1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
23 #include <linux/memcontrol.h>
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/kmem.h>
30 enum slab_state slab_state
;
31 LIST_HEAD(slab_caches
);
32 DEFINE_MUTEX(slab_mutex
);
33 struct kmem_cache
*kmem_cache
;
35 #ifdef CONFIG_HARDENED_USERCOPY
36 bool usercopy_fallback __ro_after_init
=
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK
);
38 module_param(usercopy_fallback
, bool, 0400);
39 MODULE_PARM_DESC(usercopy_fallback
,
40 "WARN instead of reject usercopy whitelist violations");
43 static LIST_HEAD(slab_caches_to_rcu_destroy
);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work
,
46 slab_caches_to_rcu_destroy_workfn
);
49 * Set of flags that will prevent slab merging
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 SLAB_FAILSLAB | SLAB_KASAN)
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59 * Merge control. If this is set then no merging of slab caches will occur.
61 static bool slab_nomerge
= !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT
);
63 static int __init
setup_slab_nomerge(char *str
)
70 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
73 __setup("slab_nomerge", setup_slab_nomerge
);
76 * Determine the size of a slab object
78 unsigned int kmem_cache_size(struct kmem_cache
*s
)
80 return s
->object_size
;
82 EXPORT_SYMBOL(kmem_cache_size
);
84 #ifdef CONFIG_DEBUG_VM
85 static int kmem_cache_sanity_check(const char *name
, unsigned int size
)
87 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
88 size
> KMALLOC_MAX_SIZE
) {
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
93 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
97 static inline int kmem_cache_sanity_check(const char *name
, unsigned int size
)
103 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
107 for (i
= 0; i
< nr
; i
++) {
109 kmem_cache_free(s
, p
[i
]);
115 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
120 for (i
= 0; i
< nr
; i
++) {
121 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
123 __kmem_cache_free_bulk(s
, i
, p
);
130 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
132 LIST_HEAD(slab_root_caches
);
134 void slab_init_memcg_params(struct kmem_cache
*s
)
136 s
->memcg_params
.root_cache
= NULL
;
137 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
138 INIT_LIST_HEAD(&s
->memcg_params
.children
);
141 static int init_memcg_params(struct kmem_cache
*s
,
142 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
144 struct memcg_cache_array
*arr
;
147 s
->memcg_params
.root_cache
= root_cache
;
148 s
->memcg_params
.memcg
= memcg
;
149 INIT_LIST_HEAD(&s
->memcg_params
.children_node
);
150 INIT_LIST_HEAD(&s
->memcg_params
.kmem_caches_node
);
154 slab_init_memcg_params(s
);
156 if (!memcg_nr_cache_ids
)
159 arr
= kvzalloc(sizeof(struct memcg_cache_array
) +
160 memcg_nr_cache_ids
* sizeof(void *),
165 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
169 static void destroy_memcg_params(struct kmem_cache
*s
)
171 if (is_root_cache(s
))
172 kvfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
175 static void free_memcg_params(struct rcu_head
*rcu
)
177 struct memcg_cache_array
*old
;
179 old
= container_of(rcu
, struct memcg_cache_array
, rcu
);
183 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
185 struct memcg_cache_array
*old
, *new;
187 new = kvzalloc(sizeof(struct memcg_cache_array
) +
188 new_array_size
* sizeof(void *), GFP_KERNEL
);
192 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
193 lockdep_is_held(&slab_mutex
));
195 memcpy(new->entries
, old
->entries
,
196 memcg_nr_cache_ids
* sizeof(void *));
198 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
200 call_rcu(&old
->rcu
, free_memcg_params
);
204 int memcg_update_all_caches(int num_memcgs
)
206 struct kmem_cache
*s
;
209 mutex_lock(&slab_mutex
);
210 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
211 ret
= update_memcg_params(s
, num_memcgs
);
213 * Instead of freeing the memory, we'll just leave the caches
214 * up to this point in an updated state.
