2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 static struct vfsmount
*shm_mnt
;
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc
{
101 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
102 pgoff_t start
; /* start of range currently being fallocated */
103 pgoff_t next
; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages
/ 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
120 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
121 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
122 struct shmem_inode_info
*info
, pgoff_t index
);
123 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
124 struct page
**pagep
, enum sgp_type sgp
,
125 gfp_t gfp
, struct vm_area_struct
*vma
,
126 struct vm_fault
*vmf
, int *fault_type
);
128 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
129 struct page
**pagep
, enum sgp_type sgp
)
131 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
132 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
135 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
137 return sb
->s_fs_info
;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
148 return (flags
& VM_NORESERVE
) ?
149 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
152 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
154 if (!(flags
& VM_NORESERVE
))
155 vm_unacct_memory(VM_ACCT(size
));
158 static inline int shmem_reacct_size(unsigned long flags
,
159 loff_t oldsize
, loff_t newsize
)
161 if (!(flags
& VM_NORESERVE
)) {
162 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
163 return security_vm_enough_memory_mm(current
->mm
,
164 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
165 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
166 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 static inline int shmem_acct_block(unsigned long flags
, long pages
)
179 if (!(flags
& VM_NORESERVE
))
182 return security_vm_enough_memory_mm(current
->mm
,
183 pages
* VM_ACCT(PAGE_SIZE
));
186 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
188 if (flags
& VM_NORESERVE
)
189 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
192 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
194 struct shmem_inode_info
*info
= SHMEM_I(inode
);
195 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
197 if (shmem_acct_block(info
->flags
, pages
))
200 if (sbinfo
->max_blocks
) {
201 if (percpu_counter_compare(&sbinfo
->used_blocks
,
202 sbinfo
->max_blocks
- pages
) > 0)
204 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
210 shmem_unacct_blocks(info
->flags
, pages
);
214 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
216 struct shmem_inode_info
*info
= SHMEM_I(inode
);
217 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
219 if (sbinfo
->max_blocks
)
220 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
221 shmem_unacct_blocks(info
->flags
, pages
);
224 static const struct super_operations shmem_ops
;
225 static const struct address_space_operations shmem_aops
;
226 static const struct file_operations shmem_file_operations
;
227 static const struct inode_operations shmem_inode_operations
;
228 static const struct inode_operations shmem_dir_inode_operations
;
229 static const struct inode_operations shmem_special_inode_operations
;
230 static const struct vm_operations_struct shmem_vm_ops
;
231 static struct file_system_type shmem_fs_type
;
233 bool vma_is_shmem(struct vm_area_struct
*vma
)
235 return vma
->vm_ops
== &shmem_vm_ops
;
238 static LIST_HEAD(shmem_swaplist
);
239 static DEFINE_MUTEX(shmem_swaplist_mutex
);
241 static int shmem_reserve_inode(struct super_block
*sb
)
243 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
244 if (sbinfo
->max_inodes
) {
245 spin_lock(&sbinfo
->stat_lock
);
246 if (!sbinfo
->free_inodes
) {
247 spin_unlock(&sbinfo
->stat_lock
);
250 sbinfo
->free_inodes
--;
251 spin_unlock(&sbinfo
->stat_lock
);
256 static void shmem_free_inode(struct super_block
*sb
)
258 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
259 if (sbinfo
->max_inodes
) {
260 spin_lock(&sbinfo
->stat_lock
);
261 sbinfo
->free_inodes
++;
262 spin_unlock(&sbinfo
->stat_lock
);
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 * It has to be called with the spinlock held.
278 static void shmem_recalc_inode(struct inode
*inode
)
280 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
285 info
->alloced
-= freed
;
286 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
287 shmem_inode_unacct_blocks(inode
, freed
);
291 bool shmem_charge(struct inode
*inode
, long pages
)
293 struct shmem_inode_info
*info
= SHMEM_I(inode
);
296 if (!shmem_inode_acct_block(inode
, pages
))
299 spin_lock_irqsave(&info
->lock
, flags
);
300 info
->alloced
+= pages
;
301 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
302 shmem_recalc_inode(inode
);
303 spin_unlock_irqrestore(&info
->lock
, flags
);
304 inode
->i_mapping
->nrpages
+= pages
;
309 void shmem_uncharge(struct inode
*inode
, long pages
)
311 struct shmem_inode_info
*info
= SHMEM_I(inode
);
314 spin_lock_irqsave(&info
->lock
, flags
);
315 info
->alloced
-= pages
;
316 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
317 shmem_recalc_inode(inode
);
318 spin_unlock_irqrestore(&info
->lock
, flags
);
320 shmem_inode_unacct_blocks(inode
, pages
);
324 * Replace item expected in radix tree by a new item, while holding tree lock.
326 static int shmem_radix_tree_replace(struct address_space
*mapping
,
327 pgoff_t index
, void *expected
, void *replacement
)
329 struct radix_tree_node
*node
;
333 VM_BUG_ON(!expected
);
334 VM_BUG_ON(!replacement
);
335 item
= __radix_tree_lookup(&mapping
->i_pages
, index
, &node
, &pslot
);
338 if (item
!= expected
)
340 __radix_tree_replace(&mapping
->i_pages
, node
, pslot
,
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
352 static bool shmem_confirm_swap(struct address_space
*mapping
,
353 pgoff_t index
, swp_entry_t swap
)
358 item
= radix_tree_lookup(&mapping
->i_pages
, index
);
360 return item
== swp_to_radix_entry(swap
);
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
367 * disables huge pages for the mount;
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
374 * only allocate huge pages if requested with fadvise()/madvise();
377 #define SHMEM_HUGE_NEVER 0
378 #define SHMEM_HUGE_ALWAYS 1
379 #define SHMEM_HUGE_WITHIN_SIZE 2
380 #define SHMEM_HUGE_ADVISE 3
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
387 * disables huge on shm_mnt and all mounts, for emergency use;
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
392 #define SHMEM_HUGE_DENY (-1)
393 #define SHMEM_HUGE_FORCE (-2)
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
398 int shmem_huge __read_mostly
;
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str
)
403 if (!strcmp(str
, "never"))
404 return SHMEM_HUGE_NEVER
;
405 if (!strcmp(str
, "always"))
406 return SHMEM_HUGE_ALWAYS
;
407 if (!strcmp(str
, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE
;
409 if (!strcmp(str
, "advise"))
410 return SHMEM_HUGE_ADVISE
;
411 if (!strcmp(str
, "deny"))
412 return SHMEM_HUGE_DENY
;
413 if (!strcmp(str
, "force"))
414 return SHMEM_HUGE_FORCE
;
418 static const char *shmem_format_huge(int huge
)
421 case SHMEM_HUGE_NEVER
:
423 case SHMEM_HUGE_ALWAYS
:
425 case SHMEM_HUGE_WITHIN_SIZE
:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE
:
429 case SHMEM_HUGE_DENY
:
431 case SHMEM_HUGE_FORCE
:
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
441 struct shrink_control
*sc
, unsigned long nr_to_split
)
443 LIST_HEAD(list
), *pos
, *next
;
444 LIST_HEAD(to_remove
);
446 struct shmem_inode_info
*info
;
448 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
449 int removed
= 0, split
= 0;
451 if (list_empty(&sbinfo
->shrinklist
))
454 spin_lock(&sbinfo
->shrinklist_lock
);
455 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
456 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
459 inode
= igrab(&info
->vfs_inode
);
461 /* inode is about to be evicted */
463 list_del_init(&info
->shrinklist
);
468 /* Check if there's anything to gain */
469 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
470 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
471 list_move(&info
->shrinklist
, &to_remove
);
476 list_move(&info
->shrinklist
, &list
);
481 spin_unlock(&sbinfo
->shrinklist_lock
);
483 list_for_each_safe(pos
, next
, &to_remove
) {
484 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
485 inode
= &info
->vfs_inode
;
486 list_del_init(&info
->shrinklist
);
490 list_for_each_safe(pos
, next
, &list
) {
493 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
494 inode
= &info
->vfs_inode
;
496 if (nr_to_split
&& split
>= nr_to_split
)
499 page
= find_get_page(inode
->i_mapping
,
500 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
504 /* No huge page at the end of the file: nothing to split */
505 if (!PageTransHuge(page
)) {
511 * Leave the inode on the list if we failed to lock
512 * the page at this time.
514 * Waiting for the lock may lead to deadlock in the
517 if (!trylock_page(page
)) {
522 ret
= split_huge_page(page
);
526 /* If split failed leave the inode on the list */
532 list_del_init(&info
->shrinklist
);
538 spin_lock(&sbinfo
->shrinklist_lock
);
539 list_splice_tail(&list
, &sbinfo
->shrinklist
);
540 sbinfo
->shrinklist_len
-= removed
;
541 spin_unlock(&sbinfo
->shrinklist_lock
);
546 static long shmem_unused_huge_scan(struct super_block
*sb
,
547 struct shrink_control
*sc
)
549 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
551 if (!READ_ONCE(sbinfo
->shrinklist_len
))
554 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
557 static long shmem_unused_huge_count(struct super_block
*sb
,
558 struct shrink_control
*sc
)
560 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
561 return READ_ONCE(sbinfo
->shrinklist_len
);
563 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
565 #define shmem_huge SHMEM_HUGE_DENY
567 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
568 struct shrink_control
*sc
, unsigned long nr_to_split
)
572 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
575 * Like add_to_page_cache_locked, but error if expected item has gone.
577 static int shmem_add_to_page_cache(struct page
*page
,
578 struct address_space
*mapping
,
579 pgoff_t index
, void *expected
)
581 int error
, nr
= hpage_nr_pages(page
);
583 VM_BUG_ON_PAGE(PageTail(page
), page
);
584 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
585 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
586 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
587 VM_BUG_ON(expected
&& PageTransHuge(page
));
589 page_ref_add(page
, nr
);
590 page
->mapping
= mapping
;
593 xa_lock_irq(&mapping
->i_pages
);
594 if (PageTransHuge(page
)) {
595 void __rcu
**results
;
600 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
,
601 &results
, &idx
, index
, 1) &&
602 idx
< index
+ HPAGE_PMD_NR
) {
607 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
608 error
= radix_tree_insert(&mapping
->i_pages
,
609 index
+ i
, page
+ i
);
612 count_vm_event(THP_FILE_ALLOC
);
614 } else if (!expected
) {
615 error
= radix_tree_insert(&mapping
->i_pages
, index
, page
);
617 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
622 mapping
->nrpages
+= nr
;
623 if (PageTransHuge(page
))
624 __inc_node_page_state(page
, NR_SHMEM_THPS
);
625 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
626 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
627 xa_unlock_irq(&mapping
->i_pages
);
629 page
->mapping
= NULL
;
630 xa_unlock_irq(&mapping
->i_pages
);
631 page_ref_sub(page
, nr
);
637 * Like delete_from_page_cache, but substitutes swap for page.
639 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
641 struct address_space
*mapping
= page
->mapping
;
644 VM_BUG_ON_PAGE(PageCompound(page
), page
);
646 xa_lock_irq(&mapping
->i_pages
);
647 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
648 page
->mapping
= NULL
;
650 __dec_node_page_state(page
, NR_FILE_PAGES
);
651 __dec_node_page_state(page
, NR_SHMEM
);
652 xa_unlock_irq(&mapping
->i_pages
);
658 * Remove swap entry from radix tree, free the swap and its page cache.
