sched/fair: Fix documentation file path
[linux/fpc-iii.git] / mm / slab_common.c
blob98dcdc3520623bf776164982224b7b258e9a2291
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
22 #include <asm/page.h>
23 #include <linux/memcontrol.h>
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/kmem.h>
28 #include "slab.h"
30 enum slab_state slab_state;
31 LIST_HEAD(slab_caches);
32 DEFINE_MUTEX(slab_mutex);
33 struct kmem_cache *kmem_cache;
35 #ifdef CONFIG_HARDENED_USERCOPY
36 bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38 module_param(usercopy_fallback, bool, 0400);
39 MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41 #endif
43 static LIST_HEAD(slab_caches_to_rcu_destroy);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
49 * Set of flags that will prevent slab merging
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 SLAB_FAILSLAB | SLAB_KASAN)
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 SLAB_ACCOUNT)
59 * Merge control. If this is set then no merging of slab caches will occur.
61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63 static int __init setup_slab_nomerge(char *str)
65 slab_nomerge = true;
66 return 1;
69 #ifdef CONFIG_SLUB
70 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71 #endif
73 __setup("slab_nomerge", setup_slab_nomerge);
76 * Determine the size of a slab object
78 unsigned int kmem_cache_size(struct kmem_cache *s)
80 return s->object_size;
82 EXPORT_SYMBOL(kmem_cache_size);
84 #ifdef CONFIG_DEBUG_VM
85 static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 if (!name || in_interrupt() || size < sizeof(void *) ||
88 size > KMALLOC_MAX_SIZE) {
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
94 return 0;
96 #else
97 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
99 return 0;
101 #endif
103 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
105 size_t i;
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
115 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 void **p)
118 size_t i;
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
124 return 0;
127 return i;
130 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
132 LIST_HEAD(slab_root_caches);
134 void slab_init_memcg_params(struct kmem_cache *s)
136 s->memcg_params.root_cache = NULL;
137 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
138 INIT_LIST_HEAD(&s->memcg_params.children);
141 static int init_memcg_params(struct kmem_cache *s,
142 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
144 struct memcg_cache_array *arr;
146 if (root_cache) {
147 s->memcg_params.root_cache = root_cache;
148 s->memcg_params.memcg = memcg;
149 INIT_LIST_HEAD(&s->memcg_params.children_node);
150 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
151 return 0;
154 slab_init_memcg_params(s);
156 if (!memcg_nr_cache_ids)
157 return 0;
159 arr = kvzalloc(sizeof(struct memcg_cache_array) +
160 memcg_nr_cache_ids * sizeof(void *),
161 GFP_KERNEL);
162 if (!arr)
163 return -ENOMEM;
165 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
166 return 0;
169 static void destroy_memcg_params(struct kmem_cache *s)
171 if (is_root_cache(s))
172 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
175 static void free_memcg_params(struct rcu_head *rcu)
177 struct memcg_cache_array *old;
179 old = container_of(rcu, struct memcg_cache_array, rcu);
180 kvfree(old);
183 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
185 struct memcg_cache_array *old, *new;
187 new = kvzalloc(sizeof(struct memcg_cache_array) +
188 new_array_size * sizeof(void *), GFP_KERNEL);
189 if (!new)
190 return -ENOMEM;
192 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
193 lockdep_is_held(&slab_mutex));
194 if (old)
195 memcpy(new->entries, old->entries,
196 memcg_nr_cache_ids * sizeof(void *));
198 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
199 if (old)
200 call_rcu(&old->rcu, free_memcg_params);
201 return 0;
204 int memcg_update_all_caches(int num_memcgs)
206 struct kmem_cache *s;
207 int ret = 0;
209 mutex_lock(&slab_mutex);
210 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
211 ret = update_memcg_params(s, num_memcgs);
213 * Instead of freeing the memory, we'll just leave the caches
214 * up to this point in an updated state.
216 if (ret)
217 break;
219 mutex_unlock(&slab_mutex);
220 return ret;
223 void memcg_link_cache(struct kmem_cache *s)
225 if (is_root_cache(s)) {
226 list_add(&s->root_caches_node, &slab_root_caches);
227 } else {
228 list_add(&s->memcg_params.children_node,
229 &s->memcg_params.root_cache->memcg_params.children);
230 list_add(&s->memcg_params.kmem_caches_node,
231 &s->memcg_params.memcg->kmem_caches);
235 static void memcg_unlink_cache(struct kmem_cache *s)
237 if (is_root_cache(s)) {
238 list_del(&s->root_caches_node);
239 } else {
240 list_del(&s->memcg_params.children_node);
241 list_del(&s->memcg_params.kmem_caches_node);
244 #else
245 static inline int init_memcg_params(struct kmem_cache *s,
246 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
248 return 0;
251 static inline void destroy_memcg_params(struct kmem_cache *s)
255 static inline void memcg_unlink_cache(struct kmem_cache *s)
258 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
261 * Figure out what the alignment of the objects will be given a set of
262 * flags, a user specified alignment and the size of the objects.
