LiteX: driver for MMCM
[linux/fpc-iii.git] / mm / slab.c
blobd7c8da9319c782f5dd4f20179e65c696526dc854
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
69 * Further notes from the original documentation:
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
77 * At present, each engine can be growing a cache. This should be blocked.
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
131 #include "slab.h"
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
173 * struct array_cache
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
202 * Need this for bootstrapping a per node allocator.
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
259 #define BATCHREFILL_LIMIT 16
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
312 #if DEBUG
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
327 static int obj_offset(struct kmem_cache *cachep)
329 return cachep->obj_offset;
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
356 #else
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363 #endif
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
369 #define SLAB_MAX_ORDER_HI 1
370 #define SLAB_MAX_ORDER_LO 0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
375 unsigned int idx)
377 return page->s_mem + cache->size * idx;
380 #define BOOT_CPUCACHE_ENTRIES 1
381 /* internal cache of cache description objs */
382 static struct kmem_cache kmem_cache_boot = {
383 .batchcount = 1,
384 .limit = BOOT_CPUCACHE_ENTRIES,
385 .shared = 1,
386 .size = sizeof(struct kmem_cache),
387 .name = "kmem_cache",
390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
394 return this_cpu_ptr(cachep->cpu_cache);
398 * Calculate the number of objects and left-over bytes for a given buffer size.
400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401 slab_flags_t flags, size_t *left_over)
403 unsigned int num;
404 size_t slab_size = PAGE_SIZE << gfporder;
407 * The slab management structure can be either off the slab or
408 * on it. For the latter case, the memory allocated for a
409 * slab is used for:
411 * - @buffer_size bytes for each object
412 * - One freelist_idx_t for each object
414 * We don't need to consider alignment of freelist because
415 * freelist will be at the end of slab page. The objects will be
416 * at the correct alignment.
418 * If the slab management structure is off the slab, then the
419 * alignment will already be calculated into the size. Because
420 * the slabs are all pages aligned, the objects will be at the
421 * correct alignment when allocated.
423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424 num = slab_size / buffer_size;
425 *left_over = slab_size % buffer_size;
426 } else {
427 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 *left_over = slab_size %
429 (buffer_size + sizeof(freelist_idx_t));
432 return num;
435 #if DEBUG
436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
438 static void __slab_error(const char *function, struct kmem_cache *cachep,
439 char *msg)
441 pr_err("slab error in %s(): cache `%s': %s\n",
442 function, cachep->name, msg);
443 dump_stack();
444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
446 #endif
449 * By default on NUMA we use alien caches to stage the freeing of
450 * objects allocated from other nodes. This causes massive memory
451 * inefficiencies when using fake NUMA setup to split memory into a
452 * large number of small nodes, so it can be disabled on the command
453 * line
456 static int use_alien_caches __read_mostly = 1;
457 static int __init noaliencache_setup(char *s)
459 use_alien_caches = 0;
460 return 1;
462 __setup("noaliencache", noaliencache_setup);
464 static int __init slab_max_order_setup(char *str)
466 get_option(&str, &slab_max_order);
467 slab_max_order = slab_max_order < 0 ? 0 :
468 min(slab_max_order, MAX_ORDER - 1);
469 slab_max_order_set = true;
471 return 1;
473 __setup("slab_max_order=", slab_max_order_setup);
475 #ifdef CONFIG_NUMA
477 * Special reaping functions for NUMA systems called from cache_reap().
478 * These take care of doing round robin flushing of alien caches (containing
479 * objects freed on different nodes from which they were allocated) and the
480 * flushing of remote pcps by calling drain_node_pages.
482 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
484 static void init_reap_node(int cpu)
486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 node_online_map);
490 static void next_reap_node(void)
492 int node = __this_cpu_read(slab_reap_node);
494 node = next_node_in(node, node_online_map);
495 __this_cpu_write(slab_reap_node, node);
498 #else
499 #define init_reap_node(cpu) do { } while (0)
500 #define next_reap_node(void) do { } while (0)
501 #endif
504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
505 * via the workqueue/eventd.
506 * Add the CPU number into the expiration time to minimize the possibility of
507 * the CPUs getting into lockstep and contending for the global cache chain
508 * lock.
510 static void start_cpu_timer(int cpu)
512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
514 if (reap_work->work.func == NULL) {
515 init_reap_node(cpu);
516 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 schedule_delayed_work_on(cpu, reap_work,
518 __round_jiffies_relative(HZ, cpu));
522 static void init_arraycache(struct array_cache *ac, int limit, int batch)
524 if (ac) {
525 ac->avail = 0;
526 ac->limit = limit;
527 ac->batchcount = batch;
528 ac->touched = 0;
532 static struct array_cache *alloc_arraycache(int node, int entries,
533 int batchcount, gfp_t gfp)
535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 struct array_cache *ac = NULL;
538 ac = kmalloc_node(memsize, gfp, node);
540 * The array_cache structures contain pointers to free object.
541 * However, when such objects are allocated or transferred to another
542 * cache the pointers are not cleared and they could be counted as
543 * valid references during a kmemleak scan. Therefore, kmemleak must
544 * not scan such objects.
546 kmemleak_no_scan(ac);
547 init_arraycache(ac, entries, batchcount);
548 return ac;
551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 struct page *page, void *objp)
554 struct kmem_cache_node *n;
555 int page_node;
556 LIST_HEAD(list);
558 page_node = page_to_nid(page);
559 n = get_node(cachep, page_node);
561 spin_lock(&n->list_lock);
562 free_block(cachep, &objp, 1, page_node, &list);
563 spin_unlock(&n->list_lock);
565 slabs_destroy(cachep, &list);
569 * Transfer objects in one arraycache to another.
570 * Locking must be handled by the caller.
572 * Return the number of entries transferred.
574 static int transfer_objects(struct array_cache *to,
575 struct array_cache *from, unsigned int max)
577 /* Figure out how many entries to transfer */
578 int nr = min3(from->avail, max, to->limit - to->avail);
580 if (!nr)
581 return 0;
583 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
584 sizeof(void *) *nr);
586 from->avail -= nr;
587 to->avail += nr;
588 return nr;
591 /* &alien->lock must be held by alien callers. */
592 static __always_inline void __free_one(struct array_cache *ac, void *objp)
594 /* Avoid trivial double-free. */
595 if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
596 WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
597 return;
598 ac->entry[ac->avail++] = objp;
601 #ifndef CONFIG_NUMA
603 #define drain_alien_cache(cachep, alien) do { } while (0)
604 #define reap_alien(cachep, n) do { } while (0)
606 static inline struct alien_cache **alloc_alien_cache(int node,
607 int limit, gfp_t gfp)
609 return NULL;
612 static inline void free_alien_cache(struct alien_cache **ac_ptr)
616 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
618 return 0;
621 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
622 gfp_t flags)
624 return NULL;
627 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
628 gfp_t flags, int nodeid)
630 return NULL;
633 static inline gfp_t gfp_exact_node(gfp_t flags)
635 return flags & ~__GFP_NOFAIL;
638 #else /* CONFIG_NUMA */
640 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
641 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
643 static struct alien_cache *__alloc_alien_cache(int node, int entries,
644 int batch, gfp_t gfp)
646 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
647 struct alien_cache *alc = NULL;
649 alc = kmalloc_node(memsize, gfp, node);
650 if (alc) {
651 kmemleak_no_scan(alc);
652 init_arraycache(&alc->ac, entries, batch);
653 spin_lock_init(&alc->lock);
655 return alc;
658 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
660 struct alien_cache **alc_ptr;
661 int i;
663 if (limit > 1)
664 limit = 12;
665 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
666 if (!alc_ptr)
667 return NULL;
669 for_each_node(i) {
670 if (i == node || !node_online(i))
671 continue;
672 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
673 if (!alc_ptr[i]) {
674 for (i--; i >= 0; i--)
675 kfree(alc_ptr[i]);
676 kfree(alc_ptr);
677 return NULL;
680 return alc_ptr;
683 static void free_alien_cache(struct alien_cache **alc_ptr)
685 int i;
687 if (!alc_ptr)
688 return;
689 for_each_node(i)
690 kfree(alc_ptr[i]);
691 kfree(alc_ptr);
694 static void __drain_alien_cache(struct kmem_cache *cachep,
695 struct array_cache *ac, int node,
696 struct list_head *list)
698 struct kmem_cache_node *n = get_node(cachep, node);
700 if (ac->avail) {
701 spin_lock(&n->list_lock);
703 * Stuff objects into the remote nodes shared array first.
704 * That way we could avoid the overhead of putting the objects
705 * into the free lists and getting them back later.
707 if (n->shared)
708 transfer_objects(n->shared, ac, ac->limit);
710 free_block(cachep, ac->entry, ac->avail, node, list);
711 ac->avail = 0;
712 spin_unlock(&n->list_lock);
717 * Called from cache_reap() to regularly drain alien caches round robin.
719 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
721 int node = __this_cpu_read(slab_reap_node);
723 if (n->alien) {
724 struct alien_cache *alc = n->alien[node];
725 struct array_cache *ac;
727 if (alc) {
728 ac = &alc->ac;
729 if (ac->avail && spin_trylock_irq(&alc->lock)) {
730 LIST_HEAD(list);
732 __drain_alien_cache(cachep, ac, node, &list);
733 spin_unlock_irq(&alc->lock);
734 slabs_destroy(cachep, &list);
740 static void drain_alien_cache(struct kmem_cache *cachep,
741 struct alien_cache **alien)
743 int i = 0;
744 struct alien_cache *alc;
745 struct array_cache *ac;
746 unsigned long flags;
748 for_each_online_node(i) {
749 alc = alien[i];
750 if (alc) {
751 LIST_HEAD(list);
753 ac = &alc->ac;
754 spin_lock_irqsave(&alc->lock, flags);
755 __drain_alien_cache(cachep, ac, i, &list);
756 spin_unlock_irqrestore(&alc->lock, flags);
757 slabs_destroy(cachep, &list);
762 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
763 int node, int page_node)
765 struct kmem_cache_node *n;
766 struct alien_cache *alien = NULL;
767 struct array_cache *ac;
768 LIST_HEAD(list);
770 n = get_node(cachep, node);
771 STATS_INC_NODEFREES(cachep);
772 if (n->alien && n->alien[page_node]) {
773 alien = n->alien[page_node];
774 ac = &alien->ac;
775 spin_lock(&alien->lock);
776 if (unlikely(ac->avail == ac->limit)) {
777 STATS_INC_ACOVERFLOW(cachep);
778 __drain_alien_cache(cachep, ac, page_node, &list);
780 __free_one(ac, objp);
781 spin_unlock(&alien->lock);
782 slabs_destroy(cachep, &list);
783 } else {
784 n = get_node(cachep, page_node);
785 spin_lock(&n->list_lock);
786 free_block(cachep, &objp, 1, page_node, &list);
787 spin_unlock(&n->list_lock);
788 slabs_destroy(cachep, &list);
790 return 1;
793 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
795 int page_node = page_to_nid(virt_to_page(objp));
796 int node = numa_mem_id();
798 * Make sure we are not freeing a object from another node to the array
799 * cache on this cpu.
801 if (likely(node == page_node))
802 return 0;
804 return __cache_free_alien(cachep, objp, node, page_node);
808 * Construct gfp mask to allocate from a specific node but do not reclaim or
809 * warn about failures.
811 static inline gfp_t gfp_exact_node(gfp_t flags)
813 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
815 #endif
817 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
819 struct kmem_cache_node *n;
822 * Set up the kmem_cache_node for cpu before we can
823 * begin anything. Make sure some other cpu on this
824 * node has not already allocated this
826 n = get_node(cachep, node);
827 if (n) {
828 spin_lock_irq(&n->list_lock);
829 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
830 cachep->num;
831 spin_unlock_irq(&n->list_lock);
833 return 0;
836 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
837 if (!n)
838 return -ENOMEM;
840 kmem_cache_node_init(n);
841 n->next_reap = jiffies + REAPTIMEOUT_NODE +
842 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
844 n->free_limit =
845 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
848 * The kmem_cache_nodes don't come and go as CPUs
849 * come and go. slab_mutex is sufficient
850 * protection here.
852 cachep->node[node] = n;
854 return 0;
857 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
859 * Allocates and initializes node for a node on each slab cache, used for
860 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
861 * will be allocated off-node since memory is not yet online for the new node.
862 * When hotplugging memory or a cpu, existing node are not replaced if
863 * already in use.
865 * Must hold slab_mutex.
