinlock_t *ptl)
4057 pte_t pte;
4058 struct hstate *h = hstate_vma(vma);
4059 struct page *old_page, *new_page;
4060 int outside_reserve = 0;
4061 vm_fault_t ret = 0;
4062 unsigned long haddr = address & huge_page_mask(h);
4063 struct mmu_notifier_range range;
4065 pte = huge_ptep_get(ptep);
4066 old_page = pte_page(pte);
4068 retry_avoidcopy:
4069 /* If no-one else is actually using this page, avoid the copy
4070 * and just make the page writable */
4071 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4072 page_move_anon_rmap(old_page, vma);
4073 set_huge_ptep_writable(vma, haddr, ptep);
4074 return 0;
4078 * If the process that created a MAP_PRIVATE mapping is about to
4079 * perform a COW due to a shared page count, attempt to satisfy
4080 * the allocation without using the existing reserves. The pagecache
4081 * page is used to determine if the reserve at this address was
4082 * consumed or not. If reserves were used, a partial faulted mapping
4083 * at the time of fork() could consume its reserves on COW instead
4084 * of the full address range.
4086 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4087 old_page != pagecache_page)
4088 outside_reserve = 1;
4090 get_page(old_page);
4093 * Drop page table lock as buddy allocator may be called. It will
4094 * be acquired again before returning to the caller, as expected.
4096 spin_unlock(ptl);
4097 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4099 if (IS_ERR(new_page)) {
4101 * If a process owning a MAP_PRIVATE mapping fails to COW,
4102 * it is due to references held by a child and an insufficient
4103 * huge page pool. To guarantee the original mappers
4104 * reliability, unmap the page from child processes. The child
4105 * may get SIGKILLed if it later faults.
4107 if (outside_reserve) {
4108 struct address_space *mapping = vma->vm_file->f_mapping;
4109 pgoff_t idx;
4110 u32 hash;
4112 put_page(old_page);
4113 BUG_ON(huge_pte_none(pte));
4115 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4116 * unmapping. unmapping needs to hold i_mmap_rwsem
4117 * in write mode. Dropping i_mmap_rwsem in read mode
4118 * here is OK as COW mappings do not interact with
4119 * PMD sharing.
4121 * Reacquire both after unmap operation.
4123 idx = vma_hugecache_offset(h, vma, haddr);
4124 hash = hugetlb_fault_mutex_hash(mapping, idx);
4125 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4126 i_mmap_unlock_read(mapping);
4128 unmap_ref_private(mm, vma, old_page, haddr);
4130 i_mmap_lock_read(mapping);
4131 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4132 spin_lock(ptl);
4133 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4134 if (likely(ptep &&
4135 pte_same(huge_ptep_get(ptep), pte)))
4136 goto retry_avoidcopy;
4138 * race occurs while re-acquiring page table
4139 * lock, and our job is done.
4141 return 0;
4144 ret = vmf_error(PTR_ERR(new_page));
4145 goto out_release_old;
4149 * When the original hugepage is shared one, it does not have
4150 * anon_vma prepared.
4152 if (unlikely(anon_vma_prepare(vma))) {
4153 ret = VM_FAULT_OOM;
4154 goto out_release_all;
4157 copy_user_huge_page(new_page, old_page, address, vma,
4158 pages_per_huge_page(h));
4159 __SetPageUptodate(new_page);
4161 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4162 haddr + huge_page_size(h));
4163 mmu_notifier_invalidate_range_start(&range);
4166 * Retake the page table lock to check for racing updates
4167 * before the page tables are altered
4169 spin_lock(ptl);
4170 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4171 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4172 ClearPagePrivate(new_page);
4174 /* Break COW */
4175 huge_ptep_clear_flush(vma, haddr, ptep);
4176 mmu_notifier_invalidate_range(mm, range.start, range.end);
4177 set_huge_pte_at(mm, haddr, ptep,
4178 make_huge_pte(vma, new_page, 1));
4179 page_remove_rmap(old_page, true);
4180 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4181 set_page_huge_active(new_page);
4182 /* Make the old page be freed below */
4183 new_page = old_page;
4185 spin_unlock(ptl);
4186 mmu_notifier_invalidate_range_end(&range);
4187 out_release_all:
4188 restore_reserve_on_error(h, vma, haddr, new_page);
4189 put_page(new_page);
4190 out_release_old:
4191 put_page(old_page);
4193 spin_lock(ptl); /* Caller expects lock to be held */
4194 return ret;
4197 /* Return the pagecache page at a given address within a VMA */
4198 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4199 struct vm_area_struct *vma, unsigned long address)
4201 struct address_space *mapping;
4202 pgoff_t idx;
4204 mapping = vma->vm_file->f_mapping;
4205 idx = vma_hugecache_offset(h, vma, address);
4207 return find_lock_page(mapping, idx);
4211 * Return whether there is a pagecache page to back given address within VMA.
4212 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4214 static bool hugetlbfs_pagecache_present(struct hstate *h,
4215 struct vm_area_struct *vma, unsigned long address)
4217 struct address_space *mapping;
4218 pgoff_t idx;
4219 struct page *page;
4221 mapping = vma->vm_file->f_mapping;
4222 idx = vma_hugecache_offset(h, vma, address);
4224 page = find_get_page(mapping, idx);
4225 if (page)
4226 put_page(page);
4227 return page != NULL;
4230 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4231 pgoff_t idx)
4233 struct inode *inode = mapping->host;
4234 struct hstate *h = hstate_inode(inode);
4235 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4237 if (err)
4238 return err;
4239 ClearPagePrivate(page);
4242 * set page dirty so that it will not be removed from cache/file
4243 * by non-hugetlbfs specific code paths.
