2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/err.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/edma.h>
29 #include <linux/of_address.h>
30 #include <linux/of_device.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_irq.h>
33 #include <linux/pm_runtime.h>
35 #include <linux/platform_data/edma.h>
37 /* Offsets matching "struct edmacc_param" */
40 #define PARM_A_B_CNT 0x08
42 #define PARM_SRC_DST_BIDX 0x10
43 #define PARM_LINK_BCNTRLD 0x14
44 #define PARM_SRC_DST_CIDX 0x18
45 #define PARM_CCNT 0x1c
47 #define PARM_SIZE 0x20
49 /* Offsets for EDMA CC global channel registers and their shadows */
50 #define SH_ER 0x00 /* 64 bits */
51 #define SH_ECR 0x08 /* 64 bits */
52 #define SH_ESR 0x10 /* 64 bits */
53 #define SH_CER 0x18 /* 64 bits */
54 #define SH_EER 0x20 /* 64 bits */
55 #define SH_EECR 0x28 /* 64 bits */
56 #define SH_EESR 0x30 /* 64 bits */
57 #define SH_SER 0x38 /* 64 bits */
58 #define SH_SECR 0x40 /* 64 bits */
59 #define SH_IER 0x50 /* 64 bits */
60 #define SH_IECR 0x58 /* 64 bits */
61 #define SH_IESR 0x60 /* 64 bits */
62 #define SH_IPR 0x68 /* 64 bits */
63 #define SH_ICR 0x70 /* 64 bits */
73 /* Offsets for EDMA CC global registers */
74 #define EDMA_REV 0x0000
75 #define EDMA_CCCFG 0x0004
76 #define EDMA_QCHMAP 0x0200 /* 8 registers */
77 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
78 #define EDMA_QDMAQNUM 0x0260
79 #define EDMA_QUETCMAP 0x0280
80 #define EDMA_QUEPRI 0x0284
81 #define EDMA_EMR 0x0300 /* 64 bits */
82 #define EDMA_EMCR 0x0308 /* 64 bits */
83 #define EDMA_QEMR 0x0310
84 #define EDMA_QEMCR 0x0314
85 #define EDMA_CCERR 0x0318
86 #define EDMA_CCERRCLR 0x031c
87 #define EDMA_EEVAL 0x0320
88 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
89 #define EDMA_QRAE 0x0380 /* 4 registers */
90 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
91 #define EDMA_QSTAT 0x0600 /* 2 registers */
92 #define EDMA_QWMTHRA 0x0620
93 #define EDMA_QWMTHRB 0x0624
94 #define EDMA_CCSTAT 0x0640
96 #define EDMA_M 0x1000 /* global channel registers */
97 #define EDMA_ECR 0x1008
98 #define EDMA_ECRH 0x100C
99 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
100 #define EDMA_PARM 0x4000 /* 128 param entries */
102 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
104 #define EDMA_DCHMAP 0x0100 /* 64 registers */
105 #define CHMAP_EXIST BIT(24)
107 #define EDMA_MAX_DMACH 64
108 #define EDMA_MAX_PARAMENTRY 512
110 /*****************************************************************************/
112 static void __iomem
*edmacc_regs_base
[EDMA_MAX_CC
];
114 static inline unsigned int edma_read(unsigned ctlr
, int offset
)
116 return (unsigned int)__raw_readl(edmacc_regs_base
[ctlr
] + offset
);
119 static inline void edma_write(unsigned ctlr
, int offset
, int val
)
121 __raw_writel(val
, edmacc_regs_base
[ctlr
] + offset
);
123 static inline void edma_modify(unsigned ctlr
, int offset
, unsigned and,
126 unsigned val
= edma_read(ctlr
, offset
);
129 edma_write(ctlr
, offset
, val
);
131 static inline void edma_and(unsigned ctlr
, int offset
, unsigned and)
133 unsigned val
= edma_read(ctlr
, offset
);
135 edma_write(ctlr
, offset
, val
);
137 static inline void edma_or(unsigned ctlr
, int offset
, unsigned or)