867 static int init_cache_node_node(int node)
869 int ret;
870 struct kmem_cache *cachep;
872 list_for_each_entry(cachep, &slab_caches, list) {
873 ret = init_cache_node(cachep, node, GFP_KERNEL);
874 if (ret)
875 return ret;
878 return 0;
880 #endif
882 static int setup_kmem_cache_node(struct kmem_cache *cachep,
883 int node, gfp_t gfp, bool force_change)
885 int ret = -ENOMEM;
886 struct kmem_cache_node *n;
887 struct array_cache *old_shared = NULL;
888 struct array_cache *new_shared = NULL;
889 struct alien_cache **new_alien = NULL;
890 LIST_HEAD(list);
892 if (use_alien_caches) {
893 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
894 if (!new_alien)
895 goto fail;
898 if (cachep->shared) {
899 new_shared = alloc_arraycache(node,
900 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
901 if (!new_shared)
902 goto fail;
905 ret = init_cache_node(cachep, node, gfp);
906 if (ret)
907 goto fail;
909 n = get_node(cachep, node);
910 spin_lock_irq(&n->list_lock);
911 if (n->shared && force_change) {
912 free_block(cachep, n->shared->entry,
913 n->shared->avail, node, &list);
914 n->shared->avail = 0;
917 if (!n->shared || force_change) {
918 old_shared = n->shared;
919 n->shared = new_shared;
920 new_shared = NULL;
923 if (!n->alien) {
924 n->alien = new_alien;
925 new_alien = NULL;
928 spin_unlock_irq(&n->list_lock);
929 slabs_destroy(cachep, &list);
932 * To protect lockless access to n->shared during irq disabled context.
933 * If n->shared isn't NULL in irq disabled context, accessing to it is
934 * guaranteed to be valid until irq is re-enabled, because it will be
935 * freed after synchronize_rcu().
937 if (old_shared && force_change)
938 synchronize_rcu();
940 fail:
941 kfree(old_shared);
942 kfree(new_shared);
943 free_alien_cache(new_alien);
945 return ret;
948 #ifdef CONFIG_SMP
950 static void cpuup_canceled(long cpu)
952 struct kmem_cache *cachep;
953 struct kmem_cache_node *n = NULL;
954 int node = cpu_to_mem(cpu);
955 const struct cpumask *mask = cpumask_of_node(node);
957 list_for_each_entry(cachep, &slab_caches, list) {
958 struct array_cache *nc;
959 struct array_cache *shared;
960 struct alien_cache **alien;
961 LIST_HEAD(list);
963 n = get_node(cachep, node);
964 if (!n)
965 continue;
967 spin_lock_irq(&n->list_lock);
969 /* Free limit for this kmem_cache_node */
970 n->free_limit -= cachep->batchcount;
972 /* cpu is dead; no one can alloc from it. */
973 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
974 free_block(cachep, nc->entry, nc->avail, node, &list);
975 nc->avail = 0;
977 if (!cpumask_empty(mask)) {
978 spin_unlock_irq(&n->list_lock);
979 goto free_slab;
982 shared = n->shared;
983 if (shared) {
984 free_block(cachep, shared->entry,
985 shared->avail, node, &list);
986 n->shared = NULL;
989 alien = n->alien;
990 n->alien = NULL;
992 spin_unlock_irq(&n->list_lock);
994 kfree(shared);
995 if (alien) {
996 drain_alien_cache(cachep, alien);
997 free_alien_cache(alien);
1000 free_slab:
1001 slabs_destroy(cachep, &list);
1004 * In the previous loop, all the objects were freed to
1005 * the respective cache's slabs, now we can go ahead and
1006 * shrink each nodelist to its limit.
1008 list_for_each_entry(cachep, &slab_caches, list) {
1009 n = get_node(cachep, node);
1010 if (!n)
1011 continue;
1012 drain_freelist(cachep, n, INT_MAX);
1016 static int cpuup_prepare(long cpu)
1018 struct kmem_cache *cachep;
1019 int node = cpu_to_mem(cpu);
1020 int err;
1023 * We need to do this right in the beginning since
1024 * alloc_arraycache's are going to use this list.
1025 * kmalloc_node allows us to add the slab to the right
1026 * kmem_cache_node and not this cpu's kmem_cache_node
1028 err = init_cache_node_node(node);
1029 if (err < 0)
1030 goto bad;
1033 * Now we can go ahead with allocating the shared arrays and
1034 * array caches
1036 list_for_each_entry(cachep, &slab_caches, list) {
1037 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1038 if (err)
1039 goto bad;
1042 return 0;
1043 bad:
1044 cpuup_canceled(cpu);
1045 return -ENOMEM;
1048 int slab_prepare_cpu(unsigned int cpu)
1050 int err;
1052 mutex_lock(&slab_mutex);
1053 err = cpuup_prepare(cpu);
1054 mutex_unlock(&slab_mutex);
1055 return err;
1059 * This is called for a failed online attempt and for a successful
1060 * offline.
1062 * Even if all the cpus of a node are down, we don't free the
1063 * kmem_cache_node of any cache. This to avoid a race between cpu_down, and
1064 * a kmalloc allocation from another cpu for memory from the node of
1065 * the cpu going down. The kmem_cache_node structure is usually allocated from
1066 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1068 int slab_dead_cpu(unsigned int cpu)
1070 mutex_lock(&slab_mutex);
1071 cpuup_canceled(cpu);
1072 mutex_unlock(&slab_mutex);
1073 return 0;
1075 #endif
1077 static int slab_online_cpu(unsigned int cpu)
1079 start_cpu_timer(cpu);
1080 return 0;
1083 static int slab_offline_cpu(unsigned int cpu)
1086 * Shutdown cache reaper. Note that the slab_mutex is held so
1087 * that if cache_reap() is invoked it cannot do anything
1088 * expensive but will only modify reap_work and reschedule the
1089 * timer.
1091 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1092 /* Now the cache_reaper is guaranteed to be not running. */
1093 per_cpu(slab_reap_work, cpu).work.func = NULL;
1094 return 0;
1097 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1099 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1100 * Returns -EBUSY if all objects cannot be drained so that the node is not
1101 * removed.
1103 * Must hold slab_mutex.
1105 static int __meminit drain_cache_node_node(int node)
1107 struct kmem_cache *cachep;
1108 int ret = 0;
1110 list_for_each_entry(cachep, &slab_caches, list) {
1111 struct kmem_cache_node *n;
1113 n = get_node(cachep, node);
1114 if (!n)
1115 continue;
1117 drain_freelist(cachep, n, INT_MAX);
1119 if (!list_empty(&n->slabs_full) ||
1120 !list_empty(&n->slabs_partial)) {
1121 ret = -EBUSY;
1122 break;
1125 return ret;
1128 static int __meminit slab_memory_callback(struct notifier_block *self,
1129 unsigned long action, void *arg)
1131 struct memory_notify *mnb = arg;
1132 int ret = 0;
1133 int nid;
1135 nid = mnb->status_change_nid;
1136 if (nid < 0)
1137 goto out;
1139 switch (action) {
1140 case MEM_GOING_ONLINE:
1141 mutex_lock(&slab_mutex);
1142 ret = init_cache_node_node(nid);
1143 mutex_unlock(&slab_mutex);
1144 break;
1145 case MEM_GOING_OFFLINE:
1146 mutex_lock(&slab_mutex);
1147 ret = drain_cache_node_node(nid);
1148 mutex_unlock(&slab_mutex);
1149 break;
1150 case MEM_ONLINE:
1151 case MEM_OFFLINE:
1152 case MEM_CANCEL_ONLINE:
1153 case MEM_CANCEL_OFFLINE:
1154 break;
1156 out:
1157 return notifier_from_errno(ret);
1159 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1162 * swap the static kmem_cache_node with kmalloced memory
1164 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1165 int nodeid)
1167 struct kmem_cache_node *ptr;
1169 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1170 BUG_ON(!ptr);
1172 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1174 * Do not assume that spinlocks can be initialized via memcpy:
1176 spin_lock_init(&ptr->list_lock);
1178 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1179 cachep->node[nodeid] = ptr;
1183 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1184 * size of kmem_cache_node.
1186 static void __init set_up_node(struct kmem_cache *cachep, int index)
1188 int node;
1190 for_each_online_node(node) {
1191 cachep->node[node] = &init_kmem_cache_node[index + node];
1192 cachep->node[node]->next_reap = jiffies +
1193 REAPTIMEOUT_NODE +
1194 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1199 * Initialisation. Called after the page allocator have been initialised and
1200 * before smp_init().
1202 void __init kmem_cache_init(void)
1204 int i;
1206 kmem_cache = &kmem_cache_boot;
1208 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1209 use_alien_caches = 0;
1211 for (i = 0; i < NUM_INIT_LISTS; i++)
1212 kmem_cache_node_init(&init_kmem_cache_node[i]);
1215 * Fragmentation resistance on low memory - only use bigger
1216 * page orders on machines with more than 32MB of memory if
1217 * not overridden on the command line.
1219 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1220 slab_max_order = SLAB_MAX_ORDER_HI;
1222 /* Bootstrap is tricky, because several objects are allocated
1223 * from caches that do not exist yet:
1224 * 1) initialize the kmem_cache cache: it contains the struct
1225 * kmem_cache structures of all caches, except kmem_cache itself:
1226 * kmem_cache is statically allocated.
1227 * Initially an __init data area is used for the head array and the
1228 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1229 * array at the end of the bootstrap.
1230 * 2) Create the first kmalloc cache.
1231 * The struct kmem_cache for the new cache is allocated normally.
1232 * An __init data area is used for the head array.
1233 * 3) Create the remaining kmalloc caches, with minimally sized
1234 * head arrays.
1235 * 4) Replace the __init data head arrays for kmem_cache and the first
1236 * kmalloc cache with kmalloc allocated arrays.
1237 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1238 * the other cache's with kmalloc allocated memory.
1239 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1242 /* 1) create the kmem_cache */
1245 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1247 create_boot_cache(kmem_cache, "kmem_cache",
1248 offsetof(struct kmem_cache, node) +
1249 nr_node_ids * sizeof(struct kmem_cache_node *),
1250 SLAB_HWCACHE_ALIGN, 0, 0);
1251 list_add(&kmem_cache->list, &slab_caches);
1252 slab_state = PARTIAL;
1255 * Initialize the caches that provide memory for the kmem_cache_node
1256 * structures first. Without this, further allocations will bug.
1258 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1259 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1260 kmalloc_info[INDEX_NODE].size,
1261 ARCH_KMALLOC_FLAGS, 0,
1262 kmalloc_info[INDEX_NODE].size);
1263 slab_state = PARTIAL_NODE;
1264 setup_kmalloc_cache_index_table();
1266 slab_early_init = 0;
1268 /* 5) Replace the bootstrap kmem_cache_node */
1270 int nid;
1272 for_each_online_node(nid) {
1273 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1275 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1276 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1280 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1283 void __init kmem_cache_init_late(void)
1285 struct kmem_cache *cachep;
1287 /* 6) resize the head arrays to their final sizes */
1288 mutex_lock(&slab_mutex);
1289 list_for_each_entry(cachep, &slab_caches, list)
1290 if (enable_cpucache(cachep, GFP_NOWAIT))
1291 BUG();
1292 mutex_unlock(&slab_mutex);
1294 /* Done! */
1295 slab_state = FULL;
1297 #ifdef CONFIG_NUMA
1299 * Register a memory hotplug callback that initializes and frees
1300 * node.
1302 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1303 #endif
1306 * The reap timers are started later, with a module init call: That part
1307 * of the kernel is not yet operational.
1311 static int __init cpucache_init(void)
1313 int ret;
1316 * Register the timers that return unneeded pages to the page allocator
1318 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1319 slab_online_cpu, slab_offline_cpu);
1320 WARN_ON(ret < 0);
1322 return 0;
1324 __initcall(cpucache_init);
1326 static noinline void
1327 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1329 #if DEBUG
1330 struct kmem_cache_node *n;
1331 unsigned long flags;
1332 int node;
1333 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1334 DEFAULT_RATELIMIT_BURST);
1336 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1337 return;
1339 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1340 nodeid, gfpflags, &gfpflags);
1341 pr_warn(" cache: %s, object size: %d, order: %d\n",
1342 cachep->name, cachep->size, cachep->gfporder);
1344 for_each_kmem_cache_node(cachep, node, n) {
1345 unsigned long total_slabs, free_slabs, free_objs;
1347 spin_lock_irqsave(&n->list_lock, flags);
1348 total_slabs = n->total_slabs;
1349 free_slabs = n->free_slabs;
1350 free_objs = n->free_objects;
1351 spin_unlock_irqrestore(&n->list_lock, flags);
1353 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1354 node, total_slabs - free_slabs, total_slabs,
1355 (total_slabs * cachep->num) - free_objs,
1356 total_slabs * cachep->num);
1358 #endif
1362 * Interface to system's page allocator. No need to hold the
1363 * kmem_cache_node ->list_lock.