4245 set_page_dirty(page);
4247 spin_lock(&inode->i_lock);
4248 inode->i_blocks += blocks_per_huge_page(h);
4249 spin_unlock(&inode->i_lock);
4250 return 0;
4253 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4254 struct vm_area_struct *vma,
4255 struct address_space *mapping, pgoff_t idx,
4256 unsigned long address, pte_t *ptep, unsigned int flags)
4258 struct hstate *h = hstate_vma(vma);
4259 vm_fault_t ret = VM_FAULT_SIGBUS;
4260 int anon_rmap = 0;
4261 unsigned long size;
4262 struct page *page;
4263 pte_t new_pte;
4264 spinlock_t *ptl;
4265 unsigned long haddr = address & huge_page_mask(h);
4266 bool new_page = false;
4269 * Currently, we are forced to kill the process in the event the
4270 * original mapper has unmapped pages from the child due to a failed
4271 * COW. Warn that such a situation has occurred as it may not be obvious
4273 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4274 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4275 current->pid);
4276 return ret;
4280 * We can not race with truncation due to holding i_mmap_rwsem.
4281 * i_size is modified when holding i_mmap_rwsem, so check here
4282 * once for faults beyond end of file.
4284 size = i_size_read(mapping->host) >> huge_page_shift(h);
4285 if (idx >= size)
4286 goto out;
4288 retry:
4289 page = find_lock_page(mapping, idx);
4290 if (!page) {
4292 * Check for page in userfault range
4294 if (userfaultfd_missing(vma)) {
4295 u32 hash;
4296 struct vm_fault vmf = {
4297 .vma = vma,
4298 .address = haddr,
4299 .flags = flags,
4301 * Hard to debug if it ends up being
4302 * used by a callee that assumes
4303 * something about the other
4304 * uninitialized fields... same as in
4305 * memory.c
4310 * hugetlb_fault_mutex and i_mmap_rwsem must be
4311 * dropped before handling userfault. Reacquire
4312 * after handling fault to make calling code simpler.
4314 hash = hugetlb_fault_mutex_hash(mapping, idx);
4315 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4316 i_mmap_unlock_read(mapping);
4317 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4318 i_mmap_lock_read(mapping);
4319 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4320 goto out;
4323 page = alloc_huge_page(vma, haddr, 0);
4324 if (IS_ERR(page)) {
4326 * Returning error will result in faulting task being
4327 * sent SIGBUS. The hugetlb fault mutex prevents two
4328 * tasks from racing to fault in the same page which
4329 * could result in false unable to allocate errors.
4330 * Page migration does not take the fault mutex, but
4331 * does a clear then write of pte's under page table
4332 * lock. Page fault code could race with migration,
4333 * notice the clear pte and try to allocate a page
4334 * here. Before returning error, get ptl and make
4335 * sure there really is no pte entry.
4337 ptl = huge_pte_lock(h, mm, ptep);
4338 if (!huge_pte_none(huge_ptep_get(ptep))) {
4339 ret = 0;
4340 spin_unlock(ptl);
4341 goto out;
4343 spin_unlock(ptl);
4344 ret = vmf_error(PTR_ERR(page));
4345 goto out;
4347 clear_huge_page(page, address, pages_per_huge_page(h));
4348 __SetPageUptodate(page);
4349 new_page = true;
4351 if (vma->vm_flags & VM_MAYSHARE) {
4352 int err = huge_add_to_page_cache(page, mapping, idx);
4353 if (err) {
4354 put_page(page);
4355 if (err == -EEXIST)
4356 goto retry;
4357 goto out;
4359 } else {
4360 lock_page(page);
4361 if (unlikely(anon_vma_prepare(vma))) {
4362 ret = VM_FAULT_OOM;
4363 goto backout_unlocked;
4365 anon_rmap = 1;
4367 } else {
4369 * If memory error occurs between mmap() and fault, some process
4370 * don't have hwpoisoned swap entry for errored virtual address.
4371 * So we need to block hugepage fault by PG_hwpoison bit check.
4373 if (unlikely(PageHWPoison(page))) {
4374 ret = VM_FAULT_HWPOISON |
4375 VM_FAULT_SET_HINDEX(hstate_index(h));
4376 goto backout_unlocked;
4381 * If we are going to COW a private mapping later, we examine the
4382 * pending reservations for this page now. This will ensure that
4383 * any allocations necessary to record that reservation occur outside
4384 * the spinlock.
4386 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4387 if (vma_needs_reservation(h, vma, haddr) < 0) {
4388 ret = VM_FAULT_OOM;
4389 goto backout_unlocked;
4391 /* Just decrements count, does not deallocate */
4392 vma_end_reservation(h, vma, haddr);
4395 ptl = huge_pte_lock(h, mm, ptep);
4396 ret = 0;
4397 if (!huge_pte_none(huge_ptep_get(ptep)))
4398 goto backout;
4400 if (anon_rmap) {
4401 ClearPagePrivate(page);
4402 hugepage_add_new_anon_rmap(page, vma, haddr);
4403 } else
4404 page_dup_rmap(page, true);
4405 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4406 && (vma->vm_flags & VM_SHARED)));
4407 set_huge_pte_at(mm, haddr, ptep, new_pte);
4409 hugetlb_count_add(pages_per_huge_page(h), mm);
4410 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4411 /* Optimization, do the COW without a second fault */
4412 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4415 spin_unlock(ptl);
4418 * Only make newly allocated pages active. Existing pages found
4419 * in the pagecache could be !page_huge_active() if they have been
4420 * isolated for migration.
4422 if (new_page)
4423 set_page_huge_active(page);
4425 unlock_page(page);
4426 out:
4427 return ret;
4429 backout:
4430 spin_unlock(ptl);
4431 backout_unlocked:
4432 unlock_page(page);
4433 restore_reserve_on_error(h, vma, haddr, page);
4434 put_page(page);
4435 goto out;
4438 #ifdef CONFIG_SMP
4439 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4441 unsigned long key[2];
4442 u32 hash;
4444 key[0] = (unsigned long) mapping;
4445 key[1] = idx;
4447 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4449 return hash & (num_fault_mutexes - 1);
4451 #else
4453 * For uniprocesor systems we always use a single mutex, so just
4454 * return 0 and avoid the hashing overhead.
