sched/fair: Fix documentation file path
[linux/fpc-iii.git] / kernel / module.c
blobc9bea7f2b43e3b2568f2adeaa299a6545df41df8
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
78 * Modules' sections will be aligned on page boundaries
79 * to ensure complete separation of code and data, but
80 * only when CONFIG_STRICT_MODULE_RWX=y
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
92 * Mutex protects:
93 * 1) List of modules (also safely readable with preempt_disable),
94 * 2) module_use links,
95 * 3) module_addr_min/module_addr_max.
96 * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
104 * Use a latched RB-tree for __module_address(); this allows us to use
105 * RCU-sched lookups of the address from any context.
107 * This is conditional on PERF_EVENTS || TRACING because those can really hit
108 * __module_address() hard by doing a lot of stack unwinding; potentially from
109 * NMI context.
112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
114 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
116 return (unsigned long)layout->base;
119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
121 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
123 return (unsigned long)layout->size;
126 static __always_inline bool
127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
129 return __mod_tree_val(a) < __mod_tree_val(b);
132 static __always_inline int
133 mod_tree_comp(void *key, struct latch_tree_node *n)
135 unsigned long val = (unsigned long)key;
136 unsigned long start, end;
138 start = __mod_tree_val(n);
139 if (val < start)
140 return -1;
142 end = start + __mod_tree_size(n);
143 if (val >= end)
144 return 1;
146 return 0;
149 static const struct latch_tree_ops mod_tree_ops = {
150 .less = mod_tree_less,
151 .comp = mod_tree_comp,
154 static struct mod_tree_root {
155 struct latch_tree_root root;
156 unsigned long addr_min;
157 unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 .addr_min = -1UL,
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
167 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
170 static void __mod_tree_remove(struct mod_tree_node *node)
172 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
176 * These modifications: insert, remove_init and remove; are serialized by the
177 * module_mutex.
179 static void mod_tree_insert(struct module *mod)
181 mod->core_layout.mtn.mod = mod;
182 mod->init_layout.mtn.mod = mod;
184 __mod_tree_insert(&mod->core_layout.mtn);
185 if (mod->init_layout.size)
186 __mod_tree_insert(&mod->init_layout.mtn);
189 static void mod_tree_remove_init(struct module *mod)
191 if (mod->init_layout.size)
192 __mod_tree_remove(&mod->init_layout.mtn);
195 static void mod_tree_remove(struct module *mod)
197 __mod_tree_remove(&mod->core_layout.mtn);
198 mod_tree_remove_init(mod);
201 static struct module *mod_find(unsigned long addr)
203 struct latch_tree_node *ltn;
205 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 if (!ltn)
207 return NULL;
209 return container_of(ltn, struct mod_tree_node, node)->mod;
212 #else /* MODULES_TREE_LOOKUP */
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
216 static void mod_tree_insert(struct module *mod) { }
217 static void mod_tree_remove_init(struct module *mod) { }
218 static void mod_tree_remove(struct module *mod) { }
220 static struct module *mod_find(unsigned long addr)
222 struct module *mod;
224 list_for_each_entry_rcu(mod, &modules, list) {
225 if (within_module(addr, mod))
226 return mod;
229 return NULL;
232 #endif /* MODULES_TREE_LOOKUP */
235 * Bounds of module text, for speeding up __module_address.
236 * Protected by module_mutex.
238 static void __mod_update_bounds(void *base, unsigned int size)
240 unsigned long min = (unsigned long)base;
241 unsigned long max = min + size;
243 if (min < module_addr_min)
244 module_addr_min = min;
245 if (max > module_addr_max)
246 module_addr_max = max;
249 static void mod_update_bounds(struct module *mod)
251 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 if (mod->init_layout.size)
253 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
260 static void module_assert_mutex(void)
262 lockdep_assert_held(&module_mutex);
265 static void module_assert_mutex_or_preempt(void)
267 #ifdef CONFIG_LOCKDEP
268 if (unlikely(!debug_locks))
269 return;
271 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 !lockdep_is_held(&module_mutex));
273 #endif
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 #ifndef CONFIG_MODULE_SIG_FORCE
278 module_param(sig_enforce, bool_enable_only, 0644);
279 #endif /* !CONFIG_MODULE_SIG_FORCE */
282 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
283 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
285 bool is_module_sig_enforced(void)
287 return sig_enforce;
289 EXPORT_SYMBOL(is_module_sig_enforced);
291 /* Block module loading/unloading? */
292 int modules_disabled = 0;
293 core_param(nomodule, modules_disabled, bint, 0);
295 /* Waiting for a module to finish initializing? */
296 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
298 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
300 int register_module_notifier(struct notifier_block *nb)
302 return blocking_notifier_chain_register(&module_notify_list, nb);
304 EXPORT_SYMBOL(register_module_notifier);
306 int unregister_module_notifier(struct notifier_block *nb)
308 return blocking_notifier_chain_unregister(&module_notify_list, nb);
310 EXPORT_SYMBOL(unregister_module_notifier);
312 struct load_info {
313 const char *name;
314 Elf_Ehdr *hdr;
315 unsigned long len;
316 Elf_Shdr *sechdrs;
317 char *secstrings, *strtab;
318 unsigned long symoffs, stroffs;
319 struct _ddebug *debug;
320 unsigned int num_debug;
321 bool sig_ok;
322 #ifdef CONFIG_KALLSYMS
323 unsigned long mod_kallsyms_init_off;
324 #endif
325 struct {
326 unsigned int sym, str, mod, vers, info, pcpu;
327 } index;
331 * We require a truly strong try_module_get(): 0 means success.
332 * Otherwise an error is returned due to ongoing or failed
333 * initialization etc.
335 static inline int strong_try_module_get(struct module *mod)
337 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
338 if (mod && mod->state == MODULE_STATE_COMING)
339 return -EBUSY;
340 if (try_module_get(mod))
341 return 0;
342 else
343 return -ENOENT;
346 static inline void add_taint_module(struct module *mod, unsigned flag,
347 enum lockdep_ok lockdep_ok)
349 add_taint(flag, lockdep_ok);
350 set_bit(flag, &mod->taints);
354 * A thread that wants to hold a reference to a module only while it
355 * is running can call this to safely exit. nfsd and lockd use this.
357 void __noreturn __module_put_and_exit(struct module *mod, long code)
359 module_put(mod);
360 do_exit(code);
362 EXPORT_SYMBOL(__module_put_and_exit);
364 /* Find a module section: 0 means not found. */
365 static unsigned int find_sec(const struct load_info *info, const char *name)
367 unsigned int i;
369 for (i = 1; i < info->hdr->e_shnum; i++) {
370 Elf_Shdr *shdr = &info->sechdrs[i];
371 /* Alloc bit cleared means "ignore it." */
372 if ((shdr->sh_flags & SHF_ALLOC)
373 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
374 return i;
376 return 0;
379 /* Find a module section, or NULL. */
380 static void *section_addr(const struct load_info *info, const char *name)
382 /* Section 0 has sh_addr 0. */
383 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
386 /* Find a module section, or NULL. Fill in number of "objects" in section. */
387 static void *section_objs(const struct load_info *info,
388 const char *name,
389 size_t object_size,
390 unsigned int *num)
392 unsigned int sec = find_sec(info, name);
394 /* Section 0 has sh_addr 0 and sh_size 0. */
395 *num = info->sechdrs[sec].sh_size / object_size;
396 return (void *)info->sechdrs[sec].sh_addr;
399 /* Provided by the linker */
400 extern const struct kernel_symbol __start___ksymtab[];
401 extern const struct kernel_symbol __stop___ksymtab[];
402 extern const struct kernel_symbol __start___ksymtab_gpl[];
403 extern const struct kernel_symbol __stop___ksymtab_gpl[];
404 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
405 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
406 extern const s32 __start___kcrctab[];
407 extern const s32 __start___kcrctab_gpl[];
408 extern const s32 __start___kcrctab_gpl_future[];
409 #ifdef CONFIG_UNUSED_SYMBOLS
410 extern const struct kernel_symbol __start___ksymtab_unused[];
411 extern const struct kernel_symbol __stop___ksymtab_unused[];
412 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
413 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
414 extern const s32 __start___kcrctab_unused[];
415 extern const s32 __start___kcrctab_unused_gpl[];
416 #endif
418 #ifndef CONFIG_MODVERSIONS
419 #define symversion(base, idx) NULL
420 #else
421 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
422 #endif
424 static bool each_symbol_in_section(const struct symsearch *arr,
425 unsigned int arrsize,
426 struct module *owner,
427 bool (*fn)(const struct symsearch *syms,
428 struct module *owner,
429 void *data),
430 void *data)
432 unsigned int j;
434 for (j = 0; j < arrsize; j++) {
435 if (fn(&arr[j], owner, data))
436 return true;
439 return false;
442 /* Returns true as soon as fn returns true, otherwise false. */
443 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
444 struct module *owner,
445 void *data),
446 void *data)
448 struct module *mod;
449 static const struct symsearch arr[] = {
450 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
451 NOT_GPL_ONLY, false },
452 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
453 __start___kcrctab_gpl,
454 GPL_ONLY, false },
455 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
456 __start___kcrctab_gpl_future,
457 WILL_BE_GPL_ONLY, false },
458 #ifdef CONFIG_UNUSED_SYMBOLS
459 { __start___ksymtab_unused, __stop___ksymtab_unused,
460 __start___kcrctab_unused,
461 NOT_GPL_ONLY, true },
462 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
463 __start___kcrctab_unused_gpl,
464 GPL_ONLY, true },
465 #endif
468 module_assert_mutex_or_preempt();
470 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
471 return true;
473 list_for_each_entry_rcu(mod, &modules, list) {
474 struct symsearch arr[] = {
475 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
476 NOT_GPL_ONLY, false },
477 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
478 mod->gpl_crcs,
479 GPL_ONLY, false },
480 { mod->gpl_future_syms,
481 mod->gpl_future_syms + mod->num_gpl_future_syms,
482 mod->gpl_future_crcs,
483 WILL_BE_GPL_ONLY, false },
484 #ifdef CONFIG_UNUSED_SYMBOLS
485 { mod->unused_syms,
486 mod->unused_syms + mod->num_unused_syms,
487 mod->unused_crcs,
488 NOT_GPL_ONLY, true },
489 { mod->unused_gpl_syms,
490 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
491 mod->unused_gpl_crcs,
492 GPL_ONLY, true },
493 #endif
496 if (mod->state == MODULE_STATE_UNFORMED)
497 continue;
499 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
500 return true;
502 return false;
504 EXPORT_SYMBOL_GPL(each_symbol_section);
506 struct find_symbol_arg {
507 /* Input */
508 const char *name;
509 bool gplok;
510 bool warn;
512 /* Output */
513 struct module *owner;
514 const s32 *crc;
515 const struct kernel_symbol *sym;
518 static bool check_symbol(const struct symsearch *syms,
519 struct module *owner,
520 unsigned int symnum, void *data)
522 struct find_symbol_arg *fsa = data;
524 if (!fsa->gplok) {
525 if (syms->licence == GPL_ONLY)
526 return false;
527 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
528 pr_warn("Symbol %s is being used by a non-GPL module, "
529 "which will not be allowed in the future\n",
530 fsa->name);
534 #ifdef CONFIG_UNUSED_SYMBOLS
535 if (syms->unused && fsa->warn) {
536 pr_warn("Symbol %s is marked as UNUSED, however this module is "
537 "using it.\n", fsa->name);
538 pr_warn("This symbol will go away in the future.\n");
539 pr_warn("Please evaluate if this is the right api to use and "
540 "if it really is, submit a report to the linux kernel "
541 "mailing list together with submitting your code for "
542 "inclusion.\n");
544 #endif
546 fsa->owner = owner;
547 fsa->crc = symversion(syms->crcs, symnum);
548 fsa->sym = &syms->start[symnum];
549 return true;
552 static int cmp_name(const void *va, const void *vb)
554 const char *a;
555 const struct kernel_symbol *b;
556 a = va; b = vb;
557 return strcmp(a, b->name);
560 static bool find_symbol_in_section(const struct symsearch *syms,
561 struct module *owner,
562 void *data)
564 struct find_symbol_arg *fsa = data;
565 struct kernel_symbol *sym;
567 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
568 sizeof(struct kernel_symbol), cmp_name);
570 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
571 return true;
573 return false;
576 /* Find a symbol and return it, along with, (optional) crc and
577 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
578 const struct kernel_symbol *find_symbol(const char *name,
579 struct module **owner,
580 const s32 **crc,
581 bool gplok,
582 bool warn)
584 struct find_symbol_arg fsa;
586 fsa.name = name;
587 fsa.gplok = gplok;
588 fsa.warn = warn;
590 if (each_symbol_section(find_symbol_in_section, &fsa)) {
591 if (owner)
592 *owner = fsa.owner;
593 if (crc)
594 *crc = fsa.crc;
595 return fsa.sym;
598 pr_debug("Failed to find symbol %s\n", name);
599 return NULL;
601 EXPORT_SYMBOL_GPL(find_symbol);
604 * Search for module by name: must hold module_mutex (or preempt disabled
605 * for read-only access).
607 static struct module *find_module_all(const char *name, size_t len,
608 bool even_unformed)
610 struct module *mod;
612 module_assert_mutex_or_preempt();
614 list_for_each_entry_rcu(mod, &modules, list) {
615 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
616 continue;
617 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
618 return mod;
620 return NULL;
623 struct module *find_module(const char *name)
625 module_assert_mutex();
626 return find_module_all(name, strlen(name), false);
628 EXPORT_SYMBOL_GPL(find_module);
630 #ifdef CONFIG_SMP
632 static inline void __percpu *mod_percpu(struct module *mod)
634 return mod->percpu;
637 static int percpu_modalloc(struct module *mod, struct load_info *info)
639 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
640 unsigned long align = pcpusec->sh_addralign;
642 if (!pcpusec->sh_size)
643 return 0;
645 if (align > PAGE_SIZE) {
646 pr_warn("%s: per-cpu alignment %li > %li\n",
647 mod->name, align, PAGE_SIZE);
648 align = PAGE_SIZE;
651 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
652 if (!mod->percpu) {
653 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
654 mod->name, (unsigned long)pcpusec->sh_size);
655 return -ENOMEM;
657 mod->percpu_size = pcpusec->sh_size;
658 return 0;
661 static void percpu_modfree(struct module *mod)
663 free_percpu(mod->percpu);
666 static unsigned int find_pcpusec(struct load_info *info)
668 return find_sec(info, ".data..percpu");
671 static void percpu_modcopy(struct module *mod,
672 const void *from, unsigned long size)
674 int cpu;
676 for_each_possible_cpu(cpu)
677 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
680 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
682 struct module *mod;
683 unsigned int cpu;
685 preempt_disable();
687 list_for_each_entry_rcu(mod, &modules, list) {
688 if (mod->state == MODULE_STATE_UNFORMED)
689 continue;
690 if (!mod->percpu_size)
691 continue;
692 for_each_possible_cpu(cpu) {
693 void *start = per_cpu_ptr(mod->percpu, cpu);
694 void *va = (void *)addr;
696 if (va >= start && va < start + mod->percpu_size) {
697 if (can_addr) {
698 *can_addr = (unsigned long) (va - start);
699 *can_addr += (unsigned long)
700 per_cpu_ptr(mod->percpu,
701 get_boot_cpu_id());
703 preempt_enable();
704 return true;
709 preempt_enable();
710 return false;
714 * is_module_percpu_address - test whether address is from module static percpu
715 * @addr: address to test
717 * Test whether @addr belongs to module static percpu area.
