2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/nmi.h>
21 #include <linux/profile.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/clock.h>
24 #include <linux/sched/stat.h>
25 #include <linux/sched/nohz.h>
26 #include <linux/module.h>
27 #include <linux/irq_work.h>
28 #include <linux/posix-timers.h>
29 #include <linux/context_tracking.h>
32 #include <asm/irq_regs.h>
34 #include "tick-internal.h"
36 #include <trace/events/timer.h>
39 * Per-CPU nohz control structure
41 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
43 struct tick_sched
*tick_get_tick_sched(int cpu
)
45 return &per_cpu(tick_cpu_sched
, cpu
);
48 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
50 * The time, when the last jiffy update happened. Protected by jiffies_lock.
52 static ktime_t last_jiffies_update
;
55 * Must be called with interrupts disabled !
57 static void tick_do_update_jiffies64(ktime_t now
)
59 unsigned long ticks
= 0;
63 * Do a quick check without holding jiffies_lock:
65 delta
= ktime_sub(now
, last_jiffies_update
);
66 if (delta
< tick_period
)
69 /* Reevaluate with jiffies_lock held */
70 write_seqlock(&jiffies_lock
);
72 delta
= ktime_sub(now
, last_jiffies_update
);
73 if (delta
>= tick_period
) {
75 delta
= ktime_sub(delta
, tick_period
);
76 last_jiffies_update
= ktime_add(last_jiffies_update
,
79 /* Slow path for long timeouts */
80 if (unlikely(delta
>= tick_period
)) {
81 s64 incr
= ktime_to_ns(tick_period
);
83 ticks
= ktime_divns(delta
, incr
);
85 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
90 /* Keep the tick_next_period variable up to date */
91 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
93 write_sequnlock(&jiffies_lock
);
96 write_sequnlock(&jiffies_lock
);
101 * Initialize and return retrieve the jiffies update.
103 static ktime_t
tick_init_jiffy_update(void)
107 write_seqlock(&jiffies_lock
);
108 /* Did we start the jiffies update yet ? */
109 if (last_jiffies_update
== 0)
110 last_jiffies_update
= tick_next_period
;
111 period
= last_jiffies_update
;
112 write_sequnlock(&jiffies_lock
);
116 static void tick_sched_do_timer(struct tick_sched
*ts
, ktime_t now
)
118 int cpu
= smp_processor_id();
120 #ifdef CONFIG_NO_HZ_COMMON
122 * Check if the do_timer duty was dropped. We don't care about
123 * concurrency: This happens only when the CPU in charge went
124 * into a long sleep. If two CPUs happen to assign themselves to
125 * this duty, then the jiffies update is still serialized by
128 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
129 && !tick_nohz_full_cpu(cpu
))
130 tick_do_timer_cpu
= cpu
;
133 /* Check, if the jiffies need an update */
134 if (tick_do_timer_cpu
== cpu
)
135 tick_do_update_jiffies64(now
);
138 ts
->got_idle_tick
= 1;
141 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
143 #ifdef CONFIG_NO_HZ_COMMON
145 * When we are idle and the tick is stopped, we have to touch
146 * the watchdog as we might not schedule for a really long
147 * time. This happens on complete idle SMP systems while
148 * waiting on the login prompt. We also increment the "start of
149 * idle" jiffy stamp so the idle accounting adjustment we do
150 * when we go busy again does not account too much ticks.
152 if (ts
->tick_stopped
) {
153 touch_softlockup_watchdog_sched();
154 if (is_idle_task(current
))
157 * In case the current tick fired too early past its expected
158 * expiration, make sure we don't bypass the next clock reprogramming
159 * to the same deadline.