1365 * If we requested dmaable memory, we will get it. Even if we
1366 * did not request dmaable memory, we might get it, but that
1367 * would be relatively rare and ignorable.
1369 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1370 int nodeid)
1372 struct page *page;
1374 flags |= cachep->allocflags;
1376 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1377 if (!page) {
1378 slab_out_of_memory(cachep, flags, nodeid);
1379 return NULL;
1382 account_slab_page(page, cachep->gfporder, cachep);
1383 __SetPageSlab(page);
1384 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1385 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1386 SetPageSlabPfmemalloc(page);
1388 return page;
1392 * Interface to system's page release.
1394 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1396 int order = cachep->gfporder;
1398 BUG_ON(!PageSlab(page));
1399 __ClearPageSlabPfmemalloc(page);
1400 __ClearPageSlab(page);
1401 page_mapcount_reset(page);
1402 /* In union with page->mapping where page allocator expects NULL */
1403 page->slab_cache = NULL;
1405 if (current->reclaim_state)
1406 current->reclaim_state->reclaimed_slab += 1 << order;
1407 unaccount_slab_page(page, order, cachep);
1408 __free_pages(page, order);
1411 static void kmem_rcu_free(struct rcu_head *head)
1413 struct kmem_cache *cachep;
1414 struct page *page;
1416 page = container_of(head, struct page, rcu_head);
1417 cachep = page->slab_cache;
1419 kmem_freepages(cachep, page);
1422 #if DEBUG
1423 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1425 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1426 (cachep->size % PAGE_SIZE) == 0)
1427 return true;
1429 return false;
1432 #ifdef CONFIG_DEBUG_PAGEALLOC
1433 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1435 if (!is_debug_pagealloc_cache(cachep))
1436 return;
1438 __kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1441 #else
1442 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1443 int map) {}
1445 #endif
1447 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1449 int size = cachep->object_size;
1450 addr = &((char *)addr)[obj_offset(cachep)];
1452 memset(addr, val, size);
1453 *(unsigned char *)(addr + size - 1) = POISON_END;
1456 static void dump_line(char *data, int offset, int limit)
1458 int i;
1459 unsigned char error = 0;
1460 int bad_count = 0;
1462 pr_err("%03x: ", offset);
1463 for (i = 0; i < limit; i++) {
1464 if (data[offset + i] != POISON_FREE) {
1465 error = data[offset + i];
1466 bad_count++;
1469 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1470 &data[offset], limit, 1);
1472 if (bad_count == 1) {
1473 error ^= POISON_FREE;
1474 if (!(error & (error - 1))) {
1475 pr_err("Single bit error detected. Probably bad RAM.\n");
1476 #ifdef CONFIG_X86
1477 pr_err("Run memtest86+ or a similar memory test tool.\n");
1478 #else
1479 pr_err("Run a memory test tool.\n");
1480 #endif
1484 #endif
1486 #if DEBUG
1488 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1490 int i, size;
1491 char *realobj;
1493 if (cachep->flags & SLAB_RED_ZONE) {
1494 pr_err("Redzone: 0x%llx/0x%llx\n",
1495 *dbg_redzone1(cachep, objp),
1496 *dbg_redzone2(cachep, objp));
1499 if (cachep->flags & SLAB_STORE_USER)
1500 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1501 realobj = (char *)objp + obj_offset(cachep);
1502 size = cachep->object_size;
1503 for (i = 0; i < size && lines; i += 16, lines--) {
1504 int limit;
1505 limit = 16;
1506 if (i + limit > size)
1507 limit = size - i;
1508 dump_line(realobj, i, limit);
1512 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1514 char *realobj;
1515 int size, i;
1516 int lines = 0;
1518 if (is_debug_pagealloc_cache(cachep))
1519 return;
1521 realobj = (char *)objp + obj_offset(cachep);
1522 size = cachep->object_size;
1524 for (i = 0; i < size; i++) {
1525 char exp = POISON_FREE;
1526 if (i == size - 1)
1527 exp = POISON_END;
1528 if (realobj[i] != exp) {
1529 int limit;
1530 /* Mismatch ! */
1531 /* Print header */
1532 if (lines == 0) {
1533 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1534 print_tainted(), cachep->name,
1535 realobj, size);
1536 print_objinfo(cachep, objp, 0);
1538 /* Hexdump the affected line */
1539 i = (i / 16) * 16;
1540 limit = 16;
1541 if (i + limit > size)
1542 limit = size - i;
1543 dump_line(realobj, i, limit);
1544 i += 16;
1545 lines++;
1546 /* Limit to 5 lines */
1547 if (lines > 5)
1548 break;
1551 if (lines != 0) {
1552 /* Print some data about the neighboring objects, if they
1553 * exist:
1555 struct page *page = virt_to_head_page(objp);
1556 unsigned int objnr;
1558 objnr = obj_to_index(cachep, page, objp);
1559 if (objnr) {
1560 objp = index_to_obj(cachep, page, objnr - 1);
1561 realobj = (char *)objp + obj_offset(cachep);
1562 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1563 print_objinfo(cachep, objp, 2);
1565 if (objnr + 1 < cachep->num) {
1566 objp = index_to_obj(cachep, page, objnr + 1);
1567 realobj = (char *)objp + obj_offset(cachep);
1568 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1569 print_objinfo(cachep, objp, 2);
1573 #endif
1575 #if DEBUG
1576 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1577 struct page *page)
1579 int i;
1581 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1582 poison_obj(cachep, page->freelist - obj_offset(cachep),
1583 POISON_FREE);
1586 for (i = 0; i < cachep->num; i++) {
1587 void *objp = index_to_obj(cachep, page, i);
1589 if (cachep->flags & SLAB_POISON) {
1590 check_poison_obj(cachep, objp);
1591 slab_kernel_map(cachep, objp, 1);
1593 if (cachep->flags & SLAB_RED_ZONE) {
1594 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1595 slab_error(cachep, "start of a freed object was overwritten");
1596 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1597 slab_error(cachep, "end of a freed object was overwritten");
1601 #else
1602 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1603 struct page *page)
1606 #endif
1609 * slab_destroy - destroy and release all objects in a slab
1610 * @cachep: cache pointer being destroyed
1611 * @page: page pointer being destroyed
1613 * Destroy all the objs in a slab page, and release the mem back to the system.
1614 * Before calling the slab page must have been unlinked from the cache. The
1615 * kmem_cache_node ->list_lock is not held/needed.
1617 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1619 void *freelist;
1621 freelist = page->freelist;
1622 slab_destroy_debugcheck(cachep, page);
1623 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1624 call_rcu(&page->rcu_head, kmem_rcu_free);
1625 else
1626 kmem_freepages(cachep, page);
1629 * From now on, we don't use freelist
1630 * although actual page can be freed in rcu context
1632 if (OFF_SLAB(cachep))
1633 kmem_cache_free(cachep->freelist_cache, freelist);
1637 * Update the size of the caches before calling slabs_destroy as it may
1638 * recursively call kfree.
1640 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1642 struct page *page, *n;
1644 list_for_each_entry_safe(page, n, list, slab_list) {
1645 list_del(&page->slab_list);
1646 slab_destroy(cachep, page);
1651 * calculate_slab_order - calculate size (page order) of slabs
1652 * @cachep: pointer to the cache that is being created
1653 * @size: size of objects to be created in this cache.
1654 * @flags: slab allocation flags
1656 * Also calculates the number of objects per slab.
1658 * This could be made much more intelligent. For now, try to avoid using
1659 * high order pages for slabs. When the gfp() functions are more friendly
1660 * towards high-order requests, this should be changed.
1662 * Return: number of left-over bytes in a slab
1664 static size_t calculate_slab_order(struct kmem_cache *cachep,
1665 size_t size, slab_flags_t flags)
1667 size_t left_over = 0;
1668 int gfporder;
1670 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1671 unsigned int num;
1672 size_t remainder;
1674 num = cache_estimate(gfporder, size, flags, &remainder);
1675 if (!num)
1676 continue;
1678 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1679 if (num > SLAB_OBJ_MAX_NUM)
1680 break;
1682 if (flags & CFLGS_OFF_SLAB) {
1683 struct kmem_cache *freelist_cache;
1684 size_t freelist_size;
1686 freelist_size = num * sizeof(freelist_idx_t);
1687 freelist_cache = kmalloc_slab(freelist_size, 0u);
1688 if (!freelist_cache)
1689 continue;
1692 * Needed to avoid possible looping condition
1693 * in cache_grow_begin()
1695 if (OFF_SLAB(freelist_cache))
1696 continue;
1698 /* check if off slab has enough benefit */
1699 if (freelist_cache->size > cachep->size / 2)
1700 continue;
1703 /* Found something acceptable - save it away */
1704 cachep->num = num;
1705 cachep->gfporder = gfporder;
1706 left_over = remainder;
1709 * A VFS-reclaimable slab tends to have most allocations
1710 * as GFP_NOFS and we really don't want to have to be allocating
1711 * higher-order pages when we are unable to shrink dcache.
1713 if (flags & SLAB_RECLAIM_ACCOUNT)
1714 break;
1717 * Large number of objects is good, but very large slabs are
1718 * currently bad for the gfp()s.
1720 if (gfporder >= slab_max_order)
1721 break;
1724 * Acceptable internal fragmentation?
1726 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1727 break;
1729 return left_over;
1732 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1733 struct kmem_cache *cachep, int entries, int batchcount)
1735 int cpu;
1736 size_t size;
1737 struct array_cache __percpu *cpu_cache;
1739 size = sizeof(void *) * entries + sizeof(struct array_cache);
1740 cpu_cache = __alloc_percpu(size, sizeof(void *));
1742 if (!cpu_cache)
1743 return NULL;
1745 for_each_possible_cpu(cpu) {
1746 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1747 entries, batchcount);
1750 return cpu_cache;
1753 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1755 if (slab_state >= FULL)
1756 return enable_cpucache(cachep, gfp);
1758 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1759 if (!cachep->cpu_cache)
1760 return 1;
1762 if (slab_state == DOWN) {
1763 /* Creation of first cache (kmem_cache). */
1764 set_up_node(kmem_cache, CACHE_CACHE);
1765 } else if (slab_state == PARTIAL) {
1766 /* For kmem_cache_node */
1767 set_up_node(cachep, SIZE_NODE);
1768 } else {
1769 int node;
1771 for_each_online_node(node) {
1772 cachep->node[node] = kmalloc_node(
1773 sizeof(struct kmem_cache_node), gfp, node);
1774 BUG_ON(!cachep->node[node]);
1775 kmem_cache_node_init(cachep->node[node]);
1779 cachep->node[numa_mem_id()]->next_reap =
1780 jiffies + REAPTIMEOUT_NODE +
1781 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1783 cpu_cache_get(cachep)->avail = 0;
1784 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1785 cpu_cache_get(cachep)->batchcount = 1;
1786 cpu_cache_get(cachep)->touched = 0;
1787 cachep->batchcount = 1;
1788 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1789 return 0;
1792 slab_flags_t kmem_cache_flags(unsigned int object_size,
1793 slab_flags_t flags, const char *name,
1794 void (*ctor)(void *))
1796 return flags;
1799 struct kmem_cache *
1800 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1801 slab_flags_t flags, void (*ctor)(void *))
1803 struct kmem_cache *cachep;
1805 cachep = find_mergeable(size, align, flags, name, ctor);
1806 if (cachep) {
1807 cachep->refcount++;
1810 * Adjust the object sizes so that we clear
1811 * the complete object on kzalloc.
1813 cachep->object_size = max_t(int, cachep->object_size, size);
1815 return cachep;
1818 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1819 size_t size, slab_flags_t flags)
1821 size_t left;
1823 cachep->num = 0;
1826 * If slab auto-initialization on free is enabled, store the freelist
1827 * off-slab, so that its contents don't end up in one of the allocated
1828 * objects.
