2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/time.h>
24 #include <linux/clockchips.h>
25 #include <linux/hrtimer.h>
26 #include <linux/tick.h>
27 #include <linux/notifier.h>
29 #include <linux/mutex.h>
30 #include <linux/smp.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33 #include <linux/sysfs.h>
34 #include <linux/irqchip/arm-gic.h>
35 #include <linux/moduleparam.h>
37 #include <asm/smp_plat.h>
38 #include <asm/cputype.h>
39 #include <asm/suspend.h>
41 #include <asm/bL_switcher.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/power_cpu_migrate.h>
48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
49 * __attribute_const__ and we don't want the compiler to assume any
50 * constness here as the value _does_ change along some code paths.
53 static int read_mpidr(void)
56 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id
));
57 return id
& MPIDR_HWID_BITMASK
;
61 * Get a global nanosecond time stamp for tracing.
63 static s64
get_ns(void)
67 return timespec_to_ns(&ts
);
71 * bL switcher core code.
74 static void bL_do_switch(void *_arg
)
76 unsigned ib_mpidr
, ib_cpu
, ib_cluster
;
77 long volatile handshake
, **handshake_ptr
= _arg
;
79 pr_debug("%s\n", __func__
);
81 ib_mpidr
= cpu_logical_map(smp_processor_id());
82 ib_cpu
= MPIDR_AFFINITY_LEVEL(ib_mpidr
, 0);
83 ib_cluster
= MPIDR_AFFINITY_LEVEL(ib_mpidr
, 1);
85 /* Advertise our handshake location */
88 *handshake_ptr
= &handshake
;
93 * Our state has been saved at this point. Let's release our
96 mcpm_set_entry_vector(ib_cpu
, ib_cluster
, cpu_resume
);
100 * From this point, we must assume that our counterpart CPU might
101 * have taken over in its parallel world already, as if execution
102 * just returned from cpu_suspend(). It is therefore important to
103 * be very careful not to make any change the other guy is not
104 * expecting. This is why we need stack isolation.
106 * Fancy under cover tasks could be performed here. For now
111 * Let's wait until our inbound is alive.
118 /* Let's put ourself down. */
119 mcpm_cpu_power_down();
121 /* should never get here */
126 * Stack isolation. To ensure 'current' remains valid, we just use another
127 * piece of our thread's stack space which should be fairly lightly used.
128 * The selected area starts just above the thread_info structure located
129 * at the very bottom of the stack, aligned to a cache line, and indexed
130 * with the cluster number.
132 #define STACK_SIZE 512
133 extern void call_with_stack(void (*fn
)(void *), void *arg
, void *sp
);
134 static int bL_switchpoint(unsigned long _arg
)
136 unsigned int mpidr
= read_mpidr();
137 unsigned int clusterid
= MPIDR_AFFINITY_LEVEL(mpidr
, 1);
138 void *stack
= current_thread_info() + 1;
139 stack
= PTR_ALIGN(stack
, L1_CACHE_BYTES
);
140 stack
+= clusterid
* STACK_SIZE
+ STACK_SIZE
;
141 call_with_stack(bL_do_switch
, (void *)_arg
, stack
);
146 * Generic switcher interface
149 static unsigned int bL_gic_id
[MAX_CPUS_PER_CLUSTER
][MAX_NR_CLUSTERS
];
150 static int bL_switcher_cpu_pairing
[NR_CPUS
];
153 * bL_switch_to - Switch to a specific cluster for the current CPU
154 * @new_cluster_id: the ID of the cluster to switch to.
156 * This function must be called on the CPU to be switched.
157 * Returns 0 on success, else a negative status code.