219 mutex_unlock(&slab_mutex
);
223 void memcg_link_cache(struct kmem_cache
*s
)
225 if (is_root_cache(s
)) {
226 list_add(&s
->root_caches_node
, &slab_root_caches
);
228 list_add(&s
->memcg_params
.children_node
,
229 &s
->memcg_params
.root_cache
->memcg_params
.children
);
230 list_add(&s
->memcg_params
.kmem_caches_node
,
231 &s
->memcg_params
.memcg
->kmem_caches
);
235 static void memcg_unlink_cache(struct kmem_cache
*s
)
237 if (is_root_cache(s
)) {
238 list_del(&s
->root_caches_node
);
240 list_del(&s
->memcg_params
.children_node
);
241 list_del(&s
->memcg_params
.kmem_caches_node
);
245 static inline int init_memcg_params(struct kmem_cache
*s
,
246 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
251 static inline void destroy_memcg_params(struct kmem_cache
*s
)
255 static inline void memcg_unlink_cache(struct kmem_cache
*s
)
258 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
261 * Figure out what the alignment of the objects will be given a set of
262 * flags, a user specified alignment and the size of the objects.
264 static unsigned int calculate_alignment(slab_flags_t flags
,
265 unsigned int align
, unsigned int size
)
268 * If the user wants hardware cache aligned objects then follow that
269 * suggestion if the object is sufficiently large.
271 * The hardware cache alignment cannot override the specified
272 * alignment though. If that is greater then use it.
274 if (flags
& SLAB_HWCACHE_ALIGN
) {
277 ralign
= cache_line_size();
278 while (size
<= ralign
/ 2)
280 align
= max(align
, ralign
);
283 if (align
< ARCH_SLAB_MINALIGN
)
284 align
= ARCH_SLAB_MINALIGN
;
286 return ALIGN(align
, sizeof(void *));
290 * Find a mergeable slab cache
292 int slab_unmergeable(struct kmem_cache
*s
)
294 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
297 if (!is_root_cache(s
))
307 * We may have set a slab to be unmergeable during bootstrap.
315 struct kmem_cache
*find_mergeable(unsigned int size
, unsigned int align
,
316 slab_flags_t flags
, const char *name
, void (*ctor
)(void *))
318 struct kmem_cache
*s
;
326 size
= ALIGN(size
, sizeof(void *));
327 align
= calculate_alignment(flags
, align
, size
);
328 size
= ALIGN(size
, align
);
329 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
331 if (flags
& SLAB_NEVER_MERGE
)
334 list_for_each_entry_reverse(s
, &slab_root_caches
, root_caches_node
) {
335 if (slab_unmergeable(s
))
341 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
344 * Check if alignment is compatible.
345 * Courtesy of Adrian Drzewiecki
347 if ((s
->size
& ~(align
- 1)) != s
->size
)
350 if (s
->size
- size
>= sizeof(void *))
353 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
354 (align
> s
->align
|| s
->align
% align
))
362 static struct kmem_cache
*create_cache(const char *name
,
363 unsigned int object_size
, unsigned int align
,
364 slab_flags_t flags
, unsigned int useroffset
,
365 unsigned int usersize
, void (*ctor
)(void *),
366 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
368 struct kmem_cache
*s
;
371 if (WARN_ON(useroffset
+ usersize
> object_size
))
372 useroffset
= usersize
= 0;
375 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
380 s
->size
= s
->object_size
= object_size
;
383 s
->useroffset
= useroffset
;
384 s
->usersize
= usersize
;
386 err
= init_memcg_params(s
, memcg
, root_cache
);
390 err
= __kmem_cache_create(s
, flags
);
395 list_add(&s
->list
, &slab_caches
);
403 destroy_memcg_params(s
);
404 kmem_cache_free(kmem_cache
, s
);
409 * kmem_cache_create_usercopy - Create a cache.
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
414 * @useroffset: Usercopy region offset
415 * @usersize: Usercopy region size
416 * @ctor: A constructor for the objects.
418 * Returns a ptr to the cache on success, NULL on failure.
419 * Cannot be called within a interrupt, but can be interrupted.
420 * The @ctor is run when new pages are allocated by the cache.