264 static unsigned int calculate_alignment(slab_flags_t flags,
265 unsigned int align, unsigned int size)
268 * If the user wants hardware cache aligned objects then follow that
269 * suggestion if the object is sufficiently large.
271 * The hardware cache alignment cannot override the specified
272 * alignment though. If that is greater then use it.
274 if (flags & SLAB_HWCACHE_ALIGN) {
275 unsigned int ralign;
277 ralign = cache_line_size();
278 while (size <= ralign / 2)
279 ralign /= 2;
280 align = max(align, ralign);
283 if (align < ARCH_SLAB_MINALIGN)
284 align = ARCH_SLAB_MINALIGN;
286 return ALIGN(align, sizeof(void *));
290 * Find a mergeable slab cache
292 int slab_unmergeable(struct kmem_cache *s)
294 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
295 return 1;
297 if (!is_root_cache(s))
298 return 1;
300 if (s->ctor)
301 return 1;
303 if (s->usersize)
304 return 1;
307 * We may have set a slab to be unmergeable during bootstrap.
309 if (s->refcount < 0)
310 return 1;
312 return 0;
315 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
316 slab_flags_t flags, const char *name, void (*ctor)(void *))
318 struct kmem_cache *s;
320 if (slab_nomerge)
321 return NULL;
323 if (ctor)
324 return NULL;
326 size = ALIGN(size, sizeof(void *));
327 align = calculate_alignment(flags, align, size);
328 size = ALIGN(size, align);
329 flags = kmem_cache_flags(size, flags, name, NULL);
331 if (flags & SLAB_NEVER_MERGE)
332 return NULL;
334 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
335 if (slab_unmergeable(s))
336 continue;
338 if (size > s->size)
339 continue;
341 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
342 continue;
344 * Check if alignment is compatible.
345 * Courtesy of Adrian Drzewiecki
347 if ((s->size & ~(align - 1)) != s->size)
348 continue;
350 if (s->size - size >= sizeof(void *))
351 continue;
353 if (IS_ENABLED(CONFIG_SLAB) && align &&
354 (align > s->align || s->align % align))
355 continue;
357 return s;
359 return NULL;
362 static struct kmem_cache *create_cache(const char *name,
363 unsigned int object_size, unsigned int align,
364 slab_flags_t flags, unsigned int useroffset,
365 unsigned int usersize, void (*ctor)(void *),
366 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
368 struct kmem_cache *s;
369 int err;
371 if (WARN_ON(useroffset + usersize > object_size))
372 useroffset = usersize = 0;
374 err = -ENOMEM;
375 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
376 if (!s)
377 goto out;
379 s->name = name;
380 s->size = s->object_size = object_size;
381 s->align = align;
382 s->ctor = ctor;
383 s->useroffset = useroffset;
384 s->usersize = usersize;
386 err = init_memcg_params(s, memcg, root_cache);
387 if (err)
388 goto out_free_cache;
390 err = __kmem_cache_create(s, flags);
391 if (err)
392 goto out_free_cache;
394 s->refcount = 1;
395 list_add(&s->list, &slab_caches);
396 memcg_link_cache(s);
397 out:
398 if (err)
399 return ERR_PTR(err);
400 return s;
402 out_free_cache:
403 destroy_memcg_params(s);
404 kmem_cache_free(kmem_cache, s);
405 goto out;
409 * kmem_cache_create_usercopy - Create a cache.
410 * @name: A string which is used in /proc/slabinfo to identify this cache.
411 * @size: The size of objects to be created in this cache.
412 * @align: The required alignment for the objects.
413 * @flags: SLAB flags
414 * @useroffset: Usercopy region offset
415 * @usersize: Usercopy region size
416 * @ctor: A constructor for the objects.
418 * Returns a ptr to the cache on success, NULL on failure.
419 * Cannot be called within a interrupt, but can be interrupted.
420 * The @ctor is run when new pages are allocated by the cache.
422 * The flags are
424 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
425 * to catch references to uninitialised memory.
427 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
428 * for buffer overruns.
430 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
431 * cacheline. This can be beneficial if you're counting cycles as closely
432 * as davem.