719 * RETURNS:
720 * %true if @addr is from module static percpu area
722 bool is_module_percpu_address(unsigned long addr)
724 return __is_module_percpu_address(addr, NULL);
727 #else /* ... !CONFIG_SMP */
729 static inline void __percpu *mod_percpu(struct module *mod)
731 return NULL;
733 static int percpu_modalloc(struct module *mod, struct load_info *info)
735 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
736 if (info->sechdrs[info->index.pcpu].sh_size != 0)
737 return -ENOMEM;
738 return 0;
740 static inline void percpu_modfree(struct module *mod)
743 static unsigned int find_pcpusec(struct load_info *info)
745 return 0;
747 static inline void percpu_modcopy(struct module *mod,
748 const void *from, unsigned long size)
750 /* pcpusec should be 0, and size of that section should be 0. */
751 BUG_ON(size != 0);
753 bool is_module_percpu_address(unsigned long addr)
755 return false;
758 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
760 return false;
763 #endif /* CONFIG_SMP */
765 #define MODINFO_ATTR(field) \
766 static void setup_modinfo_##field(struct module *mod, const char *s) \
768 mod->field = kstrdup(s, GFP_KERNEL); \
770 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
771 struct module_kobject *mk, char *buffer) \
773 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
775 static int modinfo_##field##_exists(struct module *mod) \
777 return mod->field != NULL; \
779 static void free_modinfo_##field(struct module *mod) \
781 kfree(mod->field); \
782 mod->field = NULL; \
784 static struct module_attribute modinfo_##field = { \
785 .attr = { .name = __stringify(field), .mode = 0444 }, \
786 .show = show_modinfo_##field, \
787 .setup = setup_modinfo_##field, \
788 .test = modinfo_##field##_exists, \
789 .free = free_modinfo_##field, \
792 MODINFO_ATTR(version);
793 MODINFO_ATTR(srcversion);
795 static char last_unloaded_module[MODULE_NAME_LEN+1];
797 #ifdef CONFIG_MODULE_UNLOAD
799 EXPORT_TRACEPOINT_SYMBOL(module_get);
801 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
802 #define MODULE_REF_BASE 1
804 /* Init the unload section of the module. */
805 static int module_unload_init(struct module *mod)
808 * Initialize reference counter to MODULE_REF_BASE.
809 * refcnt == 0 means module is going.
811 atomic_set(&mod->refcnt, MODULE_REF_BASE);
813 INIT_LIST_HEAD(&mod->source_list);
814 INIT_LIST_HEAD(&mod->target_list);
816 /* Hold reference count during initialization. */
817 atomic_inc(&mod->refcnt);
819 return 0;
822 /* Does a already use b? */
823 static int already_uses(struct module *a, struct module *b)
825 struct module_use *use;
827 list_for_each_entry(use, &b->source_list, source_list) {
828 if (use->source == a) {
829 pr_debug("%s uses %s!\n", a->name, b->name);
830 return 1;
833 pr_debug("%s does not use %s!\n", a->name, b->name);
834 return 0;
838 * Module a uses b
839 * - we add 'a' as a "source", 'b' as a "target" of module use
840 * - the module_use is added to the list of 'b' sources (so
841 * 'b' can walk the list to see who sourced them), and of 'a'
842 * targets (so 'a' can see what modules it targets).
844 static int add_module_usage(struct module *a, struct module *b)
846 struct module_use *use;
848 pr_debug("Allocating new usage for %s.\n", a->name);
849 use = kmalloc(sizeof(*use), GFP_ATOMIC);
850 if (!use)
851 return -ENOMEM;
853 use->source = a;
854 use->target = b;
855 list_add(&use->source_list, &b->source_list);
856 list_add(&use->target_list, &a->target_list);
857 return 0;
860 /* Module a uses b: caller needs module_mutex() */
861 int ref_module(struct module *a, struct module *b)
863 int err;
865 if (b == NULL || already_uses(a, b))
866 return 0;
868 /* If module isn't available, we fail. */
869 err = strong_try_module_get(b);
870 if (err)
871 return err;
873 err = add_module_usage(a, b);
874 if (err) {
875 module_put(b);
876 return err;
878 return 0;
880 EXPORT_SYMBOL_GPL(ref_module);
882 /* Clear the unload stuff of the module. */
883 static void module_unload_free(struct module *mod)
885 struct module_use *use, *tmp;
887 mutex_lock(&module_mutex);
888 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
889 struct module *i = use->target;
890 pr_debug("%s unusing %s\n", mod->name, i->name);
891 module_put(i);
892 list_del(&use->source_list);
893 list_del(&use->target_list);
894 kfree(use);
896 mutex_unlock(&module_mutex);
899 #ifdef CONFIG_MODULE_FORCE_UNLOAD
900 static inline int try_force_unload(unsigned int flags)
902 int ret = (flags & O_TRUNC);
903 if (ret)
904 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
905 return ret;
907 #else
908 static inline int try_force_unload(unsigned int flags)
910 return 0;
912 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
914 /* Try to release refcount of module, 0 means success. */
915 static int try_release_module_ref(struct module *mod)
917 int ret;
919 /* Try to decrement refcnt which we set at loading */
920 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
921 BUG_ON(ret < 0);
922 if (ret)
923 /* Someone can put this right now, recover with checking */
924 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
926 return ret;
929 static int try_stop_module(struct module *mod, int flags, int *forced)
931 /* If it's not unused, quit unless we're forcing. */
932 if (try_release_module_ref(mod) != 0) {
933 *forced = try_force_unload(flags);
934 if (!(*forced))
935 return -EWOULDBLOCK;
938 /* Mark it as dying. */
939 mod->state = MODULE_STATE_GOING;
941 return 0;
945 * module_refcount - return the refcount or -1 if unloading
947 * @mod: the module we're checking
949 * Returns:
950 * -1 if the module is in the process of unloading
951 * otherwise the number of references in the kernel to the module
953 int module_refcount(struct module *mod)
955 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
957 EXPORT_SYMBOL(module_refcount);
959 /* This exists whether we can unload or not */
960 static void free_module(struct module *mod);
962 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
963 unsigned int, flags)
965 struct module *mod;
966 char name[MODULE_NAME_LEN];
967 int ret, forced = 0;
969 if (!capable(CAP_SYS_MODULE) || modules_disabled)
970 return -EPERM;
972 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
973 return -EFAULT;
974 name[MODULE_NAME_LEN-1] = '\0';
976 audit_log_kern_module(name);
978 if (mutex_lock_interruptible(&module_mutex) != 0)
979 return -EINTR;
981 mod = find_module(name);
982 if (!mod) {
983 ret = -ENOENT;
984 goto out;
987 if (!list_empty(&mod->source_list)) {
988 /* Other modules depend on us: get rid of them first. */
989 ret = -EWOULDBLOCK;
990 goto out;
993 /* Doing init or already dying? */
994 if (mod->state != MODULE_STATE_LIVE) {
995 /* FIXME: if (force), slam module count damn the torpedoes */
996 pr_debug("%s already dying\n", mod->name);
997 ret = -EBUSY;
998 goto out;
1001 /* If it has an init func, it must have an exit func to unload */
1002 if (mod->init && !mod->exit) {
1003 forced = try_force_unload(flags);
1004 if (!forced) {
1005 /* This module can't be removed */
1006 ret = -EBUSY;
1007 goto out;
1011 /* Stop the machine so refcounts can't move and disable module. */
1012 ret = try_stop_module(mod, flags, &forced);
1013 if (ret != 0)
1014 goto out;
1016 mutex_unlock(&module_mutex);
1017 /* Final destruction now no one is using it. */
1018 if (mod->exit != NULL)
1019 mod->exit();
1020 blocking_notifier_call_chain(&module_notify_list,
1021 MODULE_STATE_GOING, mod);
1022 klp_module_going(mod);
1023 ftrace_release_mod(mod);
1025 async_synchronize_full();
1027 /* Store the name of the last unloaded module for diagnostic purposes */
1028 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1030 free_module(mod);
1031 return 0;
1032 out:
1033 mutex_unlock(&module_mutex);
1034 return ret;
1037 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1039 struct module_use *use;
1040 int printed_something = 0;
1042 seq_printf(m, " %i ", module_refcount(mod));
1045 * Always include a trailing , so userspace can differentiate
1046 * between this and the old multi-field proc format.
1048 list_for_each_entry(use, &mod->source_list, source_list) {
1049 printed_something = 1;
1050 seq_printf(m, "%s,", use->source->name);
1053 if (mod->init != NULL && mod->exit == NULL) {
1054 printed_something = 1;
1055 seq_puts(m, "[permanent],");
1058 if (!printed_something)
1059 seq_puts(m, "-");
1062 void __symbol_put(const char *symbol)
1064 struct module *owner;
1066 preempt_disable();
1067 if (!find_symbol(symbol, &owner, NULL, true, false))
1068 BUG();
1069 module_put(owner);
1070 preempt_enable();
1072 EXPORT_SYMBOL(__symbol_put);
1074 /* Note this assumes addr is a function, which it currently always is. */
1075 void symbol_put_addr(void *addr)
1077 struct module *modaddr;
1078 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1080 if (core_kernel_text(a))
1081 return;
1084 * Even though we hold a reference on the module; we still need to
1085 * disable preemption in order to safely traverse the data structure.
1087 preempt_disable();
1088 modaddr = __module_text_address(a);
1089 BUG_ON(!modaddr);
1090 module_put(modaddr);
1091 preempt_enable();
1093 EXPORT_SYMBOL_GPL(symbol_put_addr);
1095 static ssize_t show_refcnt(struct module_attribute *mattr,
1096 struct module_kobject *mk, char *buffer)
1098 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1101 static struct module_attribute modinfo_refcnt =
1102 __ATTR(refcnt, 0444, show_refcnt, NULL);
1104 void __module_get(struct module *module)
1106 if (module) {
1107 preempt_disable();
1108 atomic_inc(&module->refcnt);
1109 trace_module_get(module, _RET_IP_);
1110 preempt_enable();
1113 EXPORT_SYMBOL(__module_get);
1115 bool try_module_get(struct module *module)
1117 bool ret = true;
1119 if (module) {
1120 preempt_disable();
1121 /* Note: here, we can fail to get a reference */
1122 if (likely(module_is_live(module) &&
1123 atomic_inc_not_zero(&module->refcnt) != 0))
1124 trace_module_get(module, _RET_IP_);
1125 else
1126 ret = false;
1128 preempt_enable();
1130 return ret;
1132 EXPORT_SYMBOL(try_module_get);
1134 void module_put(struct module *module)
1136 int ret;
1138 if (module) {
1139 preempt_disable();
1140 ret = atomic_dec_if_positive(&module->refcnt);
1141 WARN_ON(ret < 0); /* Failed to put refcount */
1142 trace_module_put(module, _RET_IP_);
1143 preempt_enable();
1146 EXPORT_SYMBOL(module_put);
1148 #else /* !CONFIG_MODULE_UNLOAD */
1149 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1151 /* We don't know the usage count, or what modules are using. */
1152 seq_puts(m, " - -");
1155 static inline void module_unload_free(struct module *mod)
1159 int ref_module(struct module *a, struct module *b)
1161 return strong_try_module_get(b);
1163 EXPORT_SYMBOL_GPL(ref_module);
1165 static inline int module_unload_init(struct module *mod)
1167 return 0;
1169 #endif /* CONFIG_MODULE_UNLOAD */
1171 static size_t module_flags_taint(struct module *mod, char *buf)
1173 size_t l = 0;
1174 int i;
1176 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1177 if (taint_flags[i].module && test_bit(i, &mod->taints))
1178 buf[l++] = taint_flags[i].c_true;
1181 return l;
1184 static ssize_t show_initstate(struct module_attribute *mattr,
1185 struct module_kobject *mk, char *buffer)
1187 const char *state = "unknown";
1189 switch (mk->mod->state) {
1190 case MODULE_STATE_LIVE:
1191 state = "live";
1192 break;
1193 case MODULE_STATE_COMING:
1194 state = "coming";
1195 break;
1196 case MODULE_STATE_GOING:
1197 state = "going";
1198 break;
1199 default:
1200 BUG();
1202 return sprintf(buffer, "%s\n", state);
1205 static struct module_attribute modinfo_initstate =
1206 __ATTR(initstate, 0444, show_initstate, NULL);
1208 static ssize_t store_uevent(struct module_attribute *mattr,
1209 struct module_kobject *mk,
1210 const char *buffer, size_t count)
1212 kobject_synth_uevent(&mk->kobj, buffer, count);
1213 return count;
1216 struct module_attribute module_uevent =
1217 __ATTR(uevent, 0200, NULL, store_uevent);
1219 static ssize_t show_coresize(struct module_attribute *mattr,
1220 struct module_kobject *mk, char *buffer)
1222 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1225 static struct module_attribute modinfo_coresize =
1226 __ATTR(coresize, 0444, show_coresize, NULL);
1228 static ssize_t show_initsize(struct module_attribute *mattr,
1229 struct module_kobject *mk, char *buffer)
1231 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1234 static struct module_attribute modinfo_initsize =
1235 __ATTR(initsize, 0444, show_initsize, NULL);
1237 static ssize_t show_taint(struct module_attribute *mattr,
1238 struct module_kobject *mk, char *buffer)
1240 size_t l;
1242 l = module_flags_taint(mk->mod, buffer);
1243 buffer[l++] = '\n';
1244 return l;
1247 static struct module_attribute modinfo_taint =
1248 __ATTR(taint, 0444, show_taint, NULL);
1250 static struct module_attribute *modinfo_attrs[] = {
1251 &module_uevent,
1252 &modinfo_version,
1253 &modinfo_srcversion,
1254 &modinfo_initstate,
1255 &modinfo_coresize,
1256 &modinfo_initsize,
1257 &modinfo_taint,
1258 #ifdef CONFIG_MODULE_UNLOAD
1259 &modinfo_refcnt,
1260 #endif
1261 NULL,
1264 static const char vermagic[] = VERMAGIC_STRING;
1266 static int try_to_force_load(struct module *mod, const char *reason)
1268 #ifdef CONFIG_MODULE_FORCE_LOAD
1269 if (!test_taint(TAINT_FORCED_MODULE))
1270 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1271 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1272 return 0;
1273 #else
1274 return -ENOEXEC;
1275 #endif
1278 #ifdef CONFIG_MODVERSIONS
1280 static u32 resolve_rel_crc(const s32 *crc)
1282 return *(u32 *)((void *)crc + *crc);
1285 static int check_version(const struct load_info *info,
1286 const char *symname,
1287 struct module *mod,
1288 const s32 *crc)
1290 Elf_Shdr *sechdrs = info->sechdrs;
1291 unsigned int versindex = info->index.vers;
1292 unsigned int i, num_versions;
1293 struct modversion_info *versions;
1295 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1296 if (!crc)
1297 return 1;
1299 /* No versions at all? modprobe --force does this. */
1300 if (versindex == 0)
1301 return try_to_force_load(mod, symname) == 0;
1303 versions = (void *) sechdrs[versindex].sh_addr;
1304 num_versions = sechdrs[versindex].sh_size
1305 / sizeof(struct modversion_info);
1307 for (i = 0; i < num_versions; i++) {
1308 u32 crcval;
1310 if (strcmp(versions[i].name, symname) != 0)
1311 continue;
1313 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1314 crcval = resolve_rel_crc(crc);
1315 else
1316 crcval = *crc;
1317 if (versions[i].crc == crcval)
1318 return 1;
1319 pr_debug("Found checksum %X vs module %lX\n",
1320 crcval, versions[i].crc);
1321 goto bad_version;
1324 /* Broken toolchain. Warn once, then let it go.. */
1325 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1326 return 1;
1328 bad_version:
1329 pr_warn("%s: disagrees about version of symbol %s\n",
1330 info->name, symname);
1331 return 0;
1334 static inline int check_modstruct_version(const struct load_info *info,
1335 struct module *mod)
1337 const s32 *crc;
1340 * Since this should be found in kernel (which can't be removed), no
1341 * locking is necessary -- use preempt_disable() to placate lockdep.