424 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
425 * to catch references to uninitialised memory.
427 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
428 * for buffer overruns.
430 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
431 * cacheline. This can be beneficial if you're counting cycles as closely
435 kmem_cache_create_usercopy(const char *name
,
436 unsigned int size
, unsigned int align
,
438 unsigned int useroffset
, unsigned int usersize
,
439 void (*ctor
)(void *))
441 struct kmem_cache
*s
= NULL
;
442 const char *cache_name
;
447 memcg_get_cache_ids();
449 mutex_lock(&slab_mutex
);
451 err
= kmem_cache_sanity_check(name
, size
);
456 /* Refuse requests with allocator specific flags */
457 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
463 * Some allocators will constraint the set of valid flags to a subset
464 * of all flags. We expect them to define CACHE_CREATE_MASK in this
465 * case, and we'll just provide them with a sanitized version of the
468 flags
&= CACHE_CREATE_MASK
;
470 /* Fail closed on bad usersize of useroffset values. */
471 if (WARN_ON(!usersize
&& useroffset
) ||
472 WARN_ON(size
< usersize
|| size
- usersize
< useroffset
))
473 usersize
= useroffset
= 0;
476 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
480 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
486 s
= create_cache(cache_name
, size
,
487 calculate_alignment(flags
, align
, size
),
488 flags
, useroffset
, usersize
, ctor
, NULL
, NULL
);
491 kfree_const(cache_name
);
495 mutex_unlock(&slab_mutex
);
497 memcg_put_cache_ids();
502 if (flags
& SLAB_PANIC
)
503 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
506 pr_warn("kmem_cache_create(%s) failed with error %d\n",
514 EXPORT_SYMBOL(kmem_cache_create_usercopy
);
517 kmem_cache_create(const char *name
, unsigned int size
, unsigned int align
,
518 slab_flags_t flags
, void (*ctor
)(void *))
520 return kmem_cache_create_usercopy(name
, size
, align
, flags
, 0, 0,
523 EXPORT_SYMBOL(kmem_cache_create
);
525 static void slab_caches_to_rcu_destroy_workfn(struct work_struct
*work
)
527 LIST_HEAD(to_destroy
);
528 struct kmem_cache
*s
, *s2
;
531 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
532 * @slab_caches_to_rcu_destroy list. The slab pages are freed
533 * through RCU and and the associated kmem_cache are dereferenced
534 * while freeing the pages, so the kmem_caches should be freed only
535 * after the pending RCU operations are finished. As rcu_barrier()
536 * is a pretty slow operation, we batch all pending destructions
539 mutex_lock(&slab_mutex
);
540 list_splice_init(&slab_caches_to_rcu_destroy
, &to_destroy
);
541 mutex_unlock(&slab_mutex
);
543 if (list_empty(&to_destroy
))
548 list_for_each_entry_safe(s
, s2
, &to_destroy
, list
) {
549 #ifdef SLAB_SUPPORTS_SYSFS
550 sysfs_slab_release(s
);
552 slab_kmem_cache_release(s
);
557 static int shutdown_cache(struct kmem_cache
*s
)
559 /* free asan quarantined objects */
560 kasan_cache_shutdown(s
);
562 if (__kmem_cache_shutdown(s
) != 0)
565 memcg_unlink_cache(s
);
568 if (s
->flags
& SLAB_TYPESAFE_BY_RCU
) {
569 list_add_tail(&s
->list
, &slab_caches_to_rcu_destroy
);
570 schedule_work(&slab_caches_to_rcu_destroy_work
);
572 #ifdef SLAB_SUPPORTS_SYSFS
573 sysfs_slab_release(s
);
575 slab_kmem_cache_release(s
);
582 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
584 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
585 * @memcg: The memory cgroup the new cache is for.
586 * @root_cache: The parent of the new cache.
588 * This function attempts to create a kmem cache that will serve allocation
589 * requests going from @memcg to @root_cache. The new cache inherits properties
592 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
593 struct kmem_cache
*root_cache
)
595 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
596 struct cgroup_subsys_state
*css
= &memcg
->css
;
597 struct memcg_cache_array
*arr
;
598 struct kmem_cache
*s
= NULL
;
605 mutex_lock(&slab_mutex
);
608 * The memory cgroup could have been offlined while the cache
609 * creation work was pending.