434 struct kmem_cache *
435 kmem_cache_create_usercopy(const char *name,
436 unsigned int size, unsigned int align,
437 slab_flags_t flags,
438 unsigned int useroffset, unsigned int usersize,
439 void (*ctor)(void *))
441 struct kmem_cache *s = NULL;
442 const char *cache_name;
443 int err;
445 get_online_cpus();
446 get_online_mems();
447 memcg_get_cache_ids();
449 mutex_lock(&slab_mutex);
451 err = kmem_cache_sanity_check(name, size);
452 if (err) {
453 goto out_unlock;
456 /* Refuse requests with allocator specific flags */
457 if (flags & ~SLAB_FLAGS_PERMITTED) {
458 err = -EINVAL;
459 goto out_unlock;
463 * Some allocators will constraint the set of valid flags to a subset
464 * of all flags. We expect them to define CACHE_CREATE_MASK in this
465 * case, and we'll just provide them with a sanitized version of the
466 * passed flags.
468 flags &= CACHE_CREATE_MASK;
470 /* Fail closed on bad usersize of useroffset values. */
471 if (WARN_ON(!usersize && useroffset) ||
472 WARN_ON(size < usersize || size - usersize < useroffset))
473 usersize = useroffset = 0;
475 if (!usersize)
476 s = __kmem_cache_alias(name, size, align, flags, ctor);
477 if (s)
478 goto out_unlock;
480 cache_name = kstrdup_const(name, GFP_KERNEL);
481 if (!cache_name) {
482 err = -ENOMEM;
483 goto out_unlock;
486 s = create_cache(cache_name, size,
487 calculate_alignment(flags, align, size),
488 flags, useroffset, usersize, ctor, NULL, NULL);
489 if (IS_ERR(s)) {
490 err = PTR_ERR(s);
491 kfree_const(cache_name);
494 out_unlock:
495 mutex_unlock(&slab_mutex);
497 memcg_put_cache_ids();
498 put_online_mems();
499 put_online_cpus();
501 if (err) {
502 if (flags & SLAB_PANIC)
503 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
504 name, err);
505 else {
506 pr_warn("kmem_cache_create(%s) failed with error %d\n",
507 name, err);
508 dump_stack();
510 return NULL;
512 return s;
514 EXPORT_SYMBOL(kmem_cache_create_usercopy);
516 struct kmem_cache *
517 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
518 slab_flags_t flags, void (*ctor)(void *))
520 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
521 ctor);
523 EXPORT_SYMBOL(kmem_cache_create);
525 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
527 LIST_HEAD(to_destroy);
528 struct kmem_cache *s, *s2;
531 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
532 * @slab_caches_to_rcu_destroy list. The slab pages are freed
533 * through RCU and and the associated kmem_cache are dereferenced
534 * while freeing the pages, so the kmem_caches should be freed only
535 * after the pending RCU operations are finished. As rcu_barrier()
536 * is a pretty slow operation, we batch all pending destructions
537 * asynchronously.
539 mutex_lock(&slab_mutex);
540 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
541 mutex_unlock(&slab_mutex);
543 if (list_empty(&to_destroy))
544 return;
546 rcu_barrier();
548 list_for_each_entry_safe(s, s2, &to_destroy, list) {
549 #ifdef SLAB_SUPPORTS_SYSFS
550 sysfs_slab_release(s);
551 #else
552 slab_kmem_cache_release(s);
553 #endif
557 static int shutdown_cache(struct kmem_cache *s)
559 /* free asan quarantined objects */
560 kasan_cache_shutdown(s);
562 if (__kmem_cache_shutdown(s) != 0)
563 return -EBUSY;
565 memcg_unlink_cache(s);
566 list_del(&s->list);
568 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
569 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
570 schedule_work(&slab_caches_to_rcu_destroy_work);
571 } else {
572 #ifdef SLAB_SUPPORTS_SYSFS
573 sysfs_slab_release(s);
574 #else
575 slab_kmem_cache_release(s);
576 #endif
579 return 0;
582 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
584 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
585 * @memcg: The memory cgroup the new cache is for.
586 * @root_cache: The parent of the new cache.
588 * This function attempts to create a kmem cache that will serve allocation
589 * requests going from @memcg to @root_cache. The new cache inherits properties
590 * from its parent.
592 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
593 struct kmem_cache *root_cache)
595 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
596 struct cgroup_subsys_state *css = &memcg->css;
597 struct memcg_cache_array *arr;
598 struct kmem_cache *s = NULL;
599 char *cache_name;
600 int idx;
602 get_online_cpus();
603 get_online_mems();
605 mutex_lock(&slab_mutex);
608 * The memory cgroup could have been offlined while the cache
609 * creation work was pending.