1343 preempt_disable();
1344 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1345 &crc, true, false)) {
1346 preempt_enable();
1347 BUG();
1349 preempt_enable();
1350 return check_version(info, VMLINUX_SYMBOL_STR(module_layout),
1351 mod, crc);
1354 /* First part is kernel version, which we ignore if module has crcs. */
1355 static inline int same_magic(const char *amagic, const char *bmagic,
1356 bool has_crcs)
1358 if (has_crcs) {
1359 amagic += strcspn(amagic, " ");
1360 bmagic += strcspn(bmagic, " ");
1362 return strcmp(amagic, bmagic) == 0;
1364 #else
1365 static inline int check_version(const struct load_info *info,
1366 const char *symname,
1367 struct module *mod,
1368 const s32 *crc)
1370 return 1;
1373 static inline int check_modstruct_version(const struct load_info *info,
1374 struct module *mod)
1376 return 1;
1379 static inline int same_magic(const char *amagic, const char *bmagic,
1380 bool has_crcs)
1382 return strcmp(amagic, bmagic) == 0;
1384 #endif /* CONFIG_MODVERSIONS */
1386 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1387 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1388 const struct load_info *info,
1389 const char *name,
1390 char ownername[])
1392 struct module *owner;
1393 const struct kernel_symbol *sym;
1394 const s32 *crc;
1395 int err;
1398 * The module_mutex should not be a heavily contended lock;
1399 * if we get the occasional sleep here, we'll go an extra iteration
1400 * in the wait_event_interruptible(), which is harmless.
1402 sched_annotate_sleep();
1403 mutex_lock(&module_mutex);
1404 sym = find_symbol(name, &owner, &crc,
1405 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1406 if (!sym)
1407 goto unlock;
1409 if (!check_version(info, name, mod, crc)) {
1410 sym = ERR_PTR(-EINVAL);
1411 goto getname;
1414 err = ref_module(mod, owner);
1415 if (err) {
1416 sym = ERR_PTR(err);
1417 goto getname;
1420 getname:
1421 /* We must make copy under the lock if we failed to get ref. */
1422 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1423 unlock:
1424 mutex_unlock(&module_mutex);
1425 return sym;
1428 static const struct kernel_symbol *
1429 resolve_symbol_wait(struct module *mod,
1430 const struct load_info *info,
1431 const char *name)
1433 const struct kernel_symbol *ksym;
1434 char owner[MODULE_NAME_LEN];
1436 if (wait_event_interruptible_timeout(module_wq,
1437 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1438 || PTR_ERR(ksym) != -EBUSY,
1439 30 * HZ) <= 0) {
1440 pr_warn("%s: gave up waiting for init of module %s.\n",
1441 mod->name, owner);
1443 return ksym;
1447 * /sys/module/foo/sections stuff
1448 * J. Corbet <corbet@lwn.net>
1450 #ifdef CONFIG_SYSFS
1452 #ifdef CONFIG_KALLSYMS
1453 static inline bool sect_empty(const Elf_Shdr *sect)
1455 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1458 struct module_sect_attr {
1459 struct module_attribute mattr;
1460 char *name;
1461 unsigned long address;
1464 struct module_sect_attrs {
1465 struct attribute_group grp;
1466 unsigned int nsections;
1467 struct module_sect_attr attrs[0];
1470 static ssize_t module_sect_show(struct module_attribute *mattr,
1471 struct module_kobject *mk, char *buf)
1473 struct module_sect_attr *sattr =
1474 container_of(mattr, struct module_sect_attr, mattr);
1475 return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1476 (void *)sattr->address : NULL);
1479 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1481 unsigned int section;
1483 for (section = 0; section < sect_attrs->nsections; section++)
1484 kfree(sect_attrs->attrs[section].name);
1485 kfree(sect_attrs);
1488 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1490 unsigned int nloaded = 0, i, size[2];
1491 struct module_sect_attrs *sect_attrs;
1492 struct module_sect_attr *sattr;
1493 struct attribute **gattr;
1495 /* Count loaded sections and allocate structures */
1496 for (i = 0; i < info->hdr->e_shnum; i++)
1497 if (!sect_empty(&info->sechdrs[i]))
1498 nloaded++;
1499 size[0] = ALIGN(sizeof(*sect_attrs)
1500 + nloaded * sizeof(sect_attrs->attrs[0]),
1501 sizeof(sect_attrs->grp.attrs[0]));
1502 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1503 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1504 if (sect_attrs == NULL)
1505 return;
1507 /* Setup section attributes. */
1508 sect_attrs->grp.name = "sections";
1509 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1511 sect_attrs->nsections = 0;
1512 sattr = &sect_attrs->attrs[0];
1513 gattr = &sect_attrs->grp.attrs[0];
1514 for (i = 0; i < info->hdr->e_shnum; i++) {
1515 Elf_Shdr *sec = &info->sechdrs[i];
1516 if (sect_empty(sec))
1517 continue;
1518 sattr->address = sec->sh_addr;
1519 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1520 GFP_KERNEL);
1521 if (sattr->name == NULL)
1522 goto out;
1523 sect_attrs->nsections++;
1524 sysfs_attr_init(&sattr->mattr.attr);
1525 sattr->mattr.show = module_sect_show;
1526 sattr->mattr.store = NULL;
1527 sattr->mattr.attr.name = sattr->name;
1528 sattr->mattr.attr.mode = S_IRUSR;
1529 *(gattr++) = &(sattr++)->mattr.attr;
1531 *gattr = NULL;
1533 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1534 goto out;
1536 mod->sect_attrs = sect_attrs;
1537 return;
1538 out:
1539 free_sect_attrs(sect_attrs);
1542 static void remove_sect_attrs(struct module *mod)
1544 if (mod->sect_attrs) {
1545 sysfs_remove_group(&mod->mkobj.kobj,
1546 &mod->sect_attrs->grp);
1547 /* We are positive that no one is using any sect attrs
1548 * at this point. Deallocate immediately. */
1549 free_sect_attrs(mod->sect_attrs);
1550 mod->sect_attrs = NULL;
1555 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1558 struct module_notes_attrs {
1559 struct kobject *dir;
1560 unsigned int notes;
1561 struct bin_attribute attrs[0];
1564 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1565 struct bin_attribute *bin_attr,
1566 char *buf, loff_t pos, size_t count)
1569 * The caller checked the pos and count against our size.
1571 memcpy(buf, bin_attr->private + pos, count);
1572 return count;
1575 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1576 unsigned int i)
1578 if (notes_attrs->dir) {
1579 while (i-- > 0)
1580 sysfs_remove_bin_file(notes_attrs->dir,
1581 &notes_attrs->attrs[i]);
1582 kobject_put(notes_attrs->dir);
1584 kfree(notes_attrs);
1587 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1589 unsigned int notes, loaded, i;
1590 struct module_notes_attrs *notes_attrs;
1591 struct bin_attribute *nattr;
1593 /* failed to create section attributes, so can't create notes */
1594 if (!mod->sect_attrs)
1595 return;
1597 /* Count notes sections and allocate structures. */
1598 notes = 0;
1599 for (i = 0; i < info->hdr->e_shnum; i++)
1600 if (!sect_empty(&info->sechdrs[i]) &&
1601 (info->sechdrs[i].sh_type == SHT_NOTE))
1602 ++notes;
1604 if (notes == 0)
1605 return;
1607 notes_attrs = kzalloc(sizeof(*notes_attrs)
1608 + notes * sizeof(notes_attrs->attrs[0]),
1609 GFP_KERNEL);
1610 if (notes_attrs == NULL)
1611 return;
1613 notes_attrs->notes = notes;
1614 nattr = &notes_attrs->attrs[0];
1615 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1616 if (sect_empty(&info->sechdrs[i]))
1617 continue;
1618 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1619 sysfs_bin_attr_init(nattr);
1620 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1621 nattr->attr.mode = S_IRUGO;
1622 nattr->size = info->sechdrs[i].sh_size;
1623 nattr->private = (void *) info->sechdrs[i].sh_addr;
1624 nattr->read = module_notes_read;
1625 ++nattr;
1627 ++loaded;
1630 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1631 if (!notes_attrs->dir)
1632 goto out;
1634 for (i = 0; i < notes; ++i)
1635 if (sysfs_create_bin_file(notes_attrs->dir,
1636 &notes_attrs->attrs[i]))
1637 goto out;
1639 mod->notes_attrs = notes_attrs;
1640 return;
1642 out:
1643 free_notes_attrs(notes_attrs, i);
1646 static void remove_notes_attrs(struct module *mod)
1648 if (mod->notes_attrs)
1649 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1652 #else
1654 static inline void add_sect_attrs(struct module *mod,
1655 const struct load_info *info)
1659 static inline void remove_sect_attrs(struct module *mod)
1663 static inline void add_notes_attrs(struct module *mod,
1664 const struct load_info *info)
1668 static inline void remove_notes_attrs(struct module *mod)
1671 #endif /* CONFIG_KALLSYMS */
1673 static void del_usage_links(struct module *mod)
1675 #ifdef CONFIG_MODULE_UNLOAD
1676 struct module_use *use;
1678 mutex_lock(&module_mutex);
1679 list_for_each_entry(use, &mod->target_list, target_list)
1680 sysfs_remove_link(use->target->holders_dir, mod->name);
1681 mutex_unlock(&module_mutex);
1682 #endif
1685 static int add_usage_links(struct module *mod)
1687 int ret = 0;
1688 #ifdef CONFIG_MODULE_UNLOAD
1689 struct module_use *use;
1691 mutex_lock(&module_mutex);
1692 list_for_each_entry(use, &mod->target_list, target_list) {
1693 ret = sysfs_create_link(use->target->holders_dir,
1694 &mod->mkobj.kobj, mod->name);
1695 if (ret)
1696 break;
1698 mutex_unlock(&module_mutex);
1699 if (ret)
1700 del_usage_links(mod);
1701 #endif
1702 return ret;
1705 static int module_add_modinfo_attrs(struct module *mod)
1707 struct module_attribute *attr;
1708 struct module_attribute *temp_attr;
1709 int error = 0;
1710 int i;
1712 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1713 (ARRAY_SIZE(modinfo_attrs) + 1)),
1714 GFP_KERNEL);
1715 if (!mod->modinfo_attrs)
1716 return -ENOMEM;
1718 temp_attr = mod->modinfo_attrs;
1719 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1720 if (!attr->test || attr->test(mod)) {
1721 memcpy(temp_attr, attr, sizeof(*temp_attr));
1722 sysfs_attr_init(&temp_attr->attr);
1723 error = sysfs_create_file(&mod->mkobj.kobj,
1724 &temp_attr->attr);
1725 ++temp_attr;
1728 return error;
1731 static void module_remove_modinfo_attrs(struct module *mod)
1733 struct module_attribute *attr;
1734 int i;
1736 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1737 /* pick a field to test for end of list */
1738 if (!attr->attr.name)
1739 break;
1740 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1741 if (attr->free)
1742 attr->free(mod);
1744 kfree(mod->modinfo_attrs);
1747 static void mod_kobject_put(struct module *mod)
1749 DECLARE_COMPLETION_ONSTACK(c);
1750 mod->mkobj.kobj_completion = &c;
1751 kobject_put(&mod->mkobj.kobj);
1752 wait_for_completion(&c);
1755 static int mod_sysfs_init(struct module *mod)
1757 int err;
1758 struct kobject *kobj;
1760 if (!module_sysfs_initialized) {
1761 pr_err("%s: module sysfs not initialized\n", mod->name);
1762 err = -EINVAL;
1763 goto out;
1766 kobj = kset_find_obj(module_kset, mod->name);
1767 if (kobj) {
1768 pr_err("%s: module is already loaded\n", mod->name);
1769 kobject_put(kobj);
1770 err = -EINVAL;
1771 goto out;
1774 mod->mkobj.mod = mod;
1776 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1777 mod->mkobj.kobj.kset = module_kset;
1778 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1779 "%s", mod->name);
1780 if (err)
1781 mod_kobject_put(mod);
1783 /* delay uevent until full sysfs population */
1784 out:
1785 return err;
1788 static int mod_sysfs_setup(struct module *mod,
1789 const struct load_info *info,
1790 struct kernel_param *kparam,
1791 unsigned int num_params)
1793 int err;
1795 err = mod_sysfs_init(mod);
1796 if (err)
1797 goto out;
1799 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1800 if (!mod->holders_dir) {
1801 err = -ENOMEM;
1802 goto out_unreg;
1805 err = module_param_sysfs_setup(mod, kparam, num_params);
1806 if (err)
1807 goto out_unreg_holders;
1809 err = module_add_modinfo_attrs(mod);
1810 if (err)
1811 goto out_unreg_param;
1813 err = add_usage_links(mod);
1814 if (err)
1815 goto out_unreg_modinfo_attrs;
1817 add_sect_attrs(mod, info);
1818 add_notes_attrs(mod, info);
1820 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1821 return 0;
1823 out_unreg_modinfo_attrs:
1824 module_remove_modinfo_attrs(mod);
1825 out_unreg_param:
1826 module_param_sysfs_remove(mod);
1827 out_unreg_holders:
1828 kobject_put(mod->holders_dir);
1829 out_unreg:
1830 mod_kobject_put(mod);
1831 out:
1832 return err;
1835 static void mod_sysfs_fini(struct module *mod)
1837 remove_notes_attrs(mod);
1838 remove_sect_attrs(mod);
1839 mod_kobject_put(mod);
1842 static void init_param_lock(struct module *mod)
1844 mutex_init(&mod->param_lock);
1846 #else /* !CONFIG_SYSFS */
1848 static int mod_sysfs_setup(struct module *mod,
1849 const struct load_info *info,
1850 struct kernel_param *kparam,
1851 unsigned int num_params)
1853 return 0;
1856 static void mod_sysfs_fini(struct module *mod)
1860 static void module_remove_modinfo_attrs(struct module *mod)
1864 static void del_usage_links(struct module *mod)
1868 static void init_param_lock(struct module *mod)
1871 #endif /* CONFIG_SYSFS */
1873 static void mod_sysfs_teardown(struct module *mod)
1875 del_usage_links(mod);
1876 module_remove_modinfo_attrs(mod);
1877 module_param_sysfs_remove(mod);
1878 kobject_put(mod->mkobj.drivers_dir);
1879 kobject_put(mod->holders_dir);
1880 mod_sysfs_fini(mod);
1883 #ifdef CONFIG_STRICT_MODULE_RWX
1885 * LKM RO/NX protection: protect module's text/ro-data
1886 * from modification and any data from execution.