611 if (memcg
->kmem_state
!= KMEM_ONLINE
)
614 idx
= memcg_cache_id(memcg
);
615 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
616 lockdep_is_held(&slab_mutex
));
619 * Since per-memcg caches are created asynchronously on first
620 * allocation (see memcg_kmem_get_cache()), several threads can try to
621 * create the same cache, but only one of them may succeed.
623 if (arr
->entries
[idx
])
626 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
627 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
628 css
->serial_nr
, memcg_name_buf
);
632 s
= create_cache(cache_name
, root_cache
->object_size
,
634 root_cache
->flags
& CACHE_CREATE_MASK
,
635 root_cache
->useroffset
, root_cache
->usersize
,
636 root_cache
->ctor
, memcg
, root_cache
);
638 * If we could not create a memcg cache, do not complain, because
639 * that's not critical at all as we can always proceed with the root
648 * Since readers won't lock (see cache_from_memcg_idx()), we need a
649 * barrier here to ensure nobody will see the kmem_cache partially
653 arr
->entries
[idx
] = s
;
656 mutex_unlock(&slab_mutex
);
662 static void kmemcg_deactivate_workfn(struct work_struct
*work
)
664 struct kmem_cache
*s
= container_of(work
, struct kmem_cache
,
665 memcg_params
.deact_work
);
670 mutex_lock(&slab_mutex
);
672 s
->memcg_params
.deact_fn(s
);
674 mutex_unlock(&slab_mutex
);
679 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
680 css_put(&s
->memcg_params
.memcg
->css
);
683 static void kmemcg_deactivate_rcufn(struct rcu_head
*head
)
685 struct kmem_cache
*s
= container_of(head
, struct kmem_cache
,
686 memcg_params
.deact_rcu_head
);
689 * We need to grab blocking locks. Bounce to ->deact_work. The
690 * work item shares the space with the RCU head and can't be
691 * initialized eariler.
693 INIT_WORK(&s
->memcg_params
.deact_work
, kmemcg_deactivate_workfn
);
694 queue_work(memcg_kmem_cache_wq
, &s
->memcg_params
.deact_work
);
698 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
699 * sched RCU grace period
700 * @s: target kmem_cache
701 * @deact_fn: deactivation function to call
703 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
704 * held after a sched RCU grace period. The slab is guaranteed to stay
705 * alive until @deact_fn is finished. This is to be used from
706 * __kmemcg_cache_deactivate().
708 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache
*s
,
709 void (*deact_fn
)(struct kmem_cache
*))
711 if (WARN_ON_ONCE(is_root_cache(s
)) ||
712 WARN_ON_ONCE(s
->memcg_params
.deact_fn
))
715 /* pin memcg so that @s doesn't get destroyed in the middle */
716 css_get(&s
->memcg_params
.memcg
->css
);
718 s
->memcg_params
.deact_fn
= deact_fn
;
719 call_rcu_sched(&s
->memcg_params
.deact_rcu_head
, kmemcg_deactivate_rcufn
);
722 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
725 struct memcg_cache_array
*arr
;
726 struct kmem_cache
*s
, *c
;
728 idx
= memcg_cache_id(memcg
);
733 mutex_lock(&slab_mutex
);
734 list_for_each_entry(s
, &slab_root_caches
, root_caches_node
) {
735 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
736 lockdep_is_held(&slab_mutex
));
737 c
= arr
->entries
[idx
];
741 __kmemcg_cache_deactivate(c
);
742 arr
->entries
[idx
] = NULL
;
744 mutex_unlock(&slab_mutex
);
750 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
752 struct kmem_cache
*s
, *s2
;
757 mutex_lock(&slab_mutex
);
758 list_for_each_entry_safe(s
, s2
, &memcg
->kmem_caches
,
759 memcg_params
.kmem_caches_node
) {
761 * The cgroup is about to be freed and therefore has no charges
762 * left. Hence, all its caches must be empty by now.