139 unsigned val
= edma_read(ctlr
, offset
);
141 edma_write(ctlr
, offset
, val
);
143 static inline unsigned int edma_read_array(unsigned ctlr
, int offset
, int i
)
145 return edma_read(ctlr
, offset
+ (i
<< 2));
147 static inline void edma_write_array(unsigned ctlr
, int offset
, int i
,
150 edma_write(ctlr
, offset
+ (i
<< 2), val
);
152 static inline void edma_modify_array(unsigned ctlr
, int offset
, int i
,
153 unsigned and, unsigned or)
155 edma_modify(ctlr
, offset
+ (i
<< 2), and, or);
157 static inline void edma_or_array(unsigned ctlr
, int offset
, int i
, unsigned or)
159 edma_or(ctlr
, offset
+ (i
<< 2), or);
161 static inline void edma_or_array2(unsigned ctlr
, int offset
, int i
, int j
,
164 edma_or(ctlr
, offset
+ ((i
*2 + j
) << 2), or);
166 static inline void edma_write_array2(unsigned ctlr
, int offset
, int i
, int j
,
169 edma_write(ctlr
, offset
+ ((i
*2 + j
) << 2), val
);
171 static inline unsigned int edma_shadow0_read(unsigned ctlr
, int offset
)
173 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
);
175 static inline unsigned int edma_shadow0_read_array(unsigned ctlr
, int offset
,
178 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
180 static inline void edma_shadow0_write(unsigned ctlr
, int offset
, unsigned val
)
182 edma_write(ctlr
, EDMA_SHADOW0
+ offset
, val
);
184 static inline void edma_shadow0_write_array(unsigned ctlr
, int offset
, int i
,
187 edma_write(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
189 static inline unsigned int edma_parm_read(unsigned ctlr
, int offset
,
192 return edma_read(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5));
194 static inline void edma_parm_write(unsigned ctlr
, int offset
, int param_no
,
197 edma_write(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
199 static inline void edma_parm_modify(unsigned ctlr
, int offset
, int param_no
,
200 unsigned and, unsigned or)
202 edma_modify(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
204 static inline void edma_parm_and(unsigned ctlr
, int offset
, int param_no
,
207 edma_and(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
209 static inline void edma_parm_or(unsigned ctlr
, int offset
, int param_no
,
212 edma_or(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
215 static inline void set_bits(int offset
, int len
, unsigned long *p
)
217 for (; len
> 0; len
--)
218 set_bit(offset
+ (len
- 1), p
);
221 static inline void clear_bits(int offset
, int len
, unsigned long *p
)
223 for (; len
> 0; len
--)
224 clear_bit(offset
+ (len
- 1), p
);
227 /*****************************************************************************/
229 /* actual number of DMA channels and slots on this silicon */
231 /* how many dma resources of each type */
232 unsigned num_channels
;
237 enum dma_event_q default_queue
;
239 /* list of channels with no even trigger; terminated by "-1" */
242 /* The edma_inuse bit for each PaRAM slot is clear unless the
243 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
245 DECLARE_BITMAP(edma_inuse
, EDMA_MAX_PARAMENTRY
);
247 /* The edma_unused bit for each channel is clear unless
248 * it is not being used on this platform. It uses a bit
249 * of SOC-specific initialization code.