1888 * General layout of module is:
1889 * [text] [read-only-data] [ro-after-init] [writable data]
1890 * text_size -----^ ^ ^ ^
1891 * ro_size ------------------------| | |
1892 * ro_after_init_size -----------------------------| |
1893 * size -----------------------------------------------------------|
1895 * These values are always page-aligned (as is base)
1897 static void frob_text(const struct module_layout *layout,
1898 int (*set_memory)(unsigned long start, int num_pages))
1900 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1901 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1902 set_memory((unsigned long)layout->base,
1903 layout->text_size >> PAGE_SHIFT);
1906 static void frob_rodata(const struct module_layout *layout,
1907 int (*set_memory)(unsigned long start, int num_pages))
1909 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1910 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1911 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1912 set_memory((unsigned long)layout->base + layout->text_size,
1913 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1916 static void frob_ro_after_init(const struct module_layout *layout,
1917 int (*set_memory)(unsigned long start, int num_pages))
1919 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1920 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1921 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1922 set_memory((unsigned long)layout->base + layout->ro_size,
1923 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1926 static void frob_writable_data(const struct module_layout *layout,
1927 int (*set_memory)(unsigned long start, int num_pages))
1929 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1930 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1931 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1932 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1933 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1936 /* livepatching wants to disable read-only so it can frob module. */
1937 void module_disable_ro(const struct module *mod)
1939 if (!rodata_enabled)
1940 return;
1942 frob_text(&mod->core_layout, set_memory_rw);
1943 frob_rodata(&mod->core_layout, set_memory_rw);
1944 frob_ro_after_init(&mod->core_layout, set_memory_rw);
1945 frob_text(&mod->init_layout, set_memory_rw);
1946 frob_rodata(&mod->init_layout, set_memory_rw);
1949 void module_enable_ro(const struct module *mod, bool after_init)
1951 if (!rodata_enabled)
1952 return;
1954 frob_text(&mod->core_layout, set_memory_ro);
1955 frob_rodata(&mod->core_layout, set_memory_ro);
1956 frob_text(&mod->init_layout, set_memory_ro);
1957 frob_rodata(&mod->init_layout, set_memory_ro);
1959 if (after_init)
1960 frob_ro_after_init(&mod->core_layout, set_memory_ro);
1963 static void module_enable_nx(const struct module *mod)
1965 frob_rodata(&mod->core_layout, set_memory_nx);
1966 frob_ro_after_init(&mod->core_layout, set_memory_nx);
1967 frob_writable_data(&mod->core_layout, set_memory_nx);
1968 frob_rodata(&mod->init_layout, set_memory_nx);
1969 frob_writable_data(&mod->init_layout, set_memory_nx);
1972 static void module_disable_nx(const struct module *mod)
1974 frob_rodata(&mod->core_layout, set_memory_x);
1975 frob_ro_after_init(&mod->core_layout, set_memory_x);
1976 frob_writable_data(&mod->core_layout, set_memory_x);
1977 frob_rodata(&mod->init_layout, set_memory_x);
1978 frob_writable_data(&mod->init_layout, set_memory_x);
1981 /* Iterate through all modules and set each module's text as RW */
1982 void set_all_modules_text_rw(void)
1984 struct module *mod;
1986 if (!rodata_enabled)
1987 return;
1989 mutex_lock(&module_mutex);
1990 list_for_each_entry_rcu(mod, &modules, list) {
1991 if (mod->state == MODULE_STATE_UNFORMED)
1992 continue;
1994 frob_text(&mod->core_layout, set_memory_rw);
1995 frob_text(&mod->init_layout, set_memory_rw);
1997 mutex_unlock(&module_mutex);
2000 /* Iterate through all modules and set each module's text as RO */
2001 void set_all_modules_text_ro(void)
2003 struct module *mod;
2005 if (!rodata_enabled)
2006 return;
2008 mutex_lock(&module_mutex);
2009 list_for_each_entry_rcu(mod, &modules, list) {
2011 * Ignore going modules since it's possible that ro
2012 * protection has already been disabled, otherwise we'll
2013 * run into protection faults at module deallocation.
2015 if (mod->state == MODULE_STATE_UNFORMED ||
2016 mod->state == MODULE_STATE_GOING)
2017 continue;
2019 frob_text(&mod->core_layout, set_memory_ro);
2020 frob_text(&mod->init_layout, set_memory_ro);
2022 mutex_unlock(&module_mutex);
2025 static void disable_ro_nx(const struct module_layout *layout)
2027 if (rodata_enabled) {
2028 frob_text(layout, set_memory_rw);
2029 frob_rodata(layout, set_memory_rw);
2030 frob_ro_after_init(layout, set_memory_rw);
2032 frob_rodata(layout, set_memory_x);
2033 frob_ro_after_init(layout, set_memory_x);
2034 frob_writable_data(layout, set_memory_x);
2037 #else
2038 static void disable_ro_nx(const struct module_layout *layout) { }
2039 static void module_enable_nx(const struct module *mod) { }
2040 static void module_disable_nx(const struct module *mod) { }
2041 #endif
2043 #ifdef CONFIG_LIVEPATCH
2045 * Persist Elf information about a module. Copy the Elf header,
2046 * section header table, section string table, and symtab section
2047 * index from info to mod->klp_info.
2049 static int copy_module_elf(struct module *mod, struct load_info *info)
2051 unsigned int size, symndx;
2052 int ret;
2054 size = sizeof(*mod->klp_info);
2055 mod->klp_info = kmalloc(size, GFP_KERNEL);
2056 if (mod->klp_info == NULL)
2057 return -ENOMEM;
2059 /* Elf header */
2060 size = sizeof(mod->klp_info->hdr);
2061 memcpy(&mod->klp_info->hdr, info->hdr, size);
2063 /* Elf section header table */
2064 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2065 mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2066 if (mod->klp_info->sechdrs == NULL) {
2067 ret = -ENOMEM;
2068 goto free_info;
2070 memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2072 /* Elf section name string table */
2073 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2074 mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2075 if (mod->klp_info->secstrings == NULL) {
2076 ret = -ENOMEM;
2077 goto free_sechdrs;
2079 memcpy(mod->klp_info->secstrings, info->secstrings, size);
2081 /* Elf symbol section index */
2082 symndx = info->index.sym;
2083 mod->klp_info->symndx = symndx;
2086 * For livepatch modules, core_kallsyms.symtab is a complete
2087 * copy of the original symbol table. Adjust sh_addr to point
2088 * to core_kallsyms.symtab since the copy of the symtab in module
2089 * init memory is freed at the end of do_init_module().
2091 mod->klp_info->sechdrs[symndx].sh_addr = \
2092 (unsigned long) mod->core_kallsyms.symtab;
2094 return 0;
2096 free_sechdrs:
2097 kfree(mod->klp_info->sechdrs);
2098 free_info:
2099 kfree(mod->klp_info);
2100 return ret;
2103 static void free_module_elf(struct module *mod)
2105 kfree(mod->klp_info->sechdrs);
2106 kfree(mod->klp_info->secstrings);
2107 kfree(mod->klp_info);
2109 #else /* !CONFIG_LIVEPATCH */
2110 static int copy_module_elf(struct module *mod, struct load_info *info)
2112 return 0;
2115 static void free_module_elf(struct module *mod)
2118 #endif /* CONFIG_LIVEPATCH */
2120 void __weak module_memfree(void *module_region)
2122 vfree(module_region);
2125 void __weak module_arch_cleanup(struct module *mod)
2129 void __weak module_arch_freeing_init(struct module *mod)
2133 /* Free a module, remove from lists, etc. */
2134 static void free_module(struct module *mod)
2136 trace_module_free(mod);
2138 mod_sysfs_teardown(mod);
2140 /* We leave it in list to prevent duplicate loads, but make sure
2141 * that noone uses it while it's being deconstructed. */
2142 mutex_lock(&module_mutex);
2143 mod->state = MODULE_STATE_UNFORMED;
2144 mutex_unlock(&module_mutex);
2146 /* Remove dynamic debug info */
2147 ddebug_remove_module(mod->name);
2149 /* Arch-specific cleanup. */
2150 module_arch_cleanup(mod);
2152 /* Module unload stuff */
2153 module_unload_free(mod);
2155 /* Free any allocated parameters. */
2156 destroy_params(mod->kp, mod->num_kp);
2158 if (is_livepatch_module(mod))
2159 free_module_elf(mod);
2161 /* Now we can delete it from the lists */
2162 mutex_lock(&module_mutex);
2163 /* Unlink carefully: kallsyms could be walking list. */
2164 list_del_rcu(&mod->list);
2165 mod_tree_remove(mod);
2166 /* Remove this module from bug list, this uses list_del_rcu */
2167 module_bug_cleanup(mod);
2168 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2169 synchronize_sched();
2170 mutex_unlock(&module_mutex);
2172 /* This may be empty, but that's OK */
2173 disable_ro_nx(&mod->init_layout);
2174 module_arch_freeing_init(mod);
2175 module_memfree(mod->init_layout.base);
2176 kfree(mod->args);
2177 percpu_modfree(mod);
2179 /* Free lock-classes; relies on the preceding sync_rcu(). */
2180 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2182 /* Finally, free the core (containing the module structure) */
2183 disable_ro_nx(&mod->core_layout);
2184 module_memfree(mod->core_layout.base);
2187 void *__symbol_get(const char *symbol)
2189 struct module *owner;
2190 const struct kernel_symbol *sym;
2192 preempt_disable();
2193 sym = find_symbol(symbol, &owner, NULL, true, true);
2194 if (sym && strong_try_module_get(owner))
2195 sym = NULL;
2196 preempt_enable();
2198 return sym ? (void *)sym->value : NULL;
2200 EXPORT_SYMBOL_GPL(__symbol_get);
2203 * Ensure that an exported symbol [global namespace] does not already exist
2204 * in the kernel or in some other module's exported symbol table.
2206 * You must hold the module_mutex.