1830 if (unlikely(slab_want_init_on_free(cachep)))
1831 return false;
1833 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1834 return false;
1836 left = calculate_slab_order(cachep, size,
1837 flags | CFLGS_OBJFREELIST_SLAB);
1838 if (!cachep->num)
1839 return false;
1841 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1842 return false;
1844 cachep->colour = left / cachep->colour_off;
1846 return true;
1849 static bool set_off_slab_cache(struct kmem_cache *cachep,
1850 size_t size, slab_flags_t flags)
1852 size_t left;
1854 cachep->num = 0;
1857 * Always use on-slab management when SLAB_NOLEAKTRACE
1858 * to avoid recursive calls into kmemleak.
1860 if (flags & SLAB_NOLEAKTRACE)
1861 return false;
1864 * Size is large, assume best to place the slab management obj
1865 * off-slab (should allow better packing of objs).
1867 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1868 if (!cachep->num)
1869 return false;
1872 * If the slab has been placed off-slab, and we have enough space then
1873 * move it on-slab. This is at the expense of any extra colouring.
1875 if (left >= cachep->num * sizeof(freelist_idx_t))
1876 return false;
1878 cachep->colour = left / cachep->colour_off;
1880 return true;
1883 static bool set_on_slab_cache(struct kmem_cache *cachep,
1884 size_t size, slab_flags_t flags)
1886 size_t left;
1888 cachep->num = 0;
1890 left = calculate_slab_order(cachep, size, flags);
1891 if (!cachep->num)
1892 return false;
1894 cachep->colour = left / cachep->colour_off;
1896 return true;
1900 * __kmem_cache_create - Create a cache.
1901 * @cachep: cache management descriptor
1902 * @flags: SLAB flags
1904 * Returns a ptr to the cache on success, NULL on failure.
1905 * Cannot be called within a int, but can be interrupted.
1906 * The @ctor is run when new pages are allocated by the cache.
1908 * The flags are
1910 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1911 * to catch references to uninitialised memory.
1913 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1914 * for buffer overruns.
1916 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1917 * cacheline. This can be beneficial if you're counting cycles as closely
1918 * as davem.
1920 * Return: a pointer to the created cache or %NULL in case of error
1922 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1924 size_t ralign = BYTES_PER_WORD;
1925 gfp_t gfp;
1926 int err;
1927 unsigned int size = cachep->size;
1929 #if DEBUG
1930 #if FORCED_DEBUG
1932 * Enable redzoning and last user accounting, except for caches with
1933 * large objects, if the increased size would increase the object size
1934 * above the next power of two: caches with object sizes just above a
1935 * power of two have a significant amount of internal fragmentation.
1937 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1938 2 * sizeof(unsigned long long)))
1939 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1940 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1941 flags |= SLAB_POISON;
1942 #endif
1943 #endif
1946 * Check that size is in terms of words. This is needed to avoid
1947 * unaligned accesses for some archs when redzoning is used, and makes
1948 * sure any on-slab bufctl's are also correctly aligned.
1950 size = ALIGN(size, BYTES_PER_WORD);
1952 if (flags & SLAB_RED_ZONE) {
1953 ralign = REDZONE_ALIGN;
1954 /* If redzoning, ensure that the second redzone is suitably
1955 * aligned, by adjusting the object size accordingly. */
1956 size = ALIGN(size, REDZONE_ALIGN);
1959 /* 3) caller mandated alignment */
1960 if (ralign < cachep->align) {
1961 ralign = cachep->align;
1963 /* disable debug if necessary */
1964 if (ralign > __alignof__(unsigned long long))
1965 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1967 * 4) Store it.
1969 cachep->align = ralign;
1970 cachep->colour_off = cache_line_size();
1971 /* Offset must be a multiple of the alignment. */
1972 if (cachep->colour_off < cachep->align)
1973 cachep->colour_off = cachep->align;
1975 if (slab_is_available())
1976 gfp = GFP_KERNEL;
1977 else
1978 gfp = GFP_NOWAIT;
1980 #if DEBUG
1983 * Both debugging options require word-alignment which is calculated
1984 * into align above.
1986 if (flags & SLAB_RED_ZONE) {
1987 /* add space for red zone words */
1988 cachep->obj_offset += sizeof(unsigned long long);
1989 size += 2 * sizeof(unsigned long long);
1991 if (flags & SLAB_STORE_USER) {
1992 /* user store requires one word storage behind the end of
1993 * the real object. But if the second red zone needs to be
1994 * aligned to 64 bits, we must allow that much space.
1996 if (flags & SLAB_RED_ZONE)
1997 size += REDZONE_ALIGN;
1998 else
1999 size += BYTES_PER_WORD;
2001 #endif
2003 kasan_cache_create(cachep, &size, &flags);
2005 size = ALIGN(size, cachep->align);
2007 * We should restrict the number of objects in a slab to implement
2008 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2010 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2011 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2013 #if DEBUG
2015 * To activate debug pagealloc, off-slab management is necessary
2016 * requirement. In early phase of initialization, small sized slab
2017 * doesn't get initialized so it would not be possible. So, we need
2018 * to check size >= 256. It guarantees that all necessary small
2019 * sized slab is initialized in current slab initialization sequence.
2021 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2022 size >= 256 && cachep->object_size > cache_line_size()) {
2023 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2024 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2026 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2027 flags |= CFLGS_OFF_SLAB;
2028 cachep->obj_offset += tmp_size - size;
2029 size = tmp_size;
2030 goto done;
2034 #endif
2036 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2037 flags |= CFLGS_OBJFREELIST_SLAB;
2038 goto done;
2041 if (set_off_slab_cache(cachep, size, flags)) {
2042 flags |= CFLGS_OFF_SLAB;
2043 goto done;
2046 if (set_on_slab_cache(cachep, size, flags))
2047 goto done;
2049 return -E2BIG;
2051 done:
2052 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2053 cachep->flags = flags;
2054 cachep->allocflags = __GFP_COMP;
2055 if (flags & SLAB_CACHE_DMA)
2056 cachep->allocflags |= GFP_DMA;
2057 if (flags & SLAB_CACHE_DMA32)
2058 cachep->allocflags |= GFP_DMA32;
2059 if (flags & SLAB_RECLAIM_ACCOUNT)
2060 cachep->allocflags |= __GFP_RECLAIMABLE;
2061 cachep->size = size;
2062 cachep->reciprocal_buffer_size = reciprocal_value(size);
2064 #if DEBUG
2066 * If we're going to use the generic kernel_map_pages()
2067 * poisoning, then it's going to smash the contents of
2068 * the redzone and userword anyhow, so switch them off.
2070 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2071 (cachep->flags & SLAB_POISON) &&
2072 is_debug_pagealloc_cache(cachep))
2073 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2074 #endif
2076 if (OFF_SLAB(cachep)) {
2077 cachep->freelist_cache =
2078 kmalloc_slab(cachep->freelist_size, 0u);
2081 err = setup_cpu_cache(cachep, gfp);
2082 if (err) {
2083 __kmem_cache_release(cachep);
2084 return err;
2087 return 0;
2090 #if DEBUG
2091 static void check_irq_off(void)
2093 BUG_ON(!irqs_disabled());
2096 static void check_irq_on(void)
2098 BUG_ON(irqs_disabled());
2101 static void check_mutex_acquired(void)
2103 BUG_ON(!mutex_is_locked(&slab_mutex));
2106 static void check_spinlock_acquired(struct kmem_cache *cachep)
2108 #ifdef CONFIG_SMP
2109 check_irq_off();
2110 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2111 #endif
2114 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2116 #ifdef CONFIG_SMP
2117 check_irq_off();
2118 assert_spin_locked(&get_node(cachep, node)->list_lock);
2119 #endif
2122 #else
2123 #define check_irq_off() do { } while(0)
2124 #define check_irq_on() do { } while(0)
2125 #define check_mutex_acquired() do { } while(0)
2126 #define check_spinlock_acquired(x) do { } while(0)
2127 #define check_spinlock_acquired_node(x, y) do { } while(0)
2128 #endif
2130 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2131 int node, bool free_all, struct list_head *list)
2133 int tofree;
2135 if (!ac || !ac->avail)
2136 return;
2138 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2139 if (tofree > ac->avail)
2140 tofree = (ac->avail + 1) / 2;
2142 free_block(cachep, ac->entry, tofree, node, list);
2143 ac->avail -= tofree;
2144 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2147 static void do_drain(void *arg)
2149 struct kmem_cache *cachep = arg;
2150 struct array_cache *ac;
2151 int node = numa_mem_id();
2152 struct kmem_cache_node *n;
2153 LIST_HEAD(list);
2155 check_irq_off();
2156 ac = cpu_cache_get(cachep);
2157 n = get_node(cachep, node);
2158 spin_lock(&n->list_lock);
2159 free_block(cachep, ac->entry, ac->avail, node, &list);
2160 spin_unlock(&n->list_lock);
2161 ac->avail = 0;
2162 slabs_destroy(cachep, &list);
2165 static void drain_cpu_caches(struct kmem_cache *cachep)
2167 struct kmem_cache_node *n;
2168 int node;
2169 LIST_HEAD(list);
2171 on_each_cpu(do_drain, cachep, 1);
2172 check_irq_on();
2173 for_each_kmem_cache_node(cachep, node, n)
2174 if (n->alien)
2175 drain_alien_cache(cachep, n->alien);
2177 for_each_kmem_cache_node(cachep, node, n) {
2178 spin_lock_irq(&n->list_lock);
2179 drain_array_locked(cachep, n->shared, node, true, &list);
2180 spin_unlock_irq(&n->list_lock);
2182 slabs_destroy(cachep, &list);
2187 * Remove slabs from the list of free slabs.
2188 * Specify the number of slabs to drain in tofree.
2190 * Returns the actual number of slabs released.
2192 static int drain_freelist(struct kmem_cache *cache,
2193 struct kmem_cache_node *n, int tofree)
2195 struct list_head *p;
2196 int nr_freed;
2197 struct page *page;
2199 nr_freed = 0;
2200 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2202 spin_lock_irq(&n->list_lock);
2203 p = n->slabs_free.prev;
2204 if (p == &n->slabs_free) {
2205 spin_unlock_irq(&n->list_lock);
2206 goto out;
2209 page = list_entry(p, struct page, slab_list);
2210 list_del(&page->slab_list);
2211 n->free_slabs--;
2212 n->total_slabs--;
2214 * Safe to drop the lock. The slab is no longer linked
2215 * to the cache.
2217 n->free_objects -= cache->num;
2218 spin_unlock_irq(&n->list_lock);
2219 slab_destroy(cache, page);
2220 nr_freed++;
2222 out:
2223 return nr_freed;
2226 bool __kmem_cache_empty(struct kmem_cache *s)
2228 int node;
2229 struct kmem_cache_node *n;
2231 for_each_kmem_cache_node(s, node, n)
2232 if (!list_empty(&n->slabs_full) ||
2233 !list_empty(&n->slabs_partial))
2234 return false;
2235 return true;
2238 int __kmem_cache_shrink(struct kmem_cache *cachep)
2240 int ret = 0;
2241 int node;
2242 struct kmem_cache_node *n;
2244 drain_cpu_caches(cachep);
2246 check_irq_on();
2247 for_each_kmem_cache_node(cachep, node, n) {
2248 drain_freelist(cachep, n, INT_MAX);
2250 ret += !list_empty(&n->slabs_full) ||
2251 !list_empty(&n->slabs_partial);
2253 return (ret ? 1 : 0);
2256 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2258 return __kmem_cache_shrink(cachep);
2261 void __kmem_cache_release(struct kmem_cache *cachep)
2263 int i;
2264 struct kmem_cache_node *n;
2266 cache_random_seq_destroy(cachep);
2268 free_percpu(cachep->cpu_cache);
2270 /* NUMA: free the node structures */
2271 for_each_kmem_cache_node(cachep, i, n) {
2272 kfree(n->shared);
2273 free_alien_cache(n->alien);
2274 kfree(n);
2275 cachep->node[i] = NULL;
2280 * Get the memory for a slab management obj.
2282 * For a slab cache when the slab descriptor is off-slab, the
2283 * slab descriptor can't come from the same cache which is being created,
2284 * Because if it is the case, that means we defer the creation of
2285 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2286 * And we eventually call down to __kmem_cache_create(), which
2287 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2288 * This is a "chicken-and-egg" problem.
2290 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2291 * which are all initialized during kmem_cache_init().