164 update_process_times(user_mode(regs
));
165 profile_tick(CPU_PROFILING
);
169 #ifdef CONFIG_NO_HZ_FULL
170 cpumask_var_t tick_nohz_full_mask
;
171 bool tick_nohz_full_running
;
172 static atomic_t tick_dep_mask
;
174 static bool check_tick_dependency(atomic_t
*dep
)
176 int val
= atomic_read(dep
);
178 if (val
& TICK_DEP_MASK_POSIX_TIMER
) {
179 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER
);
183 if (val
& TICK_DEP_MASK_PERF_EVENTS
) {
184 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS
);
188 if (val
& TICK_DEP_MASK_SCHED
) {
189 trace_tick_stop(0, TICK_DEP_MASK_SCHED
);
193 if (val
& TICK_DEP_MASK_CLOCK_UNSTABLE
) {
194 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE
);
201 static bool can_stop_full_tick(int cpu
, struct tick_sched
*ts
)
203 lockdep_assert_irqs_disabled();
205 if (unlikely(!cpu_online(cpu
)))
208 if (check_tick_dependency(&tick_dep_mask
))
211 if (check_tick_dependency(&ts
->tick_dep_mask
))
214 if (check_tick_dependency(¤t
->tick_dep_mask
))
217 if (check_tick_dependency(¤t
->signal
->tick_dep_mask
))
223 static void nohz_full_kick_func(struct irq_work
*work
)
225 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
228 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
229 .func
= nohz_full_kick_func
,
233 * Kick this CPU if it's full dynticks in order to force it to
234 * re-evaluate its dependency on the tick and restart it if necessary.
235 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
238 static void tick_nohz_full_kick(void)
240 if (!tick_nohz_full_cpu(smp_processor_id()))
243 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work
));
247 * Kick the CPU if it's full dynticks in order to force it to
248 * re-evaluate its dependency on the tick and restart it if necessary.
250 void tick_nohz_full_kick_cpu(int cpu
)
252 if (!tick_nohz_full_cpu(cpu
))
255 irq_work_queue_on(&per_cpu(nohz_full_kick_work
, cpu
), cpu
);
259 * Kick all full dynticks CPUs in order to force these to re-evaluate
260 * their dependency on the tick and restart it if necessary.
262 static void tick_nohz_full_kick_all(void)
266 if (!tick_nohz_full_running
)
270 for_each_cpu_and(cpu
, tick_nohz_full_mask
, cpu_online_mask
)
271 tick_nohz_full_kick_cpu(cpu
);
275 static void tick_nohz_dep_set_all(atomic_t
*dep
,
276 enum tick_dep_bits bit
)
280 prev
= atomic_fetch_or(BIT(bit
), dep
);
282 tick_nohz_full_kick_all();
286 * Set a global tick dependency. Used by perf events that rely on freq and
289 void tick_nohz_dep_set(enum tick_dep_bits bit
)
291 tick_nohz_dep_set_all(&tick_dep_mask
, bit
);
294 void tick_nohz_dep_clear(enum tick_dep_bits bit
)
296 atomic_andnot(BIT(bit
), &tick_dep_mask
);
300 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
301 * manage events throttling.
303 void tick_nohz_dep_set_cpu(int cpu
, enum tick_dep_bits bit
)
306 struct tick_sched
*ts
;
308 ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
310 prev
= atomic_fetch_or(BIT(bit
), &ts
->tick_dep_mask
);
313 /* Perf needs local kick that is NMI safe */
314 if (cpu
== smp_processor_id()) {
315 tick_nohz_full_kick();
317 /* Remote irq work not NMI-safe */
318 if (!WARN_ON_ONCE(in_nmi()))
319 tick_nohz_full_kick_cpu(cpu
);
325 void tick_nohz_dep_clear_cpu(int cpu
, enum tick_dep_bits bit
)
327 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
329 atomic_andnot(BIT(bit
), &ts
->tick_dep_mask
);
333 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
336 void tick_nohz_dep_set_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
339 * We could optimize this with just kicking the target running the task
340 * if that noise matters for nohz full users.
342 tick_nohz_dep_set_all(&tsk
->tick_dep_mask
, bit
);
345 void tick_nohz_dep_clear_task(struct task_struct
*tsk
, enum tick_dep_bits bit
)
347 atomic_andnot(BIT(bit
), &tsk
->tick_dep_mask
);
351 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
352 * per process timers.
354 void tick_nohz_dep_set_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
356 tick_nohz_dep_set_all(&sig
->tick_dep_mask
, bit
);
359 void tick_nohz_dep_clear_signal(struct signal_struct
*sig
, enum tick_dep_bits bit
)
361 atomic_andnot(BIT(bit
), &sig
->tick_dep_mask
);
365 * Re-evaluate the need for the tick as we switch the current task.