2208 static int verify_export_symbols(struct module *mod)
2210 unsigned int i;
2211 struct module *owner;
2212 const struct kernel_symbol *s;
2213 struct {
2214 const struct kernel_symbol *sym;
2215 unsigned int num;
2216 } arr[] = {
2217 { mod->syms, mod->num_syms },
2218 { mod->gpl_syms, mod->num_gpl_syms },
2219 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2220 #ifdef CONFIG_UNUSED_SYMBOLS
2221 { mod->unused_syms, mod->num_unused_syms },
2222 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2223 #endif
2226 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2227 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2228 if (find_symbol(s->name, &owner, NULL, true, false)) {
2229 pr_err("%s: exports duplicate symbol %s"
2230 " (owned by %s)\n",
2231 mod->name, s->name, module_name(owner));
2232 return -ENOEXEC;
2236 return 0;
2239 /* Change all symbols so that st_value encodes the pointer directly. */
2240 static int simplify_symbols(struct module *mod, const struct load_info *info)
2242 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2243 Elf_Sym *sym = (void *)symsec->sh_addr;
2244 unsigned long secbase;
2245 unsigned int i;
2246 int ret = 0;
2247 const struct kernel_symbol *ksym;
2249 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2250 const char *name = info->strtab + sym[i].st_name;
2252 switch (sym[i].st_shndx) {
2253 case SHN_COMMON:
2254 /* Ignore common symbols */
2255 if (!strncmp(name, "__gnu_lto", 9))
2256 break;
2258 /* We compiled with -fno-common. These are not
2259 supposed to happen. */
2260 pr_debug("Common symbol: %s\n", name);
2261 pr_warn("%s: please compile with -fno-common\n",
2262 mod->name);
2263 ret = -ENOEXEC;
2264 break;
2266 case SHN_ABS:
2267 /* Don't need to do anything */
2268 pr_debug("Absolute symbol: 0x%08lx\n",
2269 (long)sym[i].st_value);
2270 break;
2272 case SHN_LIVEPATCH:
2273 /* Livepatch symbols are resolved by livepatch */
2274 break;
2276 case SHN_UNDEF:
2277 ksym = resolve_symbol_wait(mod, info, name);
2278 /* Ok if resolved. */
2279 if (ksym && !IS_ERR(ksym)) {
2280 sym[i].st_value = ksym->value;
2281 break;
2284 /* Ok if weak. */
2285 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2286 break;
2288 pr_warn("%s: Unknown symbol %s (err %li)\n",
2289 mod->name, name, PTR_ERR(ksym));
2290 ret = PTR_ERR(ksym) ?: -ENOENT;
2291 break;
2293 default:
2294 /* Divert to percpu allocation if a percpu var. */
2295 if (sym[i].st_shndx == info->index.pcpu)
2296 secbase = (unsigned long)mod_percpu(mod);
2297 else
2298 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2299 sym[i].st_value += secbase;
2300 break;
2304 return ret;
2307 static int apply_relocations(struct module *mod, const struct load_info *info)
2309 unsigned int i;
2310 int err = 0;
2312 /* Now do relocations. */
2313 for (i = 1; i < info->hdr->e_shnum; i++) {
2314 unsigned int infosec = info->sechdrs[i].sh_info;
2316 /* Not a valid relocation section? */
2317 if (infosec >= info->hdr->e_shnum)
2318 continue;
2320 /* Don't bother with non-allocated sections */
2321 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2322 continue;
2324 /* Livepatch relocation sections are applied by livepatch */
2325 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2326 continue;
2328 if (info->sechdrs[i].sh_type == SHT_REL)
2329 err = apply_relocate(info->sechdrs, info->strtab,
2330 info->index.sym, i, mod);
2331 else if (info->sechdrs[i].sh_type == SHT_RELA)
2332 err = apply_relocate_add(info->sechdrs, info->strtab,
2333 info->index.sym, i, mod);
2334 if (err < 0)
2335 break;
2337 return err;
2340 /* Additional bytes needed by arch in front of individual sections */
2341 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2342 unsigned int section)
2344 /* default implementation just returns zero */
2345 return 0;
2348 /* Update size with this section: return offset. */
2349 static long get_offset(struct module *mod, unsigned int *size,
2350 Elf_Shdr *sechdr, unsigned int section)
2352 long ret;
2354 *size += arch_mod_section_prepend(mod, section);
2355 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2356 *size = ret + sechdr->sh_size;
2357 return ret;
2360 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2361 might -- code, read-only data, read-write data, small data. Tally
2362 sizes, and place the offsets into sh_entsize fields: high bit means it
2363 belongs in init. */
2364 static void layout_sections(struct module *mod, struct load_info *info)
2366 static unsigned long const masks[][2] = {
2367 /* NOTE: all executable code must be the first section
2368 * in this array; otherwise modify the text_size
2369 * finder in the two loops below */
2370 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2371 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2372 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2373 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2374 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2376 unsigned int m, i;
2378 for (i = 0; i < info->hdr->e_shnum; i++)
2379 info->sechdrs[i].sh_entsize = ~0UL;
2381 pr_debug("Core section allocation order:\n");
2382 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2383 for (i = 0; i < info->hdr->e_shnum; ++i) {
2384 Elf_Shdr *s = &info->sechdrs[i];
2385 const char *sname = info->secstrings + s->sh_name;
2387 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2388 || (s->sh_flags & masks[m][1])
2389 || s->sh_entsize != ~0UL
2390 || strstarts(sname, ".init"))
2391 continue;
2392 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2393 pr_debug("\t%s\n", sname);
2395 switch (m) {
2396 case 0: /* executable */
2397 mod->core_layout.size = debug_align(mod->core_layout.size);
2398 mod->core_layout.text_size = mod->core_layout.size;
2399 break;
2400 case 1: /* RO: text and ro-data */
2401 mod->core_layout.size = debug_align(mod->core_layout.size);
2402 mod->core_layout.ro_size = mod->core_layout.size;
2403 break;
2404 case 2: /* RO after init */
2405 mod->core_layout.size = debug_align(mod->core_layout.size);
2406 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2407 break;
2408 case 4: /* whole core */
2409 mod->core_layout.size = debug_align(mod->core_layout.size);
2410 break;
2414 pr_debug("Init section allocation order:\n");
2415 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2416 for (i = 0; i < info->hdr->e_shnum; ++i) {
2417 Elf_Shdr *s = &info->sechdrs[i];
2418 const char *sname = info->secstrings + s->sh_name;
2420 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2421 || (s->sh_flags & masks[m][1])
2422 || s->sh_entsize != ~0UL
2423 || !strstarts(sname, ".init"))
2424 continue;
2425 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2426 | INIT_OFFSET_MASK);
2427 pr_debug("\t%s\n", sname);
2429 switch (m) {
2430 case 0: /* executable */
2431 mod->init_layout.size = debug_align(mod->init_layout.size);
2432 mod->init_layout.text_size = mod->init_layout.size;
2433 break;
2434 case 1: /* RO: text and ro-data */
2435 mod->init_layout.size = debug_align(mod->init_layout.size);
2436 mod->init_layout.ro_size = mod->init_layout.size;
2437 break;
2438 case 2:
2440 * RO after init doesn't apply to init_layout (only
2441 * core_layout), so it just takes the value of ro_size.
2443 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2444 break;
2445 case 4: /* whole init */
2446 mod->init_layout.size = debug_align(mod->init_layout.size);
2447 break;
2452 static void set_license(struct module *mod, const char *license)
2454 if (!license)
2455 license = "unspecified";
2457 if (!license_is_gpl_compatible(license)) {
2458 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2459 pr_warn("%s: module license '%s' taints kernel.\n",
2460 mod->name, license);
2461 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2462 LOCKDEP_NOW_UNRELIABLE);
2466 /* Parse tag=value strings from .modinfo section */
2467 static char *next_string(char *string, unsigned long *secsize)
2469 /* Skip non-zero chars */
2470 while (string[0]) {
2471 string++;
2472 if ((*secsize)-- <= 1)
2473 return NULL;
2476 /* Skip any zero padding. */
2477 while (!string[0]) {
2478 string++;
2479 if ((*secsize)-- <= 1)
2480 return NULL;
2482 return string;
2485 static char *get_modinfo(struct load_info *info, const char *tag)
2487 char *p;
2488 unsigned int taglen = strlen(tag);
2489 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2490 unsigned long size = infosec->sh_size;
2492 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2493 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2494 return p + taglen + 1;
2496 return NULL;
2499 static void setup_modinfo(struct module *mod, struct load_info *info)
2501 struct module_attribute *attr;
2502 int i;
2504 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2505 if (attr->setup)
2506 attr->setup(mod, get_modinfo(info, attr->attr.name));
2510 static void free_modinfo(struct module *mod)
2512 struct module_attribute *attr;
2513 int i;
2515 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2516 if (attr->free)
2517 attr->free(mod);
2521 #ifdef CONFIG_KALLSYMS
2523 /* lookup symbol in given range of kernel_symbols */
2524 static const struct kernel_symbol *lookup_symbol(const char *name,
2525 const struct kernel_symbol *start,
2526 const struct kernel_symbol *stop)
2528 return bsearch(name, start, stop - start,
2529 sizeof(struct kernel_symbol), cmp_name);
2532 static int is_exported(const char *name, unsigned long value,
2533 const struct module *mod)
2535 const struct kernel_symbol *ks;
2536 if (!mod)
2537 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2538 else
2539 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2540 return ks != NULL && ks->value == value;
2543 /* As per nm */
2544 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2546 const Elf_Shdr *sechdrs = info->sechdrs;
2548 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2549 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2550 return 'v';
2551 else
2552 return 'w';
2554 if (sym->st_shndx == SHN_UNDEF)
2555 return 'U';
2556 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2557 return 'a';
2558 if (sym->st_shndx >= SHN_LORESERVE)
2559 return '?';
2560 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2561 return 't';
2562 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2563 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2564 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2565 return 'r';
2566 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2567 return 'g';
2568 else
2569 return 'd';
2571 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2572 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2573 return 's';
2574 else
2575 return 'b';
2577 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2578 ".debug")) {
2579 return 'n';
2581 return '?';
2584 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2585 unsigned int shnum, unsigned int pcpundx)
2587 const Elf_Shdr *sec;
2589 if (src->st_shndx == SHN_UNDEF
2590 || src->st_shndx >= shnum
2591 || !src->st_name)
2592 return false;
2594 #ifdef CONFIG_KALLSYMS_ALL
2595 if (src->st_shndx == pcpundx)
2596 return true;
2597 #endif
2599 sec = sechdrs + src->st_shndx;
2600 if (!(sec->sh_flags & SHF_ALLOC)
2601 #ifndef CONFIG_KALLSYMS_ALL
2602 || !(sec->sh_flags & SHF_EXECINSTR)
2603 #endif
2604 || (sec->sh_entsize & INIT_OFFSET_MASK))
2605 return false;
2607 return true;
2611 * We only allocate and copy the strings needed by the parts of symtab
2612 * we keep. This is simple, but has the effect of making multiple
2613 * copies of duplicates. We could be more sophisticated, see
2614 * linux-kernel thread starting with
2615 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2617 static void layout_symtab(struct module *mod, struct load_info *info)
2619 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2620 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2621 const Elf_Sym *src;
2622 unsigned int i, nsrc, ndst, strtab_size = 0;
2624 /* Put symbol section at end of init part of module. */
2625 symsect->sh_flags |= SHF_ALLOC;
2626 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2627 info->index.sym) | INIT_OFFSET_MASK;
2628 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2630 src = (void *)info->hdr + symsect->sh_offset;
2631 nsrc = symsect->sh_size / sizeof(*src);
2633 /* Compute total space required for the core symbols' strtab. */
2634 for (ndst = i = 0; i < nsrc; i++) {
2635 if (i == 0 || is_livepatch_module(mod) ||
2636 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2637 info->index.pcpu)) {
2638 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2639 ndst++;
2643 /* Append room for core symbols at end of core part. */
2644 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2645 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2646 mod->core_layout.size += strtab_size;
2647 mod->core_layout.size = debug_align(mod->core_layout.size);
2649 /* Put string table section at end of init part of module. */
2650 strsect->sh_flags |= SHF_ALLOC;
2651 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2652 info->index.str) | INIT_OFFSET_MASK;
2653 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2655 /* We'll tack temporary mod_kallsyms on the end. */
2656 mod->init_layout.size = ALIGN(mod->init_layout.size,
2657 __alignof__(struct mod_kallsyms));
2658 info->mod_kallsyms_init_off = mod->init_layout.size;
2659 mod->init_layout.size += sizeof(struct mod_kallsyms);
2660 mod->init_layout.size = debug_align(mod->init_layout.size);
2664 * We use the full symtab and strtab which layout_symtab arranged to
2665 * be appended to the init section. Later we switch to the cut-down
2666 * core-only ones.
2668 static void add_kallsyms(struct module *mod, const struct load_info *info)
2670 unsigned int i, ndst;
2671 const Elf_Sym *src;
2672 Elf_Sym *dst;
2673 char *s;
2674 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2676 /* Set up to point into init section. */
2677 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2679 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2680 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2681 /* Make sure we get permanent strtab: don't use info->strtab. */
2682 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2684 /* Set types up while we still have access to sections. */
2685 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2686 mod->kallsyms->symtab[i].st_info
2687 = elf_type(&mod->kallsyms->symtab[i], info);
2689 /* Now populate the cut down core kallsyms for after init. */
2690 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2691 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2692 src = mod->kallsyms->symtab;
2693 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2694 if (i == 0 || is_livepatch_module(mod) ||
2695 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2696 info->index.pcpu)) {
2697 dst[ndst] = src[i];
2698 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2699 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2700 KSYM_NAME_LEN) + 1;
2703 mod->core_kallsyms.num_symtab = ndst;
2705 #else
2706 static inline void layout_symtab(struct module *mod, struct load_info *info)
2710 static void add_kallsyms(struct module *mod, const struct load_info *info)
2713 #endif /* CONFIG_KALLSYMS */
2715 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2717 if (!debug)
2718 return;
2719 #ifdef CONFIG_DYNAMIC_DEBUG
2720 if (ddebug_add_module(debug, num, mod->name))
2721 pr_err("dynamic debug error adding module: %s\n",
2722 debug->modname);
2723 #endif
2726 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2728 if (debug)
2729 ddebug_remove_module(mod->name);
2732 void * __weak module_alloc(unsigned long size)
2734 return vmalloc_exec(size);
2737 #ifdef CONFIG_DEBUG_KMEMLEAK
2738 static void kmemleak_load_module(const struct module *mod,
2739 const struct load_info *info)
2741 unsigned int i;
2743 /* only scan the sections containing data */
2744 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2746 for (i = 1; i < info->hdr->e_shnum; i++) {
2747 /* Scan all writable sections that's not executable */
2748 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2749 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2750 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2751 continue;
2753 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2754 info->sechdrs[i].sh_size, GFP_KERNEL);
2757 #else
2758 static inline void kmemleak_load_module(const struct module *mod,
2759 const struct load_info *info)
2762 #endif
2764 #ifdef CONFIG_MODULE_SIG
2765 static int module_sig_check(struct load_info *info, int flags)
2767 int err = -ENOKEY;
2768 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2769 const void *mod = info->hdr;
2772 * Require flags == 0, as a module with version information
2773 * removed is no longer the module that was signed
2775 if (flags == 0 &&
2776 info->len > markerlen &&
2777 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2778 /* We truncate the module to discard the signature */
2779 info->len -= markerlen;
2780 err = mod_verify_sig(mod, &info->len);
2783 if (!err) {
2784 info->sig_ok = true;
2785 return 0;
2788 /* Not having a signature is only an error if we're strict. */
2789 if (err == -ENOKEY && !sig_enforce)
2790 err = 0;
2792 return err;
2794 #else /* !CONFIG_MODULE_SIG */
2795 static int module_sig_check(struct load_info *info, int flags)
2797 return 0;
2799 #endif /* !CONFIG_MODULE_SIG */
2801 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2802 static int elf_header_check(struct load_info *info)
2804 if (info->len < sizeof(*(info->hdr)))
2805 return -ENOEXEC;
2807 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2808 || info->hdr->e_type != ET_REL
2809 || !elf_check_arch(info->hdr)
2810 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2811 return -ENOEXEC;
2813 if (info->hdr->e_shoff >= info->len
2814 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2815 info->len - info->hdr->e_shoff))
2816 return -ENOEXEC;
2818 return 0;
2821 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2823 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2825 do {
2826 unsigned long n = min(len, COPY_CHUNK_SIZE);
2828 if (copy_from_user(dst, usrc, n) != 0)
2829 return -EFAULT;
2830 cond_resched();
2831 dst += n;
2832 usrc += n;
2833 len -= n;
2834 } while (len);
2835 return 0;
2838 #ifdef CONFIG_LIVEPATCH
2839 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2841 if (get_modinfo(info, "livepatch")) {
2842 mod->klp = true;
2843 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2844 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2845 mod->name);
2848 return 0;
2850 #else /* !CONFIG_LIVEPATCH */
2851 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2853 if (get_modinfo(info, "livepatch")) {
2854 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2855 mod->name);
2856 return -ENOEXEC;
2859 return 0;
2861 #endif /* CONFIG_LIVEPATCH */
2863 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2865 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2866 return;
2868 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2869 mod->name);
2872 /* Sets info->hdr and info->len. */
2873 static int copy_module_from_user(const void __user *umod, unsigned long len,
2874 struct load_info *info)
2876 int err;
2878 info->len = len;
2879 if (info->len < sizeof(*(info->hdr)))
2880 return -ENOEXEC;
2882 err = security_kernel_read_file(NULL, READING_MODULE);
2883 if (err)
2884 return err;
2886 /* Suck in entire file: we'll want most of it. */
2887 info->hdr = __vmalloc(info->len,
2888 GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2889 if (!info->hdr)
2890 return -ENOMEM;
2892 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2893 vfree(info->hdr);
2894 return -EFAULT;
2897 return 0;
2900 static void free_copy(struct load_info *info)
2902 vfree(info->hdr);
2905 static int rewrite_section_headers(struct load_info *info, int flags)
2907 unsigned int i;
2909 /* This should always be true, but let's be sure. */
2910 info->sechdrs[0].sh_addr = 0;
2912 for (i = 1; i < info->hdr->e_shnum; i++) {
2913 Elf_Shdr *shdr = &info->sechdrs[i];
2914 if (shdr->sh_type != SHT_NOBITS
2915 && info->len < shdr->sh_offset + shdr->sh_size) {
2916 pr_err("Module len %lu truncated\n", info->len);
2917 return -ENOEXEC;
2920 /* Mark all sections sh_addr with their address in the
2921 temporary image. */
2922 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2924 #ifndef CONFIG_MODULE_UNLOAD
2925 /* Don't load .exit sections */
2926 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2927 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2928 #endif
2931 /* Track but don't keep modinfo and version sections. */
2932 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2933 info->index.vers = 0; /* Pretend no __versions section! */
2934 else
2935 info->index.vers = find_sec(info, "__versions");
2936 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2938 info->index.info = find_sec(info, ".modinfo");
2939 if (!info->index.info)
2940 info->name = "(missing .modinfo section)";
2941 else
2942 info->name = get_modinfo(info, "name");
2943 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2945 return 0;
2949 * Set up our basic convenience variables (pointers to section headers,
2950 * search for module section index etc), and do some basic section
2951 * verification.