2293 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2294 struct page *page, int colour_off,
2295 gfp_t local_flags, int nodeid)
2297 void *freelist;
2298 void *addr = page_address(page);
2300 page->s_mem = addr + colour_off;
2301 page->active = 0;
2303 if (OBJFREELIST_SLAB(cachep))
2304 freelist = NULL;
2305 else if (OFF_SLAB(cachep)) {
2306 /* Slab management obj is off-slab. */
2307 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2308 local_flags, nodeid);
2309 } else {
2310 /* We will use last bytes at the slab for freelist */
2311 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2312 cachep->freelist_size;
2315 return freelist;
2318 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2320 return ((freelist_idx_t *)page->freelist)[idx];
2323 static inline void set_free_obj(struct page *page,
2324 unsigned int idx, freelist_idx_t val)
2326 ((freelist_idx_t *)(page->freelist))[idx] = val;
2329 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2331 #if DEBUG
2332 int i;
2334 for (i = 0; i < cachep->num; i++) {
2335 void *objp = index_to_obj(cachep, page, i);
2337 if (cachep->flags & SLAB_STORE_USER)
2338 *dbg_userword(cachep, objp) = NULL;
2340 if (cachep->flags & SLAB_RED_ZONE) {
2341 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2342 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2345 * Constructors are not allowed to allocate memory from the same
2346 * cache which they are a constructor for. Otherwise, deadlock.
2347 * They must also be threaded.
2349 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2350 kasan_unpoison_object_data(cachep,
2351 objp + obj_offset(cachep));
2352 cachep->ctor(objp + obj_offset(cachep));
2353 kasan_poison_object_data(
2354 cachep, objp + obj_offset(cachep));
2357 if (cachep->flags & SLAB_RED_ZONE) {
2358 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2359 slab_error(cachep, "constructor overwrote the end of an object");
2360 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2361 slab_error(cachep, "constructor overwrote the start of an object");
2363 /* need to poison the objs? */
2364 if (cachep->flags & SLAB_POISON) {
2365 poison_obj(cachep, objp, POISON_FREE);
2366 slab_kernel_map(cachep, objp, 0);
2369 #endif
2372 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2373 /* Hold information during a freelist initialization */
2374 union freelist_init_state {
2375 struct {
2376 unsigned int pos;
2377 unsigned int *list;
2378 unsigned int count;
2380 struct rnd_state rnd_state;
2384 * Initialize the state based on the randomization methode available.
2385 * return true if the pre-computed list is available, false otherwize.
2387 static bool freelist_state_initialize(union freelist_init_state *state,
2388 struct kmem_cache *cachep,
2389 unsigned int count)
2391 bool ret;
2392 unsigned int rand;
2394 /* Use best entropy available to define a random shift */
2395 rand = get_random_int();
2397 /* Use a random state if the pre-computed list is not available */
2398 if (!cachep->random_seq) {
2399 prandom_seed_state(&state->rnd_state, rand);
2400 ret = false;
2401 } else {
2402 state->list = cachep->random_seq;
2403 state->count = count;
2404 state->pos = rand % count;
2405 ret = true;
2407 return ret;
2410 /* Get the next entry on the list and randomize it using a random shift */
2411 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2413 if (state->pos >= state->count)
2414 state->pos = 0;
2415 return state->list[state->pos++];
2418 /* Swap two freelist entries */
2419 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2421 swap(((freelist_idx_t *)page->freelist)[a],
2422 ((freelist_idx_t *)page->freelist)[b]);
2426 * Shuffle the freelist initialization state based on pre-computed lists.
2427 * return true if the list was successfully shuffled, false otherwise.
2429 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2431 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2432 union freelist_init_state state;
2433 bool precomputed;
2435 if (count < 2)
2436 return false;
2438 precomputed = freelist_state_initialize(&state, cachep, count);
2440 /* Take a random entry as the objfreelist */
2441 if (OBJFREELIST_SLAB(cachep)) {
2442 if (!precomputed)
2443 objfreelist = count - 1;
2444 else
2445 objfreelist = next_random_slot(&state);
2446 page->freelist = index_to_obj(cachep, page, objfreelist) +
2447 obj_offset(cachep);
2448 count--;
2452 * On early boot, generate the list dynamically.
2453 * Later use a pre-computed list for speed.
2455 if (!precomputed) {
2456 for (i = 0; i < count; i++)
2457 set_free_obj(page, i, i);
2459 /* Fisher-Yates shuffle */
2460 for (i = count - 1; i > 0; i--) {
2461 rand = prandom_u32_state(&state.rnd_state);
2462 rand %= (i + 1);
2463 swap_free_obj(page, i, rand);
2465 } else {
2466 for (i = 0; i < count; i++)
2467 set_free_obj(page, i, next_random_slot(&state));
2470 if (OBJFREELIST_SLAB(cachep))
2471 set_free_obj(page, cachep->num - 1, objfreelist);
2473 return true;
2475 #else
2476 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2477 struct page *page)
2479 return false;
2481 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2483 static void cache_init_objs(struct kmem_cache *cachep,
2484 struct page *page)
2486 int i;
2487 void *objp;
2488 bool shuffled;
2490 cache_init_objs_debug(cachep, page);
2492 /* Try to randomize the freelist if enabled */
2493 shuffled = shuffle_freelist(cachep, page);
2495 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2496 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2497 obj_offset(cachep);
2500 for (i = 0; i < cachep->num; i++) {
2501 objp = index_to_obj(cachep, page, i);
2502 objp = kasan_init_slab_obj(cachep, objp);
2504 /* constructor could break poison info */
2505 if (DEBUG == 0 && cachep->ctor) {
2506 kasan_unpoison_object_data(cachep, objp);
2507 cachep->ctor(objp);
2508 kasan_poison_object_data(cachep, objp);
2511 if (!shuffled)
2512 set_free_obj(page, i, i);
2516 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2518 void *objp;
2520 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2521 page->active++;
2523 return objp;
2526 static void slab_put_obj(struct kmem_cache *cachep,
2527 struct page *page, void *objp)
2529 unsigned int objnr = obj_to_index(cachep, page, objp);
2530 #if DEBUG
2531 unsigned int i;
2533 /* Verify double free bug */
2534 for (i = page->active; i < cachep->num; i++) {
2535 if (get_free_obj(page, i) == objnr) {
2536 pr_err("slab: double free detected in cache '%s', objp %px\n",
2537 cachep->name, objp);
2538 BUG();
2541 #endif
2542 page->active--;
2543 if (!page->freelist)
2544 page->freelist = objp + obj_offset(cachep);
2546 set_free_obj(page, page->active, objnr);
2550 * Map pages beginning at addr to the given cache and slab. This is required
2551 * for the slab allocator to be able to lookup the cache and slab of a
2552 * virtual address for kfree, ksize, and slab debugging.
2554 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2555 void *freelist)
2557 page->slab_cache = cache;
2558 page->freelist = freelist;
2562 * Grow (by 1) the number of slabs within a cache. This is called by
2563 * kmem_cache_alloc() when there are no active objs left in a cache.
2565 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2566 gfp_t flags, int nodeid)
2568 void *freelist;
2569 size_t offset;
2570 gfp_t local_flags;
2571 int page_node;
2572 struct kmem_cache_node *n;
2573 struct page *page;
2576 * Be lazy and only check for valid flags here, keeping it out of the
2577 * critical path in kmem_cache_alloc().
2579 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2580 flags = kmalloc_fix_flags(flags);
2582 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2583 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2585 check_irq_off();
2586 if (gfpflags_allow_blocking(local_flags))
2587 local_irq_enable();
2590 * Get mem for the objs. Attempt to allocate a physical page from
2591 * 'nodeid'.
2593 page = kmem_getpages(cachep, local_flags, nodeid);
2594 if (!page)
2595 goto failed;
2597 page_node = page_to_nid(page);
2598 n = get_node(cachep, page_node);
2600 /* Get colour for the slab, and cal the next value. */
2601 n->colour_next++;
2602 if (n->colour_next >= cachep->colour)
2603 n->colour_next = 0;
2605 offset = n->colour_next;
2606 if (offset >= cachep->colour)
2607 offset = 0;
2609 offset *= cachep->colour_off;
2612 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2613 * page_address() in the latter returns a non-tagged pointer,
2614 * as it should be for slab pages.
2616 kasan_poison_slab(page);
2618 /* Get slab management. */
2619 freelist = alloc_slabmgmt(cachep, page, offset,
2620 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2621 if (OFF_SLAB(cachep) && !freelist)
2622 goto opps1;
2624 slab_map_pages(cachep, page, freelist);
2626 cache_init_objs(cachep, page);
2628 if (gfpflags_allow_blocking(local_flags))
2629 local_irq_disable();
2631 return page;
2633 opps1:
2634 kmem_freepages(cachep, page);
2635 failed:
2636 if (gfpflags_allow_blocking(local_flags))
2637 local_irq_disable();
2638 return NULL;
2641 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2643 struct kmem_cache_node *n;
2644 void *list = NULL;
2646 check_irq_off();
2648 if (!page)
2649 return;
2651 INIT_LIST_HEAD(&page->slab_list);
2652 n = get_node(cachep, page_to_nid(page));
2654 spin_lock(&n->list_lock);
2655 n->total_slabs++;
2656 if (!page->active) {
2657 list_add_tail(&page->slab_list, &n->slabs_free);
2658 n->free_slabs++;
2659 } else
2660 fixup_slab_list(cachep, n, page, &list);
2662 STATS_INC_GROWN(cachep);
2663 n->free_objects += cachep->num - page->active;
2664 spin_unlock(&n->list_lock);
2666 fixup_objfreelist_debug(cachep, &list);
2669 #if DEBUG
2672 * Perform extra freeing checks:
2673 * - detect bad pointers.
2674 * - POISON/RED_ZONE checking
2676 static void kfree_debugcheck(const void *objp)
2678 if (!virt_addr_valid(objp)) {
2679 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2680 (unsigned long)objp);
2681 BUG();
2685 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2687 unsigned long long redzone1, redzone2;
2689 redzone1 = *dbg_redzone1(cache, obj);
2690 redzone2 = *dbg_redzone2(cache, obj);
2693 * Redzone is ok.
2695 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2696 return;
2698 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2699 slab_error(cache, "double free detected");
2700 else
2701 slab_error(cache, "memory outside object was overwritten");
2703 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2704 obj, redzone1, redzone2);
2707 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2708 unsigned long caller)
2710 unsigned int objnr;
2711 struct page *page;
2713 BUG_ON(virt_to_cache(objp) != cachep);
2715 objp -= obj_offset(cachep);
2716 kfree_debugcheck(objp);
2717 page = virt_to_head_page(objp);
2719 if (cachep->flags & SLAB_RED_ZONE) {
2720 verify_redzone_free(cachep, objp);
2721 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2722 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2724 if (cachep->flags & SLAB_STORE_USER)
2725 *dbg_userword(cachep, objp) = (void *)caller;
2727 objnr = obj_to_index(cachep, page, objp);
2729 BUG_ON(objnr >= cachep->num);
2730 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2732 if (cachep->flags & SLAB_POISON) {
2733 poison_obj(cachep, objp, POISON_FREE);
2734 slab_kernel_map(cachep, objp, 0);
2736 return objp;
2739 #else
2740 #define kfree_debugcheck(x) do { } while(0)
2741 #define cache_free_debugcheck(x,objp,z) (objp)
2742 #endif
2744 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2745 void **list)
2747 #if DEBUG
2748 void *next = *list;
2749 void *objp;
2751 while (next) {
2752 objp = next - obj_offset(cachep);
2753 next = *(void **)next;
2754 poison_obj(cachep, objp, POISON_FREE);
2756 #endif
2759 static inline void fixup_slab_list(struct kmem_cache *cachep,
2760 struct kmem_cache_node *n, struct page *page,
2761 void **list)
2763 /* move slabp to correct slabp list: */
2764 list_del(&page->slab_list);
2765 if (page->active == cachep->num) {
2766 list_add(&page->slab_list, &n->slabs_full);
2767 if (OBJFREELIST_SLAB(cachep)) {
2768 #if DEBUG
2769 /* Poisoning will be done without holding the lock */
2770 if (cachep->flags & SLAB_POISON) {
2771 void **objp = page->freelist;
2773 *objp = *list;
2774 *list = objp;
2776 #endif
2777 page->freelist = NULL;
2779 } else
2780 list_add(&page->slab_list, &n->slabs_partial);
2783 /* Try to find non-pfmemalloc slab if needed */
2784 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2785 struct page *page, bool pfmemalloc)
2787 if (!page)
2788 return NULL;
2790 if (pfmemalloc)
2791 return page;
2793 if (!PageSlabPfmemalloc(page))
2794 return page;
2796 /* No need to keep pfmemalloc slab if we have enough free objects */
2797 if (n->free_objects > n->free_limit) {
2798 ClearPageSlabPfmemalloc(page);
2799 return page;
2802 /* Move pfmemalloc slab to the end of list to speed up next search */
2803 list_del(&page->slab_list);
2804 if (!page->active) {
2805 list_add_tail(&page->slab_list, &n->slabs_free);
2806 n->free_slabs++;
2807 } else
2808 list_add_tail(&page->slab_list, &n->slabs_partial);
2810 list_for_each_entry(page, &n->slabs_partial, slab_list) {
2811 if (!PageSlabPfmemalloc(page))
2812 return page;
2815 n->free_touched = 1;
2816 list_for_each_entry(page, &n->slabs_free, slab_list) {
2817 if (!PageSlabPfmemalloc(page)) {
2818 n->free_slabs--;
2819 return page;
2823 return NULL;
2826 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2828 struct page *page;
2830 assert_spin_locked(&n->list_lock);
2831 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2832 slab_list);
2833 if (!page) {
2834 n->free_touched = 1;
2835 page = list_first_entry_or_null(&n->slabs_free, struct page,
2836 slab_list);
2837 if (page)
2838 n->free_slabs--;
2841 if (sk_memalloc_socks())
2842 page = get_valid_first_slab(n, page, pfmemalloc);
2844 return page;
2847 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2848 struct kmem_cache_node *n, gfp_t flags)
2850 struct page *page;
2851 void *obj;
2852 void *list = NULL;
2854 if (!gfp_pfmemalloc_allowed(flags))
2855 return NULL;
2857 spin_lock(&n->list_lock);
2858 page = get_first_slab(n, true);
2859 if (!page) {
2860 spin_unlock(&n->list_lock);
2861 return NULL;
2864 obj = slab_get_obj(cachep, page);
2865 n->free_objects--;
2867 fixup_slab_list(cachep, n, page, &list);
2869 spin_unlock(&n->list_lock);
2870 fixup_objfreelist_debug(cachep, &list);
2872 return obj;
2876 * Slab list should be fixed up by fixup_slab_list() for existing slab
2877 * or cache_grow_end() for new slab
2879 static __always_inline int alloc_block(struct kmem_cache *cachep,
2880 struct array_cache *ac, struct page *page, int batchcount)
2883 * There must be at least one object available for
2884 * allocation.