611 if (memcg->kmem_state != KMEM_ONLINE)
612 goto out_unlock;
614 idx = memcg_cache_id(memcg);
615 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
616 lockdep_is_held(&slab_mutex));
619 * Since per-memcg caches are created asynchronously on first
620 * allocation (see memcg_kmem_get_cache()), several threads can try to
621 * create the same cache, but only one of them may succeed.
623 if (arr->entries[idx])
624 goto out_unlock;
626 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
627 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
628 css->serial_nr, memcg_name_buf);
629 if (!cache_name)
630 goto out_unlock;
632 s = create_cache(cache_name, root_cache->object_size,
633 root_cache->align,
634 root_cache->flags & CACHE_CREATE_MASK,
635 root_cache->useroffset, root_cache->usersize,
636 root_cache->ctor, memcg, root_cache);
638 * If we could not create a memcg cache, do not complain, because
639 * that's not critical at all as we can always proceed with the root
640 * cache.
642 if (IS_ERR(s)) {
643 kfree(cache_name);
644 goto out_unlock;
648 * Since readers won't lock (see cache_from_memcg_idx()), we need a
649 * barrier here to ensure nobody will see the kmem_cache partially
650 * initialized.
652 smp_wmb();
653 arr->entries[idx] = s;
655 out_unlock:
656 mutex_unlock(&slab_mutex);
658 put_online_mems();
659 put_online_cpus();
662 static void kmemcg_deactivate_workfn(struct work_struct *work)
664 struct kmem_cache *s = container_of(work, struct kmem_cache,
665 memcg_params.deact_work);
667 get_online_cpus();
668 get_online_mems();
670 mutex_lock(&slab_mutex);
672 s->memcg_params.deact_fn(s);
674 mutex_unlock(&slab_mutex);
676 put_online_mems();
677 put_online_cpus();
679 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
680 css_put(&s->memcg_params.memcg->css);
683 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
685 struct kmem_cache *s = container_of(head, struct kmem_cache,
686 memcg_params.deact_rcu_head);
689 * We need to grab blocking locks. Bounce to ->deact_work. The
690 * work item shares the space with the RCU head and can't be
691 * initialized eariler.
693 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
694 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
698 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
699 * sched RCU grace period
700 * @s: target kmem_cache
701 * @deact_fn: deactivation function to call
703 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
704 * held after a sched RCU grace period. The slab is guaranteed to stay
705 * alive until @deact_fn is finished. This is to be used from
706 * __kmemcg_cache_deactivate().
708 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
709 void (*deact_fn)(struct kmem_cache *))
711 if (WARN_ON_ONCE(is_root_cache(s)) ||
712 WARN_ON_ONCE(s->memcg_params.deact_fn))
713 return;
715 /* pin memcg so that @s doesn't get destroyed in the middle */
716 css_get(&s->memcg_params.memcg->css);
718 s->memcg_params.deact_fn = deact_fn;
719 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
722 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
724 int idx;
725 struct memcg_cache_array *arr;
726 struct kmem_cache *s, *c;
728 idx = memcg_cache_id(memcg);
730 get_online_cpus();
731 get_online_mems();
733 mutex_lock(&slab_mutex);
734 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
735 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
736 lockdep_is_held(&slab_mutex));
737 c = arr->entries[idx];
738 if (!c)
739 continue;
741 __kmemcg_cache_deactivate(c);
742 arr->entries[idx] = NULL;
744 mutex_unlock(&slab_mutex);
746 put_online_mems();
747 put_online_cpus();
750 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
752 struct kmem_cache *s, *s2;
754 get_online_cpus();
755 get_online_mems();
757 mutex_lock(&slab_mutex);
758 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
759 memcg_params.kmem_caches_node) {
761 * The cgroup is about to be freed and therefore has no charges
762 * left. Hence, all its caches must be empty by now.
764 BUG_ON(shutdown_cache(s));
766 mutex_unlock(&slab_mutex);
768 put_online_mems();
769 put_online_cpus();
772 static int shutdown_memcg_caches(struct kmem_cache *s)
774 struct memcg_cache_array *arr;
775 struct kmem_cache *c, *c2;
776 LIST_HEAD(busy);
777 int i;
779 BUG_ON(!is_root_cache(s));
782 * First, shutdown active caches, i.e. caches that belong to online
783 * memory cgroups.