4456 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4458 return 0;
4460 #endif
4462 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4463 unsigned long address, unsigned int flags)
4465 pte_t *ptep, entry;
4466 spinlock_t *ptl;
4467 vm_fault_t ret;
4468 u32 hash;
4469 pgoff_t idx;
4470 struct page *page = NULL;
4471 struct page *pagecache_page = NULL;
4472 struct hstate *h = hstate_vma(vma);
4473 struct address_space *mapping;
4474 int need_wait_lock = 0;
4475 unsigned long haddr = address & huge_page_mask(h);
4477 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4478 if (ptep) {
4480 * Since we hold no locks, ptep could be stale. That is
4481 * OK as we are only making decisions based on content and
4482 * not actually modifying content here.
4484 entry = huge_ptep_get(ptep);
4485 if (unlikely(is_hugetlb_entry_migration(entry))) {
4486 migration_entry_wait_huge(vma, mm, ptep);
4487 return 0;
4488 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4489 return VM_FAULT_HWPOISON_LARGE |
4490 VM_FAULT_SET_HINDEX(hstate_index(h));
4494 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4495 * until finished with ptep. This serves two purposes:
4496 * 1) It prevents huge_pmd_unshare from being called elsewhere
4497 * and making the ptep no longer valid.
4498 * 2) It synchronizes us with i_size modifications during truncation.
4500 * ptep could have already be assigned via huge_pte_offset. That
4501 * is OK, as huge_pte_alloc will return the same value unless
4502 * something has changed.
4504 mapping = vma->vm_file->f_mapping;
4505 i_mmap_lock_read(mapping);
4506 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4507 if (!ptep) {
4508 i_mmap_unlock_read(mapping);
4509 return VM_FAULT_OOM;
4513 * Serialize hugepage allocation and instantiation, so that we don't
4514 * get spurious allocation failures if two CPUs race to instantiate
4515 * the same page in the page cache.
4517 idx = vma_hugecache_offset(h, vma, haddr);
4518 hash = hugetlb_fault_mutex_hash(mapping, idx);
4519 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4521 entry = huge_ptep_get(ptep);
4522 if (huge_pte_none(entry)) {
4523 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4524 goto out_mutex;
4527 ret = 0;
4530 * entry could be a migration/hwpoison entry at this point, so this
4531 * check prevents the kernel from going below assuming that we have
4532 * an active hugepage in pagecache. This goto expects the 2nd page
4533 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4534 * properly handle it.
4536 if (!pte_present(entry))
4537 goto out_mutex;
4540 * If we are going to COW the mapping later, we examine the pending
4541 * reservations for this page now. This will ensure that any
4542 * allocations necessary to record that reservation occur outside the
4543 * spinlock. For private mappings, we also lookup the pagecache
4544 * page now as it is used to determine if a reservation has been
4545 * consumed.
4547 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4548 if (vma_needs_reservation(h, vma, haddr) < 0) {
4549 ret = VM_FAULT_OOM;
4550 goto out_mutex;
4552 /* Just decrements count, does not deallocate */
4553 vma_end_reservation(h, vma, haddr);
4555 if (!(vma->vm_flags & VM_MAYSHARE))
4556 pagecache_page = hugetlbfs_pagecache_page(h,
4557 vma, haddr);
4560 ptl = huge_pte_lock(h, mm, ptep);
4562 /* Check for a racing update before calling hugetlb_cow */
4563 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4564 goto out_ptl;
4567 * hugetlb_cow() requires page locks of pte_page(entry) and
4568 * pagecache_page, so here we need take the former one
4569 * when page != pagecache_page or !pagecache_page.
4571 page = pte_page(entry);
4572 if (page != pagecache_page)
4573 if (!trylock_page(page)) {
4574 need_wait_lock = 1;
4575 goto out_ptl;
4578 get_page(page);
4580 if (flags & FAULT_FLAG_WRITE) {
4581 if (!huge_pte_write(entry)) {
4582 ret = hugetlb_cow(mm, vma, address, ptep,
4583 pagecache_page, ptl);
4584 goto out_put_page;
4586 entry = huge_pte_mkdirty(entry);
4588 entry = pte_mkyoung(entry);
4589 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4590 flags & FAULT_FLAG_WRITE))
4591 update_mmu_cache(vma, haddr, ptep);
4592 out_put_page:
4593 if (page != pagecache_page)
4594 unlock_page(page);
4595 put_page(page);
4596 out_ptl:
4597 spin_unlock(ptl);
4599 if (pagecache_page) {
4600 unlock_page(pagecache_page);
4601 put_page(pagecache_page);
4603 out_mutex:
4604 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4605 i_mmap_unlock_read(mapping);
4607 * Generally it's safe to hold refcount during waiting page lock. But
4608 * here we just wait to defer the next page fault to avoid busy loop and
4609 * the page is not used after unlocked before returning from the current
4610 * page fault. So we are safe from accessing freed page, even if we wait
4611 * here without taking refcount.
4613 if (need_wait_lock)
4614 wait_on_page_locked(page);
4615 return ret;
4619 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4620 * modifications for huge pages.