159 static int bL_switch_to(unsigned int new_cluster_id
)
161 unsigned int mpidr
, this_cpu
, that_cpu
;
162 unsigned int ob_mpidr
, ob_cpu
, ob_cluster
, ib_mpidr
, ib_cpu
, ib_cluster
;
163 struct completion inbound_alive
;
164 struct tick_device
*tdev
;
165 enum clock_event_mode tdev_mode
;
166 long volatile *handshake_ptr
;
169 this_cpu
= smp_processor_id();
170 ob_mpidr
= read_mpidr();
171 ob_cpu
= MPIDR_AFFINITY_LEVEL(ob_mpidr
, 0);
172 ob_cluster
= MPIDR_AFFINITY_LEVEL(ob_mpidr
, 1);
173 BUG_ON(cpu_logical_map(this_cpu
) != ob_mpidr
);
175 if (new_cluster_id
== ob_cluster
)
178 that_cpu
= bL_switcher_cpu_pairing
[this_cpu
];
179 ib_mpidr
= cpu_logical_map(that_cpu
);
180 ib_cpu
= MPIDR_AFFINITY_LEVEL(ib_mpidr
, 0);
181 ib_cluster
= MPIDR_AFFINITY_LEVEL(ib_mpidr
, 1);
183 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
184 this_cpu
, ob_mpidr
, ib_mpidr
);
186 this_cpu
= smp_processor_id();
188 /* Close the gate for our entry vectors */
189 mcpm_set_entry_vector(ob_cpu
, ob_cluster
, NULL
);
190 mcpm_set_entry_vector(ib_cpu
, ib_cluster
, NULL
);
192 /* Install our "inbound alive" notifier. */
193 init_completion(&inbound_alive
);
194 ipi_nr
= register_ipi_completion(&inbound_alive
, this_cpu
);
195 ipi_nr
|= ((1 << 16) << bL_gic_id
[ob_cpu
][ob_cluster
]);
196 mcpm_set_early_poke(ib_cpu
, ib_cluster
, gic_get_sgir_physaddr(), ipi_nr
);
199 * Let's wake up the inbound CPU now in case it requires some delay
200 * to come online, but leave it gated in our entry vector code.
202 ret
= mcpm_cpu_power_up(ib_cpu
, ib_cluster
);
204 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__
, ret
);
209 * Raise a SGI on the inbound CPU to make sure it doesn't stall
210 * in a possible WFI, such as in bL_power_down().
212 gic_send_sgi(bL_gic_id
[ib_cpu
][ib_cluster
], 0);
215 * Wait for the inbound to come up. This allows for other
216 * tasks to be scheduled in the mean time.
218 wait_for_completion(&inbound_alive
);
219 mcpm_set_early_poke(ib_cpu
, ib_cluster
, 0, 0);
222 * From this point we are entering the switch critical zone
223 * and can't take any interrupts anymore.
227 trace_cpu_migrate_begin(get_ns(), ob_mpidr
);
229 /* redirect GIC's SGIs to our counterpart */
230 gic_migrate_target(bL_gic_id
[ib_cpu
][ib_cluster
]);
232 tdev
= tick_get_device(this_cpu
);
233 if (tdev
&& !cpumask_equal(tdev
->evtdev
->cpumask
, cpumask_of(this_cpu
)))
236 tdev_mode
= tdev
->evtdev
->mode
;
237 clockevents_set_mode(tdev
->evtdev
, CLOCK_EVT_MODE_SHUTDOWN
);
240 ret
= cpu_pm_enter();
242 /* we can not tolerate errors at this point */
244 panic("%s: cpu_pm_enter() returned %d\n", __func__
, ret
);
246 /* Swap the physical CPUs in the logical map for this logical CPU. */
247 cpu_logical_map(this_cpu
) = ib_mpidr
;
248 cpu_logical_map(that_cpu
) = ob_mpidr
;
250 /* Let's do the actual CPU switch. */
251 ret
= cpu_suspend((unsigned long)&handshake_ptr
, bL_switchpoint
);
253 panic("%s: cpu_suspend() returned %d\n", __func__
, ret
);
255 /* We are executing on the inbound CPU at this point */
256 mpidr
= read_mpidr();
257 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu
, mpidr
);
258 BUG_ON(mpidr
!= ib_mpidr
);
260 mcpm_cpu_powered_up();
265 clockevents_set_mode(tdev
->evtdev
, tdev_mode
);
266 clockevents_program_event(tdev
->evtdev
,
267 tdev
->evtdev
->next_event
, 1);
270 trace_cpu_migrate_finish(get_ns(), ib_mpidr
);
278 pr_err("%s exiting with error %d\n", __func__
, ret
);
284 struct task_struct
*task
;
285 wait_queue_head_t wq
;
287 struct completion started
;
288 bL_switch_completion_handler completer
;
289 void *completer_cookie
;
292 static struct bL_thread bL_threads
[NR_CPUS
];
294 static int bL_switcher_thread(void *arg
)
296 struct bL_thread
*t
= arg
;
297 struct sched_param param
= { .sched_priority
= 1 };
299 bL_switch_completion_handler completer
;
300 void *completer_cookie
;
302 sched_setscheduler_nocheck(current
, SCHED_FIFO
, ¶m
);
303 complete(&t
->started
);
306 if (signal_pending(current
))
307 flush_signals(current
);
308 wait_event_interruptible(t
->wq
,
309 t
->wanted_cluster
!= -1 ||
310 kthread_should_stop());
313 cluster
= t
->wanted_cluster
;
314 completer
= t
->completer
;
315 completer_cookie
= t
->completer_cookie
;
316 t
->wanted_cluster
= -1;
318 spin_unlock(&t
->lock
);
321 bL_switch_to(cluster
);
324 completer(completer_cookie
);
326 } while (!kthread_should_stop());
331 static struct task_struct
*bL_switcher_thread_create(int cpu
, void *arg
)
333 struct task_struct
*task
;
335 task
= kthread_create_on_node(bL_switcher_thread
, arg
,
336 cpu_to_node(cpu
), "kswitcher_%d", cpu
);
338 kthread_bind(task
, cpu
);
339 wake_up_process(task
);
341 pr_err("%s failed for CPU %d\n", __func__
, cpu
);
346 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
347 * with completion notification via a callback
349 * @cpu: the CPU to switch
350 * @new_cluster_id: the ID of the cluster to switch to.