660 static int shmem_free_swap(struct address_space
*mapping
,
661 pgoff_t index
, void *radswap
)
665 xa_lock_irq(&mapping
->i_pages
);
666 old
= radix_tree_delete_item(&mapping
->i_pages
, index
, radswap
);
667 xa_unlock_irq(&mapping
->i_pages
);
670 free_swap_and_cache(radix_to_swp_entry(radswap
));
675 * Determine (in bytes) how many of the shmem object's pages mapped by the
676 * given offsets are swapped out.
678 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
679 * as long as the inode doesn't go away and racy results are not a problem.
681 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
682 pgoff_t start
, pgoff_t end
)
684 struct radix_tree_iter iter
;
687 unsigned long swapped
= 0;
691 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
692 if (iter
.index
>= end
)
695 page
= radix_tree_deref_slot(slot
);
697 if (radix_tree_deref_retry(page
)) {
698 slot
= radix_tree_iter_retry(&iter
);
702 if (radix_tree_exceptional_entry(page
))
705 if (need_resched()) {
706 slot
= radix_tree_iter_resume(slot
, &iter
);
713 return swapped
<< PAGE_SHIFT
;
717 * Determine (in bytes) how many of the shmem object's pages mapped by the
718 * given vma is swapped out.
720 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
721 * as long as the inode doesn't go away and racy results are not a problem.
723 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
725 struct inode
*inode
= file_inode(vma
->vm_file
);
726 struct shmem_inode_info
*info
= SHMEM_I(inode
);
727 struct address_space
*mapping
= inode
->i_mapping
;
728 unsigned long swapped
;
730 /* Be careful as we don't hold info->lock */
731 swapped
= READ_ONCE(info
->swapped
);
734 * The easier cases are when the shmem object has nothing in swap, or
735 * the vma maps it whole. Then we can simply use the stats that we
741 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
742 return swapped
<< PAGE_SHIFT
;
744 /* Here comes the more involved part */
745 return shmem_partial_swap_usage(mapping
,
746 linear_page_index(vma
, vma
->vm_start
),
747 linear_page_index(vma
, vma
->vm_end
));
751 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
753 void shmem_unlock_mapping(struct address_space
*mapping
)
756 pgoff_t indices
[PAGEVEC_SIZE
];
761 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
763 while (!mapping_unevictable(mapping
)) {
765 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
766 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
768 pvec
.nr
= find_get_entries(mapping
, index
,
769 PAGEVEC_SIZE
, pvec
.pages
, indices
);
772 index
= indices
[pvec
.nr
- 1] + 1;
773 pagevec_remove_exceptionals(&pvec
);
774 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
775 pagevec_release(&pvec
);
781 * Remove range of pages and swap entries from radix tree, and free them.
782 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
784 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
787 struct address_space
*mapping
= inode
->i_mapping
;
788 struct shmem_inode_info
*info
= SHMEM_I(inode
);
789 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
790 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
791 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
792 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
794 pgoff_t indices
[PAGEVEC_SIZE
];
795 long nr_swaps_freed
= 0;
800 end
= -1; /* unsigned, so actually very big */
804 while (index
< end
) {
805 pvec
.nr
= find_get_entries(mapping
, index
,
806 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
807 pvec
.pages
, indices
);
810 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
811 struct page
*page
= pvec
.pages
[i
];
817 if (radix_tree_exceptional_entry(page
)) {
820 nr_swaps_freed
+= !shmem_free_swap(mapping
,
825 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
827 if (!trylock_page(page
))
830 if (PageTransTail(page
)) {
831 /* Middle of THP: zero out the page */
832 clear_highpage(page
);
835 } else if (PageTransHuge(page
)) {
836 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
838 * Range ends in the middle of THP:
841 clear_highpage(page
);
845 index
+= HPAGE_PMD_NR
- 1;
846 i
+= HPAGE_PMD_NR
- 1;
849 if (!unfalloc
|| !PageUptodate(page
)) {
850 VM_BUG_ON_PAGE(PageTail(page
), page
);
851 if (page_mapping(page
) == mapping
) {
852 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
853 truncate_inode_page(mapping
, page
);
858 pagevec_remove_exceptionals(&pvec
);
859 pagevec_release(&pvec
);
865 struct page
*page
= NULL
;
866 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
868 unsigned int top
= PAGE_SIZE
;
873 zero_user_segment(page
, partial_start
, top
);
874 set_page_dirty(page
);
880 struct page
*page
= NULL
;
881 shmem_getpage(inode
, end
, &page
, SGP_READ
);
883 zero_user_segment(page
, 0, partial_end
);
884 set_page_dirty(page
);
893 while (index
< end
) {
896 pvec
.nr
= find_get_entries(mapping
, index
,
897 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
898 pvec
.pages
, indices
);
900 /* If all gone or hole-punch or unfalloc, we're done */
901 if (index
== start
|| end
!= -1)
903 /* But if truncating, restart to make sure all gone */
907 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
908 struct page
*page
= pvec
.pages
[i
];
914 if (radix_tree_exceptional_entry(page
)) {
917 if (shmem_free_swap(mapping
, index
, page
)) {
918 /* Swap was replaced by page: retry */
928 if (PageTransTail(page
)) {
929 /* Middle of THP: zero out the page */
930 clear_highpage(page
);
933 * Partial thp truncate due 'start' in middle
934 * of THP: don't need to look on these pages
935 * again on !pvec.nr restart.
937 if (index
!= round_down(end
, HPAGE_PMD_NR
))
940 } else if (PageTransHuge(page
)) {
941 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
943 * Range ends in the middle of THP:
946 clear_highpage(page
);
950 index
+= HPAGE_PMD_NR
- 1;
951 i
+= HPAGE_PMD_NR
- 1;
954 if (!unfalloc
|| !PageUptodate(page
)) {
955 VM_BUG_ON_PAGE(PageTail(page
), page
);
956 if (page_mapping(page
) == mapping
) {
957 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
958 truncate_inode_page(mapping
, page
);
960 /* Page was replaced by swap: retry */
968 pagevec_remove_exceptionals(&pvec
);
969 pagevec_release(&pvec
);
973 spin_lock_irq(&info
->lock
);
974 info
->swapped
-= nr_swaps_freed
;
975 shmem_recalc_inode(inode
);
976 spin_unlock_irq(&info
->lock
);
979 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
981 shmem_undo_range(inode
, lstart
, lend
, false);
982 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
984 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
986 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
987 u32 request_mask
, unsigned int query_flags
)
989 struct inode
*inode
= path
->dentry
->d_inode
;
990 struct shmem_inode_info
*info
= SHMEM_I(inode
);
992 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
993 spin_lock_irq(&info
->lock
);
994 shmem_recalc_inode(inode
);
995 spin_unlock_irq(&info
->lock
);
997 generic_fillattr(inode
, stat
);
1001 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1003 struct inode
*inode
= d_inode(dentry
);
1004 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1005 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1008 error
= setattr_prepare(dentry
, attr
);
1012 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1013 loff_t oldsize
= inode
->i_size
;
1014 loff_t newsize
= attr
->ia_size
;
1016 /* protected by i_mutex */
1017 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1018 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1021 if (newsize
!= oldsize
) {
1022 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1026 i_size_write(inode
, newsize
);
1027 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1029 if (newsize
<= oldsize
) {
1030 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1031 if (oldsize
> holebegin
)
1032 unmap_mapping_range(inode
->i_mapping
,
1035 shmem_truncate_range(inode
,
1036 newsize
, (loff_t
)-1);
1037 /* unmap again to remove racily COWed private pages */
1038 if (oldsize
> holebegin
)
1039 unmap_mapping_range(inode
->i_mapping
,
1043 * Part of the huge page can be beyond i_size: subject
1044 * to shrink under memory pressure.
1046 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1047 spin_lock(&sbinfo
->shrinklist_lock
);
1049 * _careful to defend against unlocked access to
1050 * ->shrink_list in shmem_unused_huge_shrink()
1052 if (list_empty_careful(&info
->shrinklist
)) {
1053 list_add_tail(&info
->shrinklist
,
1054 &sbinfo
->shrinklist
);
1055 sbinfo
->shrinklist_len
++;
1057 spin_unlock(&sbinfo
->shrinklist_lock
);
1062 setattr_copy(inode
, attr
);
1063 if (attr
->ia_valid
& ATTR_MODE
)
1064 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1068 static void shmem_evict_inode(struct inode
*inode
)
1070 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1071 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1073 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1074 shmem_unacct_size(info
->flags
, inode
->i_size
);
1076 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1077 if (!list_empty(&info
->shrinklist
)) {
1078 spin_lock(&sbinfo
->shrinklist_lock
);
1079 if (!list_empty(&info
->shrinklist
)) {
1080 list_del_init(&info
->shrinklist
);
1081 sbinfo
->shrinklist_len
--;
1083 spin_unlock(&sbinfo
->shrinklist_lock
);
1085 if (!list_empty(&info
->swaplist
)) {
1086 mutex_lock(&shmem_swaplist_mutex
);
1087 list_del_init(&info
->swaplist
);
1088 mutex_unlock(&shmem_swaplist_mutex
);
1092 simple_xattrs_free(&info
->xattrs
);
1093 WARN_ON(inode
->i_blocks
);
1094 shmem_free_inode(inode
->i_sb
);
1098 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1100 struct radix_tree_iter iter
;
1102 unsigned long found
= -1;
1103 unsigned int checked
= 0;
1106 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1107 if (*slot
== item
) {
1112 if ((checked
% 4096) != 0)
1114 slot
= radix_tree_iter_resume(slot
, &iter
);
1123 * If swap found in inode, free it and move page from swapcache to filecache.
1125 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1126 swp_entry_t swap
, struct page
**pagep
)
1128 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1134 radswap
= swp_to_radix_entry(swap
);
1135 index
= find_swap_entry(&mapping
->i_pages
, radswap
);
1137 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1140 * Move _head_ to start search for next from here.
1141 * But be careful: shmem_evict_inode checks list_empty without taking
1142 * mutex, and there's an instant in list_move_tail when info->swaplist
1143 * would appear empty, if it were the only one on shmem_swaplist.
1145 if (shmem_swaplist
.next
!= &info
->swaplist
)
1146 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1148 gfp
= mapping_gfp_mask(mapping
);
1149 if (shmem_should_replace_page(*pagep
, gfp
)) {
1150 mutex_unlock(&shmem_swaplist_mutex
);
1151 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1152 mutex_lock(&shmem_swaplist_mutex
);
1154 * We needed to drop mutex to make that restrictive page
1155 * allocation, but the inode might have been freed while we
1156 * dropped it: although a racing shmem_evict_inode() cannot
1157 * complete without emptying the radix_tree, our page lock
1158 * on this swapcache page is not enough to prevent that -
1159 * free_swap_and_cache() of our swap entry will only
1160 * trylock_page(), removing swap from radix_tree whatever.
1162 * We must not proceed to shmem_add_to_page_cache() if the
1163 * inode has been freed, but of course we cannot rely on
1164 * inode or mapping or info to check that. However, we can
1165 * safely check if our swap entry is still in use (and here
1166 * it can't have got reused for another page): if it's still
1167 * in use, then the inode cannot have been freed yet, and we
1168 * can safely proceed (if it's no longer in use, that tells
1169 * nothing about the inode, but we don't need to unuse swap).
1171 if (!page_swapcount(*pagep
))
1176 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1177 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1178 * beneath us (pagelock doesn't help until the page is in pagecache).
1181 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1183 if (error
!= -ENOMEM
) {
1185 * Truncation and eviction use free_swap_and_cache(), which
1186 * only does trylock page: if we raced, best clean up here.
1188 delete_from_swap_cache(*pagep
);
1189 set_page_dirty(*pagep
);
1191 spin_lock_irq(&info
->lock
);
1193 spin_unlock_irq(&info
->lock
);
1201 * Search through swapped inodes to find and replace swap by page.