4622 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4623 pte_t *dst_pte,
4624 struct vm_area_struct *dst_vma,
4625 unsigned long dst_addr,
4626 unsigned long src_addr,
4627 struct page **pagep)
4629 struct address_space *mapping;
4630 pgoff_t idx;
4631 unsigned long size;
4632 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4633 struct hstate *h = hstate_vma(dst_vma);
4634 pte_t _dst_pte;
4635 spinlock_t *ptl;
4636 int ret;
4637 struct page *page;
4639 if (!*pagep) {
4640 ret = -ENOMEM;
4641 page = alloc_huge_page(dst_vma, dst_addr, 0);
4642 if (IS_ERR(page))
4643 goto out;
4645 ret = copy_huge_page_from_user(page,
4646 (const void __user *) src_addr,
4647 pages_per_huge_page(h), false);
4649 /* fallback to copy_from_user outside mmap_lock */
4650 if (unlikely(ret)) {
4651 ret = -ENOENT;
4652 *pagep = page;
4653 /* don't free the page */
4654 goto out;
4656 } else {
4657 page = *pagep;
4658 *pagep = NULL;
4662 * The memory barrier inside __SetPageUptodate makes sure that
4663 * preceding stores to the page contents become visible before
4664 * the set_pte_at() write.
4666 __SetPageUptodate(page);
4668 mapping = dst_vma->vm_file->f_mapping;
4669 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4672 * If shared, add to page cache
4674 if (vm_shared) {
4675 size = i_size_read(mapping->host) >> huge_page_shift(h);
4676 ret = -EFAULT;
4677 if (idx >= size)
4678 goto out_release_nounlock;
4681 * Serialization between remove_inode_hugepages() and
4682 * huge_add_to_page_cache() below happens through the
4683 * hugetlb_fault_mutex_table that here must be hold by
4684 * the caller.
4686 ret = huge_add_to_page_cache(page, mapping, idx);
4687 if (ret)
4688 goto out_release_nounlock;
4691 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4692 spin_lock(ptl);
4695 * Recheck the i_size after holding PT lock to make sure not
4696 * to leave any page mapped (as page_mapped()) beyond the end
4697 * of the i_size (remove_inode_hugepages() is strict about
4698 * enforcing that). If we bail out here, we'll also leave a
4699 * page in the radix tree in the vm_shared case beyond the end
4700 * of the i_size, but remove_inode_hugepages() will take care
4701 * of it as soon as we drop the hugetlb_fault_mutex_table.
4703 size = i_size_read(mapping->host) >> huge_page_shift(h);
4704 ret = -EFAULT;
4705 if (idx >= size)
4706 goto out_release_unlock;
4708 ret = -EEXIST;
4709 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4710 goto out_release_unlock;
4712 if (vm_shared) {
4713 page_dup_rmap(page, true);
4714 } else {
4715 ClearPagePrivate(page);
4716 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4719 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4720 if (dst_vma->vm_flags & VM_WRITE)
4721 _dst_pte = huge_pte_mkdirty(_dst_pte);
4722 _dst_pte = pte_mkyoung(_dst_pte);
4724 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4726 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4727 dst_vma->vm_flags & VM_WRITE);
4728 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4730 /* No need to invalidate - it was non-present before */
4731 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4733 spin_unlock(ptl);
4734 set_page_huge_active(page);
4735 if (vm_shared)
4736 unlock_page(page);
4737 ret = 0;
4738 out:
4739 return ret;
4740 out_release_unlock:
4741 spin_unlock(ptl);
4742 if (vm_shared)
4743 unlock_page(page);
4744 out_release_nounlock:
4745 put_page(page);
4746 goto out;
4749 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4750 struct page **pages, struct vm_area_struct **vmas,
4751 unsigned long *position, unsigned long *nr_pages,
4752 long i, unsigned int flags, int *locked)
4754 unsigned long pfn_offset;
4755 unsigned long vaddr = *position;
4756 unsigned long remainder = *nr_pages;
4757 struct hstate *h = hstate_vma(vma);
4758 int err = -EFAULT;
4760 while (vaddr < vma->vm_end && remainder) {
4761 pte_t *pte;
4762 spinlock_t *ptl = NULL;
4763 int absent;
4764 struct page *page;
4767 * If we have a pending SIGKILL, don't keep faulting pages and
4768 * potentially allocating memory.
4770 if (fatal_signal_pending(current)) {
4771 remainder = 0;
4772 break;
4776 * Some archs (sparc64, sh*) have multiple pte_ts to
4777 * each hugepage. We have to make sure we get the
4778 * first, for the page indexing below to work.
4780 * Note that page table lock is not held when pte is null.
4782 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4783 huge_page_size(h));
4784 if (pte)
4785 ptl = huge_pte_lock(h, mm, pte);
4786 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4789 * When coredumping, it suits get_dump_page if we just return
4790 * an error where there's an empty slot with no huge pagecache
4791 * to back it. This way, we avoid allocating a hugepage, and
4792 * the sparse dumpfile avoids allocating disk blocks, but its
4793 * huge holes still show up with zeroes where they need to be.
4795 if (absent && (flags & FOLL_DUMP) &&
4796 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4797 if (pte)
4798 spin_unlock(ptl);
4799 remainder = 0;
4800 break;
4804 * We need call hugetlb_fault for both hugepages under migration
4805 * (in which case hugetlb_fault waits for the migration,) and
4806 * hwpoisoned hugepages (in which case we need to prevent the
4807 * caller from accessing to them.) In order to do this, we use
4808 * here is_swap_pte instead of is_hugetlb_entry_migration and
4809 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4810 * both cases, and because we can't follow correct pages
4811 * directly from any kind of swap entries.