351 * @completer: switch completion callback. if non-NULL,
352 * @completer(@completer_cookie) will be called on completion of
353 * the switch, in non-atomic context.
354 * @completer_cookie: opaque context argument for @completer.
356 * This function causes a cluster switch on the given CPU by waking up
357 * the appropriate switcher thread. This function may or may not return
358 * before the switch has occurred.
360 * If a @completer callback function is supplied, it will be called when
361 * the switch is complete. This can be used to determine asynchronously
362 * when the switch is complete, regardless of when bL_switch_request()
363 * returns. When @completer is supplied, no new switch request is permitted
364 * for the affected CPU until after the switch is complete, and @completer
367 int bL_switch_request_cb(unsigned int cpu
, unsigned int new_cluster_id
,
368 bL_switch_completion_handler completer
,
369 void *completer_cookie
)
373 if (cpu
>= ARRAY_SIZE(bL_threads
)) {
374 pr_err("%s: cpu %d out of bounds\n", __func__
, cpu
);
378 t
= &bL_threads
[cpu
];
381 return PTR_ERR(t
->task
);
387 spin_unlock(&t
->lock
);
390 t
->completer
= completer
;
391 t
->completer_cookie
= completer_cookie
;
392 t
->wanted_cluster
= new_cluster_id
;
393 spin_unlock(&t
->lock
);
397 EXPORT_SYMBOL_GPL(bL_switch_request_cb
);
400 * Activation and configuration code.
403 static DEFINE_MUTEX(bL_switcher_activation_lock
);
404 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier
);
405 static unsigned int bL_switcher_active
;
406 static unsigned int bL_switcher_cpu_original_cluster
[NR_CPUS
];
407 static cpumask_t bL_switcher_removed_logical_cpus
;
409 int bL_switcher_register_notifier(struct notifier_block
*nb
)
411 return blocking_notifier_chain_register(&bL_activation_notifier
, nb
);
413 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier
);
415 int bL_switcher_unregister_notifier(struct notifier_block
*nb
)
417 return blocking_notifier_chain_unregister(&bL_activation_notifier
, nb
);
419 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier
);
421 static int bL_activation_notify(unsigned long val
)
425 ret
= blocking_notifier_call_chain(&bL_activation_notifier
, val
, NULL
);
426 if (ret
& NOTIFY_STOP_MASK
)
427 pr_err("%s: notifier chain failed with status 0x%x\n",
429 return notifier_to_errno(ret
);
432 static void bL_switcher_restore_cpus(void)
436 for_each_cpu(i
, &bL_switcher_removed_logical_cpus
)
440 static int bL_switcher_halve_cpus(void)
442 int i
, j
, cluster_0
, gic_id
, ret
;
443 unsigned int cpu
, cluster
, mask
;
444 cpumask_t available_cpus
;
446 /* First pass to validate what we have */
448 for_each_online_cpu(i
) {
449 cpu
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(i
), 0);
450 cluster
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(i
), 1);
452 pr_err("%s: only dual cluster systems are supported\n", __func__
);
455 if (WARN_ON(cpu
>= MAX_CPUS_PER_CLUSTER
))
457 mask
|= (1 << cluster
);
460 pr_err("%s: no CPU pairing possible\n", __func__
);
465 * Now let's do the pairing. We match each CPU with another CPU
466 * from a different cluster. To get a uniform scheduling behavior
467 * without fiddling with CPU topology and compute capacity data,
468 * we'll use logical CPUs initially belonging to the same cluster.