2953 * Return the temporary module pointer (we'll replace it with the final
2954 * one when we move the module sections around).
2956 static struct module *setup_load_info(struct load_info *info, int flags)
2958 unsigned int i;
2959 int err;
2960 struct module *mod;
2962 /* Set up the convenience variables */
2963 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2964 info->secstrings = (void *)info->hdr
2965 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2967 err = rewrite_section_headers(info, flags);
2968 if (err)
2969 return ERR_PTR(err);
2971 /* Find internal symbols and strings. */
2972 for (i = 1; i < info->hdr->e_shnum; i++) {
2973 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2974 info->index.sym = i;
2975 info->index.str = info->sechdrs[i].sh_link;
2976 info->strtab = (char *)info->hdr
2977 + info->sechdrs[info->index.str].sh_offset;
2978 break;
2982 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2983 if (!info->index.mod) {
2984 pr_warn("%s: No module found in object\n",
2985 info->name ?: "(missing .modinfo name field)");
2986 return ERR_PTR(-ENOEXEC);
2988 /* This is temporary: point mod into copy of data. */
2989 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2992 * If we didn't load the .modinfo 'name' field, fall back to
2993 * on-disk struct mod 'name' field.
2995 if (!info->name)
2996 info->name = mod->name;
2998 if (info->index.sym == 0) {
2999 pr_warn("%s: module has no symbols (stripped?)\n", info->name);
3000 return ERR_PTR(-ENOEXEC);
3003 info->index.pcpu = find_pcpusec(info);
3005 /* Check module struct version now, before we try to use module. */
3006 if (!check_modstruct_version(info, mod))
3007 return ERR_PTR(-ENOEXEC);
3009 return mod;
3012 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3014 const char *modmagic = get_modinfo(info, "vermagic");
3015 int err;
3017 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3018 modmagic = NULL;
3020 /* This is allowed: modprobe --force will invalidate it. */
3021 if (!modmagic) {
3022 err = try_to_force_load(mod, "bad vermagic");
3023 if (err)
3024 return err;
3025 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3026 pr_err("%s: version magic '%s' should be '%s'\n",
3027 info->name, modmagic, vermagic);
3028 return -ENOEXEC;
3031 if (!get_modinfo(info, "intree")) {
3032 if (!test_taint(TAINT_OOT_MODULE))
3033 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3034 mod->name);
3035 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3038 check_modinfo_retpoline(mod, info);
3040 if (get_modinfo(info, "staging")) {
3041 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3042 pr_warn("%s: module is from the staging directory, the quality "
3043 "is unknown, you have been warned.\n", mod->name);
3046 err = check_modinfo_livepatch(mod, info);
3047 if (err)
3048 return err;
3050 /* Set up license info based on the info section */
3051 set_license(mod, get_modinfo(info, "license"));
3053 return 0;
3056 static int find_module_sections(struct module *mod, struct load_info *info)
3058 mod->kp = section_objs(info, "__param",
3059 sizeof(*mod->kp), &mod->num_kp);
3060 mod->syms = section_objs(info, "__ksymtab",
3061 sizeof(*mod->syms), &mod->num_syms);
3062 mod->crcs = section_addr(info, "__kcrctab");
3063 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3064 sizeof(*mod->gpl_syms),
3065 &mod->num_gpl_syms);
3066 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3067 mod->gpl_future_syms = section_objs(info,
3068 "__ksymtab_gpl_future",
3069 sizeof(*mod->gpl_future_syms),
3070 &mod->num_gpl_future_syms);
3071 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3073 #ifdef CONFIG_UNUSED_SYMBOLS
3074 mod->unused_syms = section_objs(info, "__ksymtab_unused",
3075 sizeof(*mod->unused_syms),
3076 &mod->num_unused_syms);
3077 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3078 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3079 sizeof(*mod->unused_gpl_syms),
3080 &mod->num_unused_gpl_syms);
3081 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3082 #endif
3083 #ifdef CONFIG_CONSTRUCTORS
3084 mod->ctors = section_objs(info, ".ctors",
3085 sizeof(*mod->ctors), &mod->num_ctors);
3086 if (!mod->ctors)
3087 mod->ctors = section_objs(info, ".init_array",
3088 sizeof(*mod->ctors), &mod->num_ctors);
3089 else if (find_sec(info, ".init_array")) {
3091 * This shouldn't happen with same compiler and binutils
3092 * building all parts of the module.
3094 pr_warn("%s: has both .ctors and .init_array.\n",
3095 mod->name);
3096 return -EINVAL;
3098 #endif
3100 #ifdef CONFIG_TRACEPOINTS
3101 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3102 sizeof(*mod->tracepoints_ptrs),
3103 &mod->num_tracepoints);
3104 #endif
3105 #ifdef HAVE_JUMP_LABEL
3106 mod->jump_entries = section_objs(info, "__jump_table",
3107 sizeof(*mod->jump_entries),
3108 &mod->num_jump_entries);
3109 #endif
3110 #ifdef CONFIG_EVENT_TRACING
3111 mod->trace_events = section_objs(info, "_ftrace_events",
3112 sizeof(*mod->trace_events),
3113 &mod->num_trace_events);
3114 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3115 sizeof(*mod->trace_evals),
3116 &mod->num_trace_evals);
3117 #endif
3118 #ifdef CONFIG_TRACING
3119 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3120 sizeof(*mod->trace_bprintk_fmt_start),
3121 &mod->num_trace_bprintk_fmt);
3122 #endif
3123 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3124 /* sechdrs[0].sh_size is always zero */
3125 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3126 sizeof(*mod->ftrace_callsites),
3127 &mod->num_ftrace_callsites);
3128 #endif
3129 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3130 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3131 sizeof(*mod->ei_funcs),
3132 &mod->num_ei_funcs);
3133 #endif
3134 mod->extable = section_objs(info, "__ex_table",
3135 sizeof(*mod->extable), &mod->num_exentries);
3137 if (section_addr(info, "__obsparm"))
3138 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3140 info->debug = section_objs(info, "__verbose",
3141 sizeof(*info->debug), &info->num_debug);
3143 return 0;
3146 static int move_module(struct module *mod, struct load_info *info)
3148 int i;
3149 void *ptr;
3151 /* Do the allocs. */
3152 ptr = module_alloc(mod->core_layout.size);
3154 * The pointer to this block is stored in the module structure
3155 * which is inside the block. Just mark it as not being a
3156 * leak.
3158 kmemleak_not_leak(ptr);
3159 if (!ptr)
3160 return -ENOMEM;
3162 memset(ptr, 0, mod->core_layout.size);
3163 mod->core_layout.base = ptr;
3165 if (mod->init_layout.size) {
3166 ptr = module_alloc(mod->init_layout.size);
3168 * The pointer to this block is stored in the module structure
3169 * which is inside the block. This block doesn't need to be
3170 * scanned as it contains data and code that will be freed
3171 * after the module is initialized.
3173 kmemleak_ignore(ptr);
3174 if (!ptr) {
3175 module_memfree(mod->core_layout.base);
3176 return -ENOMEM;
3178 memset(ptr, 0, mod->init_layout.size);
3179 mod->init_layout.base = ptr;
3180 } else
3181 mod->init_layout.base = NULL;
3183 /* Transfer each section which specifies SHF_ALLOC */
3184 pr_debug("final section addresses:\n");
3185 for (i = 0; i < info->hdr->e_shnum; i++) {
3186 void *dest;
3187 Elf_Shdr *shdr = &info->sechdrs[i];
3189 if (!(shdr->sh_flags & SHF_ALLOC))
3190 continue;
3192 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3193 dest = mod->init_layout.base
3194 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3195 else
3196 dest = mod->core_layout.base + shdr->sh_entsize;
3198 if (shdr->sh_type != SHT_NOBITS)
3199 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3200 /* Update sh_addr to point to copy in image. */
3201 shdr->sh_addr = (unsigned long)dest;
3202 pr_debug("\t0x%lx %s\n",
3203 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3206 return 0;
3209 static int check_module_license_and_versions(struct module *mod)
3211 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3214 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3215 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3216 * using GPL-only symbols it needs.
3218 if (strcmp(mod->name, "ndiswrapper") == 0)
3219 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3221 /* driverloader was caught wrongly pretending to be under GPL */
3222 if (strcmp(mod->name, "driverloader") == 0)
3223 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3224 LOCKDEP_NOW_UNRELIABLE);
3226 /* lve claims to be GPL but upstream won't provide source */
3227 if (strcmp(mod->name, "lve") == 0)
3228 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3229 LOCKDEP_NOW_UNRELIABLE);
3231 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3232 pr_warn("%s: module license taints kernel.\n", mod->name);
3234 #ifdef CONFIG_MODVERSIONS
3235 if ((mod->num_syms && !mod->crcs)
3236 || (mod->num_gpl_syms && !mod->gpl_crcs)
3237 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3238 #ifdef CONFIG_UNUSED_SYMBOLS
3239 || (mod->num_unused_syms && !mod->unused_crcs)
3240 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3241 #endif
3243 return try_to_force_load(mod,
3244 "no versions for exported symbols");
3246 #endif
3247 return 0;
3250 static void flush_module_icache(const struct module *mod)
3252 mm_segment_t old_fs;
3254 /* flush the icache in correct context */
3255 old_fs = get_fs();
3256 set_fs(KERNEL_DS);
3259 * Flush the instruction cache, since we've played with text.
3260 * Do it before processing of module parameters, so the module
3261 * can provide parameter accessor functions of its own.
3263 if (mod->init_layout.base)
3264 flush_icache_range((unsigned long)mod->init_layout.base,
3265 (unsigned long)mod->init_layout.base
3266 + mod->init_layout.size);
3267 flush_icache_range((unsigned long)mod->core_layout.base,
3268 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3270 set_fs(old_fs);
3273 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3274 Elf_Shdr *sechdrs,
3275 char *secstrings,
3276 struct module *mod)
3278 return 0;
3281 /* module_blacklist is a comma-separated list of module names */
3282 static char *module_blacklist;
3283 static bool blacklisted(const char *module_name)
3285 const char *p;
3286 size_t len;
3288 if (!module_blacklist)
3289 return false;
3291 for (p = module_blacklist; *p; p += len) {
3292 len = strcspn(p, ",");
3293 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3294 return true;
3295 if (p[len] == ',')
3296 len++;
3298 return false;
3300 core_param(module_blacklist, module_blacklist, charp, 0400);
3302 static struct module *layout_and_allocate(struct load_info *info, int flags)
3304 /* Module within temporary copy. */
3305 struct module *mod;
3306 unsigned int ndx;
3307 int err;
3309 mod = setup_load_info(info, flags);
3310 if (IS_ERR(mod))
3311 return mod;
3313 if (blacklisted(info->name))
3314 return ERR_PTR(-EPERM);
3316 err = check_modinfo(mod, info, flags);
3317 if (err)
3318 return ERR_PTR(err);
3320 /* Allow arches to frob section contents and sizes. */
3321 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3322 info->secstrings, mod);
3323 if (err < 0)
3324 return ERR_PTR(err);
3326 /* We will do a special allocation for per-cpu sections later. */
3327 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3330 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3331 * layout_sections() can put it in the right place.