1203 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1205 struct list_head
*this, *next
;
1206 struct shmem_inode_info
*info
;
1207 struct mem_cgroup
*memcg
;
1211 * There's a faint possibility that swap page was replaced before
1212 * caller locked it: caller will come back later with the right page.
1214 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1218 * Charge page using GFP_KERNEL while we can wait, before taking
1219 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1220 * Charged back to the user (not to caller) when swap account is used.
1222 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1226 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1229 mutex_lock(&shmem_swaplist_mutex
);
1230 list_for_each_safe(this, next
, &shmem_swaplist
) {
1231 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1233 error
= shmem_unuse_inode(info
, swap
, &page
);
1235 list_del_init(&info
->swaplist
);
1237 if (error
!= -EAGAIN
)
1239 /* found nothing in this: move on to search the next */
1241 mutex_unlock(&shmem_swaplist_mutex
);
1244 if (error
!= -ENOMEM
)
1246 mem_cgroup_cancel_charge(page
, memcg
, false);
1248 mem_cgroup_commit_charge(page
, memcg
, true, false);
1256 * Move the page from the page cache to the swap cache.
1258 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1260 struct shmem_inode_info
*info
;
1261 struct address_space
*mapping
;
1262 struct inode
*inode
;
1266 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1267 BUG_ON(!PageLocked(page
));
1268 mapping
= page
->mapping
;
1269 index
= page
->index
;
1270 inode
= mapping
->host
;
1271 info
= SHMEM_I(inode
);
1272 if (info
->flags
& VM_LOCKED
)
1274 if (!total_swap_pages
)
1278 * Our capabilities prevent regular writeback or sync from ever calling
1279 * shmem_writepage; but a stacking filesystem might use ->writepage of
1280 * its underlying filesystem, in which case tmpfs should write out to
1281 * swap only in response to memory pressure, and not for the writeback
1284 if (!wbc
->for_reclaim
) {
1285 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1290 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1291 * value into swapfile.c, the only way we can correctly account for a
1292 * fallocated page arriving here is now to initialize it and write it.
1294 * That's okay for a page already fallocated earlier, but if we have
1295 * not yet completed the fallocation, then (a) we want to keep track
1296 * of this page in case we have to undo it, and (b) it may not be a
1297 * good idea to continue anyway, once we're pushing into swap. So
1298 * reactivate the page, and let shmem_fallocate() quit when too many.
1300 if (!PageUptodate(page
)) {
1301 if (inode
->i_private
) {
1302 struct shmem_falloc
*shmem_falloc
;
1303 spin_lock(&inode
->i_lock
);
1304 shmem_falloc
= inode
->i_private
;
1306 !shmem_falloc
->waitq
&&
1307 index
>= shmem_falloc
->start
&&
1308 index
< shmem_falloc
->next
)
1309 shmem_falloc
->nr_unswapped
++;
1311 shmem_falloc
= NULL
;
1312 spin_unlock(&inode
->i_lock
);
1316 clear_highpage(page
);
1317 flush_dcache_page(page
);
1318 SetPageUptodate(page
);
1321 swap
= get_swap_page(page
);
1325 if (mem_cgroup_try_charge_swap(page
, swap
))
1329 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1330 * if it's not already there. Do it now before the page is
1331 * moved to swap cache, when its pagelock no longer protects
1332 * the inode from eviction. But don't unlock the mutex until
1333 * we've incremented swapped, because shmem_unuse_inode() will
1334 * prune a !swapped inode from the swaplist under this mutex.
1336 mutex_lock(&shmem_swaplist_mutex
);
1337 if (list_empty(&info
->swaplist
))
1338 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1340 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1341 spin_lock_irq(&info
->lock
);
1342 shmem_recalc_inode(inode
);
1344 spin_unlock_irq(&info
->lock
);
1346 swap_shmem_alloc(swap
);
1347 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1349 mutex_unlock(&shmem_swaplist_mutex
);
1350 BUG_ON(page_mapped(page
));
1351 swap_writepage(page
, wbc
);
1355 mutex_unlock(&shmem_swaplist_mutex
);
1357 put_swap_page(page
, swap
);
1359 set_page_dirty(page
);
1360 if (wbc
->for_reclaim
)
1361 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1366 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1367 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1371 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1372 return; /* show nothing */
1374 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1376 seq_printf(seq
, ",mpol=%s", buffer
);
1379 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1381 struct mempolicy
*mpol
= NULL
;
1383 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1384 mpol
= sbinfo
->mpol
;
1386 spin_unlock(&sbinfo
->stat_lock
);
1390 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1391 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1394 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1398 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1400 #define vm_policy vm_private_data
1403 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1404 struct shmem_inode_info
*info
, pgoff_t index
)
1406 /* Create a pseudo vma that just contains the policy */
1408 /* Bias interleave by inode number to distribute better across nodes */
1409 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1411 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1414 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1416 /* Drop reference taken by mpol_shared_policy_lookup() */
1417 mpol_cond_put(vma
->vm_policy
);
1420 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1421 struct shmem_inode_info
*info
, pgoff_t index
)
1423 struct vm_area_struct pvma
;
1425 struct vm_fault vmf
;
1427 shmem_pseudo_vma_init(&pvma
, info
, index
);
1430 page
= swap_cluster_readahead(swap
, gfp
, &vmf
);
1431 shmem_pseudo_vma_destroy(&pvma
);
1436 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1437 struct shmem_inode_info
*info
, pgoff_t index
)
1439 struct vm_area_struct pvma
;
1440 struct inode
*inode
= &info
->vfs_inode
;
1441 struct address_space
*mapping
= inode
->i_mapping
;
1442 pgoff_t idx
, hindex
;
1443 void __rcu
**results
;
1446 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1449 hindex
= round_down(index
, HPAGE_PMD_NR
);
1451 if (radix_tree_gang_lookup_slot(&mapping
->i_pages
, &results
, &idx
,
1452 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1458 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1459 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1460 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1461 shmem_pseudo_vma_destroy(&pvma
);
1463 prep_transhuge_page(page
);
1467 static struct page
*shmem_alloc_page(gfp_t gfp
,
1468 struct shmem_inode_info
*info
, pgoff_t index
)
1470 struct vm_area_struct pvma
;
1473 shmem_pseudo_vma_init(&pvma
, info
, index
);
1474 page
= alloc_page_vma(gfp
, &pvma
, 0);
1475 shmem_pseudo_vma_destroy(&pvma
);
1480 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1481 struct inode
*inode
,
1482 pgoff_t index
, bool huge
)
1484 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1489 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1491 nr
= huge
? HPAGE_PMD_NR
: 1;
1493 if (!shmem_inode_acct_block(inode
, nr
))
1497 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1499 page
= shmem_alloc_page(gfp
, info
, index
);
1501 __SetPageLocked(page
);
1502 __SetPageSwapBacked(page
);
1507 shmem_inode_unacct_blocks(inode
, nr
);
1509 return ERR_PTR(err
);
1513 * When a page is moved from swapcache to shmem filecache (either by the
1514 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1515 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1516 * ignorance of the mapping it belongs to. If that mapping has special
1517 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1518 * we may need to copy to a suitable page before moving to filecache.
1520 * In a future release, this may well be extended to respect cpuset and
1521 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1522 * but for now it is a simple matter of zone.
1524 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1526 return page_zonenum(page
) > gfp_zone(gfp
);
1529 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1530 struct shmem_inode_info
*info
, pgoff_t index
)
1532 struct page
*oldpage
, *newpage
;
1533 struct address_space
*swap_mapping
;
1538 swap_index
= page_private(oldpage
);
1539 swap_mapping
= page_mapping(oldpage
);
1542 * We have arrived here because our zones are constrained, so don't
1543 * limit chance of success by further cpuset and node constraints.
1545 gfp
&= ~GFP_CONSTRAINT_MASK
;
1546 newpage
= shmem_alloc_page(gfp
, info
, index
);
1551 copy_highpage(newpage
, oldpage
);
1552 flush_dcache_page(newpage
);
1554 __SetPageLocked(newpage
);
1555 __SetPageSwapBacked(newpage
);
1556 SetPageUptodate(newpage
);
1557 set_page_private(newpage
, swap_index
);
1558 SetPageSwapCache(newpage
);
1561 * Our caller will very soon move newpage out of swapcache, but it's
1562 * a nice clean interface for us to replace oldpage by newpage there.
1564 xa_lock_irq(&swap_mapping
->i_pages
);
1565 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1568 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1569 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1571 xa_unlock_irq(&swap_mapping
->i_pages
);
1573 if (unlikely(error
)) {
1575 * Is this possible? I think not, now that our callers check
1576 * both PageSwapCache and page_private after getting page lock;
1577 * but be defensive. Reverse old to newpage for clear and free.
1581 mem_cgroup_migrate(oldpage
, newpage
);
1582 lru_cache_add_anon(newpage
);
1586 ClearPageSwapCache(oldpage
);
1587 set_page_private(oldpage
, 0);
1589 unlock_page(oldpage
);
1596 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1598 * If we allocate a new one we do not mark it dirty. That's up to the
1599 * vm. If we swap it in we mark it dirty since we also free the swap
1600 * entry since a page cannot live in both the swap and page cache.
1602 * fault_mm and fault_type are only supplied by shmem_fault:
1603 * otherwise they are NULL.
1605 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1606 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1607 struct vm_area_struct
*vma
, struct vm_fault
*vmf
, int *fault_type
)
1609 struct address_space
*mapping
= inode
->i_mapping
;
1610 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1611 struct shmem_sb_info
*sbinfo
;
1612 struct mm_struct
*charge_mm
;
1613 struct mem_cgroup
*memcg
;
1616 enum sgp_type sgp_huge
= sgp
;
1617 pgoff_t hindex
= index
;
1622 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1624 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1628 page
= find_lock_entry(mapping
, index
);
1629 if (radix_tree_exceptional_entry(page
)) {
1630 swap
= radix_to_swp_entry(page
);
1634 if (sgp
<= SGP_CACHE
&&
1635 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1640 if (page
&& sgp
== SGP_WRITE
)
1641 mark_page_accessed(page
);
1643 /* fallocated page? */
1644 if (page
&& !PageUptodate(page
)) {
1645 if (sgp
!= SGP_READ
)
1651 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1657 * Fast cache lookup did not find it:
1658 * bring it back from swap or allocate.
1660 sbinfo
= SHMEM_SB(inode
->i_sb
);
1661 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1664 /* Look it up and read it in.. */
1665 page
= lookup_swap_cache(swap
, NULL
, 0);
1667 /* Or update major stats only when swapin succeeds?? */
1669 *fault_type
|= VM_FAULT_MAJOR
;
1670 count_vm_event(PGMAJFAULT
);
1671 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1673 /* Here we actually start the io */
1674 page
= shmem_swapin(swap
, gfp
, info
, index
);
1681 /* We have to do this with page locked to prevent races */
1683 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1684 !shmem_confirm_swap(mapping
, index
, swap
)) {
1685 error
= -EEXIST
; /* try again */
1688 if (!PageUptodate(page
)) {
1692 wait_on_page_writeback(page
);
1694 if (shmem_should_replace_page(page
, gfp
)) {
1695 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1700 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1703 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1704 swp_to_radix_entry(swap
));
1706 * We already confirmed swap under page lock, and make
1707 * no memory allocation here, so usually no possibility
1708 * of error; but free_swap_and_cache() only trylocks a
1709 * page, so it is just possible that the entry has been
1710 * truncated or holepunched since swap was confirmed.