2886 BUG_ON(page->active >= cachep->num);
2888 while (page->active < cachep->num && batchcount--) {
2889 STATS_INC_ALLOCED(cachep);
2890 STATS_INC_ACTIVE(cachep);
2891 STATS_SET_HIGH(cachep);
2893 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2896 return batchcount;
2899 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2901 int batchcount;
2902 struct kmem_cache_node *n;
2903 struct array_cache *ac, *shared;
2904 int node;
2905 void *list = NULL;
2906 struct page *page;
2908 check_irq_off();
2909 node = numa_mem_id();
2911 ac = cpu_cache_get(cachep);
2912 batchcount = ac->batchcount;
2913 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2915 * If there was little recent activity on this cache, then
2916 * perform only a partial refill. Otherwise we could generate
2917 * refill bouncing.
2919 batchcount = BATCHREFILL_LIMIT;
2921 n = get_node(cachep, node);
2923 BUG_ON(ac->avail > 0 || !n);
2924 shared = READ_ONCE(n->shared);
2925 if (!n->free_objects && (!shared || !shared->avail))
2926 goto direct_grow;
2928 spin_lock(&n->list_lock);
2929 shared = READ_ONCE(n->shared);
2931 /* See if we can refill from the shared array */
2932 if (shared && transfer_objects(ac, shared, batchcount)) {
2933 shared->touched = 1;
2934 goto alloc_done;
2937 while (batchcount > 0) {
2938 /* Get slab alloc is to come from. */
2939 page = get_first_slab(n, false);
2940 if (!page)
2941 goto must_grow;
2943 check_spinlock_acquired(cachep);
2945 batchcount = alloc_block(cachep, ac, page, batchcount);
2946 fixup_slab_list(cachep, n, page, &list);
2949 must_grow:
2950 n->free_objects -= ac->avail;
2951 alloc_done:
2952 spin_unlock(&n->list_lock);
2953 fixup_objfreelist_debug(cachep, &list);
2955 direct_grow:
2956 if (unlikely(!ac->avail)) {
2957 /* Check if we can use obj in pfmemalloc slab */
2958 if (sk_memalloc_socks()) {
2959 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2961 if (obj)
2962 return obj;
2965 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2968 * cache_grow_begin() can reenable interrupts,
2969 * then ac could change.
2971 ac = cpu_cache_get(cachep);
2972 if (!ac->avail && page)
2973 alloc_block(cachep, ac, page, batchcount);
2974 cache_grow_end(cachep, page);
2976 if (!ac->avail)
2977 return NULL;
2979 ac->touched = 1;
2981 return ac->entry[--ac->avail];
2984 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2985 gfp_t flags)
2987 might_sleep_if(gfpflags_allow_blocking(flags));
2990 #if DEBUG
2991 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2992 gfp_t flags, void *objp, unsigned long caller)
2994 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2995 if (!objp)
2996 return objp;
2997 if (cachep->flags & SLAB_POISON) {
2998 check_poison_obj(cachep, objp);
2999 slab_kernel_map(cachep, objp, 1);
3000 poison_obj(cachep, objp, POISON_INUSE);
3002 if (cachep->flags & SLAB_STORE_USER)
3003 *dbg_userword(cachep, objp) = (void *)caller;
3005 if (cachep->flags & SLAB_RED_ZONE) {
3006 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3007 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3008 slab_error(cachep, "double free, or memory outside object was overwritten");
3009 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3010 objp, *dbg_redzone1(cachep, objp),
3011 *dbg_redzone2(cachep, objp));
3013 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3014 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3017 objp += obj_offset(cachep);
3018 if (cachep->ctor && cachep->flags & SLAB_POISON)
3019 cachep->ctor(objp);
3020 if (ARCH_SLAB_MINALIGN &&
3021 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3022 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3023 objp, (int)ARCH_SLAB_MINALIGN);
3025 return objp;
3027 #else
3028 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3029 #endif
3031 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3033 void *objp;
3034 struct array_cache *ac;
3036 check_irq_off();
3038 ac = cpu_cache_get(cachep);
3039 if (likely(ac->avail)) {
3040 ac->touched = 1;
3041 objp = ac->entry[--ac->avail];
3043 STATS_INC_ALLOCHIT(cachep);
3044 goto out;
3047 STATS_INC_ALLOCMISS(cachep);
3048 objp = cache_alloc_refill(cachep, flags);
3050 * the 'ac' may be updated by cache_alloc_refill(),
3051 * and kmemleak_erase() requires its correct value.
3053 ac = cpu_cache_get(cachep);
3055 out:
3057 * To avoid a false negative, if an object that is in one of the
3058 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3059 * treat the array pointers as a reference to the object.
3061 if (objp)
3062 kmemleak_erase(&ac->entry[ac->avail]);
3063 return objp;
3066 #ifdef CONFIG_NUMA
3068 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3070 * If we are in_interrupt, then process context, including cpusets and
3071 * mempolicy, may not apply and should not be used for allocation policy.
3073 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3075 int nid_alloc, nid_here;
3077 if (in_interrupt() || (flags & __GFP_THISNODE))
3078 return NULL;
3079 nid_alloc = nid_here = numa_mem_id();
3080 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3081 nid_alloc = cpuset_slab_spread_node();
3082 else if (current->mempolicy)
3083 nid_alloc = mempolicy_slab_node();
3084 if (nid_alloc != nid_here)
3085 return ____cache_alloc_node(cachep, flags, nid_alloc);
3086 return NULL;
3090 * Fallback function if there was no memory available and no objects on a
3091 * certain node and fall back is permitted. First we scan all the
3092 * available node for available objects. If that fails then we
3093 * perform an allocation without specifying a node. This allows the page
3094 * allocator to do its reclaim / fallback magic. We then insert the
3095 * slab into the proper nodelist and then allocate from it.
3097 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3099 struct zonelist *zonelist;
3100 struct zoneref *z;
3101 struct zone *zone;
3102 enum zone_type highest_zoneidx = gfp_zone(flags);
3103 void *obj = NULL;
3104 struct page *page;
3105 int nid;
3106 unsigned int cpuset_mems_cookie;
3108 if (flags & __GFP_THISNODE)
3109 return NULL;
3111 retry_cpuset:
3112 cpuset_mems_cookie = read_mems_allowed_begin();
3113 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3115 retry:
3117 * Look through allowed nodes for objects available
3118 * from existing per node queues.
3120 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3121 nid = zone_to_nid(zone);
3123 if (cpuset_zone_allowed(zone, flags) &&
3124 get_node(cache, nid) &&
3125 get_node(cache, nid)->free_objects) {
3126 obj = ____cache_alloc_node(cache,
3127 gfp_exact_node(flags), nid);
3128 if (obj)
3129 break;
3133 if (!obj) {
3135 * This allocation will be performed within the constraints
3136 * of the current cpuset / memory policy requirements.
3137 * We may trigger various forms of reclaim on the allowed
3138 * set and go into memory reserves if necessary.
3140 page = cache_grow_begin(cache, flags, numa_mem_id());
3141 cache_grow_end(cache, page);
3142 if (page) {
3143 nid = page_to_nid(page);
3144 obj = ____cache_alloc_node(cache,
3145 gfp_exact_node(flags), nid);
3148 * Another processor may allocate the objects in
3149 * the slab since we are not holding any locks.
3151 if (!obj)
3152 goto retry;
3156 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3157 goto retry_cpuset;
3158 return obj;
3162 * A interface to enable slab creation on nodeid
3164 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3165 int nodeid)
3167 struct page *page;
3168 struct kmem_cache_node *n;
3169 void *obj = NULL;
3170 void *list = NULL;
3172 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3173 n = get_node(cachep, nodeid);
3174 BUG_ON(!n);
3176 check_irq_off();
3177 spin_lock(&n->list_lock);
3178 page = get_first_slab(n, false);
3179 if (!page)
3180 goto must_grow;
3182 check_spinlock_acquired_node(cachep, nodeid);
3184 STATS_INC_NODEALLOCS(cachep);
3185 STATS_INC_ACTIVE(cachep);
3186 STATS_SET_HIGH(cachep);
3188 BUG_ON(page->active == cachep->num);
3190 obj = slab_get_obj(cachep, page);
3191 n->free_objects--;
3193 fixup_slab_list(cachep, n, page, &list);
3195 spin_unlock(&n->list_lock);
3196 fixup_objfreelist_debug(cachep, &list);
3197 return obj;
3199 must_grow:
3200 spin_unlock(&n->list_lock);
3201 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3202 if (page) {
3203 /* This slab isn't counted yet so don't update free_objects */
3204 obj = slab_get_obj(cachep, page);
3206 cache_grow_end(cachep, page);
3208 return obj ? obj : fallback_alloc(cachep, flags);
3211 static __always_inline void *
3212 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3213 unsigned long caller)
3215 unsigned long save_flags;
3216 void *ptr;
3217 int slab_node = numa_mem_id();
3218 struct obj_cgroup *objcg = NULL;
3220 flags &= gfp_allowed_mask;
3221 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3222 if (unlikely(!cachep))
3223 return NULL;
3225 cache_alloc_debugcheck_before(cachep, flags);
3226 local_irq_save(save_flags);
3228 if (nodeid == NUMA_NO_NODE)
3229 nodeid = slab_node;
3231 if (unlikely(!get_node(cachep, nodeid))) {
3232 /* Node not bootstrapped yet */
3233 ptr = fallback_alloc(cachep, flags);
3234 goto out;
3237 if (nodeid == slab_node) {
3239 * Use the locally cached objects if possible.
3240 * However ____cache_alloc does not allow fallback
3241 * to other nodes. It may fail while we still have
3242 * objects on other nodes available.
3244 ptr = ____cache_alloc(cachep, flags);
3245 if (ptr)
3246 goto out;
3248 /* ___cache_alloc_node can fall back to other nodes */
3249 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3250 out:
3251 local_irq_restore(save_flags);
3252 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3254 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3255 memset(ptr, 0, cachep->object_size);
3257 slab_post_alloc_hook(cachep, objcg, flags, 1, &ptr);
3258 return ptr;
3261 static __always_inline void *
3262 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3264 void *objp;
3266 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3267 objp = alternate_node_alloc(cache, flags);
3268 if (objp)
3269 goto out;
3271 objp = ____cache_alloc(cache, flags);
3274 * We may just have run out of memory on the local node.