785 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
786 lockdep_is_held(&slab_mutex));
787 for_each_memcg_cache_index(i) {
788 c = arr->entries[i];
789 if (!c)
790 continue;
791 if (shutdown_cache(c))
793 * The cache still has objects. Move it to a temporary
794 * list so as not to try to destroy it for a second
795 * time while iterating over inactive caches below.
797 list_move(&c->memcg_params.children_node, &busy);
798 else
800 * The cache is empty and will be destroyed soon. Clear
801 * the pointer to it in the memcg_caches array so that
802 * it will never be accessed even if the root cache
803 * stays alive.
805 arr->entries[i] = NULL;
809 * Second, shutdown all caches left from memory cgroups that are now
810 * offline.
812 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
813 memcg_params.children_node)
814 shutdown_cache(c);
816 list_splice(&busy, &s->memcg_params.children);
819 * A cache being destroyed must be empty. In particular, this means
820 * that all per memcg caches attached to it must be empty too.
822 if (!list_empty(&s->memcg_params.children))
823 return -EBUSY;
824 return 0;
826 #else
827 static inline int shutdown_memcg_caches(struct kmem_cache *s)
829 return 0;
831 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
833 void slab_kmem_cache_release(struct kmem_cache *s)
835 __kmem_cache_release(s);
836 destroy_memcg_params(s);
837 kfree_const(s->name);
838 kmem_cache_free(kmem_cache, s);
841 void kmem_cache_destroy(struct kmem_cache *s)
843 int err;
845 if (unlikely(!s))
846 return;
848 get_online_cpus();
849 get_online_mems();
851 mutex_lock(&slab_mutex);
853 s->refcount--;
854 if (s->refcount)
855 goto out_unlock;
857 err = shutdown_memcg_caches(s);
858 if (!err)
859 err = shutdown_cache(s);
861 if (err) {
862 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
863 s->name);
864 dump_stack();
866 out_unlock:
867 mutex_unlock(&slab_mutex);
869 put_online_mems();
870 put_online_cpus();
872 EXPORT_SYMBOL(kmem_cache_destroy);
875 * kmem_cache_shrink - Shrink a cache.
876 * @cachep: The cache to shrink.
878 * Releases as many slabs as possible for a cache.
879 * To help debugging, a zero exit status indicates all slabs were released.
881 int kmem_cache_shrink(struct kmem_cache *cachep)
883 int ret;
885 get_online_cpus();
886 get_online_mems();
887 kasan_cache_shrink(cachep);
888 ret = __kmem_cache_shrink(cachep);
889 put_online_mems();
890 put_online_cpus();
891 return ret;
893 EXPORT_SYMBOL(kmem_cache_shrink);
895 bool slab_is_available(void)
897 return slab_state >= UP;
900 #ifndef CONFIG_SLOB
901 /* Create a cache during boot when no slab services are available yet */
902 void __init create_boot_cache(struct kmem_cache *s, const char *name,
903 unsigned int size, slab_flags_t flags,
904 unsigned int useroffset, unsigned int usersize)
906 int err;
908 s->name = name;
909 s->size = s->object_size = size;
910 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
911 s->useroffset = useroffset;
912 s->usersize = usersize;
914 slab_init_memcg_params(s);
916 err = __kmem_cache_create(s, flags);
918 if (err)
919 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
920 name, size, err);
922 s->refcount = -1; /* Exempt from merging for now */
925 struct kmem_cache *__init create_kmalloc_cache(const char *name,
926 unsigned int size, slab_flags_t flags,
927 unsigned int useroffset, unsigned int usersize)
929 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
931 if (!s)
932 panic("Out of memory when creating slab %s\n", name);
934 create_boot_cache(s, name, size, flags, useroffset, usersize);
935 list_add(&s->list, &slab_caches);
936 memcg_link_cache(s);
937 s->refcount = 1;
938 return s;
941 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
942 EXPORT_SYMBOL(kmalloc_caches);
944 #ifdef CONFIG_ZONE_DMA
945 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
946 EXPORT_SYMBOL(kmalloc_dma_caches);
947 #endif
950 * Conversion table for small slabs sizes / 8 to the index in the
951 * kmalloc array. This is necessary for slabs < 192 since we have non power
952 * of two cache sizes there. The size of larger slabs can be determined using
953 * fls.