1711 * shmem_undo_range() will have done some of the
1712 * unaccounting, now delete_from_swap_cache() will do
1714 * Reset swap.val? No, leave it so "failed" goes back to
1715 * "repeat": reading a hole and writing should succeed.
1718 mem_cgroup_cancel_charge(page
, memcg
, false);
1719 delete_from_swap_cache(page
);
1725 mem_cgroup_commit_charge(page
, memcg
, true, false);
1727 spin_lock_irq(&info
->lock
);
1729 shmem_recalc_inode(inode
);
1730 spin_unlock_irq(&info
->lock
);
1732 if (sgp
== SGP_WRITE
)
1733 mark_page_accessed(page
);
1735 delete_from_swap_cache(page
);
1736 set_page_dirty(page
);
1740 if (vma
&& userfaultfd_missing(vma
)) {
1741 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1745 /* shmem_symlink() */
1746 if (mapping
->a_ops
!= &shmem_aops
)
1748 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1750 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1752 switch (sbinfo
->huge
) {
1755 case SHMEM_HUGE_NEVER
:
1757 case SHMEM_HUGE_WITHIN_SIZE
:
1758 off
= round_up(index
, HPAGE_PMD_NR
);
1759 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1760 if (i_size
>= HPAGE_PMD_SIZE
&&
1761 i_size
>> PAGE_SHIFT
>= off
)
1764 case SHMEM_HUGE_ADVISE
:
1765 if (sgp_huge
== SGP_HUGE
)
1767 /* TODO: implement fadvise() hints */
1772 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1774 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1779 error
= PTR_ERR(page
);
1781 if (error
!= -ENOSPC
)
1784 * Try to reclaim some spece by splitting a huge page
1785 * beyond i_size on the filesystem.
1789 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1790 if (ret
== SHRINK_STOP
)
1798 if (PageTransHuge(page
))
1799 hindex
= round_down(index
, HPAGE_PMD_NR
);
1803 if (sgp
== SGP_WRITE
)
1804 __SetPageReferenced(page
);
1806 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1807 PageTransHuge(page
));
1810 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1811 compound_order(page
));
1813 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1815 radix_tree_preload_end();
1818 mem_cgroup_cancel_charge(page
, memcg
,
1819 PageTransHuge(page
));
1822 mem_cgroup_commit_charge(page
, memcg
, false,
1823 PageTransHuge(page
));
1824 lru_cache_add_anon(page
);
1826 spin_lock_irq(&info
->lock
);
1827 info
->alloced
+= 1 << compound_order(page
);
1828 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1829 shmem_recalc_inode(inode
);
1830 spin_unlock_irq(&info
->lock
);
1833 if (PageTransHuge(page
) &&
1834 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1835 hindex
+ HPAGE_PMD_NR
- 1) {
1837 * Part of the huge page is beyond i_size: subject
1838 * to shrink under memory pressure.
1840 spin_lock(&sbinfo
->shrinklist_lock
);
1842 * _careful to defend against unlocked access to
1843 * ->shrink_list in shmem_unused_huge_shrink()
1845 if (list_empty_careful(&info
->shrinklist
)) {
1846 list_add_tail(&info
->shrinklist
,
1847 &sbinfo
->shrinklist
);
1848 sbinfo
->shrinklist_len
++;
1850 spin_unlock(&sbinfo
->shrinklist_lock
);
1854 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1856 if (sgp
== SGP_FALLOC
)
1860 * Let SGP_WRITE caller clear ends if write does not fill page;
1861 * but SGP_FALLOC on a page fallocated earlier must initialize
1862 * it now, lest undo on failure cancel our earlier guarantee.
1864 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1865 struct page
*head
= compound_head(page
);
1868 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1869 clear_highpage(head
+ i
);
1870 flush_dcache_page(head
+ i
);
1872 SetPageUptodate(head
);
1876 /* Perhaps the file has been truncated since we checked */
1877 if (sgp
<= SGP_CACHE
&&
1878 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1880 ClearPageDirty(page
);
1881 delete_from_page_cache(page
);
1882 spin_lock_irq(&info
->lock
);
1883 shmem_recalc_inode(inode
);
1884 spin_unlock_irq(&info
->lock
);
1889 *pagep
= page
+ index
- hindex
;
1896 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1898 if (PageTransHuge(page
)) {
1904 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1911 if (error
== -ENOSPC
&& !once
++) {
1912 spin_lock_irq(&info
->lock
);
1913 shmem_recalc_inode(inode
);
1914 spin_unlock_irq(&info
->lock
);
1917 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1923 * This is like autoremove_wake_function, but it removes the wait queue
1924 * entry unconditionally - even if something else had already woken the
1927 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1929 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1930 list_del_init(&wait
->entry
);
1934 static int shmem_fault(struct vm_fault
*vmf
)
1936 struct vm_area_struct
*vma
= vmf
->vma
;
1937 struct inode
*inode
= file_inode(vma
->vm_file
);
1938 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1941 int ret
= VM_FAULT_LOCKED
;
1944 * Trinity finds that probing a hole which tmpfs is punching can
1945 * prevent the hole-punch from ever completing: which in turn
1946 * locks writers out with its hold on i_mutex. So refrain from
1947 * faulting pages into the hole while it's being punched. Although
1948 * shmem_undo_range() does remove the additions, it may be unable to
1949 * keep up, as each new page needs its own unmap_mapping_range() call,
1950 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1952 * It does not matter if we sometimes reach this check just before the
1953 * hole-punch begins, so that one fault then races with the punch:
1954 * we just need to make racing faults a rare case.
1956 * The implementation below would be much simpler if we just used a
1957 * standard mutex or completion: but we cannot take i_mutex in fault,
1958 * and bloating every shmem inode for this unlikely case would be sad.
1960 if (unlikely(inode
->i_private
)) {
1961 struct shmem_falloc
*shmem_falloc
;
1963 spin_lock(&inode
->i_lock
);
1964 shmem_falloc
= inode
->i_private
;
1966 shmem_falloc
->waitq
&&
1967 vmf
->pgoff
>= shmem_falloc
->start
&&
1968 vmf
->pgoff
< shmem_falloc
->next
) {
1969 wait_queue_head_t
*shmem_falloc_waitq
;
1970 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1972 ret
= VM_FAULT_NOPAGE
;
1973 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1974 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1975 /* It's polite to up mmap_sem if we can */
1976 up_read(&vma
->vm_mm
->mmap_sem
);
1977 ret
= VM_FAULT_RETRY
;
1980 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1981 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1982 TASK_UNINTERRUPTIBLE
);
1983 spin_unlock(&inode
->i_lock
);
1987 * shmem_falloc_waitq points into the shmem_fallocate()
1988 * stack of the hole-punching task: shmem_falloc_waitq
1989 * is usually invalid by the time we reach here, but
1990 * finish_wait() does not dereference it in that case;
1991 * though i_lock needed lest racing with wake_up_all().
1993 spin_lock(&inode
->i_lock
);
1994 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1995 spin_unlock(&inode
->i_lock
);
1998 spin_unlock(&inode
->i_lock
);
2003 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
2004 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
2006 else if (vma
->vm_flags
& VM_HUGEPAGE
)
2009 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
2010 gfp
, vma
, vmf
, &ret
);
2012 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
2016 unsigned long shmem_get_unmapped_area(struct file
*file
,
2017 unsigned long uaddr
, unsigned long len
,
2018 unsigned long pgoff
, unsigned long flags
)
2020 unsigned long (*get_area
)(struct file
*,
2021 unsigned long, unsigned long, unsigned long, unsigned long);
2023 unsigned long offset
;
2024 unsigned long inflated_len
;
2025 unsigned long inflated_addr
;
2026 unsigned long inflated_offset
;
2028 if (len
> TASK_SIZE
)
2031 get_area
= current
->mm
->get_unmapped_area
;
2032 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2034 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2036 if (IS_ERR_VALUE(addr
))
2038 if (addr
& ~PAGE_MASK
)
2040 if (addr
> TASK_SIZE
- len
)
2043 if (shmem_huge
== SHMEM_HUGE_DENY
)
2045 if (len
< HPAGE_PMD_SIZE
)
2047 if (flags
& MAP_FIXED
)
2050 * Our priority is to support MAP_SHARED mapped hugely;
2051 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2052 * But if caller specified an address hint, respect that as before.
2057 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2058 struct super_block
*sb
;
2061 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2062 sb
= file_inode(file
)->i_sb
;
2065 * Called directly from mm/mmap.c, or drivers/char/mem.c
2066 * for "/dev/zero", to create a shared anonymous object.
2068 if (IS_ERR(shm_mnt
))
2070 sb
= shm_mnt
->mnt_sb
;
2072 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2076 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2077 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2079 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2082 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2083 if (inflated_len
> TASK_SIZE
)
2085 if (inflated_len
< len
)
2088 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2089 if (IS_ERR_VALUE(inflated_addr
))
2091 if (inflated_addr
& ~PAGE_MASK
)
2094 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2095 inflated_addr
+= offset
- inflated_offset
;
2096 if (inflated_offset
> offset
)
2097 inflated_addr
+= HPAGE_PMD_SIZE
;
2099 if (inflated_addr
> TASK_SIZE
- len
)
2101 return inflated_addr
;
2105 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2107 struct inode
*inode
= file_inode(vma
->vm_file
);
2108 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2111 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2114 struct inode
*inode
= file_inode(vma
->vm_file
);
2117 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2118 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2122 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2124 struct inode
*inode
= file_inode(file
);
2125 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2126 int retval
= -ENOMEM
;
2128 spin_lock_irq(&info
->lock
);
2129 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2130 if (!user_shm_lock(inode
->i_size
, user
))
2132 info
->flags
|= VM_LOCKED
;
2133 mapping_set_unevictable(file
->f_mapping
);
2135 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2136 user_shm_unlock(inode
->i_size
, user
);
2137 info
->flags
&= ~VM_LOCKED
;
2138 mapping_clear_unevictable(file
->f_mapping
);
2143 spin_unlock_irq(&info
->lock
);
2147 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2149 file_accessed(file
);
2150 vma
->vm_ops
= &shmem_vm_ops
;
2151 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2152 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2153 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2154 khugepaged_enter(vma
, vma
->vm_flags
);
2159 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2160 umode_t mode
, dev_t dev
, unsigned long flags
)
2162 struct inode
*inode
;
2163 struct shmem_inode_info
*info
;
2164 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2166 if (shmem_reserve_inode(sb
))
2169 inode
= new_inode(sb
);
2171 inode
->i_ino
= get_next_ino();
2172 inode_init_owner(inode
, dir
, mode
);
2173 inode
->i_blocks
= 0;
2174 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2175 inode
->i_generation
= get_seconds();
2176 info
= SHMEM_I(inode
);
2177 memset(info
, 0, (char *)inode
- (char *)info
);
2178 spin_lock_init(&info
->lock
);
2179 info
->seals
= F_SEAL_SEAL
;
2180 info
->flags
= flags
& VM_NORESERVE
;
2181 INIT_LIST_HEAD(&info
->shrinklist
);
2182 INIT_LIST_HEAD(&info
->swaplist
);
2183 simple_xattrs_init(&info
->xattrs
);
2184 cache_no_acl(inode
);
2186 switch (mode
& S_IFMT
) {
2188 inode
->i_op
= &shmem_special_inode_operations
;
2189 init_special_inode(inode
, mode
, dev
);
2192 inode
->i_mapping
->a_ops
= &shmem_aops
;
2193 inode
->i_op
= &shmem_inode_operations
;
2194 inode
->i_fop
= &shmem_file_operations
;
2195 mpol_shared_policy_init(&info
->policy
,
2196 shmem_get_sbmpol(sbinfo
));
2200 /* Some things misbehave if size == 0 on a directory */
2201 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2202 inode
->i_op
= &shmem_dir_inode_operations
;
2203 inode
->i_fop
= &simple_dir_operations
;
2207 * Must not load anything in the rbtree,
2208 * mpol_free_shared_policy will not be called.