251 DECLARE_BITMAP(edma_unused
, EDMA_MAX_DMACH
);
253 unsigned irq_res_start
;
254 unsigned irq_res_end
;
256 struct dma_interrupt_data
{
257 void (*callback
)(unsigned channel
, unsigned short ch_status
,
260 } intr_data
[EDMA_MAX_DMACH
];
263 static struct edma
*edma_cc
[EDMA_MAX_CC
];
264 static int arch_num_cc
;
266 /* dummy param set used to (re)initialize parameter RAM slots */
267 static const struct edmacc_param dummy_paramset
= {
268 .link_bcntrld
= 0xffff,
272 static const struct of_device_id edma_of_ids
[] = {
273 { .compatible
= "ti,edma3", },
277 /*****************************************************************************/
279 static void map_dmach_queue(unsigned ctlr
, unsigned ch_no
,
280 enum dma_event_q queue_no
)
282 int bit
= (ch_no
& 0x7) * 4;
284 /* default to low priority queue */
285 if (queue_no
== EVENTQ_DEFAULT
)
286 queue_no
= edma_cc
[ctlr
]->default_queue
;
289 edma_modify_array(ctlr
, EDMA_DMAQNUM
, (ch_no
>> 3),
290 ~(0x7 << bit
), queue_no
<< bit
);
293 static void __init
map_queue_tc(unsigned ctlr
, int queue_no
, int tc_no
)
295 int bit
= queue_no
* 4;
296 edma_modify(ctlr
, EDMA_QUETCMAP
, ~(0x7 << bit
), ((tc_no
& 0x7) << bit
));
299 static void __init
assign_priority_to_queue(unsigned ctlr
, int queue_no
,
302 int bit
= queue_no
* 4;
303 edma_modify(ctlr
, EDMA_QUEPRI
, ~(0x7 << bit
),
304 ((priority
& 0x7) << bit
));
308 * map_dmach_param - Maps channel number to param entry number
310 * This maps the dma channel number to param entry numberter. In
311 * other words using the DMA channel mapping registers a param entry
312 * can be mapped to any channel
314 * Callers are responsible for ensuring the channel mapping logic is
315 * included in that particular EDMA variant (Eg : dm646x)
318 static void __init
map_dmach_param(unsigned ctlr
)
321 for (i
= 0; i
< EDMA_MAX_DMACH
; i
++)
322 edma_write_array(ctlr
, EDMA_DCHMAP
, i
, (i
<< 5));
326 setup_dma_interrupt(unsigned lch
,
327 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
332 ctlr
= EDMA_CTLR(lch
);
333 lch
= EDMA_CHAN_SLOT(lch
);
336 edma_shadow0_write_array(ctlr
, SH_IECR
, lch
>> 5,
339 edma_cc
[ctlr
]->intr_data
[lch
].callback
= callback
;
340 edma_cc
[ctlr
]->intr_data
[lch
].data
= data
;
343 edma_shadow0_write_array(ctlr
, SH_ICR
, lch
>> 5,
345 edma_shadow0_write_array(ctlr
, SH_IESR
, lch
>> 5,
350 static int irq2ctlr(int irq
)
352 if (irq
>= edma_cc
[0]->irq_res_start
&& irq
<= edma_cc
[0]->irq_res_end
)
354 else if (irq
>= edma_cc
[1]->irq_res_start
&&
355 irq
<= edma_cc
[1]->irq_res_end
)
361 /******************************************************************************
363 * DMA interrupt handler
365 *****************************************************************************/
366 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
373 ctlr
= irq2ctlr(irq
);
377 dev_dbg(data
, "dma_irq_handler\n");
379 sh_ipr
= edma_shadow0_read_array(ctlr
, SH_IPR
, 0);
381 sh_ipr
= edma_shadow0_read_array(ctlr
, SH_IPR
, 1);
384 sh_ier
= edma_shadow0_read_array(ctlr
, SH_IER
, 1);
387 sh_ier
= edma_shadow0_read_array(ctlr
, SH_IER
, 0);
395 dev_dbg(data
, "IPR%d %08x\n", bank
, sh_ipr
);
397 slot
= __ffs(sh_ipr
);
398 sh_ipr
&= ~(BIT(slot
));
400 if (sh_ier
& BIT(slot
)) {
401 channel
= (bank
<< 5) | slot
;
402 /* Clear the corresponding IPR bits */
403 edma_shadow0_write_array(ctlr
, SH_ICR
, bank
,
405 if (edma_cc
[ctlr
]->intr_data
[channel
].callback
)
406 edma_cc
[ctlr
]->intr_data
[channel
].callback(
407 channel
, EDMA_DMA_COMPLETE
,
408 edma_cc
[ctlr
]->intr_data
[channel
].data
);
412 edma_shadow0_write(ctlr
, SH_IEVAL
, 1);
416 /******************************************************************************
418 * DMA error interrupt handler
420 *****************************************************************************/
421 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
425 unsigned int cnt
= 0;
427 ctlr
= irq2ctlr(irq
);
431 dev_dbg(data
, "dma_ccerr_handler\n");
433 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
434 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
435 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
436 (edma_read(ctlr
, EDMA_CCERR
) == 0))
441 if (edma_read_array(ctlr
, EDMA_EMR
, 0))
443 else if (edma_read_array(ctlr
, EDMA_EMR
, 1))
446 dev_dbg(data
, "EMR%d %08x\n", j
,
447 edma_read_array(ctlr
, EDMA_EMR
, j
));
448 for (i
= 0; i
< 32; i
++) {
449 int k
= (j
<< 5) + i
;
450 if (edma_read_array(ctlr
, EDMA_EMR
, j
) &
452 /* Clear the corresponding EMR bits */
453 edma_write_array(ctlr
, EDMA_EMCR
, j
,
456 edma_shadow0_write_array(ctlr
, SH_SECR
,
458 if (edma_cc
[ctlr
]->intr_data
[k
].