764 BUG_ON(shutdown_cache(s
));
766 mutex_unlock(&slab_mutex
);
772 static int shutdown_memcg_caches(struct kmem_cache
*s
)
774 struct memcg_cache_array
*arr
;
775 struct kmem_cache
*c
, *c2
;
779 BUG_ON(!is_root_cache(s
));
782 * First, shutdown active caches, i.e. caches that belong to online
785 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
786 lockdep_is_held(&slab_mutex
));
787 for_each_memcg_cache_index(i
) {
791 if (shutdown_cache(c
))
793 * The cache still has objects. Move it to a temporary
794 * list so as not to try to destroy it for a second
795 * time while iterating over inactive caches below.
797 list_move(&c
->memcg_params
.children_node
, &busy
);
800 * The cache is empty and will be destroyed soon. Clear
801 * the pointer to it in the memcg_caches array so that
802 * it will never be accessed even if the root cache
805 arr
->entries
[i
] = NULL
;
809 * Second, shutdown all caches left from memory cgroups that are now
812 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.children
,
813 memcg_params
.children_node
)
816 list_splice(&busy
, &s
->memcg_params
.children
);
819 * A cache being destroyed must be empty. In particular, this means
820 * that all per memcg caches attached to it must be empty too.
822 if (!list_empty(&s
->memcg_params
.children
))
827 static inline int shutdown_memcg_caches(struct kmem_cache
*s
)
831 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
833 void slab_kmem_cache_release(struct kmem_cache
*s
)
835 __kmem_cache_release(s
);
836 destroy_memcg_params(s
);
837 kfree_const(s
->name
);
838 kmem_cache_free(kmem_cache
, s
);
841 void kmem_cache_destroy(struct kmem_cache
*s
)
851 mutex_lock(&slab_mutex
);
857 err
= shutdown_memcg_caches(s
);
859 err
= shutdown_cache(s
);
862 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
867 mutex_unlock(&slab_mutex
);
872 EXPORT_SYMBOL(kmem_cache_destroy
);
875 * kmem_cache_shrink - Shrink a cache.
876 * @cachep: The cache to shrink.
878 * Releases as many slabs as possible for a cache.
879 * To help debugging, a zero exit status indicates all slabs were released.
881 int kmem_cache_shrink(struct kmem_cache
*cachep
)
887 kasan_cache_shrink(cachep
);
888 ret
= __kmem_cache_shrink(cachep
);
893 EXPORT_SYMBOL(kmem_cache_shrink
);
895 bool slab_is_available(void)
897 return slab_state
>= UP
;
901 /* Create a cache during boot when no slab services are available yet */
902 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
,
903 unsigned int size
, slab_flags_t flags
,
904 unsigned int useroffset
, unsigned int usersize
)
909 s
->size
= s
->object_size
= size
;
910 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
911 s
->useroffset
= useroffset
;
912 s
->usersize
= usersize
;
914 slab_init_memcg_params(s
);
916 err
= __kmem_cache_create(s
, flags
);
919 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
922 s
->refcount
= -1; /* Exempt from merging for now */
925 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
926 unsigned int size
, slab_flags_t flags
,
927 unsigned int useroffset
, unsigned int usersize
)
929 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
932 panic("Out of memory when creating slab %s\n", name
);
934 create_boot_cache(s
, name
, size
, flags
, useroffset
, usersize
);
935 list_add(&s
->list
, &slab_caches
);
941 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1] __ro_after_init
;
942 EXPORT_SYMBOL(kmalloc_caches
);
944 #ifdef CONFIG_ZONE_DMA
945 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1] __ro_after_init
;
946 EXPORT_SYMBOL(kmalloc_dma_caches
);
950 * Conversion table for small slabs sizes / 8 to the index in the
951 * kmalloc array. This is necessary for slabs < 192 since we have non power
952 * of two cache sizes there. The size of larger slabs can be determined using
955 static u8 size_index
[24] __ro_after_init
= {
982 static inline unsigned int size_index_elem(unsigned int bytes
)
984 return (bytes
- 1) / 8;
988 * Find the kmem_cache structure that serves a given size of
991 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
995 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
996 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
1002 return ZERO_SIZE_PTR
;
1004 index
= size_index
[size_index_elem(size
)];
1006 index
= fls(size
- 1);
1008 #ifdef CONFIG_ZONE_DMA
1009 if (unlikely((flags
& GFP_DMA
)))
1010 return kmalloc_dma_caches
[index
];
1013 return kmalloc_caches
[index
];
1017 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1018 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1021 const struct kmalloc_info_struct kmalloc_info
[] __initconst
= {
1022 {NULL
, 0}, {"kmalloc-96", 96},
1023 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1024 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1025 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1026 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1027 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1028 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1029 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1030 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1031 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1032 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1033 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1034 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1035 {"kmalloc-67108864", 67108864}
1039 * Patch up the size_index table if we have strange large alignment
1040 * requirements for the kmalloc array. This is only the case for
1041 * MIPS it seems. The standard arches will not generate any code here.