955 static u8 size_index[24] __ro_after_init = {
956 3, /* 8 */
957 4, /* 16 */
958 5, /* 24 */
959 5, /* 32 */
960 6, /* 40 */
961 6, /* 48 */
962 6, /* 56 */
963 6, /* 64 */
964 1, /* 72 */
965 1, /* 80 */
966 1, /* 88 */
967 1, /* 96 */
968 7, /* 104 */
969 7, /* 112 */
970 7, /* 120 */
971 7, /* 128 */
972 2, /* 136 */
973 2, /* 144 */
974 2, /* 152 */
975 2, /* 160 */
976 2, /* 168 */
977 2, /* 176 */
978 2, /* 184 */
979 2 /* 192 */
982 static inline unsigned int size_index_elem(unsigned int bytes)
984 return (bytes - 1) / 8;
988 * Find the kmem_cache structure that serves a given size of
989 * allocation
991 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
993 unsigned int index;
995 if (unlikely(size > KMALLOC_MAX_SIZE)) {
996 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
997 return NULL;
1000 if (size <= 192) {
1001 if (!size)
1002 return ZERO_SIZE_PTR;
1004 index = size_index[size_index_elem(size)];
1005 } else
1006 index = fls(size - 1);
1008 #ifdef CONFIG_ZONE_DMA
1009 if (unlikely((flags & GFP_DMA)))
1010 return kmalloc_dma_caches[index];
1012 #endif
1013 return kmalloc_caches[index];
1017 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1018 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1019 * kmalloc-67108864.
1021 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1022 {NULL, 0}, {"kmalloc-96", 96},
1023 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1024 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1025 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1026 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1027 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1028 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1029 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1030 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1031 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1032 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1033 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1034 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1035 {"kmalloc-67108864", 67108864}
1039 * Patch up the size_index table if we have strange large alignment
1040 * requirements for the kmalloc array. This is only the case for
1041 * MIPS it seems. The standard arches will not generate any code here.
1043 * Largest permitted alignment is 256 bytes due to the way we
1044 * handle the index determination for the smaller caches.
1046 * Make sure that nothing crazy happens if someone starts tinkering
1047 * around with ARCH_KMALLOC_MINALIGN
1049 void __init setup_kmalloc_cache_index_table(void)
1051 unsigned int i;
1053 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1054 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1056 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1057 unsigned int elem = size_index_elem(i);
1059 if (elem >= ARRAY_SIZE(size_index))
1060 break;
1061 size_index[elem] = KMALLOC_SHIFT_LOW;
1064 if (KMALLOC_MIN_SIZE >= 64) {
1066 * The 96 byte size cache is not used if the alignment
1067 * is 64 byte.
1069 for (i = 64 + 8; i <= 96; i += 8)
1070 size_index[size_index_elem(i)] = 7;
1074 if (KMALLOC_MIN_SIZE >= 128) {
1076 * The 192 byte sized cache is not used if the alignment
1077 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1078 * instead.
1080 for (i = 128 + 8; i <= 192; i += 8)
1081 size_index[size_index_elem(i)] = 8;
1085 static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1087 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1088 kmalloc_info[idx].size, flags, 0,
1089 kmalloc_info[idx].size);
1093 * Create the kmalloc array. Some of the regular kmalloc arrays
1094 * may already have been created because they were needed to
1095 * enable allocations for slab creation.
1097 void __init create_kmalloc_caches(slab_flags_t flags)
1099 int i;
1101 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1102 if (!kmalloc_caches[i])
1103 new_kmalloc_cache(i, flags);
1106 * Caches that are not of the two-to-the-power-of size.
1107 * These have to be created immediately after the
1108 * earlier power of two caches
1110 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1111 new_kmalloc_cache(1, flags);
1112 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1113 new_kmalloc_cache(2, flags);
1116 /* Kmalloc array is now usable */
1117 slab_state = UP;
1119 #ifdef CONFIG_ZONE_DMA
1120 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1121 struct kmem_cache *s = kmalloc_caches[i];
1123 if (s) {
1124 unsigned int size = kmalloc_size(i);
1125 char *n = kasprintf(GFP_NOWAIT,
1126 "dma-kmalloc-%u", size);
1128 BUG_ON(!n);
1129 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1130 size, SLAB_CACHE_DMA | flags, 0, 0);
1133 #endif
1135 #endif /* !CONFIG_SLOB */
1138 * To avoid unnecessary overhead, we pass through large allocation requests
1139 * directly to the page allocator. We use __GFP_COMP, because we will need to
1140 * know the allocation order to free the pages properly in kfree.