366 * It might need the tick due to per task/process properties:
367 * perf events, posix CPU timers, ...
369 void __tick_nohz_task_switch(void)
372 struct tick_sched
*ts
;
374 local_irq_save(flags
);
376 if (!tick_nohz_full_cpu(smp_processor_id()))
379 ts
= this_cpu_ptr(&tick_cpu_sched
);
381 if (ts
->tick_stopped
) {
382 if (atomic_read(¤t
->tick_dep_mask
) ||
383 atomic_read(¤t
->signal
->tick_dep_mask
))
384 tick_nohz_full_kick();
387 local_irq_restore(flags
);
390 /* Get the boot-time nohz CPU list from the kernel parameters. */
391 void __init
tick_nohz_full_setup(cpumask_var_t cpumask
)
393 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
394 cpumask_copy(tick_nohz_full_mask
, cpumask
);
395 tick_nohz_full_running
= true;
398 static int tick_nohz_cpu_down(unsigned int cpu
)
401 * The boot CPU handles housekeeping duty (unbound timers,
402 * workqueues, timekeeping, ...) on behalf of full dynticks
403 * CPUs. It must remain online when nohz full is enabled.
405 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
410 void __init
tick_nohz_init(void)
414 if (!tick_nohz_full_running
)
418 * Full dynticks uses irq work to drive the tick rescheduling on safe
419 * locking contexts. But then we need irq work to raise its own
420 * interrupts to avoid circular dependency on the tick
422 if (!arch_irq_work_has_interrupt()) {
423 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
424 cpumask_clear(tick_nohz_full_mask
);
425 tick_nohz_full_running
= false;
429 cpu
= smp_processor_id();
431 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
432 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
434 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
437 for_each_cpu(cpu
, tick_nohz_full_mask
)
438 context_tracking_cpu_set(cpu
);
440 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
441 "kernel/nohz:predown", NULL
,
444 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
445 cpumask_pr_args(tick_nohz_full_mask
));
450 * NOHZ - aka dynamic tick functionality
452 #ifdef CONFIG_NO_HZ_COMMON
456 bool tick_nohz_enabled __read_mostly
= true;
457 unsigned long tick_nohz_active __read_mostly
;
459 * Enable / Disable tickless mode
461 static int __init
setup_tick_nohz(char *str
)
463 return (kstrtobool(str
, &tick_nohz_enabled
) == 0);
466 __setup("nohz=", setup_tick_nohz
);
468 bool tick_nohz_tick_stopped(void)
470 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
472 return ts
->tick_stopped
;
475 bool tick_nohz_tick_stopped_cpu(int cpu
)
477 struct tick_sched
*ts
= per_cpu_ptr(&tick_cpu_sched
, cpu
);
479 return ts
->tick_stopped
;
483 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
485 * Called from interrupt entry when the CPU was idle
487 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
488 * must be updated. Otherwise an interrupt handler could use a stale jiffy
489 * value. We do this unconditionally on any CPU, as we don't know whether the
490 * CPU, which has the update task assigned is in a long sleep.
492 static void tick_nohz_update_jiffies(ktime_t now
)
496 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
498 local_irq_save(flags
);
499 tick_do_update_jiffies64(now
);
500 local_irq_restore(flags
);
502 touch_softlockup_watchdog_sched();
506 * Updates the per-CPU time idle statistics counters
509 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
513 if (ts
->idle_active
) {
514 delta
= ktime_sub(now
, ts
->idle_entrytime
);
515 if (nr_iowait_cpu(cpu
) > 0)
516 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
518 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
519 ts
->idle_entrytime
= now
;
522 if (last_update_time
)
523 *last_update_time
= ktime_to_us(now
);
527 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
529 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
532 sched_clock_idle_wakeup_event();
535 static void tick_nohz_start_idle(struct tick_sched
*ts
)
537 ts
->idle_entrytime
= ktime_get();
539 sched_clock_idle_sleep_event();
543 * get_cpu_idle_time_us - get the total idle time of a CPU
544 * @cpu: CPU number to query
545 * @last_update_time: variable to store update time in. Do not update
548 * Return the cumulative idle time (since boot) for a given
549 * CPU, in microseconds.