1043 * Largest permitted alignment is 256 bytes due to the way we
1044 * handle the index determination for the smaller caches.
1046 * Make sure that nothing crazy happens if someone starts tinkering
1047 * around with ARCH_KMALLOC_MINALIGN
1049 void __init
setup_kmalloc_cache_index_table(void)
1053 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
1054 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
1056 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
1057 unsigned int elem
= size_index_elem(i
);
1059 if (elem
>= ARRAY_SIZE(size_index
))
1061 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
1064 if (KMALLOC_MIN_SIZE
>= 64) {
1066 * The 96 byte size cache is not used if the alignment
1069 for (i
= 64 + 8; i
<= 96; i
+= 8)
1070 size_index
[size_index_elem(i
)] = 7;
1074 if (KMALLOC_MIN_SIZE
>= 128) {
1076 * The 192 byte sized cache is not used if the alignment
1077 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1080 for (i
= 128 + 8; i
<= 192; i
+= 8)
1081 size_index
[size_index_elem(i
)] = 8;
1085 static void __init
new_kmalloc_cache(int idx
, slab_flags_t flags
)
1087 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
1088 kmalloc_info
[idx
].size
, flags
, 0,
1089 kmalloc_info
[idx
].size
);
1093 * Create the kmalloc array. Some of the regular kmalloc arrays
1094 * may already have been created because they were needed to
1095 * enable allocations for slab creation.
1097 void __init
create_kmalloc_caches(slab_flags_t flags
)
1101 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1102 if (!kmalloc_caches
[i
])
1103 new_kmalloc_cache(i
, flags
);
1106 * Caches that are not of the two-to-the-power-of size.
1107 * These have to be created immediately after the
1108 * earlier power of two caches
1110 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
1111 new_kmalloc_cache(1, flags
);
1112 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
1113 new_kmalloc_cache(2, flags
);
1116 /* Kmalloc array is now usable */
1119 #ifdef CONFIG_ZONE_DMA
1120 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1121 struct kmem_cache
*s
= kmalloc_caches
[i
];
1124 unsigned int size
= kmalloc_size(i
);
1125 char *n
= kasprintf(GFP_NOWAIT
,
1126 "dma-kmalloc-%u", size
);
1129 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
1130 size
, SLAB_CACHE_DMA
| flags
, 0, 0);
1135 #endif /* !CONFIG_SLOB */
1138 * To avoid unnecessary overhead, we pass through large allocation requests
1139 * directly to the page allocator. We use __GFP_COMP, because we will need to
1140 * know the allocation order to free the pages properly in kfree.