3332 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3334 ndx = find_sec(info, ".data..ro_after_init");
3335 if (ndx)
3336 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3338 /* Determine total sizes, and put offsets in sh_entsize. For now
3339 this is done generically; there doesn't appear to be any
3340 special cases for the architectures. */
3341 layout_sections(mod, info);
3342 layout_symtab(mod, info);
3344 /* Allocate and move to the final place */
3345 err = move_module(mod, info);
3346 if (err)
3347 return ERR_PTR(err);
3349 /* Module has been copied to its final place now: return it. */
3350 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3351 kmemleak_load_module(mod, info);
3352 return mod;
3355 /* mod is no longer valid after this! */
3356 static void module_deallocate(struct module *mod, struct load_info *info)
3358 percpu_modfree(mod);
3359 module_arch_freeing_init(mod);
3360 module_memfree(mod->init_layout.base);
3361 module_memfree(mod->core_layout.base);
3364 int __weak module_finalize(const Elf_Ehdr *hdr,
3365 const Elf_Shdr *sechdrs,
3366 struct module *me)
3368 return 0;
3371 static int post_relocation(struct module *mod, const struct load_info *info)
3373 /* Sort exception table now relocations are done. */
3374 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3376 /* Copy relocated percpu area over. */
3377 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3378 info->sechdrs[info->index.pcpu].sh_size);
3380 /* Setup kallsyms-specific fields. */
3381 add_kallsyms(mod, info);
3383 /* Arch-specific module finalizing. */
3384 return module_finalize(info->hdr, info->sechdrs, mod);
3387 /* Is this module of this name done loading? No locks held. */
3388 static bool finished_loading(const char *name)
3390 struct module *mod;
3391 bool ret;
3394 * The module_mutex should not be a heavily contended lock;
3395 * if we get the occasional sleep here, we'll go an extra iteration
3396 * in the wait_event_interruptible(), which is harmless.
3398 sched_annotate_sleep();
3399 mutex_lock(&module_mutex);
3400 mod = find_module_all(name, strlen(name), true);
3401 ret = !mod || mod->state == MODULE_STATE_LIVE
3402 || mod->state == MODULE_STATE_GOING;
3403 mutex_unlock(&module_mutex);
3405 return ret;
3408 /* Call module constructors. */
3409 static void do_mod_ctors(struct module *mod)
3411 #ifdef CONFIG_CONSTRUCTORS
3412 unsigned long i;
3414 for (i = 0; i < mod->num_ctors; i++)
3415 mod->ctors[i]();
3416 #endif
3419 /* For freeing module_init on success, in case kallsyms traversing */
3420 struct mod_initfree {
3421 struct rcu_head rcu;
3422 void *module_init;
3425 static void do_free_init(struct rcu_head *head)
3427 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3428 module_memfree(m->module_init);
3429 kfree(m);
3433 * This is where the real work happens.
3435 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3436 * helper command 'lx-symbols'.
3438 static noinline int do_init_module(struct module *mod)
3440 int ret = 0;
3441 struct mod_initfree *freeinit;
3443 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3444 if (!freeinit) {
3445 ret = -ENOMEM;
3446 goto fail;
3448 freeinit->module_init = mod->init_layout.base;
3451 * We want to find out whether @mod uses async during init. Clear
3452 * PF_USED_ASYNC. async_schedule*() will set it.
3454 current->flags &= ~PF_USED_ASYNC;
3456 do_mod_ctors(mod);
3457 /* Start the module */
3458 if (mod->init != NULL)
3459 ret = do_one_initcall(mod->init);
3460 if (ret < 0) {
3461 goto fail_free_freeinit;
3463 if (ret > 0) {
3464 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3465 "follow 0/-E convention\n"
3466 "%s: loading module anyway...\n",
3467 __func__, mod->name, ret, __func__);
3468 dump_stack();
3471 /* Now it's a first class citizen! */
3472 mod->state = MODULE_STATE_LIVE;
3473 blocking_notifier_call_chain(&module_notify_list,
3474 MODULE_STATE_LIVE, mod);
3477 * We need to finish all async code before the module init sequence
3478 * is done. This has potential to deadlock. For example, a newly
3479 * detected block device can trigger request_module() of the
3480 * default iosched from async probing task. Once userland helper
3481 * reaches here, async_synchronize_full() will wait on the async
3482 * task waiting on request_module() and deadlock.
3484 * This deadlock is avoided by perfomring async_synchronize_full()
3485 * iff module init queued any async jobs. This isn't a full
3486 * solution as it will deadlock the same if module loading from
3487 * async jobs nests more than once; however, due to the various
3488 * constraints, this hack seems to be the best option for now.
3489 * Please refer to the following thread for details.
3491 * http://thread.gmane.org/gmane.linux.kernel/1420814
3493 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3494 async_synchronize_full();
3496 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3497 mod->init_layout.size);
3498 mutex_lock(&module_mutex);
3499 /* Drop initial reference. */
3500 module_put(mod);
3501 trim_init_extable(mod);
3502 #ifdef CONFIG_KALLSYMS
3503 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3504 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3505 #endif
3506 module_enable_ro(mod, true);
3507 mod_tree_remove_init(mod);
3508 disable_ro_nx(&mod->init_layout);
3509 module_arch_freeing_init(mod);
3510 mod->init_layout.base = NULL;
3511 mod->init_layout.size = 0;
3512 mod->init_layout.ro_size = 0;
3513 mod->init_layout.ro_after_init_size = 0;
3514 mod->init_layout.text_size = 0;
3516 * We want to free module_init, but be aware that kallsyms may be
3517 * walking this with preempt disabled. In all the failure paths, we
3518 * call synchronize_sched(), but we don't want to slow down the success
3519 * path, so use actual RCU here.
3520 * Note that module_alloc() on most architectures creates W+X page
3521 * mappings which won't be cleaned up until do_free_init() runs. Any
3522 * code such as mark_rodata_ro() which depends on those mappings to
3523 * be cleaned up needs to sync with the queued work - ie
3524 * rcu_barrier_sched()
3526 call_rcu_sched(&freeinit->rcu, do_free_init);
3527 mutex_unlock(&module_mutex);
3528 wake_up_all(&module_wq);
3530 return 0;
3532 fail_free_freeinit:
3533 kfree(freeinit);
3534 fail:
3535 /* Try to protect us from buggy refcounters. */
3536 mod->state = MODULE_STATE_GOING;
3537 synchronize_sched();
3538 module_put(mod);
3539 blocking_notifier_call_chain(&module_notify_list,
3540 MODULE_STATE_GOING, mod);
3541 klp_module_going(mod);
3542 ftrace_release_mod(mod);
3543 free_module(mod);
3544 wake_up_all(&module_wq);
3545 return ret;
3548 static int may_init_module(void)
3550 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3551 return -EPERM;
3553 return 0;
3557 * We try to place it in the list now to make sure it's unique before
3558 * we dedicate too many resources. In particular, temporary percpu
3559 * memory exhaustion.
3561 static int add_unformed_module(struct module *mod)
3563 int err;
3564 struct module *old;
3566 mod->state = MODULE_STATE_UNFORMED;
3568 again:
3569 mutex_lock(&module_mutex);
3570 old = find_module_all(mod->name, strlen(mod->name), true);
3571 if (old != NULL) {
3572 if (old->state == MODULE_STATE_COMING
3573 || old->state == MODULE_STATE_UNFORMED) {
3574 /* Wait in case it fails to load. */
3575 mutex_unlock(&module_mutex);
3576 err = wait_event_interruptible(module_wq,
3577 finished_loading(mod->name));
3578 if (err)
3579 goto out_unlocked;
3580 goto again;
3582 err = -EEXIST;
3583 goto out;
3585 mod_update_bounds(mod);
3586 list_add_rcu(&mod->list, &modules);
3587 mod_tree_insert(mod);
3588 err = 0;
3590 out:
3591 mutex_unlock(&module_mutex);
3592 out_unlocked:
3593 return err;
3596 static int complete_formation(struct module *mod, struct load_info *info)
3598 int err;
3600 mutex_lock(&module_mutex);
3602 /* Find duplicate symbols (must be called under lock). */
3603 err = verify_export_symbols(mod);
3604 if (err < 0)
3605 goto out;
3607 /* This relies on module_mutex for list integrity. */
3608 module_bug_finalize(info->hdr, info->sechdrs, mod);
3610 module_enable_ro(mod, false);
3611 module_enable_nx(mod);
3613 /* Mark state as coming so strong_try_module_get() ignores us,
3614 * but kallsyms etc. can see us. */
3615 mod->state = MODULE_STATE_COMING;
3616 mutex_unlock(&module_mutex);
3618 return 0;
3620 out:
3621 mutex_unlock(&module_mutex);
3622 return err;
3625 static int prepare_coming_module(struct module *mod)
3627 int err;
3629 ftrace_module_enable(mod);
3630 err = klp_module_coming(mod);
3631 if (err)
3632 return err;
3634 blocking_notifier_call_chain(&module_notify_list,
3635 MODULE_STATE_COMING, mod);
3636 return 0;
3639 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3640 void *arg)
3642 struct module *mod = arg;
3643 int ret;
3645 if (strcmp(param, "async_probe") == 0) {
3646 mod->async_probe_requested = true;
3647 return 0;
3650 /* Check for magic 'dyndbg' arg */
3651 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3652 if (ret != 0)
3653 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3654 return 0;
3657 /* Allocate and load the module: note that size of section 0 is always
3658 zero, and we rely on this for optional sections. */
3659 static int load_module(struct load_info *info, const char __user *uargs,
3660 int flags)
3662 struct module *mod;
3663 long err;
3664 char *after_dashes;
3666 err = module_sig_check(info, flags);
3667 if (err)
3668 goto free_copy;
3670 err = elf_header_check(info);
3671 if (err)
3672 goto free_copy;
3674 /* Figure out module layout, and allocate all the memory. */
3675 mod = layout_and_allocate(info, flags);
3676 if (IS_ERR(mod)) {
3677 err = PTR_ERR(mod);
3678 goto free_copy;
3681 audit_log_kern_module(mod->name);
3683 /* Reserve our place in the list. */
3684 err = add_unformed_module(mod);
3685 if (err)
3686 goto free_module;
3688 #ifdef CONFIG_MODULE_SIG
3689 mod->sig_ok = info->sig_ok;
3690 if (!mod->sig_ok) {
3691 pr_notice_once("%s: module verification failed: signature "
3692 "and/or required key missing - tainting "
3693 "kernel\n", mod->name);
3694 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3696 #endif
3698 /* To avoid stressing percpu allocator, do this once we're unique. */
3699 err = percpu_modalloc(mod, info);
3700 if (err)
3701 goto unlink_mod;
3703 /* Now module is in final location, initialize linked lists, etc. */
3704 err = module_unload_init(mod);
3705 if (err)
3706 goto unlink_mod;
3708 init_param_lock(mod);
3710 /* Now we've got everything in the final locations, we can
3711 * find optional sections. */
3712 err = find_module_sections(mod, info);
3713 if (err)
3714 goto free_unload;
3716 err = check_module_license_and_versions(mod);
3717 if (err)
3718 goto free_unload;
3720 /* Set up MODINFO_ATTR fields */
3721 setup_modinfo(mod, info);
3723 /* Fix up syms, so that st_value is a pointer to location. */
3724 err = simplify_symbols(mod, info);
3725 if (err < 0)
3726 goto free_modinfo;
3728 err = apply_relocations(mod, info);
3729 if (err < 0)
3730 goto free_modinfo;
3732 err = post_relocation(mod, info);
3733 if (err < 0)
3734 goto free_modinfo;
3736 flush_module_icache(mod);
3738 /* Now copy in args */
3739 mod->args = strndup_user(uargs, ~0UL >> 1);
3740 if (IS_ERR(mod->args)) {
3741 err = PTR_ERR(mod->args);
3742 goto free_arch_cleanup;
3745 dynamic_debug_setup(mod, info->debug, info->num_debug);
3747 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3748 ftrace_module_init(mod);
3750 /* Finally it's fully formed, ready to start executing. */
3751 err = complete_formation(mod, info);
3752 if (err)
3753 goto ddebug_cleanup;
3755 err = prepare_coming_module(mod);
3756 if (err)
3757 goto bug_cleanup;
3759 /* Module is ready to execute: parsing args may do that. */
3760 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3761 -32768, 32767, mod,
3762 unknown_module_param_cb);
3763 if (IS_ERR(after_dashes)) {
3764 err = PTR_ERR(after_dashes);
3765 goto coming_cleanup;
3766 } else if (after_dashes) {
3767 pr_warn("%s: parameters '%s' after `--' ignored\n",
3768 mod->name, after_dashes);
3771 /* Link in to sysfs. */
3772 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3773 if (err < 0)
3774 goto coming_cleanup;
3776 if (is_livepatch_module(mod)) {
3777 err = copy_module_elf(mod, info);
3778 if (err < 0)
3779 goto sysfs_cleanup;
3782 /* Get rid of temporary copy. */
3783 free_copy(info);
3785 /* Done! */
3786 trace_module_load(mod);
3788 return do_init_module(mod);
3790 sysfs_cleanup:
3791 mod_sysfs_teardown(mod);
3792 coming_cleanup:
3793 mod->state = MODULE_STATE_GOING;
3794 destroy_params(mod->kp, mod->num_kp);
3795 blocking_notifier_call_chain(&module_notify_list,
3796 MODULE_STATE_GOING, mod);
3797 klp_module_going(mod);
3798 bug_cleanup:
3799 /* module_bug_cleanup needs module_mutex protection */
3800 mutex_lock(&module_mutex);
3801 module_bug_cleanup(mod);
3802 mutex_unlock(&module_mutex);
3804 /* we can't deallocate the module until we clear memory protection */
3805 module_disable_ro(mod);
3806 module_disable_nx(mod);
3808 ddebug_cleanup:
3809 ftrace_release_mod(mod);
3810 dynamic_debug_remove(mod, info->debug);
3811 synchronize_sched();
3812 kfree(mod->args);
3813 free_arch_cleanup:
3814 module_arch_cleanup(mod);
3815 free_modinfo:
3816 free_modinfo(mod);
3817 free_unload:
3818 module_unload_free(mod);
3819 unlink_mod:
3820 mutex_lock(&module_mutex);
3821 /* Unlink carefully: kallsyms could be walking list. */
3822 list_del_rcu(&mod->list);
3823 mod_tree_remove(mod);
3824 wake_up_all(&module_wq);
3825 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3826 synchronize_sched();
3827 mutex_unlock(&module_mutex);
3828 free_module:
3829 /* Free lock-classes; relies on the preceding sync_rcu() */
3830 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3832 module_deallocate(mod, info);
3833 free_copy:
3834 free_copy(info);
3835 return err;
3838 SYSCALL_DEFINE3(init_module, void __user *, umod,
3839 unsigned long, len, const char __user *, uargs)
3841 int err;
3842 struct load_info info = { };
3844 err = may_init_module();
3845 if (err)
3846 return err;
3848 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3849 umod, len, uargs);
3851 err = copy_module_from_user(umod, len, &info);
3852 if (err)
3853 return err;
3855 return load_module(&info, uargs, 0);
3858 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3860 struct load_info info = { };
3861 loff_t size;
3862 void *hdr;
3863 int err;
3865 err = may_init_module();
3866 if (err)
3867 return err;
3869 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3871 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3872 |MODULE_INIT_IGNORE_VERMAGIC))
3873 return -EINVAL;
3875 err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3876 READING_MODULE);
3877 if (err)
3878 return err;
3879 info.hdr = hdr;
3880 info.len = size;
3882 return load_module(&info, uargs, flags);
3885 static inline int within(unsigned long addr, void *start, unsigned long size)
3887 return ((void *)addr >= start && (void *)addr < start + size);
3890 #ifdef CONFIG_KALLSYMS
3892 * This ignores the intensely annoying "mapping symbols" found
3893 * in ARM ELF files: $a, $t and $d.