551 * This time is measured via accounting rather than sampling,
552 * and is as accurate as ktime_get() is.
554 * This function returns -1 if NOHZ is not enabled.
556 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
558 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
561 if (!tick_nohz_active
)
565 if (last_update_time
) {
566 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
567 idle
= ts
->idle_sleeptime
;
569 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
570 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
572 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
574 idle
= ts
->idle_sleeptime
;
578 return ktime_to_us(idle
);
581 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
584 * get_cpu_iowait_time_us - get the total iowait time of a CPU
585 * @cpu: CPU number to query
586 * @last_update_time: variable to store update time in. Do not update
589 * Return the cumulative iowait time (since boot) for a given
590 * CPU, in microseconds.
592 * This time is measured via accounting rather than sampling,
593 * and is as accurate as ktime_get() is.
595 * This function returns -1 if NOHZ is not enabled.
597 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
599 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
602 if (!tick_nohz_active
)
606 if (last_update_time
) {
607 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
608 iowait
= ts
->iowait_sleeptime
;
610 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
611 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
613 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
615 iowait
= ts
->iowait_sleeptime
;
619 return ktime_to_us(iowait
);
621 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
623 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
625 hrtimer_cancel(&ts
->sched_timer
);
626 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
628 /* Forward the time to expire in the future */
629 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
631 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
632 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
634 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
637 * Reset to make sure next tick stop doesn't get fooled by past
638 * cached clock deadline.
643 static inline bool local_timer_softirq_pending(void)
645 return local_softirq_pending() & TIMER_SOFTIRQ
;
648 static ktime_t
tick_nohz_next_event(struct tick_sched
*ts
, int cpu
)
650 u64 basemono
, next_tick
, next_tmr
, next_rcu
, delta
, expires
;
651 unsigned long seq
, basejiff
;
653 /* Read jiffies and the time when jiffies were updated last */
655 seq
= read_seqbegin(&jiffies_lock
);
656 basemono
= last_jiffies_update
;
658 } while (read_seqretry(&jiffies_lock
, seq
));
659 ts
->last_jiffies
= basejiff
;
660 ts
->timer_expires_base
= basemono
;
663 * Keep the periodic tick, when RCU, architecture or irq_work
665 * Aside of that check whether the local timer softirq is
666 * pending. If so its a bad idea to call get_next_timer_interrupt()
667 * because there is an already expired timer, so it will request
668 * immeditate expiry, which rearms the hardware timer with a
669 * minimal delta which brings us back to this place
670 * immediately. Lather, rinse and repeat...
672 if (rcu_needs_cpu(basemono
, &next_rcu
) || arch_needs_cpu() ||
673 irq_work_needs_cpu() || local_timer_softirq_pending()) {
674 next_tick
= basemono
+ TICK_NSEC
;
677 * Get the next pending timer. If high resolution
678 * timers are enabled this only takes the timer wheel
679 * timers into account. If high resolution timers are
680 * disabled this also looks at the next expiring
683 next_tmr
= get_next_timer_interrupt(basejiff
, basemono
);
684 ts
->next_timer
= next_tmr
;
685 /* Take the next rcu event into account */
686 next_tick
= next_rcu
< next_tmr
? next_rcu
: next_tmr
;
690 * If the tick is due in the next period, keep it ticking or
691 * force prod the timer.
693 delta
= next_tick
- basemono
;
694 if (delta
<= (u64
)TICK_NSEC
) {
696 * Tell the timer code that the base is not idle, i.e. undo
697 * the effect of get_next_timer_interrupt():
701 * We've not stopped the tick yet, and there's a timer in the
702 * next period, so no point in stopping it either, bail.
704 if (!ts
->tick_stopped
) {
705 ts
->timer_expires
= 0;
711 * If this CPU is the one which had the do_timer() duty last, we limit
712 * the sleep time to the timekeeping max_deferment value.
713 * Otherwise we can sleep as long as we want.