3275 * ____cache_alloc_node() knows how to locate memory on other nodes
3277 if (!objp)
3278 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3280 out:
3281 return objp;
3283 #else
3285 static __always_inline void *
3286 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3288 return ____cache_alloc(cachep, flags);
3291 #endif /* CONFIG_NUMA */
3293 static __always_inline void *
3294 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3296 unsigned long save_flags;
3297 void *objp;
3298 struct obj_cgroup *objcg = NULL;
3300 flags &= gfp_allowed_mask;
3301 cachep = slab_pre_alloc_hook(cachep, &objcg, 1, flags);
3302 if (unlikely(!cachep))
3303 return NULL;
3305 cache_alloc_debugcheck_before(cachep, flags);
3306 local_irq_save(save_flags);
3307 objp = __do_cache_alloc(cachep, flags);
3308 local_irq_restore(save_flags);
3309 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3310 prefetchw(objp);
3312 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3313 memset(objp, 0, cachep->object_size);
3315 slab_post_alloc_hook(cachep, objcg, flags, 1, &objp);
3316 return objp;
3320 * Caller needs to acquire correct kmem_cache_node's list_lock
3321 * @list: List of detached free slabs should be freed by caller
3323 static void free_block(struct kmem_cache *cachep, void **objpp,
3324 int nr_objects, int node, struct list_head *list)
3326 int i;
3327 struct kmem_cache_node *n = get_node(cachep, node);
3328 struct page *page;
3330 n->free_objects += nr_objects;
3332 for (i = 0; i < nr_objects; i++) {
3333 void *objp;
3334 struct page *page;
3336 objp = objpp[i];
3338 page = virt_to_head_page(objp);
3339 list_del(&page->slab_list);
3340 check_spinlock_acquired_node(cachep, node);
3341 slab_put_obj(cachep, page, objp);
3342 STATS_DEC_ACTIVE(cachep);
3344 /* fixup slab chains */
3345 if (page->active == 0) {
3346 list_add(&page->slab_list, &n->slabs_free);
3347 n->free_slabs++;
3348 } else {
3349 /* Unconditionally move a slab to the end of the
3350 * partial list on free - maximum time for the
3351 * other objects to be freed, too.
3353 list_add_tail(&page->slab_list, &n->slabs_partial);
3357 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3358 n->free_objects -= cachep->num;
3360 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3361 list_move(&page->slab_list, list);
3362 n->free_slabs--;
3363 n->total_slabs--;
3367 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3369 int batchcount;
3370 struct kmem_cache_node *n;
3371 int node = numa_mem_id();
3372 LIST_HEAD(list);
3374 batchcount = ac->batchcount;
3376 check_irq_off();
3377 n = get_node(cachep, node);
3378 spin_lock(&n->list_lock);
3379 if (n->shared) {
3380 struct array_cache *shared_array = n->shared;
3381 int max = shared_array->limit - shared_array->avail;
3382 if (max) {
3383 if (batchcount > max)
3384 batchcount = max;
3385 memcpy(&(shared_array->entry[shared_array->avail]),
3386 ac->entry, sizeof(void *) * batchcount);
3387 shared_array->avail += batchcount;
3388 goto free_done;
3392 free_block(cachep, ac->entry, batchcount, node, &list);
3393 free_done:
3394 #if STATS
3396 int i = 0;
3397 struct page *page;
3399 list_for_each_entry(page, &n->slabs_free, slab_list) {
3400 BUG_ON(page->active);
3402 i++;
3404 STATS_SET_FREEABLE(cachep, i);
3406 #endif
3407 spin_unlock(&n->list_lock);
3408 ac->avail -= batchcount;
3409 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3410 slabs_destroy(cachep, &list);
3414 * Release an obj back to its cache. If the obj has a constructed state, it must
3415 * be in this state _before_ it is released. Called with disabled ints.
3417 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3418 unsigned long caller)
3420 if (unlikely(slab_want_init_on_free(cachep)))
3421 memset(objp, 0, cachep->object_size);
3423 /* Put the object into the quarantine, don't touch it for now. */
3424 if (kasan_slab_free(cachep, objp, _RET_IP_))
3425 return;
3427 /* Use KCSAN to help debug racy use-after-free. */
3428 if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
3429 __kcsan_check_access(objp, cachep->object_size,
3430 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
3432 ___cache_free(cachep, objp, caller);
3435 void ___cache_free(struct kmem_cache *cachep, void *objp,
3436 unsigned long caller)
3438 struct array_cache *ac = cpu_cache_get(cachep);
3440 check_irq_off();
3441 kmemleak_free_recursive(objp, cachep->flags);
3442 objp = cache_free_debugcheck(cachep, objp, caller);
3443 memcg_slab_free_hook(cachep, &objp, 1);
3446 * Skip calling cache_free_alien() when the platform is not numa.
3447 * This will avoid cache misses that happen while accessing slabp (which
3448 * is per page memory reference) to get nodeid. Instead use a global
3449 * variable to skip the call, which is mostly likely to be present in
3450 * the cache.
3452 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3453 return;
3455 if (ac->avail < ac->limit) {
3456 STATS_INC_FREEHIT(cachep);
3457 } else {
3458 STATS_INC_FREEMISS(cachep);
3459 cache_flusharray(cachep, ac);
3462 if (sk_memalloc_socks()) {
3463 struct page *page = virt_to_head_page(objp);
3465 if (unlikely(PageSlabPfmemalloc(page))) {
3466 cache_free_pfmemalloc(cachep, page, objp);
3467 return;
3471 __free_one(ac, objp);
3475 * kmem_cache_alloc - Allocate an object
3476 * @cachep: The cache to allocate from.
3477 * @flags: See kmalloc().
3479 * Allocate an object from this cache. The flags are only relevant
3480 * if the cache has no available objects.
3482 * Return: pointer to the new object or %NULL in case of error
3484 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3486 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3488 trace_kmem_cache_alloc(_RET_IP_, ret,
3489 cachep->object_size, cachep->size, flags);
3491 return ret;
3493 EXPORT_SYMBOL(kmem_cache_alloc);
3495 static __always_inline void
3496 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3497 size_t size, void **p, unsigned long caller)
3499 size_t i;
3501 for (i = 0; i < size; i++)
3502 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3505 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3506 void **p)
3508 size_t i;
3509 struct obj_cgroup *objcg = NULL;
3511 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3512 if (!s)
3513 return 0;
3515 cache_alloc_debugcheck_before(s, flags);
3517 local_irq_disable();
3518 for (i = 0; i < size; i++) {
3519 void *objp = __do_cache_alloc(s, flags);
3521 if (unlikely(!objp))
3522 goto error;
3523 p[i] = objp;
3525 local_irq_enable();
3527 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3529 /* Clear memory outside IRQ disabled section */
3530 if (unlikely(slab_want_init_on_alloc(flags, s)))
3531 for (i = 0; i < size; i++)
3532 memset(p[i], 0, s->object_size);
3534 slab_post_alloc_hook(s, objcg, flags, size, p);
3535 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3536 return size;
3537 error:
3538 local_irq_enable();
3539 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3540 slab_post_alloc_hook(s, objcg, flags, i, p);
3541 __kmem_cache_free_bulk(s, i, p);
3542 return 0;
3544 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3546 #ifdef CONFIG_TRACING
3547 void *
3548 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3550 void *ret;
3552 ret = slab_alloc(cachep, flags, _RET_IP_);
3554 ret = kasan_kmalloc(cachep, ret, size, flags);
3555 trace_kmalloc(_RET_IP_, ret,
3556 size, cachep->size, flags);
3557 return ret;
3559 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3560 #endif
3562 #ifdef CONFIG_NUMA
3564 * kmem_cache_alloc_node - Allocate an object on the specified node
3565 * @cachep: The cache to allocate from.
3566 * @flags: See kmalloc().
3567 * @nodeid: node number of the target node.
3569 * Identical to kmem_cache_alloc but it will allocate memory on the given
3570 * node, which can improve the performance for cpu bound structures.
3572 * Fallback to other node is possible if __GFP_THISNODE is not set.
3574 * Return: pointer to the new object or %NULL in case of error
3576 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3578 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3580 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3581 cachep->object_size, cachep->size,
3582 flags, nodeid);
3584 return ret;
3586 EXPORT_SYMBOL(kmem_cache_alloc_node);
3588 #ifdef CONFIG_TRACING
3589 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3590 gfp_t flags,
3591 int nodeid,
3592 size_t size)
3594 void *ret;
3596 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3598 ret = kasan_kmalloc(cachep, ret, size, flags);
3599 trace_kmalloc_node(_RET_IP_, ret,
3600 size, cachep->size,
3601 flags, nodeid);
3602 return ret;
3604 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3605 #endif
3607 static __always_inline void *
3608 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3610 struct kmem_cache *cachep;
3611 void *ret;
3613 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3614 return NULL;
3615 cachep = kmalloc_slab(size, flags);
3616 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3617 return cachep;
3618 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3619 ret = kasan_kmalloc(cachep, ret, size, flags);
3621 return ret;
3624 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3626 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3628 EXPORT_SYMBOL(__kmalloc_node);
3630 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3631 int node, unsigned long caller)
3633 return __do_kmalloc_node(size, flags, node, caller);
3635 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3636 #endif /* CONFIG_NUMA */
3639 * __do_kmalloc - allocate memory
3640 * @size: how many bytes of memory are required.
3641 * @flags: the type of memory to allocate (see kmalloc).
3642 * @caller: function caller for debug tracking of the caller
3644 * Return: pointer to the allocated memory or %NULL in case of error
3646 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3647 unsigned long caller)
3649 struct kmem_cache *cachep;
3650 void *ret;
3652 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3653 return NULL;
3654 cachep = kmalloc_slab(size, flags);
3655 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3656 return cachep;
3657 ret = slab_alloc(cachep, flags, caller);
3659 ret = kasan_kmalloc(cachep, ret, size, flags);
3660 trace_kmalloc(caller, ret,
3661 size, cachep->size, flags);
3663 return ret;
3666 void *__kmalloc(size_t size, gfp_t flags)
3668 return __do_kmalloc(size, flags, _RET_IP_);
3670 EXPORT_SYMBOL(__kmalloc);
3672 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3674 return __do_kmalloc(size, flags, caller);
3676 EXPORT_SYMBOL(__kmalloc_track_caller);
3679 * kmem_cache_free - Deallocate an object
3680 * @cachep: The cache the allocation was from.
3681 * @objp: The previously allocated object.
3683 * Free an object which was previously allocated from this
3684 * cache.
3686 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3688 unsigned long flags;
3689 cachep = cache_from_obj(cachep, objp);
3690 if (!cachep)
3691 return;
3693 local_irq_save(flags);
3694 debug_check_no_locks_freed(objp, cachep->object_size);
3695 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3696 debug_check_no_obj_freed(objp, cachep->object_size);
3697 __cache_free(cachep, objp, _RET_IP_);
3698 local_irq_restore(flags);
3700 trace_kmem_cache_free(_RET_IP_, objp);
3702 EXPORT_SYMBOL(kmem_cache_free);
3704 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3706 struct kmem_cache *s;
3707 size_t i;
3709 local_irq_disable();
3710 for (i = 0; i < size; i++) {
3711 void *objp = p[i];
3713 if (!orig_s) /* called via kfree_bulk */
3714 s = virt_to_cache(objp);
3715 else
3716 s = cache_from_obj(orig_s, objp);
3717 if (!s)
3718 continue;
3720 debug_check_no_locks_freed(objp, s->object_size);
3721 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3722 debug_check_no_obj_freed(objp, s->object_size);
3724 __cache_free(s, objp, _RET_IP_);
3726 local_irq_enable();
3728 /* FIXME: add tracing */
3730 EXPORT_SYMBOL(kmem_cache_free_bulk);
3733 * kfree - free previously allocated memory
3734 * @objp: pointer returned by kmalloc.
3736 * If @objp is NULL, no operation is performed.
3738 * Don't free memory not originally allocated by kmalloc()
3739 * or you will run into trouble.
3741 void kfree(const void *objp)
3743 struct kmem_cache *c;
3744 unsigned long flags;
3746 trace_kfree(_RET_IP_, objp);
3748 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3749 return;
3750 local_irq_save(flags);
3751 kfree_debugcheck(objp);
3752 c = virt_to_cache(objp);
3753 if (!c) {
3754 local_irq_restore(flags);
3755 return;
3757 debug_check_no_locks_freed(objp, c->object_size);
3759 debug_check_no_obj_freed(objp, c->object_size);
3760 __cache_free(c, (void *)objp, _RET_IP_);
3761 local_irq_restore(flags);
3763 EXPORT_SYMBOL(kfree);
3766 * This initializes kmem_cache_node or resizes various caches for all nodes.