460 edma_cc
[ctlr
]->intr_data
[k
].
463 edma_cc
[ctlr
]->intr_data
468 } else if (edma_read(ctlr
, EDMA_QEMR
)) {
469 dev_dbg(data
, "QEMR %02x\n",
470 edma_read(ctlr
, EDMA_QEMR
));
471 for (i
= 0; i
< 8; i
++) {
472 if (edma_read(ctlr
, EDMA_QEMR
) & BIT(i
)) {
473 /* Clear the corresponding IPR bits */
474 edma_write(ctlr
, EDMA_QEMCR
, BIT(i
));
475 edma_shadow0_write(ctlr
, SH_QSECR
,
478 /* NOTE: not reported!! */
481 } else if (edma_read(ctlr
, EDMA_CCERR
)) {
482 dev_dbg(data
, "CCERR %08x\n",
483 edma_read(ctlr
, EDMA_CCERR
));
484 /* FIXME: CCERR.BIT(16) ignored! much better
485 * to just write CCERRCLR with CCERR value...
487 for (i
= 0; i
< 8; i
++) {
488 if (edma_read(ctlr
, EDMA_CCERR
) & BIT(i
)) {
489 /* Clear the corresponding IPR bits */
490 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(i
));
492 /* NOTE: not reported!! */
496 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
497 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
498 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
499 (edma_read(ctlr
, EDMA_CCERR
) == 0))
505 edma_write(ctlr
, EDMA_EEVAL
, 1);
509 static int reserve_contiguous_slots(int ctlr
, unsigned int id
,
510 unsigned int num_slots
,
511 unsigned int start_slot
)
514 unsigned int count
= num_slots
;
515 int stop_slot
= start_slot
;
516 DECLARE_BITMAP(tmp_inuse
, EDMA_MAX_PARAMENTRY
);
518 for (i
= start_slot
; i
< edma_cc
[ctlr
]->num_slots
; ++i
) {
519 j
= EDMA_CHAN_SLOT(i
);
520 if (!test_and_set_bit(j
, edma_cc
[ctlr
]->edma_inuse
)) {
521 /* Record our current beginning slot */
522 if (count
== num_slots
)
526 set_bit(j
, tmp_inuse
);
531 clear_bit(j
, tmp_inuse
);
533 if (id
== EDMA_CONT_PARAMS_FIXED_EXACT
) {
543 * We have to clear any bits that we set
544 * if we run out parameter RAM slots, i.e we do find a set
545 * of contiguous parameter RAM slots but do not find the exact number
546 * requested as we may reach the total number of parameter RAM slots
548 if (i
== edma_cc
[ctlr
]->num_slots
)
552 for_each_set_bit_from(j
, tmp_inuse
, stop_slot
)
553 clear_bit(j
, edma_cc
[ctlr
]->edma_inuse
);
558 for (j
= i
- num_slots
+ 1; j
<= i
; ++j
)
559 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(j
),
560 &dummy_paramset
, PARM_SIZE
);
562 return EDMA_CTLR_CHAN(ctlr
, i
- num_slots
+ 1);
565 static int prepare_unused_channel_list(struct device
*dev
, void *data
)
567 struct platform_device
*pdev
= to_platform_device(dev
);
569 struct of_phandle_args dma_spec
;
572 count
= of_property_count_strings(dev
->of_node
, "dma-names");
575 for (i
= 0; i
< count
; i
++) {
576 if (of_parse_phandle_with_args(dev
->of_node
, "dmas",
581 if (!of_match_node(edma_of_ids
, dma_spec
.np
)) {
582 of_node_put(dma_spec
.np
);
586 clear_bit(EDMA_CHAN_SLOT(dma_spec
.args
[0]),
587 edma_cc
[0]->edma_unused
);
588 of_node_put(dma_spec
.np
);
593 /* For non-OF case */
594 for (i
= 0; i
< pdev
->num_resources
; i
++) {
595 if ((pdev
->resource
[i
].flags
& IORESOURCE_DMA
) &&
596 (int)pdev
->resource
[i
].start
>= 0) {
597 ctlr
= EDMA_CTLR(pdev
->resource
[i
].start
);
598 clear_bit(EDMA_CHAN_SLOT(pdev
->resource
[i
].start
),
599 edma_cc
[ctlr
]->edma_unused
);
606 /*-----------------------------------------------------------------------*/
608 static bool unused_chan_list_done
;
610 /* Resource alloc/free: dma channels, parameter RAM slots */
613 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
614 * @channel: specific channel to allocate; negative for "any unmapped channel"
615 * @callback: optional; to be issued on DMA completion or errors
616 * @data: passed to callback
617 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
618 * Controller (TC) executes requests using this channel. Use
619 * EVENTQ_DEFAULT unless you really need a high priority queue.