4813 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4814 ((flags & FOLL_WRITE) &&
4815 !huge_pte_write(huge_ptep_get(pte)))) {
4816 vm_fault_t ret;
4817 unsigned int fault_flags = 0;
4819 if (pte)
4820 spin_unlock(ptl);
4821 if (flags & FOLL_WRITE)
4822 fault_flags |= FAULT_FLAG_WRITE;
4823 if (locked)
4824 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4825 FAULT_FLAG_KILLABLE;
4826 if (flags & FOLL_NOWAIT)
4827 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4828 FAULT_FLAG_RETRY_NOWAIT;
4829 if (flags & FOLL_TRIED) {
4831 * Note: FAULT_FLAG_ALLOW_RETRY and
4832 * FAULT_FLAG_TRIED can co-exist
4834 fault_flags |= FAULT_FLAG_TRIED;
4836 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4837 if (ret & VM_FAULT_ERROR) {
4838 err = vm_fault_to_errno(ret, flags);
4839 remainder = 0;
4840 break;
4842 if (ret & VM_FAULT_RETRY) {
4843 if (locked &&
4844 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4845 *locked = 0;
4846 *nr_pages = 0;
4848 * VM_FAULT_RETRY must not return an
4849 * error, it will return zero
4850 * instead.
4852 * No need to update "position" as the
4853 * caller will not check it after
4854 * *nr_pages is set to 0.
4856 return i;
4858 continue;
4861 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4862 page = pte_page(huge_ptep_get(pte));
4865 * If subpage information not requested, update counters
4866 * and skip the same_page loop below.
4868 if (!pages && !vmas && !pfn_offset &&
4869 (vaddr + huge_page_size(h) < vma->vm_end) &&
4870 (remainder >= pages_per_huge_page(h))) {
4871 vaddr += huge_page_size(h);
4872 remainder -= pages_per_huge_page(h);
4873 i += pages_per_huge_page(h);
4874 spin_unlock(ptl);
4875 continue;
4878 same_page:
4879 if (pages) {
4880 pages[i] = mem_map_offset(page, pfn_offset);
4882 * try_grab_page() should always succeed here, because:
4883 * a) we hold the ptl lock, and b) we've just checked
4884 * that the huge page is present in the page tables. If
4885 * the huge page is present, then the tail pages must
4886 * also be present. The ptl prevents the head page and
4887 * tail pages from being rearranged in any way. So this
4888 * page must be available at this point, unless the page
4889 * refcount overflowed:
4891 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4892 spin_unlock(ptl);
4893 remainder = 0;
4894 err = -ENOMEM;
4895 break;
4899 if (vmas)
4900 vmas[i] = vma;
4902 vaddr += PAGE_SIZE;
4903 ++pfn_offset;
4904 --remainder;
4905 ++i;
4906 if (vaddr < vma->vm_end && remainder &&
4907 pfn_offset < pages_per_huge_page(h)) {
4909 * We use pfn_offset to avoid touching the pageframes
4910 * of this compound page.
4912 goto same_page;
4914 spin_unlock(ptl);
4916 *nr_pages = remainder;
4918 * setting position is actually required only if remainder is
4919 * not zero but it's faster not to add a "if (remainder)"
4920 * branch.
4922 *position = vaddr;
4924 return i ? i : err;
4927 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4929 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4930 * implement this.
4932 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4933 #endif
4935 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4936 unsigned long address, unsigned long end, pgprot_t newprot)
4938 struct mm_struct *mm = vma->vm_mm;
4939 unsigned long start = address;
4940 pte_t *ptep;
4941 pte_t pte;
4942 struct hstate *h = hstate_vma(vma);
4943 unsigned long pages = 0;
4944 bool shared_pmd = false;
4945 struct mmu_notifier_range range;
4948 * In the case of shared PMDs, the area to flush could be beyond
4949 * start/end. Set range.start/range.end to cover the maximum possible
4950 * range if PMD sharing is possible.
4952 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4953 0, vma, mm, start, end);
4954 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4956 BUG_ON(address >= end);
4957 flush_cache_range(vma, range.start, range.end);
4959 mmu_notifier_invalidate_range_start(&range);
4960 i_mmap_lock_write(vma->vm_file->f_mapping);
4961 for (; address < end; address += huge_page_size(h)) {
4962 spinlock_t *ptl;
4963 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4964 if (!ptep)
4965 continue;
4966 ptl = huge_pte_lock(h, mm, ptep);
4967 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4968 pages++;
4969 spin_unlock(ptl);
4970 shared_pmd = true;
4971 continue;
4973 pte = huge_ptep_get(ptep);
4974 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4975 spin_unlock(ptl);
4976 continue;
4978 if (unlikely(is_hugetlb_entry_migration(pte))) {
4979 swp_entry_t entry = pte_to_swp_entry(pte);
4981 if (is_write_migration_entry(entry)) {
4982 pte_t newpte;
4984 make_migration_entry_read(&entry);
4985 newpte = swp_entry_to_pte(entry);
4986 set_huge_swap_pte_at(mm, address, ptep,
4987 newpte, huge_page_size(h));
4988 pages++;
4990 spin_unlock(ptl);
4991 continue;
4993 if (!huge_pte_none(pte)) {
4994 pte_t old_pte;
4996 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4997 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4998 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4999 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5000 pages++;
5002 spin_unlock(ptl);
5005 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5006 * may have cleared our pud entry and done put_page on the page table:
5007 * once we release i_mmap_rwsem, another task can do the final put_page
5008 * and that page table be reused and filled with junk. If we actually
5009 * did unshare a page of pmds, flush the range corresponding to the pud.
5011 if (shared_pmd)
5012 flush_hugetlb_tlb_range(vma, range.start, range.end);
5013 else
5014 flush_hugetlb_tlb_range(vma, start, end);
5016 * No need to call mmu_notifier_invalidate_range() we are downgrading
5017 * page table protection not changing it to point to a new page.