2210 mpol_shared_policy_init(&info
->policy
, NULL
);
2214 shmem_free_inode(sb
);
2218 bool shmem_mapping(struct address_space
*mapping
)
2220 return mapping
->a_ops
== &shmem_aops
;
2223 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2225 struct vm_area_struct
*dst_vma
,
2226 unsigned long dst_addr
,
2227 unsigned long src_addr
,
2229 struct page
**pagep
)
2231 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2232 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2233 struct address_space
*mapping
= inode
->i_mapping
;
2234 gfp_t gfp
= mapping_gfp_mask(mapping
);
2235 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2236 struct mem_cgroup
*memcg
;
2240 pte_t _dst_pte
, *dst_pte
;
2244 if (!shmem_inode_acct_block(inode
, 1))
2248 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2250 goto out_unacct_blocks
;
2252 if (!zeropage
) { /* mcopy_atomic */
2253 page_kaddr
= kmap_atomic(page
);
2254 ret
= copy_from_user(page_kaddr
,
2255 (const void __user
*)src_addr
,
2257 kunmap_atomic(page_kaddr
);
2259 /* fallback to copy_from_user outside mmap_sem */
2260 if (unlikely(ret
)) {
2262 shmem_inode_unacct_blocks(inode
, 1);
2263 /* don't free the page */
2266 } else { /* mfill_zeropage_atomic */
2267 clear_highpage(page
);
2274 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2275 __SetPageLocked(page
);
2276 __SetPageSwapBacked(page
);
2277 __SetPageUptodate(page
);
2279 ret
= mem_cgroup_try_charge(page
, dst_mm
, gfp
, &memcg
, false);
2283 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2285 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2286 radix_tree_preload_end();
2289 goto out_release_uncharge
;
2291 mem_cgroup_commit_charge(page
, memcg
, false, false);
2293 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2294 if (dst_vma
->vm_flags
& VM_WRITE
)
2295 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2298 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2299 if (!pte_none(*dst_pte
))
2300 goto out_release_uncharge_unlock
;
2302 lru_cache_add_anon(page
);
2304 spin_lock(&info
->lock
);
2306 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2307 shmem_recalc_inode(inode
);
2308 spin_unlock(&info
->lock
);
2310 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2311 page_add_file_rmap(page
, false);
2312 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2314 /* No need to invalidate - it was non-present before */
2315 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2317 pte_unmap_unlock(dst_pte
, ptl
);
2321 out_release_uncharge_unlock
:
2322 pte_unmap_unlock(dst_pte
, ptl
);
2323 out_release_uncharge
:
2324 mem_cgroup_cancel_charge(page
, memcg
, false);
2329 shmem_inode_unacct_blocks(inode
, 1);
2333 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2335 struct vm_area_struct
*dst_vma
,
2336 unsigned long dst_addr
,
2337 unsigned long src_addr
,
2338 struct page
**pagep
)
2340 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2341 dst_addr
, src_addr
, false, pagep
);
2344 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2346 struct vm_area_struct
*dst_vma
,
2347 unsigned long dst_addr
)
2349 struct page
*page
= NULL
;
2351 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2352 dst_addr
, 0, true, &page
);
2356 static const struct inode_operations shmem_symlink_inode_operations
;
2357 static const struct inode_operations shmem_short_symlink_operations
;
2359 #ifdef CONFIG_TMPFS_XATTR
2360 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2362 #define shmem_initxattrs NULL
2366 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2367 loff_t pos
, unsigned len
, unsigned flags
,
2368 struct page
**pagep
, void **fsdata
)
2370 struct inode
*inode
= mapping
->host
;
2371 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2372 pgoff_t index
= pos
>> PAGE_SHIFT
;
2374 /* i_mutex is held by caller */
2375 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2376 if (info
->seals
& F_SEAL_WRITE
)
2378 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2382 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2386 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2387 loff_t pos
, unsigned len
, unsigned copied
,
2388 struct page
*page
, void *fsdata
)
2390 struct inode
*inode
= mapping
->host
;
2392 if (pos
+ copied
> inode
->i_size
)
2393 i_size_write(inode
, pos
+ copied
);
2395 if (!PageUptodate(page
)) {
2396 struct page
*head
= compound_head(page
);
2397 if (PageTransCompound(page
)) {
2400 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2401 if (head
+ i
== page
)
2403 clear_highpage(head
+ i
);
2404 flush_dcache_page(head
+ i
);
2407 if (copied
< PAGE_SIZE
) {
2408 unsigned from
= pos
& (PAGE_SIZE
- 1);
2409 zero_user_segments(page
, 0, from
,
2410 from
+ copied
, PAGE_SIZE
);
2412 SetPageUptodate(head
);
2414 set_page_dirty(page
);
2421 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2423 struct file
*file
= iocb
->ki_filp
;
2424 struct inode
*inode
= file_inode(file
);
2425 struct address_space
*mapping
= inode
->i_mapping
;
2427 unsigned long offset
;
2428 enum sgp_type sgp
= SGP_READ
;
2431 loff_t
*ppos
= &iocb
->ki_pos
;
2434 * Might this read be for a stacking filesystem? Then when reading
2435 * holes of a sparse file, we actually need to allocate those pages,
2436 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2438 if (!iter_is_iovec(to
))
2441 index
= *ppos
>> PAGE_SHIFT
;
2442 offset
= *ppos
& ~PAGE_MASK
;
2445 struct page
*page
= NULL
;
2447 unsigned long nr
, ret
;
2448 loff_t i_size
= i_size_read(inode
);
2450 end_index
= i_size
>> PAGE_SHIFT
;
2451 if (index
> end_index
)
2453 if (index
== end_index
) {
2454 nr
= i_size
& ~PAGE_MASK
;
2459 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2461 if (error
== -EINVAL
)
2466 if (sgp
== SGP_CACHE
)
2467 set_page_dirty(page
);
2472 * We must evaluate after, since reads (unlike writes)
2473 * are called without i_mutex protection against truncate
2476 i_size
= i_size_read(inode
);
2477 end_index
= i_size
>> PAGE_SHIFT
;
2478 if (index
== end_index
) {
2479 nr
= i_size
& ~PAGE_MASK
;
2490 * If users can be writing to this page using arbitrary
2491 * virtual addresses, take care about potential aliasing
2492 * before reading the page on the kernel side.
2494 if (mapping_writably_mapped(mapping
))
2495 flush_dcache_page(page
);
2497 * Mark the page accessed if we read the beginning.
2500 mark_page_accessed(page
);
2502 page
= ZERO_PAGE(0);
2507 * Ok, we have the page, and it's up-to-date, so
2508 * now we can copy it to user space...
2510 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2513 index
+= offset
>> PAGE_SHIFT
;
2514 offset
&= ~PAGE_MASK
;
2517 if (!iov_iter_count(to
))
2526 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2527 file_accessed(file
);
2528 return retval
? retval
: error
;
2532 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2534 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2535 pgoff_t index
, pgoff_t end
, int whence
)
2538 struct pagevec pvec
;
2539 pgoff_t indices
[PAGEVEC_SIZE
];
2543 pagevec_init(&pvec
);
2544 pvec
.nr
= 1; /* start small: we may be there already */
2546 pvec
.nr
= find_get_entries(mapping
, index
,
2547 pvec
.nr
, pvec
.pages
, indices
);
2549 if (whence
== SEEK_DATA
)
2553 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2554 if (index
< indices
[i
]) {
2555 if (whence
== SEEK_HOLE
) {
2561 page
= pvec
.pages
[i
];
2562 if (page
&& !radix_tree_exceptional_entry(page
)) {
2563 if (!PageUptodate(page
))
2567 (page
&& whence
== SEEK_DATA
) ||
2568 (!page
&& whence
== SEEK_HOLE
)) {
2573 pagevec_remove_exceptionals(&pvec
);
2574 pagevec_release(&pvec
);
2575 pvec
.nr
= PAGEVEC_SIZE
;
2581 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2583 struct address_space
*mapping
= file
->f_mapping
;
2584 struct inode
*inode
= mapping
->host
;
2588 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2589 return generic_file_llseek_size(file
, offset
, whence
,
2590 MAX_LFS_FILESIZE
, i_size_read(inode
));
2592 /* We're holding i_mutex so we can access i_size directly */
2596 else if (offset
>= inode
->i_size
)
2599 start
= offset
>> PAGE_SHIFT
;
2600 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2601 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2602 new_offset
<<= PAGE_SHIFT
;
2603 if (new_offset
> offset
) {
2604 if (new_offset
< inode
->i_size
)
2605 offset
= new_offset
;
2606 else if (whence
== SEEK_DATA
)
2609 offset
= inode
->i_size
;
2614 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2615 inode_unlock(inode
);
2620 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2621 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2623 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2624 #define LAST_SCAN 4 /* about 150ms max */
2626 static void shmem_tag_pins(struct address_space
*mapping
)
2628 struct radix_tree_iter iter
;
2637 radix_tree_for_each_slot(slot
, &mapping
->i_pages
, &iter
, start
) {
2638 page
= radix_tree_deref_slot(slot
);
2639 if (!page
|| radix_tree_exception(page
)) {
2640 if (radix_tree_deref_retry(page
)) {
2641 slot
= radix_tree_iter_retry(&iter
);
2644 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2645 xa_lock_irq(&mapping
->i_pages
);
2646 radix_tree_tag_set(&mapping
->i_pages
, iter
.index
,
2648 xa_unlock_irq(&mapping
->i_pages
);
2651 if (need_resched()) {
2652 slot
= radix_tree_iter_resume(slot
, &iter
);
2660 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2661 * via get_user_pages(), drivers might have some pending I/O without any active
2662 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2663 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2664 * them to be dropped.
2665 * The caller must guarantee that no new user will acquire writable references
2666 * to those pages to avoid races.
2668 static int shmem_wait_for_pins(struct address_space
*mapping
)
2670 struct radix_tree_iter iter
;
2676 shmem_tag_pins(mapping
);
2679 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2680 if (!radix_tree_tagged(&mapping
->i_pages
, SHMEM_TAG_PINNED
))
2684 lru_add_drain_all();
2685 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2690 radix_tree_for_each_tagged(slot
, &mapping
->i_pages
, &iter
,
2691 start
, SHMEM_TAG_PINNED
) {
2693 page
= radix_tree_deref_slot(slot
);
2694 if (radix_tree_exception(page
)) {
2695 if (radix_tree_deref_retry(page
)) {
2696 slot
= radix_tree_iter_retry(&iter
);
2704 page_count(page
) - page_mapcount(page
) != 1) {
2705 if (scan
< LAST_SCAN
)
2706 goto continue_resched
;
2709 * On the last scan, we clean up all those tags
2710 * we inserted; but make a note that we still
2711 * found pages pinned.