621 * This allocates a DMA channel and its associated parameter RAM slot.
622 * The parameter RAM is initialized to hold a dummy transfer.
624 * Normal use is to pass a specific channel number as @channel, to make
625 * use of hardware events mapped to that channel. When the channel will
626 * be used only for software triggering or event chaining, channels not
627 * mapped to hardware events (or mapped to unused events) are preferable.
629 * DMA transfers start from a channel using edma_start(), or by
630 * chaining. When the transfer described in that channel's parameter RAM
631 * slot completes, that slot's data may be reloaded through a link.
633 * DMA errors are only reported to the @callback associated with the
634 * channel driving that transfer, but transfer completion callbacks can
635 * be sent to another channel under control of the TCC field in
636 * the option word of the transfer's parameter RAM set. Drivers must not
637 * use DMA transfer completion callbacks for channels they did not allocate.
638 * (The same applies to TCC codes used in transfer chaining.)
640 * Returns the number of the channel, else negative errno.
642 int edma_alloc_channel(int channel
,
643 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
645 enum dma_event_q eventq_no
)
647 unsigned i
, done
= 0, ctlr
= 0;
650 if (!unused_chan_list_done
) {
652 * Scan all the platform devices to find out the EDMA channels
653 * used and clear them in the unused list, making the rest
654 * available for ARM usage.
656 ret
= bus_for_each_dev(&platform_bus_type
, NULL
, NULL
,
657 prepare_unused_channel_list
);
661 unused_chan_list_done
= true;
665 ctlr
= EDMA_CTLR(channel
);
666 channel
= EDMA_CHAN_SLOT(channel
);
670 for (i
= 0; i
< arch_num_cc
; i
++) {
673 channel
= find_next_bit(edma_cc
[i
]->edma_unused
,
674 edma_cc
[i
]->num_channels
,
676 if (channel
== edma_cc
[i
]->num_channels
)
678 if (!test_and_set_bit(channel
,
679 edma_cc
[i
]->edma_inuse
)) {
691 } else if (channel
>= edma_cc
[ctlr
]->num_channels
) {
693 } else if (test_and_set_bit(channel
, edma_cc
[ctlr
]->edma_inuse
)) {
697 /* ensure access through shadow region 0 */
698 edma_or_array2(ctlr
, EDMA_DRAE
, 0, channel
>> 5, BIT(channel
& 0x1f));
700 /* ensure no events are pending */
701 edma_stop(EDMA_CTLR_CHAN(ctlr
, channel
));
702 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
703 &dummy_paramset
, PARM_SIZE
);
706 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr
, channel
),
709 map_dmach_queue(ctlr
, channel
, eventq_no
);
711 return EDMA_CTLR_CHAN(ctlr
, channel
);
713 EXPORT_SYMBOL(edma_alloc_channel
);
717 * edma_free_channel - deallocate DMA channel
718 * @channel: dma channel returned from edma_alloc_channel()
720 * This deallocates the DMA channel and associated parameter RAM slot
721 * allocated by edma_alloc_channel().