1142 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1147 flags
|= __GFP_COMP
;
1148 page
= alloc_pages(flags
, order
);
1149 ret
= page
? page_address(page
) : NULL
;
1150 kmemleak_alloc(ret
, size
, 1, flags
);
1151 kasan_kmalloc_large(ret
, size
, flags
);
1154 EXPORT_SYMBOL(kmalloc_order
);
1156 #ifdef CONFIG_TRACING
1157 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1159 void *ret
= kmalloc_order(size
, flags
, order
);
1160 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1163 EXPORT_SYMBOL(kmalloc_order_trace
);
1166 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1167 /* Randomize a generic freelist */
1168 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1174 for (i
= 0; i
< count
; i
++)
1177 /* Fisher-Yates shuffle */
1178 for (i
= count
- 1; i
> 0; i
--) {
1179 rand
= prandom_u32_state(state
);
1181 swap(list
[i
], list
[rand
]);
1185 /* Create a random sequence per cache */
1186 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1189 struct rnd_state state
;
1191 if (count
< 2 || cachep
->random_seq
)
1194 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1195 if (!cachep
->random_seq
)
1198 /* Get best entropy at this stage of boot */
1199 prandom_seed_state(&state
, get_random_long());
1201 freelist_randomize(&state
, cachep
->random_seq
, count
);
1205 /* Destroy the per-cache random freelist sequence */
1206 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1208 kfree(cachep
->random_seq
);
1209 cachep
->random_seq
= NULL
;
1211 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1213 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1215 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1217 #define SLABINFO_RIGHTS S_IRUSR
1220 static void print_slabinfo_header(struct seq_file
*m
)
1223 * Output format version, so at least we can change it
1224 * without _too_ many complaints.
1226 #ifdef CONFIG_DEBUG_SLAB
1227 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1229 seq_puts(m
, "slabinfo - version: 2.1\n");
1231 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1232 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1233 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1234 #ifdef CONFIG_DEBUG_SLAB
1235 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1236 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1241 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1243 mutex_lock(&slab_mutex
);
1244 return seq_list_start(&slab_root_caches
, *pos
);
1247 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1249 return seq_list_next(p
, &slab_root_caches
, pos
);
1252 void slab_stop(struct seq_file
*m
, void *p
)
1254 mutex_unlock(&slab_mutex
);
1258 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1260 struct kmem_cache
*c
;
1261 struct slabinfo sinfo
;
1263 if (!is_root_cache(s
))
1266 for_each_memcg_cache(c
, s
) {
1267 memset(&sinfo
, 0, sizeof(sinfo
));
1268 get_slabinfo(c
, &sinfo
);
1270 info
->active_slabs
+= sinfo
.active_slabs
;
1271 info
->num_slabs
+= sinfo
.num_slabs
;
1272 info
->shared_avail
+= sinfo
.shared_avail
;
1273 info
->active_objs
+= sinfo
.active_objs
;
1274 info
->num_objs
+= sinfo
.num_objs
;
1278 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1280 struct slabinfo sinfo
;
1282 memset(&sinfo
, 0, sizeof(sinfo
));
1283 get_slabinfo(s
, &sinfo
);
1285 memcg_accumulate_slabinfo(s
, &sinfo
);
1287 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1288 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1289 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1291 seq_printf(m
, " : tunables %4u %4u %4u",
1292 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1293 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1294 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1295 slabinfo_show_stats(m
, s
);
1299 static int slab_show(struct seq_file
*m
, void *p
)
1301 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, root_caches_node
);
1303 if (p
== slab_root_caches
.next
)
1304 print_slabinfo_header(m
);
1309 void dump_unreclaimable_slab(void)
1311 struct kmem_cache
*s
, *s2
;
1312 struct slabinfo sinfo
;
1315 * Here acquiring slab_mutex is risky since we don't prefer to get
1316 * sleep in oom path. But, without mutex hold, it may introduce a
1318 * Use mutex_trylock to protect the list traverse, dump nothing
1319 * without acquiring the mutex.