715 delta
= timekeeping_max_deferment();
716 if (cpu
!= tick_do_timer_cpu
&&
717 (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
|| !ts
->do_timer_last
))
720 /* Calculate the next expiry time */
721 if (delta
< (KTIME_MAX
- basemono
))
722 expires
= basemono
+ delta
;
726 ts
->timer_expires
= min_t(u64
, expires
, next_tick
);
729 return ts
->timer_expires
;
732 static void tick_nohz_stop_tick(struct tick_sched
*ts
, int cpu
)
734 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
735 u64 basemono
= ts
->timer_expires_base
;
736 u64 expires
= ts
->timer_expires
;
737 ktime_t tick
= expires
;
739 /* Make sure we won't be trying to stop it twice in a row. */
740 ts
->timer_expires_base
= 0;
743 * If this CPU is the one which updates jiffies, then give up
744 * the assignment and let it be taken by the CPU which runs
745 * the tick timer next, which might be this CPU as well. If we
746 * don't drop this here the jiffies might be stale and
747 * do_timer() never invoked. Keep track of the fact that it
748 * was the one which had the do_timer() duty last.
750 if (cpu
== tick_do_timer_cpu
) {
751 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
752 ts
->do_timer_last
= 1;
753 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
754 ts
->do_timer_last
= 0;
757 /* Skip reprogram of event if its not changed */
758 if (ts
->tick_stopped
&& (expires
== ts
->next_tick
)) {
759 /* Sanity check: make sure clockevent is actually programmed */
760 if (tick
== KTIME_MAX
|| ts
->next_tick
== hrtimer_get_expires(&ts
->sched_timer
))
764 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
765 basemono
, ts
->next_tick
, dev
->next_event
,
766 hrtimer_active(&ts
->sched_timer
), hrtimer_get_expires(&ts
->sched_timer
));
770 * nohz_stop_sched_tick can be called several times before
771 * the nohz_restart_sched_tick is called. This happens when
772 * interrupts arrive which do not cause a reschedule. In the
773 * first call we save the current tick time, so we can restart
774 * the scheduler tick in nohz_restart_sched_tick.
776 if (!ts
->tick_stopped
) {
777 calc_load_nohz_start();
778 cpu_load_update_nohz_start();
781 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
782 ts
->tick_stopped
= 1;
783 trace_tick_stop(1, TICK_DEP_MASK_NONE
);
786 ts
->next_tick
= tick
;
789 * If the expiration time == KTIME_MAX, then we simply stop
792 if (unlikely(expires
== KTIME_MAX
)) {
793 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
794 hrtimer_cancel(&ts
->sched_timer
);
798 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
799 hrtimer_start(&ts
->sched_timer
, tick
, HRTIMER_MODE_ABS_PINNED
);
801 hrtimer_set_expires(&ts
->sched_timer
, tick
);
802 tick_program_event(tick
, 1);
806 static void tick_nohz_retain_tick(struct tick_sched
*ts
)
808 ts
->timer_expires_base
= 0;
811 #ifdef CONFIG_NO_HZ_FULL
812 static void tick_nohz_stop_sched_tick(struct tick_sched
*ts
, int cpu
)
814 if (tick_nohz_next_event(ts
, cpu
))
815 tick_nohz_stop_tick(ts
, cpu
);
817 tick_nohz_retain_tick(ts
);
819 #endif /* CONFIG_NO_HZ_FULL */
821 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
823 /* Update jiffies first */
824 tick_do_update_jiffies64(now
);
825 cpu_load_update_nohz_stop();
828 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
829 * the clock forward checks in the enqueue path:
833 calc_load_nohz_stop();
834 touch_softlockup_watchdog_sched();
836 * Cancel the scheduled timer and restore the tick
838 ts
->tick_stopped
= 0;
839 ts
->idle_exittime
= now
;
841 tick_nohz_restart(ts
, now
);
844 static void tick_nohz_full_update_tick(struct tick_sched
*ts
)
846 #ifdef CONFIG_NO_HZ_FULL
847 int cpu
= smp_processor_id();
849 if (!tick_nohz_full_cpu(cpu
))
852 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
855 if (can_stop_full_tick(cpu
, ts
))
856 tick_nohz_stop_sched_tick(ts
, cpu
);
857 else if (ts
->tick_stopped
)
858 tick_nohz_restart_sched_tick(ts
, ktime_get());
862 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
865 * If this CPU is offline and it is the one which updates
866 * jiffies, then give up the assignment and let it be taken by
867 * the CPU which runs the tick timer next. If we don't drop
868 * this here the jiffies might be stale and do_timer() never
871 if (unlikely(!cpu_online(cpu
))) {
872 if (cpu
== tick_do_timer_cpu
)
873 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
875 * Make sure the CPU doesn't get fooled by obsolete tick
876 * deadline if it comes back online later.