723 * Callers are responsible for ensuring the channel is inactive, and
724 * will not be reactivated by linking, chaining, or software calls to
727 void edma_free_channel(unsigned channel
)
731 ctlr
= EDMA_CTLR(channel
);
732 channel
= EDMA_CHAN_SLOT(channel
);
734 if (channel
>= edma_cc
[ctlr
]->num_channels
)
737 setup_dma_interrupt(channel
, NULL
, NULL
);
738 /* REVISIT should probably take out of shadow region 0 */
740 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
741 &dummy_paramset
, PARM_SIZE
);
742 clear_bit(channel
, edma_cc
[ctlr
]->edma_inuse
);
744 EXPORT_SYMBOL(edma_free_channel
);
747 * edma_alloc_slot - allocate DMA parameter RAM
748 * @slot: specific slot to allocate; negative for "any unused slot"
750 * This allocates a parameter RAM slot, initializing it to hold a
751 * dummy transfer. Slots allocated using this routine have not been
752 * mapped to a hardware DMA channel, and will normally be used by
753 * linking to them from a slot associated with a DMA channel.
755 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
756 * slots may be allocated on behalf of DSP firmware.
758 * Returns the number of the slot, else negative errno.
760 int edma_alloc_slot(unsigned ctlr
, int slot
)
766 slot
= EDMA_CHAN_SLOT(slot
);
769 slot
= edma_cc
[ctlr
]->num_channels
;
771 slot
= find_next_zero_bit(edma_cc
[ctlr
]->edma_inuse
,
772 edma_cc
[ctlr
]->num_slots
, slot
);
773 if (slot
== edma_cc
[ctlr
]->num_slots
)
775 if (!test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
))
778 } else if (slot
< edma_cc
[ctlr
]->num_channels
||
779 slot
>= edma_cc
[ctlr
]->num_slots
) {
781 } else if (test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
)) {
785 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
786 &dummy_paramset
, PARM_SIZE
);
788 return EDMA_CTLR_CHAN(ctlr
, slot
);
790 EXPORT_SYMBOL(edma_alloc_slot
);
793 * edma_free_slot - deallocate DMA parameter RAM
794 * @slot: parameter RAM slot returned from edma_alloc_slot()
796 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
797 * Callers are responsible for ensuring the slot is inactive, and will
800 void edma_free_slot(unsigned slot
)
804 ctlr
= EDMA_CTLR(slot
);
805 slot
= EDMA_CHAN_SLOT(slot
);
807 if (slot
< edma_cc
[ctlr
]->num_channels
||
808 slot
>= edma_cc
[ctlr
]->num_slots
)
811 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
812 &dummy_paramset
, PARM_SIZE
);
813 clear_bit(slot
, edma_cc
[ctlr
]->edma_inuse
);
815 EXPORT_SYMBOL(edma_free_slot
);
819 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
820 * The API will return the starting point of a set of
821 * contiguous parameter RAM slots that have been requested
823 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
824 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
825 * @count: number of contiguous Paramter RAM slots
826 * @slot - the start value of Parameter RAM slot that should be passed if id
827 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
829 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
830 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
831 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
833 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
834 * set of contiguous parameter RAM slots from the "slot" that is passed as an
835 * argument to the API.
837 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
838 * starts looking for a set of contiguous parameter RAMs from the "slot"
839 * that is passed as an argument to the API. On failure the API will try to
840 * find a set of contiguous Parameter RAM slots from the remaining Parameter
843 int edma_alloc_cont_slots(unsigned ctlr
, unsigned int id
, int slot
, int count
)
846 * The start slot requested should be greater than
847 * the number of channels and lesser than the total number
850 if ((id
!= EDMA_CONT_PARAMS_ANY
) &&
851 (slot
< edma_cc
[ctlr
]->num_channels
||
852 slot
>= edma_cc
[ctlr
]->num_slots
))
856 * The number of parameter RAM slots requested cannot be less than 1
857 * and cannot be more than the number of slots minus the number of
860 if (count
< 1 || count
>
861 (edma_cc
[ctlr
]->num_slots
- edma_cc
[ctlr
]->num_channels
))
865 case EDMA_CONT_PARAMS_ANY
:
866 return reserve_contiguous_slots(ctlr
, id
, count
,
867 edma_cc
[ctlr
]->num_channels
);
868 case EDMA_CONT_PARAMS_FIXED_EXACT
:
869 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT
:
870 return reserve_contiguous_slots(ctlr
, id
, count
, slot
);
876 EXPORT_SYMBOL(edma_alloc_cont_slots
);
879 * edma_free_cont_slots - deallocate DMA parameter RAM slots
880 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
881 * @count: the number of contiguous parameter RAM slots to be freed
883 * This deallocates the parameter RAM slots allocated by
884 * edma_alloc_cont_slots.