470 memset(bL_switcher_cpu_pairing
, -1, sizeof(bL_switcher_cpu_pairing
));
471 cpumask_copy(&available_cpus
, cpu_online_mask
);
473 for_each_cpu(i
, &available_cpus
) {
475 cluster
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(i
), 1);
478 if (cluster
!= cluster_0
)
480 cpumask_clear_cpu(i
, &available_cpus
);
481 for_each_cpu(j
, &available_cpus
) {
482 cluster
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(j
), 1);
484 * Let's remember the last match to create "odd"
485 * pairings on purpose in order for other code not
486 * to assume any relation between physical and
487 * logical CPU numbers.
489 if (cluster
!= cluster_0
)
493 bL_switcher_cpu_pairing
[i
] = match
;
494 cpumask_clear_cpu(match
, &available_cpus
);
495 pr_info("CPU%d paired with CPU%d\n", i
, match
);
500 * Now we disable the unwanted CPUs i.e. everything that has no
501 * pairing information (that includes the pairing counterparts).
503 cpumask_clear(&bL_switcher_removed_logical_cpus
);
504 for_each_online_cpu(i
) {
505 cpu
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(i
), 0);
506 cluster
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(i
), 1);
508 /* Let's take note of the GIC ID for this CPU */
509 gic_id
= gic_get_cpu_id(i
);
511 pr_err("%s: bad GIC ID for CPU %d\n", __func__
, i
);
512 bL_switcher_restore_cpus();
515 bL_gic_id
[cpu
][cluster
] = gic_id
;
516 pr_info("GIC ID for CPU %u cluster %u is %u\n",
517 cpu
, cluster
, gic_id
);
519 if (bL_switcher_cpu_pairing
[i
] != -1) {
520 bL_switcher_cpu_original_cluster
[i
] = cluster
;
526 bL_switcher_restore_cpus();
529 cpumask_set_cpu(i
, &bL_switcher_removed_logical_cpus
);
535 /* Determine the logical CPU a given physical CPU is grouped on. */
536 int bL_switcher_get_logical_index(u32 mpidr
)
540 if (!bL_switcher_active
)
543 mpidr
&= MPIDR_HWID_BITMASK
;
544 for_each_online_cpu(cpu
) {
545 int pairing
= bL_switcher_cpu_pairing
[cpu
];
548 if ((mpidr
== cpu_logical_map(cpu
)) ||
549 (mpidr
== cpu_logical_map(pairing
)))
555 static void bL_switcher_trace_trigger_cpu(void *__always_unused info
)
557 trace_cpu_migrate_current(get_ns(), read_mpidr());
560 int bL_switcher_trace_trigger(void)
566 bL_switcher_trace_trigger_cpu(NULL
);
567 ret
= smp_call_function(bL_switcher_trace_trigger_cpu
, NULL
, true);
573 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger
);
575 static int bL_switcher_enable(void)
579 mutex_lock(&bL_switcher_activation_lock
);
580 lock_device_hotplug();
581 if (bL_switcher_active
) {
582 unlock_device_hotplug();
583 mutex_unlock(&bL_switcher_activation_lock
);
587 pr_info("big.LITTLE switcher initializing\n");
589 ret
= bL_activation_notify(BL_NOTIFY_PRE_ENABLE
);
593 ret
= bL_switcher_halve_cpus();
597 bL_switcher_trace_trigger();
599 for_each_online_cpu(cpu
) {
600 struct bL_thread
*t
= &bL_threads
[cpu
];
601 spin_lock_init(&t
->lock
);
602 init_waitqueue_head(&t
->wq
);
603 init_completion(&t
->started
);
604 t
->wanted_cluster
= -1;
605 t
->task
= bL_switcher_thread_create(cpu
, t
);
608 bL_switcher_active
= 1;
609 bL_activation_notify(BL_NOTIFY_POST_ENABLE
);
610 pr_info("big.LITTLE switcher initialized\n");
614 pr_warn("big.LITTLE switcher initialization failed\n");
615 bL_activation_notify(BL_NOTIFY_POST_DISABLE
);
618 unlock_device_hotplug();
619 mutex_unlock(&bL_switcher_activation_lock
);
625 static void bL_switcher_disable(void)
627 unsigned int cpu
, cluster
;
629 struct task_struct
*task
;
631 mutex_lock(&bL_switcher_activation_lock
);
632 lock_device_hotplug();
634 if (!bL_switcher_active
)
637 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE
) != 0) {
638 bL_activation_notify(BL_NOTIFY_POST_ENABLE
);
642 bL_switcher_active
= 0;
645 * To deactivate the switcher, we must shut down the switcher
646 * threads to prevent any other requests from being accepted.
647 * Then, if the final cluster for given logical CPU is not the
648 * same as the original one, we'll recreate a switcher thread
649 * just for the purpose of switching the CPU back without any
650 * possibility for interference from external requests.