3768 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3770 int ret;
3771 int node;
3772 struct kmem_cache_node *n;
3774 for_each_online_node(node) {
3775 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3776 if (ret)
3777 goto fail;
3781 return 0;
3783 fail:
3784 if (!cachep->list.next) {
3785 /* Cache is not active yet. Roll back what we did */
3786 node--;
3787 while (node >= 0) {
3788 n = get_node(cachep, node);
3789 if (n) {
3790 kfree(n->shared);
3791 free_alien_cache(n->alien);
3792 kfree(n);
3793 cachep->node[node] = NULL;
3795 node--;
3798 return -ENOMEM;
3801 /* Always called with the slab_mutex held */
3802 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3803 int batchcount, int shared, gfp_t gfp)
3805 struct array_cache __percpu *cpu_cache, *prev;
3806 int cpu;
3808 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3809 if (!cpu_cache)
3810 return -ENOMEM;
3812 prev = cachep->cpu_cache;
3813 cachep->cpu_cache = cpu_cache;
3815 * Without a previous cpu_cache there's no need to synchronize remote
3816 * cpus, so skip the IPIs.
3818 if (prev)
3819 kick_all_cpus_sync();
3821 check_irq_on();
3822 cachep->batchcount = batchcount;
3823 cachep->limit = limit;
3824 cachep->shared = shared;
3826 if (!prev)
3827 goto setup_node;
3829 for_each_online_cpu(cpu) {
3830 LIST_HEAD(list);
3831 int node;
3832 struct kmem_cache_node *n;
3833 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3835 node = cpu_to_mem(cpu);
3836 n = get_node(cachep, node);
3837 spin_lock_irq(&n->list_lock);
3838 free_block(cachep, ac->entry, ac->avail, node, &list);
3839 spin_unlock_irq(&n->list_lock);
3840 slabs_destroy(cachep, &list);
3842 free_percpu(prev);
3844 setup_node:
3845 return setup_kmem_cache_nodes(cachep, gfp);
3848 /* Called with slab_mutex held always */
3849 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3851 int err;
3852 int limit = 0;
3853 int shared = 0;
3854 int batchcount = 0;
3856 err = cache_random_seq_create(cachep, cachep->num, gfp);
3857 if (err)
3858 goto end;
3860 if (limit && shared && batchcount)
3861 goto skip_setup;
3863 * The head array serves three purposes:
3864 * - create a LIFO ordering, i.e. return objects that are cache-warm
3865 * - reduce the number of spinlock operations.
3866 * - reduce the number of linked list operations on the slab and
3867 * bufctl chains: array operations are cheaper.
3868 * The numbers are guessed, we should auto-tune as described by
3869 * Bonwick.
3871 if (cachep->size > 131072)
3872 limit = 1;
3873 else if (cachep->size > PAGE_SIZE)
3874 limit = 8;
3875 else if (cachep->size > 1024)
3876 limit = 24;
3877 else if (cachep->size > 256)
3878 limit = 54;
3879 else
3880 limit = 120;
3883 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3884 * allocation behaviour: Most allocs on one cpu, most free operations
3885 * on another cpu. For these cases, an efficient object passing between
3886 * cpus is necessary. This is provided by a shared array. The array
3887 * replaces Bonwick's magazine layer.
3888 * On uniprocessor, it's functionally equivalent (but less efficient)
3889 * to a larger limit. Thus disabled by default.
3891 shared = 0;
3892 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3893 shared = 8;
3895 #if DEBUG
3897 * With debugging enabled, large batchcount lead to excessively long
3898 * periods with disabled local interrupts. Limit the batchcount
3900 if (limit > 32)
3901 limit = 32;
3902 #endif
3903 batchcount = (limit + 1) / 2;
3904 skip_setup:
3905 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3906 end:
3907 if (err)
3908 pr_err("enable_cpucache failed for %s, error %d\n",
3909 cachep->name, -err);
3910 return err;
3914 * Drain an array if it contains any elements taking the node lock only if
3915 * necessary. Note that the node listlock also protects the array_cache
3916 * if drain_array() is used on the shared array.
3918 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3919 struct array_cache *ac, int node)
3921 LIST_HEAD(list);
3923 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3924 check_mutex_acquired();
3926 if (!ac || !ac->avail)
3927 return;
3929 if (ac->touched) {
3930 ac->touched = 0;
3931 return;
3934 spin_lock_irq(&n->list_lock);
3935 drain_array_locked(cachep, ac, node, false, &list);
3936 spin_unlock_irq(&n->list_lock);
3938 slabs_destroy(cachep, &list);
3942 * cache_reap - Reclaim memory from caches.
3943 * @w: work descriptor
3945 * Called from workqueue/eventd every few seconds.
3946 * Purpose:
3947 * - clear the per-cpu caches for this CPU.
3948 * - return freeable pages to the main free memory pool.
3950 * If we cannot acquire the cache chain mutex then just give up - we'll try
3951 * again on the next iteration.
3953 static void cache_reap(struct work_struct *w)
3955 struct kmem_cache *searchp;
3956 struct kmem_cache_node *n;
3957 int node = numa_mem_id();
3958 struct delayed_work *work = to_delayed_work(w);
3960 if (!mutex_trylock(&slab_mutex))
3961 /* Give up. Setup the next iteration. */
3962 goto out;
3964 list_for_each_entry(searchp, &slab_caches, list) {
3965 check_irq_on();
3968 * We only take the node lock if absolutely necessary and we
3969 * have established with reasonable certainty that
3970 * we can do some work if the lock was obtained.
3972 n = get_node(searchp, node);
3974 reap_alien(searchp, n);
3976 drain_array(searchp, n, cpu_cache_get(searchp), node);
3979 * These are racy checks but it does not matter
3980 * if we skip one check or scan twice.
3982 if (time_after(n->next_reap, jiffies))
3983 goto next;
3985 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3987 drain_array(searchp, n, n->shared, node);
3989 if (n->free_touched)
3990 n->free_touched = 0;
3991 else {
3992 int freed;
3994 freed = drain_freelist(searchp, n, (n->free_limit +
3995 5 * searchp->num - 1) / (5 * searchp->num));
3996 STATS_ADD_REAPED(searchp, freed);
3998 next:
3999 cond_resched();
4001 check_irq_on();
4002 mutex_unlock(&slab_mutex);
4003 next_reap_node();
4004 out:
4005 /* Set up the next iteration */
4006 schedule_delayed_work_on(smp_processor_id(), work,
4007 round_jiffies_relative(REAPTIMEOUT_AC));
4010 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4012 unsigned long active_objs, num_objs, active_slabs;
4013 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4014 unsigned long free_slabs = 0;
4015 int node;
4016 struct kmem_cache_node *n;
4018 for_each_kmem_cache_node(cachep, node, n) {
4019 check_irq_on();
4020 spin_lock_irq(&n->list_lock);
4022 total_slabs += n->total_slabs;
4023 free_slabs += n->free_slabs;
4024 free_objs += n->free_objects;
4026 if (n->shared)
4027 shared_avail += n->shared->avail;
4029 spin_unlock_irq(&n->list_lock);
4031 num_objs = total_slabs * cachep->num;
4032 active_slabs = total_slabs - free_slabs;
4033 active_objs = num_objs - free_objs;
4035 sinfo->active_objs = active_objs;
4036 sinfo->num_objs = num_objs;
4037 sinfo->active_slabs = active_slabs;
4038 sinfo->num_slabs = total_slabs;
4039 sinfo->shared_avail = shared_avail;
4040 sinfo->limit = cachep->limit;
4041 sinfo->batchcount = cachep->batchcount;
4042 sinfo->shared = cachep->shared;
4043 sinfo->objects_per_slab = cachep->num;
4044 sinfo->cache_order = cachep->gfporder;
4047 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4049 #if STATS
4050 { /* node stats */
4051 unsigned long high = cachep->high_mark;
4052 unsigned long allocs = cachep->num_allocations;
4053 unsigned long grown = cachep->grown;
4054 unsigned long reaped = cachep->reaped;
4055 unsigned long errors = cachep->errors;
4056 unsigned long max_freeable = cachep->max_freeable;
4057 unsigned long node_allocs = cachep->node_allocs;
4058 unsigned long node_frees = cachep->node_frees;
4059 unsigned long overflows = cachep->node_overflow;
4061 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4062 allocs, high, grown,
4063 reaped, errors, max_freeable, node_allocs,
4064 node_frees, overflows);
4066 /* cpu stats */
4068 unsigned long allochit = atomic_read(&cachep->allochit);
4069 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4070 unsigned long freehit = atomic_read(&cachep->freehit);
4071 unsigned long freemiss = atomic_read(&cachep->freemiss);
4073 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4074 allochit, allocmiss, freehit, freemiss);
4076 #endif
4079 #define MAX_SLABINFO_WRITE 128
4081 * slabinfo_write - Tuning for the slab allocator
4082 * @file: unused
4083 * @buffer: user buffer
4084 * @count: data length
4085 * @ppos: unused
4087 * Return: %0 on success, negative error code otherwise.
4089 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4090 size_t count, loff_t *ppos)
4092 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4093 int limit, batchcount, shared, res;
4094 struct kmem_cache *cachep;
4096 if (count > MAX_SLABINFO_WRITE)
4097 return -EINVAL;
4098 if (copy_from_user(&kbuf, buffer, count))
4099 return -EFAULT;
4100 kbuf[MAX_SLABINFO_WRITE] = '\0';
4102 tmp = strchr(kbuf, ' ');
4103 if (!tmp)
4104 return -EINVAL;
4105 *tmp = '\0';
4106 tmp++;
4107 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4108 return -EINVAL;
4110 /* Find the cache in the chain of caches. */
4111 mutex_lock(&slab_mutex);
4112 res = -EINVAL;
4113 list_for_each_entry(cachep, &slab_caches, list) {
4114 if (!strcmp(cachep->name, kbuf)) {
4115 if (limit < 1 || batchcount < 1 ||
4116 batchcount > limit || shared < 0) {
4117 res = 0;
4118 } else {
4119 res = do_tune_cpucache(cachep, limit,
4120 batchcount, shared,
4121 GFP_KERNEL);
4123 break;
4126 mutex_unlock(&slab_mutex);
4127 if (res >= 0)
4128 res = count;
4129 return res;
4132 #ifdef CONFIG_HARDENED_USERCOPY
4134 * Rejects incorrectly sized objects and objects that are to be copied
4135 * to/from userspace but do not fall entirely within the containing slab
4136 * cache's usercopy region.
4138 * Returns NULL if check passes, otherwise const char * to name of cache
4139 * to indicate an error.
4141 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4142 bool to_user)
4144 struct kmem_cache *cachep;
4145 unsigned int objnr;
4146 unsigned long offset;
4148 ptr = kasan_reset_tag(ptr);
4150 /* Find and validate object. */
4151 cachep = page->slab_cache;
4152 objnr = obj_to_index(cachep, page, (void *)ptr);
4153 BUG_ON(objnr >= cachep->num);
4155 /* Find offset within object. */
4156 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4158 /* Allow address range falling entirely within usercopy region. */
4159 if (offset >= cachep->useroffset &&
4160 offset - cachep->useroffset <= cachep->usersize &&
4161 n <= cachep->useroffset - offset + cachep->usersize)
4162 return;
4165 * If the copy is still within the allocated object, produce
4166 * a warning instead of rejecting the copy. This is intended
4167 * to be a temporary method to find any missing usercopy
4168 * whitelists.
4170 if (usercopy_fallback &&
4171 offset <= cachep->object_size &&
4172 n <= cachep->object_size - offset) {
4173 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4174 return;
4177 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4179 #endif /* CONFIG_HARDENED_USERCOPY */
4182 * __ksize -- Uninstrumented ksize.
4183 * @objp: pointer to the object
4185 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4186 * safety checks as ksize() with KASAN instrumentation enabled.
4188 * Return: size of the actual memory used by @objp in bytes
4190 size_t __ksize(const void *objp)
4192 struct kmem_cache *c;
4193 size_t size;
4195 BUG_ON(!objp);
4196 if (unlikely(objp == ZERO_SIZE_PTR))
4197 return 0;
4199 c = virt_to_cache(objp);
4200 size = c ? c->object_size : 0;
4202 return size;
4204 EXPORT_SYMBOL(__ksize);