882 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
))
888 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
889 static int ratelimit
;
891 if (ratelimit
< 10 &&
892 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
893 pr_warn("NOHZ: local_softirq_pending %02x\n",
894 (unsigned int) local_softirq_pending());
900 if (tick_nohz_full_enabled()) {
902 * Keep the tick alive to guarantee timekeeping progression
903 * if there are full dynticks CPUs around
905 if (tick_do_timer_cpu
== cpu
)
908 * Boot safety: make sure the timekeeping duty has been
909 * assigned before entering dyntick-idle mode,
911 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
918 static void __tick_nohz_idle_stop_tick(struct tick_sched
*ts
)
921 int cpu
= smp_processor_id();
924 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
925 * tick timer expiration time is known already.
927 if (ts
->timer_expires_base
)
928 expires
= ts
->timer_expires
;
929 else if (can_stop_idle_tick(cpu
, ts
))
930 expires
= tick_nohz_next_event(ts
, cpu
);
937 int was_stopped
= ts
->tick_stopped
;
939 tick_nohz_stop_tick(ts
, cpu
);
942 ts
->idle_expires
= expires
;
944 if (!was_stopped
&& ts
->tick_stopped
) {
945 ts
->idle_jiffies
= ts
->last_jiffies
;
946 nohz_balance_enter_idle(cpu
);
949 tick_nohz_retain_tick(ts
);
954 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
956 * When the next event is more than a tick into the future, stop the idle tick
958 void tick_nohz_idle_stop_tick(void)
960 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched
));
963 void tick_nohz_idle_retain_tick(void)
965 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched
));
967 * Undo the effect of get_next_timer_interrupt() called from
968 * tick_nohz_next_event().
974 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
976 * Called when we start the idle loop.
978 void tick_nohz_idle_enter(void)
980 struct tick_sched
*ts
;
982 lockdep_assert_irqs_enabled();
986 ts
= this_cpu_ptr(&tick_cpu_sched
);
988 WARN_ON_ONCE(ts
->timer_expires_base
);
991 tick_nohz_start_idle(ts
);
997 * tick_nohz_irq_exit - update next tick event from interrupt exit
999 * When an interrupt fires while we are idle and it doesn't cause
1000 * a reschedule, it may still add, modify or delete a timer, enqueue
1001 * an RCU callback, etc...
1002 * So we need to re-calculate and reprogram the next tick event.
1004 void tick_nohz_irq_exit(void)
1006 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1009 tick_nohz_start_idle(ts
);
1011 tick_nohz_full_update_tick(ts
);
1015 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1017 bool tick_nohz_idle_got_tick(void)
1019 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1021 if (ts
->got_idle_tick
) {
1022 ts
->got_idle_tick
= 0;
1029 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1030 * @delta_next: duration until the next event if the tick cannot be stopped
1032 * Called from power state control code with interrupts disabled
1034 ktime_t
tick_nohz_get_sleep_length(ktime_t
*delta_next
)
1036 struct clock_event_device
*dev
= __this_cpu_read(tick_cpu_device
.evtdev
);
1037 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1038 int cpu
= smp_processor_id();
1040 * The idle entry time is expected to be a sufficient approximation of
1041 * the current time at this point.