1142 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1144 void *ret;
1145 struct page *page;
1147 flags |= __GFP_COMP;
1148 page = alloc_pages(flags, order);
1149 ret = page ? page_address(page) : NULL;
1150 kmemleak_alloc(ret, size, 1, flags);
1151 kasan_kmalloc_large(ret, size, flags);
1152 return ret;
1154 EXPORT_SYMBOL(kmalloc_order);
1156 #ifdef CONFIG_TRACING
1157 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1159 void *ret = kmalloc_order(size, flags, order);
1160 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1161 return ret;
1163 EXPORT_SYMBOL(kmalloc_order_trace);
1164 #endif
1166 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1167 /* Randomize a generic freelist */
1168 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1169 unsigned int count)
1171 unsigned int rand;
1172 unsigned int i;
1174 for (i = 0; i < count; i++)
1175 list[i] = i;
1177 /* Fisher-Yates shuffle */
1178 for (i = count - 1; i > 0; i--) {
1179 rand = prandom_u32_state(state);
1180 rand %= (i + 1);
1181 swap(list[i], list[rand]);
1185 /* Create a random sequence per cache */
1186 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1187 gfp_t gfp)
1189 struct rnd_state state;
1191 if (count < 2 || cachep->random_seq)
1192 return 0;
1194 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1195 if (!cachep->random_seq)
1196 return -ENOMEM;
1198 /* Get best entropy at this stage of boot */
1199 prandom_seed_state(&state, get_random_long());
1201 freelist_randomize(&state, cachep->random_seq, count);
1202 return 0;
1205 /* Destroy the per-cache random freelist sequence */
1206 void cache_random_seq_destroy(struct kmem_cache *cachep)
1208 kfree(cachep->random_seq);
1209 cachep->random_seq = NULL;
1211 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1213 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1214 #ifdef CONFIG_SLAB
1215 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1216 #else
1217 #define SLABINFO_RIGHTS S_IRUSR
1218 #endif
1220 static void print_slabinfo_header(struct seq_file *m)
1223 * Output format version, so at least we can change it
1224 * without _too_ many complaints.
1226 #ifdef CONFIG_DEBUG_SLAB
1227 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1228 #else
1229 seq_puts(m, "slabinfo - version: 2.1\n");
1230 #endif
1231 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1232 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1233 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1234 #ifdef CONFIG_DEBUG_SLAB
1235 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1236 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1237 #endif
1238 seq_putc(m, '\n');
1241 void *slab_start(struct seq_file *m, loff_t *pos)
1243 mutex_lock(&slab_mutex);
1244 return seq_list_start(&slab_root_caches, *pos);
1247 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1249 return seq_list_next(p, &slab_root_caches, pos);
1252 void slab_stop(struct seq_file *m, void *p)
1254 mutex_unlock(&slab_mutex);
1257 static void
1258 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1260 struct kmem_cache *c;
1261 struct slabinfo sinfo;
1263 if (!is_root_cache(s))
1264 return;
1266 for_each_memcg_cache(c, s) {
1267 memset(&sinfo, 0, sizeof(sinfo));
1268 get_slabinfo(c, &sinfo);
1270 info->active_slabs += sinfo.active_slabs;
1271 info->num_slabs += sinfo.num_slabs;
1272 info->shared_avail += sinfo.shared_avail;
1273 info->active_objs += sinfo.active_objs;
1274 info->num_objs += sinfo.num_objs;
1278 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1280 struct slabinfo sinfo;
1282 memset(&sinfo, 0, sizeof(sinfo));
1283 get_slabinfo(s, &sinfo);
1285 memcg_accumulate_slabinfo(s, &sinfo);
1287 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1288 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1289 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1291 seq_printf(m, " : tunables %4u %4u %4u",
1292 sinfo.limit, sinfo.batchcount, sinfo.shared);
1293 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1294 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1295 slabinfo_show_stats(m, s);
1296 seq_putc(m, '\n');
1299 static int slab_show(struct seq_file *m, void *p)
1301 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1303 if (p == slab_root_caches.next)
1304 print_slabinfo_header(m);
1305 cache_show(s, m);
1306 return 0;
1309 void dump_unreclaimable_slab(void)
1311 struct kmem_cache *s, *s2;
1312 struct slabinfo sinfo;
1315 * Here acquiring slab_mutex is risky since we don't prefer to get
1316 * sleep in oom path. But, without mutex hold, it may introduce a
1317 * risk of crash.
1318 * Use mutex_trylock to protect the list traverse, dump nothing
1319 * without acquiring the mutex.