2716 xa_lock_irq(&mapping
->i_pages
);
2717 radix_tree_tag_clear(&mapping
->i_pages
,
2718 iter
.index
, SHMEM_TAG_PINNED
);
2719 xa_unlock_irq(&mapping
->i_pages
);
2721 if (need_resched()) {
2722 slot
= radix_tree_iter_resume(slot
, &iter
);
2732 static unsigned int *memfd_file_seals_ptr(struct file
*file
)
2734 if (file
->f_op
== &shmem_file_operations
)
2735 return &SHMEM_I(file_inode(file
))->seals
;
2737 #ifdef CONFIG_HUGETLBFS
2738 if (file
->f_op
== &hugetlbfs_file_operations
)
2739 return &HUGETLBFS_I(file_inode(file
))->seals
;
2745 #define F_ALL_SEALS (F_SEAL_SEAL | \
2750 static int memfd_add_seals(struct file
*file
, unsigned int seals
)
2752 struct inode
*inode
= file_inode(file
);
2753 unsigned int *file_seals
;
2758 * Sealing allows multiple parties to share a shmem-file but restrict
2759 * access to a specific subset of file operations. Seals can only be
2760 * added, but never removed. This way, mutually untrusted parties can
2761 * share common memory regions with a well-defined policy. A malicious
2762 * peer can thus never perform unwanted operations on a shared object.
2764 * Seals are only supported on special shmem-files and always affect
2765 * the whole underlying inode. Once a seal is set, it may prevent some
2766 * kinds of access to the file. Currently, the following seals are
2768 * SEAL_SEAL: Prevent further seals from being set on this file
2769 * SEAL_SHRINK: Prevent the file from shrinking
2770 * SEAL_GROW: Prevent the file from growing
2771 * SEAL_WRITE: Prevent write access to the file
2773 * As we don't require any trust relationship between two parties, we
2774 * must prevent seals from being removed. Therefore, sealing a file
2775 * only adds a given set of seals to the file, it never touches
2776 * existing seals. Furthermore, the "setting seals"-operation can be
2777 * sealed itself, which basically prevents any further seal from being
2780 * Semantics of sealing are only defined on volatile files. Only
2781 * anonymous shmem files support sealing. More importantly, seals are
2782 * never written to disk. Therefore, there's no plan to support it on
2786 if (!(file
->f_mode
& FMODE_WRITE
))
2788 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2793 file_seals
= memfd_file_seals_ptr(file
);
2799 if (*file_seals
& F_SEAL_SEAL
) {
2804 if ((seals
& F_SEAL_WRITE
) && !(*file_seals
& F_SEAL_WRITE
)) {
2805 error
= mapping_deny_writable(file
->f_mapping
);
2809 error
= shmem_wait_for_pins(file
->f_mapping
);
2811 mapping_allow_writable(file
->f_mapping
);
2816 *file_seals
|= seals
;
2820 inode_unlock(inode
);
2824 static int memfd_get_seals(struct file
*file
)
2826 unsigned int *seals
= memfd_file_seals_ptr(file
);
2828 return seals
? *seals
: -EINVAL
;
2831 long memfd_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2837 /* disallow upper 32bit */
2841 error
= memfd_add_seals(file
, arg
);
2844 error
= memfd_get_seals(file
);
2854 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2857 struct inode
*inode
= file_inode(file
);
2858 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2859 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2860 struct shmem_falloc shmem_falloc
;
2861 pgoff_t start
, index
, end
;
2864 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2869 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2870 struct address_space
*mapping
= file
->f_mapping
;
2871 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2872 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2873 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2875 /* protected by i_mutex */
2876 if (info
->seals
& F_SEAL_WRITE
) {
2881 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2882 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2883 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2884 spin_lock(&inode
->i_lock
);
2885 inode
->i_private
= &shmem_falloc
;
2886 spin_unlock(&inode
->i_lock
);
2888 if ((u64
)unmap_end
> (u64
)unmap_start
)
2889 unmap_mapping_range(mapping
, unmap_start
,
2890 1 + unmap_end
- unmap_start
, 0);
2891 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2892 /* No need to unmap again: hole-punching leaves COWed pages */
2894 spin_lock(&inode
->i_lock
);
2895 inode
->i_private
= NULL
;
2896 wake_up_all(&shmem_falloc_waitq
);
2897 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2898 spin_unlock(&inode
->i_lock
);
2903 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2904 error
= inode_newsize_ok(inode
, offset
+ len
);
2908 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2913 start
= offset
>> PAGE_SHIFT
;
2914 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2915 /* Try to avoid a swapstorm if len is impossible to satisfy */
2916 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2921 shmem_falloc
.waitq
= NULL
;
2922 shmem_falloc
.start
= start
;
2923 shmem_falloc
.next
= start
;
2924 shmem_falloc
.nr_falloced
= 0;
2925 shmem_falloc
.nr_unswapped
= 0;
2926 spin_lock(&inode
->i_lock
);
2927 inode
->i_private
= &shmem_falloc
;
2928 spin_unlock(&inode
->i_lock
);
2930 for (index
= start
; index
< end
; index
++) {
2934 * Good, the fallocate(2) manpage permits EINTR: we may have
2935 * been interrupted because we are using up too much memory.
2937 if (signal_pending(current
))
2939 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2942 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2944 /* Remove the !PageUptodate pages we added */
2945 if (index
> start
) {
2946 shmem_undo_range(inode
,
2947 (loff_t
)start
<< PAGE_SHIFT
,
2948 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2954 * Inform shmem_writepage() how far we have reached.
2955 * No need for lock or barrier: we have the page lock.
2957 shmem_falloc
.next
++;
2958 if (!PageUptodate(page
))
2959 shmem_falloc
.nr_falloced
++;
2962 * If !PageUptodate, leave it that way so that freeable pages
2963 * can be recognized if we need to rollback on error later.
2964 * But set_page_dirty so that memory pressure will swap rather
2965 * than free the pages we are allocating (and SGP_CACHE pages
2966 * might still be clean: we now need to mark those dirty too).
2968 set_page_dirty(page
);
2974 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2975 i_size_write(inode
, offset
+ len
);
2976 inode
->i_ctime
= current_time(inode
);
2978 spin_lock(&inode
->i_lock
);
2979 inode
->i_private
= NULL
;
2980 spin_unlock(&inode
->i_lock
);
2982 inode_unlock(inode
);
2986 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2988 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2990 buf
->f_type
= TMPFS_MAGIC
;
2991 buf
->f_bsize
= PAGE_SIZE
;
2992 buf
->f_namelen
= NAME_MAX
;
2993 if (sbinfo
->max_blocks
) {
2994 buf
->f_blocks
= sbinfo
->max_blocks
;
2996 buf
->f_bfree
= sbinfo
->max_blocks
-
2997 percpu_counter_sum(&sbinfo
->used_blocks
);
2999 if (sbinfo
->max_inodes
) {
3000 buf
->f_files
= sbinfo
->max_inodes
;
3001 buf
->f_ffree
= sbinfo
->free_inodes
;
3003 /* else leave those fields 0 like simple_statfs */
3008 * File creation. Allocate an inode, and we're done..
3011 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
3013 struct inode
*inode
;
3014 int error
= -ENOSPC
;
3016 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
3018 error
= simple_acl_create(dir
, inode
);
3021 error
= security_inode_init_security(inode
, dir
,
3023 shmem_initxattrs
, NULL
);
3024 if (error
&& error
!= -EOPNOTSUPP
)
3028 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3029 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3030 d_instantiate(dentry
, inode
);
3031 dget(dentry
); /* Extra count - pin the dentry in core */
3040 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3042 struct inode
*inode
;
3043 int error
= -ENOSPC
;
3045 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
3047 error
= security_inode_init_security(inode
, dir
,
3049 shmem_initxattrs
, NULL
);
3050 if (error
&& error
!= -EOPNOTSUPP
)
3052 error
= simple_acl_create(dir
, inode
);
3055 d_tmpfile(dentry
, inode
);
3063 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3067 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
3073 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
3076 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
3082 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
3084 struct inode
*inode
= d_inode(old_dentry
);
3088 * No ordinary (disk based) filesystem counts links as inodes;
3089 * but each new link needs a new dentry, pinning lowmem, and
3090 * tmpfs dentries cannot be pruned until they are unlinked.
3092 ret
= shmem_reserve_inode(inode
->i_sb
);
3096 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3097 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3099 ihold(inode
); /* New dentry reference */
3100 dget(dentry
); /* Extra pinning count for the created dentry */
3101 d_instantiate(dentry
, inode
);
3106 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
3108 struct inode
*inode
= d_inode(dentry
);
3110 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
3111 shmem_free_inode(inode
->i_sb
);
3113 dir
->i_size
-= BOGO_DIRENT_SIZE
;
3114 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3116 dput(dentry
); /* Undo the count from "create" - this does all the work */
3120 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3122 if (!simple_empty(dentry
))
3125 drop_nlink(d_inode(dentry
));
3127 return shmem_unlink(dir
, dentry
);
3130 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
3132 bool old_is_dir
= d_is_dir(old_dentry
);
3133 bool new_is_dir
= d_is_dir(new_dentry
);
3135 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
3137 drop_nlink(old_dir
);
3140 drop_nlink(new_dir
);
3144 old_dir
->i_ctime
= old_dir
->i_mtime
=
3145 new_dir
->i_ctime
= new_dir
->i_mtime
=
3146 d_inode(old_dentry
)->i_ctime
=
3147 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3152 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3154 struct dentry
*whiteout
;
3157 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3161 error
= shmem_mknod(old_dir
, whiteout
,
3162 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3168 * Cheat and hash the whiteout while the old dentry is still in
3169 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3171 * d_lookup() will consistently find one of them at this point,
3172 * not sure which one, but that isn't even important.
3179 * The VFS layer already does all the dentry stuff for rename,
3180 * we just have to decrement the usage count for the target if
3181 * it exists so that the VFS layer correctly free's it when it
3184 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3186 struct inode
*inode
= d_inode(old_dentry
);
3187 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3189 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3192 if (flags
& RENAME_EXCHANGE
)
3193 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3195 if (!simple_empty(new_dentry
))
3198 if (flags
& RENAME_WHITEOUT
) {
3201 error
= shmem_whiteout(old_dir
, old_dentry
);
3206 if (d_really_is_positive(new_dentry
)) {
3207 (void) shmem_unlink(new_dir
, new_dentry
);
3208 if (they_are_dirs
) {
3209 drop_nlink(d_inode(new_dentry
));
3210 drop_nlink(old_dir
);
3212 } else if (they_are_dirs
) {
3213 drop_nlink(old_dir
);
3217 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3218 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3219 old_dir
->i_ctime
= old_dir
->i_mtime
=
3220 new_dir
->i_ctime
= new_dir
->i_mtime
=
3221 inode
->i_ctime
= current_time(old_dir
);
3225 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3229 struct inode
*inode
;
3232 len
= strlen(symname
) + 1;
3233 if (len
> PAGE_SIZE
)
3234 return -ENAMETOOLONG
;
3236 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3240 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3241 shmem_initxattrs
, NULL
);
3243 if (error
!= -EOPNOTSUPP
) {
3250 inode
->i_size
= len
-1;
3251 if (len
<= SHORT_SYMLINK_LEN
) {
3252 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3253 if (!inode
->i_link
) {
3257 inode
->i_op
= &shmem_short_symlink_operations
;
3259 inode_nohighmem(inode
);
3260 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3265 inode
->i_mapping
->a_ops
= &shmem_aops
;
3266 inode
->i_op
= &shmem_symlink_inode_operations
;
3267 memcpy(page_address(page
), symname
, len
);
3268 SetPageUptodate(page
);
3269 set_page_dirty(page
);
3273 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3274 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3275 d_instantiate(dentry
, inode
);
3280 static void shmem_put_link(void *arg
)
3282 mark_page_accessed(arg
);
3286 static const char *shmem_get_link(struct dentry
*dentry
,
3287 struct inode
*inode
,
3288 struct delayed_call
*done
)
3290 struct page
*page
= NULL
;
3293 page
= find_get_page(inode
->i_mapping
, 0);
3295 return ERR_PTR(-ECHILD
);
3296 if (!PageUptodate(page
)) {
3298 return ERR_PTR(-ECHILD
);
3301 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3303 return ERR_PTR(error
);
3306 set_delayed_call(done
, shmem_put_link
, page
);
3307 return page_address(page
);
3310 #ifdef CONFIG_TMPFS_XATTR
3312 * Superblocks without xattr inode operations may get some security.* xattr
3313 * support from the LSM "for free". As soon as we have any other xattrs
3314 * like ACLs, we also need to implement the security.* handlers at
3315 * filesystem level, though.