1043 ktime_t now
= ts
->idle_entrytime
;
1046 WARN_ON_ONCE(!ts
->inidle
);
1048 *delta_next
= ktime_sub(dev
->next_event
, now
);
1050 if (!can_stop_idle_tick(cpu
, ts
))
1053 next_event
= tick_nohz_next_event(ts
, cpu
);
1058 * If the next highres timer to expire is earlier than next_event, the
1059 * idle governor needs to know that.
1061 next_event
= min_t(u64
, next_event
,
1062 hrtimer_next_event_without(&ts
->sched_timer
));
1064 return ktime_sub(next_event
, now
);
1068 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1069 * for a particular CPU.
1071 * Called from the schedutil frequency scaling governor in scheduler context.
1073 unsigned long tick_nohz_get_idle_calls_cpu(int cpu
)
1075 struct tick_sched
*ts
= tick_get_tick_sched(cpu
);
1077 return ts
->idle_calls
;
1081 * tick_nohz_get_idle_calls - return the current idle calls counter value
1083 * Called from the schedutil frequency scaling governor in scheduler context.
1085 unsigned long tick_nohz_get_idle_calls(void)
1087 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1089 return ts
->idle_calls
;
1092 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
1094 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1095 unsigned long ticks
;
1097 if (vtime_accounting_cpu_enabled())
1100 * We stopped the tick in idle. Update process times would miss the
1101 * time we slept as update_process_times does only a 1 tick
1102 * accounting. Enforce that this is accounted to idle !
1104 ticks
= jiffies
- ts
->idle_jiffies
;
1106 * We might be one off. Do not randomly account a huge number of ticks!
1108 if (ticks
&& ticks
< LONG_MAX
)
1109 account_idle_ticks(ticks
);
1113 static void __tick_nohz_idle_restart_tick(struct tick_sched
*ts
, ktime_t now
)
1115 tick_nohz_restart_sched_tick(ts
, now
);
1116 tick_nohz_account_idle_ticks(ts
);
1119 void tick_nohz_idle_restart_tick(void)
1121 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1123 if (ts
->tick_stopped
)
1124 __tick_nohz_idle_restart_tick(ts
, ktime_get());
1128 * tick_nohz_idle_exit - restart the idle tick from the idle task
1130 * Restart the idle tick when the CPU is woken up from idle
1131 * This also exit the RCU extended quiescent state. The CPU
1132 * can use RCU again after this function is called.
1134 void tick_nohz_idle_exit(void)
1136 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1137 bool idle_active
, tick_stopped
;
1140 local_irq_disable();
1142 WARN_ON_ONCE(!ts
->inidle
);
1143 WARN_ON_ONCE(ts
->timer_expires_base
);
1146 idle_active
= ts
->idle_active
;
1147 tick_stopped
= ts
->tick_stopped
;
1149 if (idle_active
|| tick_stopped
)
1153 tick_nohz_stop_idle(ts
, now
);
1156 __tick_nohz_idle_restart_tick(ts
, now
);
1162 * The nohz low res interrupt handler
1164 static void tick_nohz_handler(struct clock_event_device
*dev
)
1166 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1167 struct pt_regs
*regs
= get_irq_regs();
1168 ktime_t now
= ktime_get();
1170 dev
->next_event
= KTIME_MAX
;
1172 tick_sched_do_timer(ts
, now
);
1173 tick_sched_handle(ts
, regs
);
1175 /* No need to reprogram if we are running tickless */
1176 if (unlikely(ts
->tick_stopped
))
1179 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1180 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1183 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
)
1185 if (!tick_nohz_enabled
)
1187 ts
->nohz_mode
= mode
;
1188 /* One update is enough */
1189 if (!test_and_set_bit(0, &tick_nohz_active
))
1190 timers_update_nohz();
1194 * tick_nohz_switch_to_nohz - switch to nohz mode
1196 static void tick_nohz_switch_to_nohz(void)
1198 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1201 if (!tick_nohz_enabled
)
1204 if (tick_switch_to_oneshot(tick_nohz_handler
))
1208 * Recycle the hrtimer in ts, so we can share the
1209 * hrtimer_forward with the highres code.