1321 if (!mutex_trylock(&slab_mutex
)) {
1322 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1326 pr_info("Unreclaimable slab info:\n");
1327 pr_info("Name Used Total\n");
1329 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
1330 if (!is_root_cache(s
) || (s
->flags
& SLAB_RECLAIM_ACCOUNT
))
1333 get_slabinfo(s
, &sinfo
);
1335 if (sinfo
.num_objs
> 0)
1336 pr_info("%-17s %10luKB %10luKB\n", cache_name(s
),
1337 (sinfo
.active_objs
* s
->size
) / 1024,
1338 (sinfo
.num_objs
* s
->size
) / 1024);
1340 mutex_unlock(&slab_mutex
);
1343 #if defined(CONFIG_MEMCG)
1344 void *memcg_slab_start(struct seq_file
*m
, loff_t
*pos
)
1346 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1348 mutex_lock(&slab_mutex
);
1349 return seq_list_start(&memcg
->kmem_caches
, *pos
);
1352 void *memcg_slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1354 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1356 return seq_list_next(p
, &memcg
->kmem_caches
, pos
);
1359 void memcg_slab_stop(struct seq_file
*m
, void *p
)
1361 mutex_unlock(&slab_mutex
);
1364 int memcg_slab_show(struct seq_file
*m
, void *p
)
1366 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
,
1367 memcg_params
.kmem_caches_node
);
1368 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1370 if (p
== memcg
->kmem_caches
.next
)
1371 print_slabinfo_header(m
);
1378 * slabinfo_op - iterator that generates /proc/slabinfo
1387 * num-pages-per-slab
1388 * + further values on SMP and with statistics enabled
1390 static const struct seq_operations slabinfo_op
= {
1391 .start
= slab_start
,
1397 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1399 return seq_open(file
, &slabinfo_op
);
1402 static const struct file_operations proc_slabinfo_operations
= {
1403 .open
= slabinfo_open
,
1405 .write
= slabinfo_write
,
1406 .llseek
= seq_lseek
,
1407 .release
= seq_release
,
1410 static int __init
slab_proc_init(void)
1412 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1413 &proc_slabinfo_operations
);
1416 module_init(slab_proc_init
);
1417 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1419 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1428 if (ks
>= new_size
) {
1429 kasan_krealloc((void *)p
, new_size
, flags
);
1433 ret
= kmalloc_track_caller(new_size
, flags
);
1441 * __krealloc - like krealloc() but don't free @p.
1442 * @p: object to reallocate memory for.
1443 * @new_size: how many bytes of memory are required.
1444 * @flags: the type of memory to allocate.
1446 * This function is like krealloc() except it never frees the originally
1447 * allocated buffer. Use this if you don't want to free the buffer immediately
1448 * like, for example, with RCU.
1450 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1452 if (unlikely(!new_size
))
1453 return ZERO_SIZE_PTR
;
1455 return __do_krealloc(p
, new_size
, flags
);
1458 EXPORT_SYMBOL(__krealloc
);
1461 * krealloc - reallocate memory. The contents will remain unchanged.
1462 * @p: object to reallocate memory for.
1463 * @new_size: how many bytes of memory are required.
1464 * @flags: the type of memory to allocate.
1466 * The contents of the object pointed to are preserved up to the
1467 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1468 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1469 * %NULL pointer, the object pointed to is freed.
1471 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1475 if (unlikely(!new_size
)) {
1477 return ZERO_SIZE_PTR
;
1480 ret
= __do_krealloc(p
, new_size
, flags
);
1481 if (ret
&& p
!= ret
)
1486 EXPORT_SYMBOL(krealloc
);
1489 * kzfree - like kfree but zero memory
1490 * @p: object to free memory of
1492 * The memory of the object @p points to is zeroed before freed.
1493 * If @p is %NULL, kzfree() does nothing.
1495 * Note: this function zeroes the whole allocated buffer which can be a good
1496 * deal bigger than the requested buffer size passed to kmalloc(). So be
1497 * careful when using this function in performance sensitive code.
1499 void kzfree(const void *p
)
1502 void *mem
= (void *)p
;
1504 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1510 EXPORT_SYMBOL(kzfree
);
1512 /* Tracepoints definitions. */
1513 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1514 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1515 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1516 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1517 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1518 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);
1520 int should_failslab(struct kmem_cache
*s
, gfp_t gfpflags
)
1522 if (__should_failslab(s
, gfpflags
))
1526 ALLOW_ERROR_INJECTION(should_failslab
, ERRNO
);