3895 static inline int is_arm_mapping_symbol(const char *str)
3897 if (str[0] == '.' && str[1] == 'L')
3898 return true;
3899 return str[0] == '$' && strchr("axtd", str[1])
3900 && (str[2] == '\0' || str[2] == '.');
3903 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3905 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3908 static const char *get_ksymbol(struct module *mod,
3909 unsigned long addr,
3910 unsigned long *size,
3911 unsigned long *offset)
3913 unsigned int i, best = 0;
3914 unsigned long nextval;
3915 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3917 /* At worse, next value is at end of module */
3918 if (within_module_init(addr, mod))
3919 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3920 else
3921 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3923 /* Scan for closest preceding symbol, and next symbol. (ELF
3924 starts real symbols at 1). */
3925 for (i = 1; i < kallsyms->num_symtab; i++) {
3926 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3927 continue;
3929 /* We ignore unnamed symbols: they're uninformative
3930 * and inserted at a whim. */
3931 if (*symname(kallsyms, i) == '\0'
3932 || is_arm_mapping_symbol(symname(kallsyms, i)))
3933 continue;
3935 if (kallsyms->symtab[i].st_value <= addr
3936 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3937 best = i;
3938 if (kallsyms->symtab[i].st_value > addr
3939 && kallsyms->symtab[i].st_value < nextval)
3940 nextval = kallsyms->symtab[i].st_value;
3943 if (!best)
3944 return NULL;
3946 if (size)
3947 *size = nextval - kallsyms->symtab[best].st_value;
3948 if (offset)
3949 *offset = addr - kallsyms->symtab[best].st_value;
3950 return symname(kallsyms, best);
3953 void * __weak dereference_module_function_descriptor(struct module *mod,
3954 void *ptr)
3956 return ptr;
3959 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3960 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3961 const char *module_address_lookup(unsigned long addr,
3962 unsigned long *size,
3963 unsigned long *offset,
3964 char **modname,
3965 char *namebuf)
3967 const char *ret = NULL;
3968 struct module *mod;
3970 preempt_disable();
3971 mod = __module_address(addr);
3972 if (mod) {
3973 if (modname)
3974 *modname = mod->name;
3975 ret = get_ksymbol(mod, addr, size, offset);
3977 /* Make a copy in here where it's safe */
3978 if (ret) {
3979 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3980 ret = namebuf;
3982 preempt_enable();
3984 return ret;
3987 int lookup_module_symbol_name(unsigned long addr, char *symname)
3989 struct module *mod;
3991 preempt_disable();
3992 list_for_each_entry_rcu(mod, &modules, list) {
3993 if (mod->state == MODULE_STATE_UNFORMED)
3994 continue;
3995 if (within_module(addr, mod)) {
3996 const char *sym;
3998 sym = get_ksymbol(mod, addr, NULL, NULL);
3999 if (!sym)
4000 goto out;
4001 strlcpy(symname, sym, KSYM_NAME_LEN);
4002 preempt_enable();
4003 return 0;
4006 out:
4007 preempt_enable();
4008 return -ERANGE;
4011 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4012 unsigned long *offset, char *modname, char *name)
4014 struct module *mod;
4016 preempt_disable();
4017 list_for_each_entry_rcu(mod, &modules, list) {
4018 if (mod->state == MODULE_STATE_UNFORMED)
4019 continue;
4020 if (within_module(addr, mod)) {
4021 const char *sym;
4023 sym = get_ksymbol(mod, addr, size, offset);
4024 if (!sym)
4025 goto out;
4026 if (modname)
4027 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4028 if (name)
4029 strlcpy(name, sym, KSYM_NAME_LEN);
4030 preempt_enable();
4031 return 0;
4034 out:
4035 preempt_enable();
4036 return -ERANGE;
4039 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4040 char *name, char *module_name, int *exported)
4042 struct module *mod;
4044 preempt_disable();
4045 list_for_each_entry_rcu(mod, &modules, list) {
4046 struct mod_kallsyms *kallsyms;
4048 if (mod->state == MODULE_STATE_UNFORMED)
4049 continue;
4050 kallsyms = rcu_dereference_sched(mod->kallsyms);
4051 if (symnum < kallsyms->num_symtab) {
4052 *value = kallsyms->symtab[symnum].st_value;
4053 *type = kallsyms->symtab[symnum].st_info;
4054 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4055 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4056 *exported = is_exported(name, *value, mod);
4057 preempt_enable();
4058 return 0;
4060 symnum -= kallsyms->num_symtab;
4062 preempt_enable();
4063 return -ERANGE;
4066 static unsigned long mod_find_symname(struct module *mod, const char *name)
4068 unsigned int i;
4069 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4071 for (i = 0; i < kallsyms->num_symtab; i++)
4072 if (strcmp(name, symname(kallsyms, i)) == 0 &&
4073 kallsyms->symtab[i].st_info != 'U')
4074 return kallsyms->symtab[i].st_value;
4075 return 0;
4078 /* Look for this name: can be of form module:name. */
4079 unsigned long module_kallsyms_lookup_name(const char *name)
4081 struct module *mod;
4082 char *colon;
4083 unsigned long ret = 0;
4085 /* Don't lock: we're in enough trouble already. */
4086 preempt_disable();
4087 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4088 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4089 ret = mod_find_symname(mod, colon+1);
4090 } else {
4091 list_for_each_entry_rcu(mod, &modules, list) {
4092 if (mod->state == MODULE_STATE_UNFORMED)
4093 continue;
4094 if ((ret = mod_find_symname(mod, name)) != 0)
4095 break;
4098 preempt_enable();
4099 return ret;
4102 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4103 struct module *, unsigned long),
4104 void *data)
4106 struct module *mod;
4107 unsigned int i;
4108 int ret;
4110 module_assert_mutex();
4112 list_for_each_entry(mod, &modules, list) {
4113 /* We hold module_mutex: no need for rcu_dereference_sched */
4114 struct mod_kallsyms *kallsyms = mod->kallsyms;
4116 if (mod->state == MODULE_STATE_UNFORMED)
4117 continue;
4118 for (i = 0; i < kallsyms->num_symtab; i++) {
4119 ret = fn(data, symname(kallsyms, i),
4120 mod, kallsyms->symtab[i].st_value);
4121 if (ret != 0)
4122 return ret;
4125 return 0;
4127 #endif /* CONFIG_KALLSYMS */
4129 /* Maximum number of characters written by module_flags() */
4130 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4132 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4133 static char *module_flags(struct module *mod, char *buf)
4135 int bx = 0;
4137 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4138 if (mod->taints ||
4139 mod->state == MODULE_STATE_GOING ||
4140 mod->state == MODULE_STATE_COMING) {
4141 buf[bx++] = '(';
4142 bx += module_flags_taint(mod, buf + bx);
4143 /* Show a - for module-is-being-unloaded */
4144 if (mod->state == MODULE_STATE_GOING)
4145 buf[bx++] = '-';
4146 /* Show a + for module-is-being-loaded */
4147 if (mod->state == MODULE_STATE_COMING)
4148 buf[bx++] = '+';
4149 buf[bx++] = ')';
4151 buf[bx] = '\0';
4153 return buf;
4156 #ifdef CONFIG_PROC_FS
4157 /* Called by the /proc file system to return a list of modules. */
4158 static void *m_start(struct seq_file *m, loff_t *pos)
4160 mutex_lock(&module_mutex);
4161 return seq_list_start(&modules, *pos);
4164 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4166 return seq_list_next(p, &modules, pos);
4169 static void m_stop(struct seq_file *m, void *p)
4171 mutex_unlock(&module_mutex);
4174 static int m_show(struct seq_file *m, void *p)
4176 struct module *mod = list_entry(p, struct module, list);
4177 char buf[MODULE_FLAGS_BUF_SIZE];
4178 void *value;
4180 /* We always ignore unformed modules. */
4181 if (mod->state == MODULE_STATE_UNFORMED)
4182 return 0;
4184 seq_printf(m, "%s %u",
4185 mod->name, mod->init_layout.size + mod->core_layout.size);
4186 print_unload_info(m, mod);
4188 /* Informative for users. */
4189 seq_printf(m, " %s",
4190 mod->state == MODULE_STATE_GOING ? "Unloading" :
4191 mod->state == MODULE_STATE_COMING ? "Loading" :
4192 "Live");
4193 /* Used by oprofile and other similar tools. */
4194 value = m->private ? NULL : mod->core_layout.base;
4195 seq_printf(m, " 0x%px", value);
4197 /* Taints info */
4198 if (mod->taints)
4199 seq_printf(m, " %s", module_flags(mod, buf));
4201 seq_puts(m, "\n");
4202 return 0;
4205 /* Format: modulename size refcount deps address
4207 Where refcount is a number or -, and deps is a comma-separated list
4208 of depends or -.
4210 static const struct seq_operations modules_op = {
4211 .start = m_start,
4212 .next = m_next,
4213 .stop = m_stop,
4214 .show = m_show
4218 * This also sets the "private" pointer to non-NULL if the
4219 * kernel pointers should be hidden (so you can just test
4220 * "m->private" to see if you should keep the values private).
4222 * We use the same logic as for /proc/kallsyms.
4224 static int modules_open(struct inode *inode, struct file *file)
4226 int err = seq_open(file, &modules_op);
4228 if (!err) {
4229 struct seq_file *m = file->private_data;
4230 m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4233 return err;
4236 static const struct file_operations proc_modules_operations = {
4237 .open = modules_open,
4238 .read = seq_read,
4239 .llseek = seq_lseek,
4240 .release = seq_release,
4243 static int __init proc_modules_init(void)
4245 proc_create("modules", 0, NULL, &proc_modules_operations);
4246 return 0;
4248 module_init(proc_modules_init);
4249 #endif
4251 /* Given an address, look for it in the module exception tables. */
4252 const struct exception_table_entry *search_module_extables(unsigned long addr)
4254 const struct exception_table_entry *e = NULL;
4255 struct module *mod;
4257 preempt_disable();
4258 mod = __module_address(addr);
4259 if (!mod)
4260 goto out;
4262 if (!mod->num_exentries)
4263 goto out;
4265 e = search_extable(mod->extable,
4266 mod->num_exentries,
4267 addr);
4268 out:
4269 preempt_enable();
4272 * Now, if we found one, we are running inside it now, hence
4273 * we cannot unload the module, hence no refcnt needed.
4275 return e;
4279 * is_module_address - is this address inside a module?
4280 * @addr: the address to check.
4282 * See is_module_text_address() if you simply want to see if the address
4283 * is code (not data).
4285 bool is_module_address(unsigned long addr)
4287 bool ret;
4289 preempt_disable();
4290 ret = __module_address(addr) != NULL;
4291 preempt_enable();
4293 return ret;
4297 * __module_address - get the module which contains an address.
4298 * @addr: the address.
4300 * Must be called with preempt disabled or module mutex held so that
4301 * module doesn't get freed during this.
4303 struct module *__module_address(unsigned long addr)
4305 struct module *mod;
4307 if (addr < module_addr_min || addr > module_addr_max)
4308 return NULL;
4310 module_assert_mutex_or_preempt();
4312 mod = mod_find(addr);
4313 if (mod) {
4314 BUG_ON(!within_module(addr, mod));
4315 if (mod->state == MODULE_STATE_UNFORMED)
4316 mod = NULL;
4318 return mod;
4320 EXPORT_SYMBOL_GPL(__module_address);
4323 * is_module_text_address - is this address inside module code?
4324 * @addr: the address to check.
4326 * See is_module_address() if you simply want to see if the address is
4327 * anywhere in a module. See kernel_text_address() for testing if an
4328 * address corresponds to kernel or module code.
4330 bool is_module_text_address(unsigned long addr)
4332 bool ret;
4334 preempt_disable();
4335 ret = __module_text_address(addr) != NULL;
4336 preempt_enable();
4338 return ret;
4342 * __module_text_address - get the module whose code contains an address.
4343 * @addr: the address.
4345 * Must be called with preempt disabled or module mutex held so that
4346 * module doesn't get freed during this.
4348 struct module *__module_text_address(unsigned long addr)
4350 struct module *mod = __module_address(addr);
4351 if (mod) {
4352 /* Make sure it's within the text section. */
4353 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4354 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4355 mod = NULL;
4357 return mod;
4359 EXPORT_SYMBOL_GPL(__module_text_address);
4361 /* Don't grab lock, we're oopsing. */
4362 void print_modules(void)
4364 struct module *mod;
4365 char buf[MODULE_FLAGS_BUF_SIZE];
4367 printk(KERN_DEFAULT "Modules linked in:");
4368 /* Most callers should already have preempt disabled, but make sure */
4369 preempt_disable();
4370 list_for_each_entry_rcu(mod, &modules, list) {
4371 if (mod->state == MODULE_STATE_UNFORMED)
4372 continue;
4373 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4375 preempt_enable();
4376 if (last_unloaded_module[0])
4377 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4378 pr_cont("\n");
4381 #ifdef CONFIG_MODVERSIONS
4382 /* Generate the signature for all relevant module structures here.
4383 * If these change, we don't want to try to parse the module. */
4384 void module_layout(struct module *mod,
4385 struct modversion_info *ver,
4386 struct kernel_param *kp,
4387 struct kernel_symbol *ks,
4388 struct tracepoint * const *tp)
4391 EXPORT_SYMBOL(module_layout);
4392 #endif