5019 * See Documentation/vm/mmu_notifier.rst
5021 i_mmap_unlock_write(vma->vm_file->f_mapping);
5022 mmu_notifier_invalidate_range_end(&range);
5024 return pages << h->order;
5027 int hugetlb_reserve_pages(struct inode *inode,
5028 long from, long to,
5029 struct vm_area_struct *vma,
5030 vm_flags_t vm_flags)
5032 long ret, chg, add = -1;
5033 struct hstate *h = hstate_inode(inode);
5034 struct hugepage_subpool *spool = subpool_inode(inode);
5035 struct resv_map *resv_map;
5036 struct hugetlb_cgroup *h_cg = NULL;
5037 long gbl_reserve, regions_needed = 0;
5039 /* This should never happen */
5040 if (from > to) {
5041 VM_WARN(1, "%s called with a negative range\n", __func__);
5042 return -EINVAL;
5046 * Only apply hugepage reservation if asked. At fault time, an
5047 * attempt will be made for VM_NORESERVE to allocate a page
5048 * without using reserves
5050 if (vm_flags & VM_NORESERVE)
5051 return 0;
5054 * Shared mappings base their reservation on the number of pages that
5055 * are already allocated on behalf of the file. Private mappings need
5056 * to reserve the full area even if read-only as mprotect() may be
5057 * called to make the mapping read-write. Assume !vma is a shm mapping
5059 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5061 * resv_map can not be NULL as hugetlb_reserve_pages is only
5062 * called for inodes for which resv_maps were created (see
5063 * hugetlbfs_get_inode).
5065 resv_map = inode_resv_map(inode);
5067 chg = region_chg(resv_map, from, to, &regions_needed);
5069 } else {
5070 /* Private mapping. */
5071 resv_map = resv_map_alloc();
5072 if (!resv_map)
5073 return -ENOMEM;
5075 chg = to - from;
5077 set_vma_resv_map(vma, resv_map);
5078 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5081 if (chg < 0) {
5082 ret = chg;
5083 goto out_err;
5086 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5087 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5089 if (ret < 0) {
5090 ret = -ENOMEM;
5091 goto out_err;
5094 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5095 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5096 * of the resv_map.
5098 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5102 * There must be enough pages in the subpool for the mapping. If
5103 * the subpool has a minimum size, there may be some global
5104 * reservations already in place (gbl_reserve).
5106 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5107 if (gbl_reserve < 0) {
5108 ret = -ENOSPC;
5109 goto out_uncharge_cgroup;
5113 * Check enough hugepages are available for the reservation.
5114 * Hand the pages back to the subpool if there are not
5116 ret = hugetlb_acct_memory(h, gbl_reserve);
5117 if (ret < 0) {
5118 goto out_put_pages;
5122 * Account for the reservations made. Shared mappings record regions
5123 * that have reservations as they are shared by multiple VMAs.
5124 * When the last VMA disappears, the region map says how much
5125 * the reservation was and the page cache tells how much of
5126 * the reservation was consumed. Private mappings are per-VMA and
5127 * only the consumed reservations are tracked. When the VMA
5128 * disappears, the original reservation is the VMA size and the
5129 * consumed reservations are stored in the map. Hence, nothing
5130 * else has to be done for private mappings here
5132 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5133 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5135 if (unlikely(add < 0)) {
5136 hugetlb_acct_memory(h, -gbl_reserve);
5137 ret = add;
5138 goto out_put_pages;
5139 } else if (unlikely(chg > add)) {
5141 * pages in this range were added to the reserve
5142 * map between region_chg and region_add. This
5143 * indicates a race with alloc_huge_page. Adjust
5144 * the subpool and reserve counts modified above
5145 * based on the difference.
5147 long rsv_adjust;
5149 hugetlb_cgroup_uncharge_cgroup_rsvd(
5150 hstate_index(h),
5151 (chg - add) * pages_per_huge_page(h), h_cg);
5153 rsv_adjust = hugepage_subpool_put_pages(spool,
5154 chg - add);
5155 hugetlb_acct_memory(h, -rsv_adjust);
5158 return 0;
5159 out_put_pages:
5160 /* put back original number of pages, chg */
5161 (void)hugepage_subpool_put_pages(spool, chg);
5162 out_uncharge_cgroup:
5163 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5164 chg * pages_per_huge_page(h), h_cg);
5165 out_err:
5166 if (!vma || vma->vm_flags & VM_MAYSHARE)
5167 /* Only call region_abort if the region_chg succeeded but the
5168 * region_add failed or didn't run.
5170 if (chg >= 0 && add < 0)
5171 region_abort(resv_map, from, to, regions_needed);
5172 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5173 kref_put(&resv_map->refs, resv_map_release);
5174 return ret;
5177 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5178 long freed)
5180 struct hstate *h = hstate_inode(inode);
5181 struct resv_map *resv_map = inode_resv_map(inode);
5182 long chg = 0;
5183 struct hugepage_subpool *spool = subpool_inode(inode);
5184 long gbl_reserve;
5187 * Since this routine can be called in the evict inode path for all
5188 * hugetlbfs inodes, resv_map could be NULL.
5190 if (resv_map) {
5191 chg = region_del(resv_map, start, end);
5193 * region_del() can fail in the rare case where a region
5194 * must be split and another region descriptor can not be
5195 * allocated. If end == LONG_MAX, it will not fail.
5197 if (chg < 0)
5198 return chg;
5201 spin_lock(&inode->i_lock);
5202 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5203 spin_unlock(&inode->i_lock);
5206 * If the subpool has a minimum size, the number of global
5207 * reservations to be released may be adjusted.
5209 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5210 hugetlb_acct_memory(h, -gbl_reserve);
5212 return 0;
5215 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5216 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5217 struct vm_area_struct *vma,
5218 unsigned long addr, pgoff_t idx)
5220 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5221 svma->vm_start;
5222 unsigned long sbase = saddr & PUD_MASK;
5223 unsigned long s_end = sbase + PUD_SIZE;
5225 /* Allow segments to share if only one is marked locked */
5226 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5227 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5230 * match the virtual addresses, permission and the alignment of the
5231 * page table page.