1321 if (!mutex_trylock(&slab_mutex)) {
1322 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1323 return;
1326 pr_info("Unreclaimable slab info:\n");
1327 pr_info("Name Used Total\n");
1329 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1330 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1331 continue;
1333 get_slabinfo(s, &sinfo);
1335 if (sinfo.num_objs > 0)
1336 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1337 (sinfo.active_objs * s->size) / 1024,
1338 (sinfo.num_objs * s->size) / 1024);
1340 mutex_unlock(&slab_mutex);
1343 #if defined(CONFIG_MEMCG)
1344 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1346 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1348 mutex_lock(&slab_mutex);
1349 return seq_list_start(&memcg->kmem_caches, *pos);
1352 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1354 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1356 return seq_list_next(p, &memcg->kmem_caches, pos);
1359 void memcg_slab_stop(struct seq_file *m, void *p)
1361 mutex_unlock(&slab_mutex);
1364 int memcg_slab_show(struct seq_file *m, void *p)
1366 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1367 memcg_params.kmem_caches_node);
1368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1370 if (p == memcg->kmem_caches.next)
1371 print_slabinfo_header(m);
1372 cache_show(s, m);
1373 return 0;
1375 #endif
1378 * slabinfo_op - iterator that generates /proc/slabinfo
1380 * Output layout:
1381 * cache-name
1382 * num-active-objs
1383 * total-objs
1384 * object size
1385 * num-active-slabs
1386 * total-slabs
1387 * num-pages-per-slab
1388 * + further values on SMP and with statistics enabled
1390 static const struct seq_operations slabinfo_op = {
1391 .start = slab_start,
1392 .next = slab_next,
1393 .stop = slab_stop,
1394 .show = slab_show,
1397 static int slabinfo_open(struct inode *inode, struct file *file)
1399 return seq_open(file, &slabinfo_op);
1402 static const struct file_operations proc_slabinfo_operations = {
1403 .open = slabinfo_open,
1404 .read = seq_read,
1405 .write = slabinfo_write,
1406 .llseek = seq_lseek,
1407 .release = seq_release,
1410 static int __init slab_proc_init(void)
1412 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1413 &proc_slabinfo_operations);
1414 return 0;
1416 module_init(slab_proc_init);
1417 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1419 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1420 gfp_t flags)
1422 void *ret;
1423 size_t ks = 0;
1425 if (p)
1426 ks = ksize(p);
1428 if (ks >= new_size) {
1429 kasan_krealloc((void *)p, new_size, flags);
1430 return (void *)p;
1433 ret = kmalloc_track_caller(new_size, flags);
1434 if (ret && p)
1435 memcpy(ret, p, ks);
1437 return ret;
1441 * __krealloc - like krealloc() but don't free @p.
1442 * @p: object to reallocate memory for.
1443 * @new_size: how many bytes of memory are required.
1444 * @flags: the type of memory to allocate.
1446 * This function is like krealloc() except it never frees the originally
1447 * allocated buffer. Use this if you don't want to free the buffer immediately
1448 * like, for example, with RCU.
1450 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1452 if (unlikely(!new_size))
1453 return ZERO_SIZE_PTR;
1455 return __do_krealloc(p, new_size, flags);
1458 EXPORT_SYMBOL(__krealloc);
1461 * krealloc - reallocate memory. The contents will remain unchanged.
1462 * @p: object to reallocate memory for.
1463 * @new_size: how many bytes of memory are required.
1464 * @flags: the type of memory to allocate.
1466 * The contents of the object pointed to are preserved up to the
1467 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1468 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1469 * %NULL pointer, the object pointed to is freed.
1471 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1473 void *ret;
1475 if (unlikely(!new_size)) {
1476 kfree(p);
1477 return ZERO_SIZE_PTR;
1480 ret = __do_krealloc(p, new_size, flags);
1481 if (ret && p != ret)
1482 kfree(p);
1484 return ret;
1486 EXPORT_SYMBOL(krealloc);
1489 * kzfree - like kfree but zero memory
1490 * @p: object to free memory of
1492 * The memory of the object @p points to is zeroed before freed.
1493 * If @p is %NULL, kzfree() does nothing.
1495 * Note: this function zeroes the whole allocated buffer which can be a good
1496 * deal bigger than the requested buffer size passed to kmalloc(). So be
1497 * careful when using this function in performance sensitive code.
1499 void kzfree(const void *p)
1501 size_t ks;
1502 void *mem = (void *)p;
1504 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1505 return;
1506 ks = ksize(mem);
1507 memset(mem, 0, ks);
1508 kfree(mem);
1510 EXPORT_SYMBOL(kzfree);
1512 /* Tracepoints definitions. */
1513 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1514 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1515 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1516 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1517 EXPORT_TRACEPOINT_SYMBOL(kfree);
1518 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1520 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1522 if (__should_failslab(s, gfpflags))
1523 return -ENOMEM;
1524 return 0;
1526 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);