1211 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1212 /* Get the next period */
1213 next
= tick_init_jiffy_update();
1215 hrtimer_set_expires(&ts
->sched_timer
, next
);
1216 hrtimer_forward_now(&ts
->sched_timer
, tick_period
);
1217 tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 1);
1218 tick_nohz_activate(ts
, NOHZ_MODE_LOWRES
);
1221 static inline void tick_nohz_irq_enter(void)
1223 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1226 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1229 if (ts
->idle_active
)
1230 tick_nohz_stop_idle(ts
, now
);
1231 if (ts
->tick_stopped
)
1232 tick_nohz_update_jiffies(now
);
1237 static inline void tick_nohz_switch_to_nohz(void) { }
1238 static inline void tick_nohz_irq_enter(void) { }
1239 static inline void tick_nohz_activate(struct tick_sched
*ts
, int mode
) { }
1241 #endif /* CONFIG_NO_HZ_COMMON */
1244 * Called from irq_enter to notify about the possible interruption of idle()
1246 void tick_irq_enter(void)
1248 tick_check_oneshot_broadcast_this_cpu();
1249 tick_nohz_irq_enter();
1253 * High resolution timer specific code
1255 #ifdef CONFIG_HIGH_RES_TIMERS
1257 * We rearm the timer until we get disabled by the idle code.
1258 * Called with interrupts disabled.
1260 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1262 struct tick_sched
*ts
=
1263 container_of(timer
, struct tick_sched
, sched_timer
);
1264 struct pt_regs
*regs
= get_irq_regs();
1265 ktime_t now
= ktime_get();
1267 tick_sched_do_timer(ts
, now
);
1270 * Do not call, when we are not in irq context and have
1271 * no valid regs pointer
1274 tick_sched_handle(ts
, regs
);
1278 /* No need to reprogram if we are in idle or full dynticks mode */
1279 if (unlikely(ts
->tick_stopped
))
1280 return HRTIMER_NORESTART
;
1282 hrtimer_forward(timer
, now
, tick_period
);
1284 return HRTIMER_RESTART
;
1287 static int sched_skew_tick
;
1289 static int __init
skew_tick(char *str
)
1291 get_option(&str
, &sched_skew_tick
);
1295 early_param("skew_tick", skew_tick
);
1298 * tick_setup_sched_timer - setup the tick emulation timer
1300 void tick_setup_sched_timer(void)
1302 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1303 ktime_t now
= ktime_get();
1306 * Emulate tick processing via per-CPU hrtimers:
1308 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1309 ts
->sched_timer
.function
= tick_sched_timer
;
1311 /* Get the next period (per-CPU) */
1312 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1314 /* Offset the tick to avert jiffies_lock contention. */
1315 if (sched_skew_tick
) {
1316 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1317 do_div(offset
, num_possible_cpus());
1318 offset
*= smp_processor_id();
1319 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1322 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1323 hrtimer_start_expires(&ts
->sched_timer
, HRTIMER_MODE_ABS_PINNED
);
1324 tick_nohz_activate(ts
, NOHZ_MODE_HIGHRES
);
1326 #endif /* HIGH_RES_TIMERS */
1328 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1329 void tick_cancel_sched_timer(int cpu
)
1331 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1333 # ifdef CONFIG_HIGH_RES_TIMERS
1334 if (ts
->sched_timer
.base
)
1335 hrtimer_cancel(&ts
->sched_timer
);
1338 memset(ts
, 0, sizeof(*ts
));
1343 * Async notification about clocksource changes
1345 void tick_clock_notify(void)
1349 for_each_possible_cpu(cpu
)
1350 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1354 * Async notification about clock event changes
1356 void tick_oneshot_notify(void)
1358 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1360 set_bit(0, &ts
->check_clocks
);
1364 * Check, if a change happened, which makes oneshot possible.
1366 * Called cyclic from the hrtimer softirq (driven by the timer
1367 * softirq) allow_nohz signals, that we can switch into low-res nohz
1368 * mode, because high resolution timers are disabled (either compile
1369 * or runtime). Called with interrupts disabled.
1371 int tick_check_oneshot_change(int allow_nohz
)
1373 struct tick_sched
*ts
= this_cpu_ptr(&tick_cpu_sched
);
1375 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1378 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1381 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1387 tick_nohz_switch_to_nohz();