5233 if (pmd_index(addr) != pmd_index(saddr) ||
5234 vm_flags != svm_flags ||
5235 sbase < svma->vm_start || svma->vm_end < s_end)
5236 return 0;
5238 return saddr;
5241 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5243 unsigned long base = addr & PUD_MASK;
5244 unsigned long end = base + PUD_SIZE;
5247 * check on proper vm_flags and page table alignment
5249 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5250 return true;
5251 return false;
5255 * Determine if start,end range within vma could be mapped by shared pmd.
5256 * If yes, adjust start and end to cover range associated with possible
5257 * shared pmd mappings.
5259 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5260 unsigned long *start, unsigned long *end)
5262 unsigned long a_start, a_end;
5264 if (!(vma->vm_flags & VM_MAYSHARE))
5265 return;
5267 /* Extend the range to be PUD aligned for a worst case scenario */
5268 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5269 a_end = ALIGN(*end, PUD_SIZE);
5272 * Intersect the range with the vma range, since pmd sharing won't be
5273 * across vma after all
5275 *start = max(vma->vm_start, a_start);
5276 *end = min(vma->vm_end, a_end);
5280 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5281 * and returns the corresponding pte. While this is not necessary for the
5282 * !shared pmd case because we can allocate the pmd later as well, it makes the
5283 * code much cleaner.
5285 * This routine must be called with i_mmap_rwsem held in at least read mode if
5286 * sharing is possible. For hugetlbfs, this prevents removal of any page
5287 * table entries associated with the address space. This is important as we
5288 * are setting up sharing based on existing page table entries (mappings).
5290 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5291 * huge_pte_alloc know that sharing is not possible and do not take
5292 * i_mmap_rwsem as a performance optimization. This is handled by the
5293 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5294 * only required for subsequent processing.
5296 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5298 struct vm_area_struct *vma = find_vma(mm, addr);
5299 struct address_space *mapping = vma->vm_file->f_mapping;
5300 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5301 vma->vm_pgoff;
5302 struct vm_area_struct *svma;
5303 unsigned long saddr;
5304 pte_t *spte = NULL;
5305 pte_t *pte;
5306 spinlock_t *ptl;
5308 if (!vma_shareable(vma, addr))
5309 return (pte_t *)pmd_alloc(mm, pud, addr);
5311 i_mmap_assert_locked(mapping);
5312 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5313 if (svma == vma)
5314 continue;
5316 saddr = page_table_shareable(svma, vma, addr, idx);
5317 if (saddr) {
5318 spte = huge_pte_offset(svma->vm_mm, saddr,
5319 vma_mmu_pagesize(svma));
5320 if (spte) {
5321 get_page(virt_to_page(spte));
5322 break;
5327 if (!spte)
5328 goto out;
5330 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5331 if (pud_none(*pud)) {
5332 pud_populate(mm, pud,
5333 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5334 mm_inc_nr_pmds(mm);
5335 } else {
5336 put_page(virt_to_page(spte));
5338 spin_unlock(ptl);
5339 out:
5340 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5341 return pte;
5345 * unmap huge page backed by shared pte.
5347 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5348 * indicated by page_count > 1, unmap is achieved by clearing pud and
5349 * decrementing the ref count. If count == 1, the pte page is not shared.
5351 * Called with page table lock held and i_mmap_rwsem held in write mode.
5353 * returns: 1 successfully unmapped a shared pte page
5354 * 0 the underlying pte page is not shared, or it is the last user
5356 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5357 unsigned long *addr, pte_t *ptep)
5359 pgd_t *pgd = pgd_offset(mm, *addr);
5360 p4d_t *p4d = p4d_offset(pgd, *addr);
5361 pud_t *pud = pud_offset(p4d, *addr);
5363 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5364 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5365 if (page_count(virt_to_page(ptep)) == 1)
5366 return 0;
5368 pud_clear(pud);
5369 put_page(virt_to_page(ptep));
5370 mm_dec_nr_pmds(mm);
5371 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5372 return 1;
5374 #define want_pmd_share() (1)
5375 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5376 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5378 return NULL;
5381 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5382 unsigned long *addr, pte_t *ptep)
5384 return 0;
5387 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5388 unsigned long *start, unsigned long *end)
5391 #define want_pmd_share() (0)
5392 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5394 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5395 pte_t *huge_pte_alloc(struct mm_struct *mm,
5396 unsigned long addr, unsigned long sz)
5398 pgd_t *pgd;
5399 p4d_t *p4d;
5400 pud_t *pud;
5401 pte_t *pte = NULL;
5403 pgd = pgd_offset(mm, addr);
5404 p4d = p4d_alloc(mm, pgd, addr);
5405 if (!p4d)
5406 return NULL;
5407 pud = pud_alloc(mm, p4d, addr);
5408 if (pud) {
5409 if (sz == PUD_SIZE) {
5410 pte = (pte_t *)pud;
5411 } else {
5412 BUG_ON(sz != PMD_SIZE);
5413 if (want_pmd_share() && pud_none(*pud))
5414 pte = huge_pmd_share(mm, addr, pud);
5415 else
5416 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5419 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5421 return pte;
5425 * huge_pte_offset() - Walk the page table to resolve the hugepage
5426 * entry at address @addr
5428 * Return: Pointer to page table entry (PUD or PMD) for
5429 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5430 * size @sz doesn't match the hugepage size at this level of the page
5431 * table.
5433 pte_t *huge_pte_offset(struct mm_struct *mm,
5434 unsigned long addr, unsigned long sz)
5436 pgd_t *pgd;
5437 p4d_t *p4d;
5438 pud_t *pud;
5439 pmd_t *pmd;
5441 pgd = pgd_offset(mm, addr);
5442 if (!pgd_present(*pgd))
5443 return NULL;
5444 p4d = p4d_offset(pgd, addr);
5445 if (!p4d_present(*p4d))
5446 return NULL;
5448 pud = pud_offset(p4d, addr);
5449 if (sz == PUD_SIZE)
5450 /* must be pud huge, non-present or none */
5451 return (pte_t *)pud;
5452 if (!pud_present(*pud))
5453 return NULL;
5454 /* must have a valid entry and size to go further */
5456 pmd = pmd_offset(pud, addr);
5457 /* must be pmd huge, non-present or none */
5458 return (pte_t *)pmd;
5461 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5464 * These functions are overwritable if your architecture needs its own
5465 * behavior.