652 for_each_online_cpu(cpu
) {
653 t
= &bL_threads
[cpu
];
656 if (!task
|| IS_ERR(task
))
659 /* no more switch may happen on this CPU at this point */
660 cluster
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu
), 1);
661 if (cluster
== bL_switcher_cpu_original_cluster
[cpu
])
663 init_completion(&t
->started
);
664 t
->wanted_cluster
= bL_switcher_cpu_original_cluster
[cpu
];
665 task
= bL_switcher_thread_create(cpu
, t
);
667 wait_for_completion(&t
->started
);
669 cluster
= MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu
), 1);
670 if (cluster
== bL_switcher_cpu_original_cluster
[cpu
])
673 /* If execution gets here, we're in trouble. */
674 pr_crit("%s: unable to restore original cluster for CPU %d\n",
676 pr_crit("%s: CPU %d can't be restored\n",
677 __func__
, bL_switcher_cpu_pairing
[cpu
]);
678 cpumask_clear_cpu(bL_switcher_cpu_pairing
[cpu
],
679 &bL_switcher_removed_logical_cpus
);
682 bL_switcher_restore_cpus();
683 bL_switcher_trace_trigger();
685 bL_activation_notify(BL_NOTIFY_POST_DISABLE
);
688 unlock_device_hotplug();
689 mutex_unlock(&bL_switcher_activation_lock
);
692 static ssize_t
bL_switcher_active_show(struct kobject
*kobj
,
693 struct kobj_attribute
*attr
, char *buf
)
695 return sprintf(buf
, "%u\n", bL_switcher_active
);
698 static ssize_t
bL_switcher_active_store(struct kobject
*kobj
,
699 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
705 bL_switcher_disable();
709 ret
= bL_switcher_enable();
715 return (ret
>= 0) ? count
: ret
;
718 static ssize_t
bL_switcher_trace_trigger_store(struct kobject
*kobj
,
719 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
721 int ret
= bL_switcher_trace_trigger();
723 return ret
? ret
: count
;
726 static struct kobj_attribute bL_switcher_active_attr
=
727 __ATTR(active
, 0644, bL_switcher_active_show
, bL_switcher_active_store
);
729 static struct kobj_attribute bL_switcher_trace_trigger_attr
=
730 __ATTR(trace_trigger
, 0200, NULL
, bL_switcher_trace_trigger_store
);
732 static struct attribute
*bL_switcher_attrs
[] = {
733 &bL_switcher_active_attr
.attr
,
734 &bL_switcher_trace_trigger_attr
.attr
,
738 static struct attribute_group bL_switcher_attr_group
= {
739 .attrs
= bL_switcher_attrs
,
742 static struct kobject
*bL_switcher_kobj
;
744 static int __init
bL_switcher_sysfs_init(void)
748 bL_switcher_kobj
= kobject_create_and_add("bL_switcher", kernel_kobj
);
749 if (!bL_switcher_kobj
)
751 ret
= sysfs_create_group(bL_switcher_kobj
, &bL_switcher_attr_group
);
753 kobject_put(bL_switcher_kobj
);
757 #endif /* CONFIG_SYSFS */
759 bool bL_switcher_get_enabled(void)
761 mutex_lock(&bL_switcher_activation_lock
);
763 return bL_switcher_active
;
765 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled
);
767 void bL_switcher_put_enabled(void)
769 mutex_unlock(&bL_switcher_activation_lock
);
771 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled
);
774 * Veto any CPU hotplug operation on those CPUs we've removed
775 * while the switcher is active.
776 * We're just not ready to deal with that given the trickery involved.
778 static int bL_switcher_hotplug_callback(struct notifier_block
*nfb
,
779 unsigned long action
, void *hcpu
)
781 if (bL_switcher_active
) {
782 int pairing
= bL_switcher_cpu_pairing
[(unsigned long)hcpu
];
783 switch (action
& 0xf) {
785 case CPU_DOWN_PREPARE
:
793 static bool no_bL_switcher
;
794 core_param(no_bL_switcher
, no_bL_switcher
, bool, 0644);
796 static int __init
bL_switcher_init(void)
800 if (MAX_NR_CLUSTERS
!= 2) {
801 pr_err("%s: only dual cluster systems are supported\n", __func__
);
805 cpu_notifier(bL_switcher_hotplug_callback
, 0);
807 if (!no_bL_switcher
) {
808 ret
= bL_switcher_enable();
814 ret
= bL_switcher_sysfs_init();
816 pr_err("%s: unable to create sysfs entry\n", __func__
);
822 late_initcall(bL_switcher_init
);