3319 * Callback for security_inode_init_security() for acquiring xattrs.
3321 static int shmem_initxattrs(struct inode
*inode
,
3322 const struct xattr
*xattr_array
,
3325 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3326 const struct xattr
*xattr
;
3327 struct simple_xattr
*new_xattr
;
3330 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3331 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3335 len
= strlen(xattr
->name
) + 1;
3336 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3338 if (!new_xattr
->name
) {
3343 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3344 XATTR_SECURITY_PREFIX_LEN
);
3345 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3348 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3354 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3355 struct dentry
*unused
, struct inode
*inode
,
3356 const char *name
, void *buffer
, size_t size
)
3358 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3360 name
= xattr_full_name(handler
, name
);
3361 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3364 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3365 struct dentry
*unused
, struct inode
*inode
,
3366 const char *name
, const void *value
,
3367 size_t size
, int flags
)
3369 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3371 name
= xattr_full_name(handler
, name
);
3372 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3375 static const struct xattr_handler shmem_security_xattr_handler
= {
3376 .prefix
= XATTR_SECURITY_PREFIX
,
3377 .get
= shmem_xattr_handler_get
,
3378 .set
= shmem_xattr_handler_set
,
3381 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3382 .prefix
= XATTR_TRUSTED_PREFIX
,
3383 .get
= shmem_xattr_handler_get
,
3384 .set
= shmem_xattr_handler_set
,
3387 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3388 #ifdef CONFIG_TMPFS_POSIX_ACL
3389 &posix_acl_access_xattr_handler
,
3390 &posix_acl_default_xattr_handler
,
3392 &shmem_security_xattr_handler
,
3393 &shmem_trusted_xattr_handler
,
3397 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3399 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3400 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3402 #endif /* CONFIG_TMPFS_XATTR */
3404 static const struct inode_operations shmem_short_symlink_operations
= {
3405 .get_link
= simple_get_link
,
3406 #ifdef CONFIG_TMPFS_XATTR
3407 .listxattr
= shmem_listxattr
,
3411 static const struct inode_operations shmem_symlink_inode_operations
= {
3412 .get_link
= shmem_get_link
,
3413 #ifdef CONFIG_TMPFS_XATTR
3414 .listxattr
= shmem_listxattr
,
3418 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3420 return ERR_PTR(-ESTALE
);
3423 static int shmem_match(struct inode
*ino
, void *vfh
)
3427 inum
= (inum
<< 32) | fh
[1];
3428 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3431 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3432 struct fid
*fid
, int fh_len
, int fh_type
)
3434 struct inode
*inode
;
3435 struct dentry
*dentry
= NULL
;
3442 inum
= (inum
<< 32) | fid
->raw
[1];
3444 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3445 shmem_match
, fid
->raw
);
3447 dentry
= d_find_alias(inode
);
3454 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3455 struct inode
*parent
)
3459 return FILEID_INVALID
;
3462 if (inode_unhashed(inode
)) {
3463 /* Unfortunately insert_inode_hash is not idempotent,
3464 * so as we hash inodes here rather than at creation
3465 * time, we need a lock to ensure we only try
3468 static DEFINE_SPINLOCK(lock
);
3470 if (inode_unhashed(inode
))
3471 __insert_inode_hash(inode
,
3472 inode
->i_ino
+ inode
->i_generation
);
3476 fh
[0] = inode
->i_generation
;
3477 fh
[1] = inode
->i_ino
;
3478 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3484 static const struct export_operations shmem_export_ops
= {
3485 .get_parent
= shmem_get_parent
,
3486 .encode_fh
= shmem_encode_fh
,
3487 .fh_to_dentry
= shmem_fh_to_dentry
,
3490 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3493 char *this_char
, *value
, *rest
;
3494 struct mempolicy
*mpol
= NULL
;
3498 while (options
!= NULL
) {
3499 this_char
= options
;
3502 * NUL-terminate this option: unfortunately,
3503 * mount options form a comma-separated list,
3504 * but mpol's nodelist may also contain commas.
3506 options
= strchr(options
, ',');
3507 if (options
== NULL
)
3510 if (!isdigit(*options
)) {
3517 if ((value
= strchr(this_char
,'=')) != NULL
) {
3520 pr_err("tmpfs: No value for mount option '%s'\n",
3525 if (!strcmp(this_char
,"size")) {
3526 unsigned long long size
;
3527 size
= memparse(value
,&rest
);
3529 size
<<= PAGE_SHIFT
;
3530 size
*= totalram_pages
;
3536 sbinfo
->max_blocks
=
3537 DIV_ROUND_UP(size
, PAGE_SIZE
);
3538 } else if (!strcmp(this_char
,"nr_blocks")) {
3539 sbinfo
->max_blocks
= memparse(value
, &rest
);
3542 } else if (!strcmp(this_char
,"nr_inodes")) {
3543 sbinfo
->max_inodes
= memparse(value
, &rest
);
3546 } else if (!strcmp(this_char
,"mode")) {
3549 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3552 } else if (!strcmp(this_char
,"uid")) {
3555 uid
= simple_strtoul(value
, &rest
, 0);
3558 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3559 if (!uid_valid(sbinfo
->uid
))
3561 } else if (!strcmp(this_char
,"gid")) {
3564 gid
= simple_strtoul(value
, &rest
, 0);
3567 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3568 if (!gid_valid(sbinfo
->gid
))
3570 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3571 } else if (!strcmp(this_char
, "huge")) {
3573 huge
= shmem_parse_huge(value
);
3576 if (!has_transparent_hugepage() &&
3577 huge
!= SHMEM_HUGE_NEVER
)
3579 sbinfo
->huge
= huge
;
3582 } else if (!strcmp(this_char
,"mpol")) {
3585 if (mpol_parse_str(value
, &mpol
))
3589 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3593 sbinfo
->mpol
= mpol
;
3597 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3605 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3607 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3608 struct shmem_sb_info config
= *sbinfo
;
3609 unsigned long inodes
;
3610 int error
= -EINVAL
;
3613 if (shmem_parse_options(data
, &config
, true))
3616 spin_lock(&sbinfo
->stat_lock
);
3617 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3618 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3620 if (config
.max_inodes
< inodes
)
3623 * Those tests disallow limited->unlimited while any are in use;
3624 * but we must separately disallow unlimited->limited, because
3625 * in that case we have no record of how much is already in use.
3627 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3629 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3633 sbinfo
->huge
= config
.huge
;
3634 sbinfo
->max_blocks
= config
.max_blocks
;
3635 sbinfo
->max_inodes
= config
.max_inodes
;
3636 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3639 * Preserve previous mempolicy unless mpol remount option was specified.
3642 mpol_put(sbinfo
->mpol
);
3643 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3646 spin_unlock(&sbinfo
->stat_lock
);
3650 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3652 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3654 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3655 seq_printf(seq
, ",size=%luk",
3656 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3657 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3658 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3659 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3660 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3661 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3662 seq_printf(seq
, ",uid=%u",
3663 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3664 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3665 seq_printf(seq
, ",gid=%u",
3666 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3667 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3668 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3670 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3672 shmem_show_mpol(seq
, sbinfo
->mpol
);
3676 #define MFD_NAME_PREFIX "memfd:"
3677 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3678 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3680 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3682 SYSCALL_DEFINE2(memfd_create
,
3683 const char __user
*, uname
,
3684 unsigned int, flags
)
3686 unsigned int *file_seals
;
3692 if (!(flags
& MFD_HUGETLB
)) {
3693 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3696 /* Allow huge page size encoding in flags. */
3697 if (flags
& ~(unsigned int)(MFD_ALL_FLAGS
|
3698 (MFD_HUGE_MASK
<< MFD_HUGE_SHIFT
)))
3702 /* length includes terminating zero */
3703 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3706 if (len
> MFD_NAME_MAX_LEN
+ 1)
3709 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_KERNEL
);
3713 strcpy(name
, MFD_NAME_PREFIX
);
3714 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3719 /* terminating-zero may have changed after strnlen_user() returned */
3720 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3725 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3731 if (flags
& MFD_HUGETLB
) {
3732 struct user_struct
*user
= NULL
;
3734 file
= hugetlb_file_setup(name
, 0, VM_NORESERVE
, &user
,
3735 HUGETLB_ANONHUGE_INODE
,
3736 (flags
>> MFD_HUGE_SHIFT
) &
3739 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3741 error
= PTR_ERR(file
);
3744 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3745 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3747 if (flags
& MFD_ALLOW_SEALING
) {
3748 file_seals
= memfd_file_seals_ptr(file
);
3749 *file_seals
&= ~F_SEAL_SEAL
;
3752 fd_install(fd
, file
);
3763 #endif /* CONFIG_TMPFS */
3765 static void shmem_put_super(struct super_block
*sb
)
3767 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3769 percpu_counter_destroy(&sbinfo
->used_blocks
);
3770 mpol_put(sbinfo
->mpol
);
3772 sb
->s_fs_info
= NULL
;
3775 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3777 struct inode
*inode
;
3778 struct shmem_sb_info
*sbinfo
;
3781 /* Round up to L1_CACHE_BYTES to resist false sharing */
3782 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3783 L1_CACHE_BYTES
), GFP_KERNEL
);
3787 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3788 sbinfo
->uid
= current_fsuid();
3789 sbinfo
->gid
= current_fsgid();
3790 sb
->s_fs_info
= sbinfo
;
3794 * Per default we only allow half of the physical ram per
3795 * tmpfs instance, limiting inodes to one per page of lowmem;
3796 * but the internal instance is left unlimited.