5467 struct page * __weak
5468 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5469 int write)
5471 return ERR_PTR(-EINVAL);
5474 struct page * __weak
5475 follow_huge_pd(struct vm_area_struct *vma,
5476 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5478 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5479 return NULL;
5482 struct page * __weak
5483 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5484 pmd_t *pmd, int flags)
5486 struct page *page = NULL;
5487 spinlock_t *ptl;
5488 pte_t pte;
5490 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5491 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5492 (FOLL_PIN | FOLL_GET)))
5493 return NULL;
5495 retry:
5496 ptl = pmd_lockptr(mm, pmd);
5497 spin_lock(ptl);
5499 * make sure that the address range covered by this pmd is not
5500 * unmapped from other threads.
5502 if (!pmd_huge(*pmd))
5503 goto out;
5504 pte = huge_ptep_get((pte_t *)pmd);
5505 if (pte_present(pte)) {
5506 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5508 * try_grab_page() should always succeed here, because: a) we
5509 * hold the pmd (ptl) lock, and b) we've just checked that the
5510 * huge pmd (head) page is present in the page tables. The ptl
5511 * prevents the head page and tail pages from being rearranged
5512 * in any way. So this page must be available at this point,
5513 * unless the page refcount overflowed:
5515 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5516 page = NULL;
5517 goto out;
5519 } else {
5520 if (is_hugetlb_entry_migration(pte)) {
5521 spin_unlock(ptl);
5522 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5523 goto retry;
5526 * hwpoisoned entry is treated as no_page_table in
5527 * follow_page_mask().
5530 out:
5531 spin_unlock(ptl);
5532 return page;
5535 struct page * __weak
5536 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5537 pud_t *pud, int flags)
5539 if (flags & (FOLL_GET | FOLL_PIN))
5540 return NULL;
5542 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5545 struct page * __weak
5546 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5548 if (flags & (FOLL_GET | FOLL_PIN))
5549 return NULL;
5551 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5554 bool isolate_huge_page(struct page *page, struct list_head *list)
5556 bool ret = true;
5558 VM_BUG_ON_PAGE(!PageHead(page), page);
5559 spin_lock(&hugetlb_lock);
5560 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5561 ret = false;
5562 goto unlock;
5564 clear_page_huge_active(page);
5565 list_move_tail(&page->lru, list);
5566 unlock:
5567 spin_unlock(&hugetlb_lock);
5568 return ret;
5571 void putback_active_hugepage(struct page *page)
5573 VM_BUG_ON_PAGE(!PageHead(page), page);
5574 spin_lock(&hugetlb_lock);
5575 set_page_huge_active(page);
5576 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5577 spin_unlock(&hugetlb_lock);
5578 put_page(page);
5581 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5583 struct hstate *h = page_hstate(oldpage);
5585 hugetlb_cgroup_migrate(oldpage, newpage);
5586 set_page_owner_migrate_reason(newpage, reason);
5589 * transfer temporary state of the new huge page. This is
5590 * reverse to other transitions because the newpage is going to
5591 * be final while the old one will be freed so it takes over
5592 * the temporary status.
5594 * Also note that we have to transfer the per-node surplus state
5595 * here as well otherwise the global surplus count will not match
5596 * the per-node's.
5598 if (PageHugeTemporary(newpage)) {
5599 int old_nid = page_to_nid(oldpage);
5600 int new_nid = page_to_nid(newpage);
5602 SetPageHugeTemporary(oldpage);
5603 ClearPageHugeTemporary(newpage);
5605 spin_lock(&hugetlb_lock);
5606 if (h->surplus_huge_pages_node[old_nid]) {
5607 h->surplus_huge_pages_node[old_nid]--;
5608 h->surplus_huge_pages_node[new_nid]++;
5610 spin_unlock(&hugetlb_lock);
5614 #ifdef CONFIG_CMA
5615 static bool cma_reserve_called __initdata;
5617 static int __init cmdline_parse_hugetlb_cma(char *p)
5619 hugetlb_cma_size = memparse(p, &p);
5620 return 0;
5623 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5625 void __init hugetlb_cma_reserve(int order)
5627 unsigned long size, reserved, per_node;
5628 int nid;
5630 cma_reserve_called = true;
5632 if (!hugetlb_cma_size)
5633 return;
5635 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5636 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5637 (PAGE_SIZE << order) / SZ_1M);
5638 return;
5642 * If 3 GB area is requested on a machine with 4 numa nodes,
5643 * let's allocate 1 GB on first three nodes and ignore the last one.
5645 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5646 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5647 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5649 reserved = 0;
5650 for_each_node_state(nid, N_ONLINE) {
5651 int res;
5652 char name[CMA_MAX_NAME];
5654 size = min(per_node, hugetlb_cma_size - reserved);
5655 size = round_up(size, PAGE_SIZE << order);
5657 snprintf(name, sizeof(name), "hugetlb%d", nid);
5658 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5659 0, false, name,
5660 &hugetlb_cma[nid], nid);
5661 if (res) {
5662 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5663 res, nid);
5664 continue;
5667 reserved += size;
5668 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5669 size / SZ_1M, nid);
5671 if (reserved >= hugetlb_cma_size)
5672 break;
5676 void __init hugetlb_cma_check(void)
5678 if (!hugetlb_cma_size || cma_reserve_called)
5679 return;
5681 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5684 #endif /* CONFIG_CMA */