3798 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3799 sbinfo
->max_blocks
= shmem_default_max_blocks();
3800 sbinfo
->max_inodes
= shmem_default_max_inodes();
3801 if (shmem_parse_options(data
, sbinfo
, false)) {
3806 sb
->s_flags
|= SB_NOUSER
;
3808 sb
->s_export_op
= &shmem_export_ops
;
3809 sb
->s_flags
|= SB_NOSEC
;
3811 sb
->s_flags
|= SB_NOUSER
;
3814 spin_lock_init(&sbinfo
->stat_lock
);
3815 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3817 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3818 spin_lock_init(&sbinfo
->shrinklist_lock
);
3819 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3821 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3822 sb
->s_blocksize
= PAGE_SIZE
;
3823 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3824 sb
->s_magic
= TMPFS_MAGIC
;
3825 sb
->s_op
= &shmem_ops
;
3826 sb
->s_time_gran
= 1;
3827 #ifdef CONFIG_TMPFS_XATTR
3828 sb
->s_xattr
= shmem_xattr_handlers
;
3830 #ifdef CONFIG_TMPFS_POSIX_ACL
3831 sb
->s_flags
|= SB_POSIXACL
;
3833 uuid_gen(&sb
->s_uuid
);
3835 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3838 inode
->i_uid
= sbinfo
->uid
;
3839 inode
->i_gid
= sbinfo
->gid
;
3840 sb
->s_root
= d_make_root(inode
);
3846 shmem_put_super(sb
);
3850 static struct kmem_cache
*shmem_inode_cachep
;
3852 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3854 struct shmem_inode_info
*info
;
3855 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3858 return &info
->vfs_inode
;
3861 static void shmem_destroy_callback(struct rcu_head
*head
)
3863 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3864 if (S_ISLNK(inode
->i_mode
))
3865 kfree(inode
->i_link
);
3866 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3869 static void shmem_destroy_inode(struct inode
*inode
)
3871 if (S_ISREG(inode
->i_mode
))
3872 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3873 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3876 static void shmem_init_inode(void *foo
)
3878 struct shmem_inode_info
*info
= foo
;
3879 inode_init_once(&info
->vfs_inode
);
3882 static void shmem_init_inodecache(void)
3884 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3885 sizeof(struct shmem_inode_info
),
3886 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3889 static void shmem_destroy_inodecache(void)
3891 kmem_cache_destroy(shmem_inode_cachep
);
3894 static const struct address_space_operations shmem_aops
= {
3895 .writepage
= shmem_writepage
,
3896 .set_page_dirty
= __set_page_dirty_no_writeback
,
3898 .write_begin
= shmem_write_begin
,
3899 .write_end
= shmem_write_end
,
3901 #ifdef CONFIG_MIGRATION
3902 .migratepage
= migrate_page
,
3904 .error_remove_page
= generic_error_remove_page
,
3907 static const struct file_operations shmem_file_operations
= {
3909 .get_unmapped_area
= shmem_get_unmapped_area
,
3911 .llseek
= shmem_file_llseek
,
3912 .read_iter
= shmem_file_read_iter
,
3913 .write_iter
= generic_file_write_iter
,
3914 .fsync
= noop_fsync
,
3915 .splice_read
= generic_file_splice_read
,
3916 .splice_write
= iter_file_splice_write
,
3917 .fallocate
= shmem_fallocate
,
3921 static const struct inode_operations shmem_inode_operations
= {
3922 .getattr
= shmem_getattr
,
3923 .setattr
= shmem_setattr
,
3924 #ifdef CONFIG_TMPFS_XATTR
3925 .listxattr
= shmem_listxattr
,
3926 .set_acl
= simple_set_acl
,
3930 static const struct inode_operations shmem_dir_inode_operations
= {
3932 .create
= shmem_create
,
3933 .lookup
= simple_lookup
,
3935 .unlink
= shmem_unlink
,
3936 .symlink
= shmem_symlink
,
3937 .mkdir
= shmem_mkdir
,
3938 .rmdir
= shmem_rmdir
,
3939 .mknod
= shmem_mknod
,
3940 .rename
= shmem_rename2
,
3941 .tmpfile
= shmem_tmpfile
,
3943 #ifdef CONFIG_TMPFS_XATTR
3944 .listxattr
= shmem_listxattr
,
3946 #ifdef CONFIG_TMPFS_POSIX_ACL
3947 .setattr
= shmem_setattr
,
3948 .set_acl
= simple_set_acl
,
3952 static const struct inode_operations shmem_special_inode_operations
= {
3953 #ifdef CONFIG_TMPFS_XATTR
3954 .listxattr
= shmem_listxattr
,
3956 #ifdef CONFIG_TMPFS_POSIX_ACL
3957 .setattr
= shmem_setattr
,
3958 .set_acl
= simple_set_acl
,
3962 static const struct super_operations shmem_ops
= {
3963 .alloc_inode
= shmem_alloc_inode
,
3964 .destroy_inode
= shmem_destroy_inode
,
3966 .statfs
= shmem_statfs
,
3967 .remount_fs
= shmem_remount_fs
,
3968 .show_options
= shmem_show_options
,
3970 .evict_inode
= shmem_evict_inode
,
3971 .drop_inode
= generic_delete_inode
,
3972 .put_super
= shmem_put_super
,
3973 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3974 .nr_cached_objects
= shmem_unused_huge_count
,
3975 .free_cached_objects
= shmem_unused_huge_scan
,
3979 static const struct vm_operations_struct shmem_vm_ops
= {
3980 .fault
= shmem_fault
,
3981 .map_pages
= filemap_map_pages
,
3983 .set_policy
= shmem_set_policy
,
3984 .get_policy
= shmem_get_policy
,
3988 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3989 int flags
, const char *dev_name
, void *data
)
3991 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3994 static struct file_system_type shmem_fs_type
= {
3995 .owner
= THIS_MODULE
,
3997 .mount
= shmem_mount
,
3998 .kill_sb
= kill_litter_super
,
3999 .fs_flags
= FS_USERNS_MOUNT
,
4002 int __init
shmem_init(void)
4006 /* If rootfs called this, don't re-init */
4007 if (shmem_inode_cachep
)
4010 shmem_init_inodecache();
4012 error
= register_filesystem(&shmem_fs_type
);
4014 pr_err("Could not register tmpfs\n");
4018 shm_mnt
= kern_mount(&shmem_fs_type
);
4019 if (IS_ERR(shm_mnt
)) {
4020 error
= PTR_ERR(shm_mnt
);
4021 pr_err("Could not kern_mount tmpfs\n");
4025 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4026 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
4027 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4029 shmem_huge
= 0; /* just in case it was patched */
4034 unregister_filesystem(&shmem_fs_type
);
4036 shmem_destroy_inodecache();
4037 shm_mnt
= ERR_PTR(error
);
4041 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4042 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
4043 struct kobj_attribute
*attr
, char *buf
)
4047 SHMEM_HUGE_WITHIN_SIZE
,
4055 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
4056 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
4058 count
+= sprintf(buf
+ count
, fmt
,
4059 shmem_format_huge(values
[i
]));
4061 buf
[count
- 1] = '\n';
4065 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
4066 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
4071 if (count
+ 1 > sizeof(tmp
))
4073 memcpy(tmp
, buf
, count
);
4075 if (count
&& tmp
[count
- 1] == '\n')
4076 tmp
[count
- 1] = '\0';
4078 huge
= shmem_parse_huge(tmp
);
4079 if (huge
== -EINVAL
)
4081 if (!has_transparent_hugepage() &&
4082 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
4086 if (shmem_huge
> SHMEM_HUGE_DENY
)
4087 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4091 struct kobj_attribute shmem_enabled_attr
=
4092 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
4093 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4095 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4096 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
4098 struct inode
*inode
= file_inode(vma
->vm_file
);
4099 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
4103 if (shmem_huge
== SHMEM_HUGE_FORCE
)
4105 if (shmem_huge
== SHMEM_HUGE_DENY
)
4107 switch (sbinfo
->huge
) {
4108 case SHMEM_HUGE_NEVER
:
4110 case SHMEM_HUGE_ALWAYS
:
4112 case SHMEM_HUGE_WITHIN_SIZE
:
4113 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
4114 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
4115 if (i_size
>= HPAGE_PMD_SIZE
&&
4116 i_size
>> PAGE_SHIFT
>= off
)
4119 case SHMEM_HUGE_ADVISE
:
4120 /* TODO: implement fadvise() hints */
4121 return (vma
->vm_flags
& VM_HUGEPAGE
);
4127 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4129 #else /* !CONFIG_SHMEM */
4132 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4134 * This is intended for small system where the benefits of the full
4135 * shmem code (swap-backed and resource-limited) are outweighed by
4136 * their complexity. On systems without swap this code should be
4137 * effectively equivalent, but much lighter weight.
4140 static struct file_system_type shmem_fs_type
= {
4142 .mount
= ramfs_mount
,
4143 .kill_sb
= kill_litter_super
,
4144 .fs_flags
= FS_USERNS_MOUNT
,
4147 int __init
shmem_init(void)
4149 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
4151 shm_mnt
= kern_mount(&shmem_fs_type
);
4152 BUG_ON(IS_ERR(shm_mnt
));
4157 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
4162 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
4167 void shmem_unlock_mapping(struct address_space
*mapping
)
4172 unsigned long shmem_get_unmapped_area(struct file
*file
,
4173 unsigned long addr
, unsigned long len
,
4174 unsigned long pgoff
, unsigned long flags
)
4176 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
4180 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
4182 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
4184 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
4186 #define shmem_vm_ops generic_file_vm_ops
4187 #define shmem_file_operations ramfs_file_operations
4188 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4189 #define shmem_acct_size(flags, size) 0
4190 #define shmem_unacct_size(flags, size) do {} while (0)
4192 #endif /* CONFIG_SHMEM */
4196 static const struct dentry_operations anon_ops
= {
4197 .d_dname
= simple_dname
4200 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
4201 unsigned long flags
, unsigned int i_flags
)
4204 struct inode
*inode
;
4206 struct super_block
*sb
;
4210 return ERR_CAST(mnt
);
4212 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4213 return ERR_PTR(-EINVAL
);
4215 if (shmem_acct_size(flags
, size
))
4216 return ERR_PTR(-ENOMEM
);
4218 res
= ERR_PTR(-ENOMEM
);
4220 this.len
= strlen(name
);
4221 this.hash
= 0; /* will go */
4223 path
.mnt
= mntget(mnt
);
4224 path
.dentry
= d_alloc_pseudo(sb
, &this);
4227 d_set_d_op(path
.dentry
, &anon_ops
);
4229 res
= ERR_PTR(-ENOSPC
);
4230 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4234 inode
->i_flags
|= i_flags
;
4235 d_instantiate(path
.dentry
, inode
);
4236 inode
->i_size
= size
;
4237 clear_nlink(inode
); /* It is unlinked */
4238 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4242 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4243 &shmem_file_operations
);
4250 shmem_unacct_size(flags
, size
);
4257 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4258 * kernel internal. There will be NO LSM permission checks against the
4259 * underlying inode. So users of this interface must do LSM checks at a
4260 * higher layer. The users are the big_key and shm implementations. LSM
4261 * checks are provided at the key or shm level rather than the inode.
4262 * @name: name for dentry (to be seen in /proc/<pid>/maps
4263 * @size: size to be set for the file
4264 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4266 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4268 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
4272 * shmem_file_setup - get an unlinked file living in tmpfs
4273 * @name: name for dentry (to be seen in /proc/<pid>/maps
4274 * @size: size to be set for the file
4275 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4277 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4279 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
4281 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4284 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4285 * @mnt: the tmpfs mount where the file will be created
4286 * @name: name for dentry (to be seen in /proc/<pid>/maps
4287 * @size: size to be set for the file
4288 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4290 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
4291 loff_t size
, unsigned long flags
)
4293 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
4295 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
4298 * shmem_zero_setup - setup a shared anonymous mapping
4299 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4301 int shmem_zero_setup(struct vm_area_struct
*vma
)
4304 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4307 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4308 * between XFS directory reading and selinux: since this file is only
4309 * accessible to the user through its mapping, use S_PRIVATE flag to
4310 * bypass file security, in the same way as shmem_kernel_file_setup().
4312 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
4314 return PTR_ERR(file
);
4318 vma
->vm_file
= file
;
4319 vma
->vm_ops
= &shmem_vm_ops
;
4321 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4322 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4323 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4324 khugepaged_enter(vma
, vma
->vm_flags
);
4331 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4332 * @mapping: the page's address_space
4333 * @index: the page index
4334 * @gfp: the page allocator flags to use if allocating
4336 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4337 * with any new page allocations done using the specified allocation flags.
4338 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4339 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4340 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4342 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4343 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4345 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4346 pgoff_t index
, gfp_t gfp
)
4349 struct inode
*inode
= mapping
->host
;
4353 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4354 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4355 gfp
, NULL
, NULL
, NULL
);
4357 page
= ERR_PTR(error
);
4363 * The tiny !SHMEM case uses ramfs without swap
4365 return read_cache_page_gfp(mapping
, index
, gfp
);
4368 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);