885 * Callers/applications need to keep track of sets of contiguous
886 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
888 * Callers are responsible for ensuring the slots are inactive, and will
891 int edma_free_cont_slots(unsigned slot
, int count
)
893 unsigned ctlr
, slot_to_free
;
896 ctlr
= EDMA_CTLR(slot
);
897 slot
= EDMA_CHAN_SLOT(slot
);
899 if (slot
< edma_cc
[ctlr
]->num_channels
||
900 slot
>= edma_cc
[ctlr
]->num_slots
||
904 for (i
= slot
; i
< slot
+ count
; ++i
) {
906 slot_to_free
= EDMA_CHAN_SLOT(i
);
908 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot_to_free
),
909 &dummy_paramset
, PARM_SIZE
);
910 clear_bit(slot_to_free
, edma_cc
[ctlr
]->edma_inuse
);
915 EXPORT_SYMBOL(edma_free_cont_slots
);
917 /*-----------------------------------------------------------------------*/
919 /* Parameter RAM operations (i) -- read/write partial slots */
922 * edma_set_src - set initial DMA source address in parameter RAM slot
923 * @slot: parameter RAM slot being configured
924 * @src_port: physical address of source (memory, controller FIFO, etc)
925 * @addressMode: INCR, except in very rare cases
926 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
927 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
929 * Note that the source address is modified during the DMA transfer
930 * according to edma_set_src_index().
932 void edma_set_src(unsigned slot
, dma_addr_t src_port
,
933 enum address_mode mode
, enum fifo_width width
)
937 ctlr
= EDMA_CTLR(slot
);
938 slot
= EDMA_CHAN_SLOT(slot
);
940 if (slot
< edma_cc
[ctlr
]->num_slots
) {
941 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
944 /* set SAM and program FWID */
945 i
= (i
& ~(EDMA_FWID
)) | (SAM
| ((width
& 0x7) << 8));
950 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
952 /* set the source port address
953 in source register of param structure */
954 edma_parm_write(ctlr
, PARM_SRC
, slot
, src_port
);
957 EXPORT_SYMBOL(edma_set_src
);
960 * edma_set_dest - set initial DMA destination address in parameter RAM slot
961 * @slot: parameter RAM slot being configured
962 * @dest_port: physical address of destination (memory, controller FIFO, etc)
963 * @addressMode: INCR, except in very rare cases
964 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
965 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
967 * Note that the destination address is modified during the DMA transfer
968 * according to edma_set_dest_index().
970 void edma_set_dest(unsigned slot
, dma_addr_t dest_port
,
971 enum address_mode mode
, enum fifo_width width
)
975 ctlr
= EDMA_CTLR(slot
);
976 slot
= EDMA_CHAN_SLOT(slot
);
978 if (slot
< edma_cc
[ctlr
]->num_slots
) {
979 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
982 /* set DAM and program FWID */
983 i
= (i
& ~(EDMA_FWID
)) | (DAM
| ((width
& 0x7) << 8));
988 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
989 /* set the destination port address
990 in dest register of param structure */
991 edma_parm_write(ctlr
, PARM_DST
, slot
, dest_port
);
994 EXPORT_SYMBOL(edma_set_dest
);
997 * edma_get_position - returns the current transfer points
998 * @slot: parameter RAM slot being examined
999 * @src: pointer to source port position
1000 * @dst: pointer to destination port position
1002 * Returns current source and destination addresses for a particular
1003 * parameter RAM slot. Its channel should not be active when this is called.
1005 void edma_get_position(unsigned slot
, dma_addr_t
*src
, dma_addr_t
*dst
)
1007 struct edmacc_param temp
;
1010 ctlr
= EDMA_CTLR(slot
);
1011 slot
= EDMA_CHAN_SLOT(slot
);
1013 edma_read_slot(EDMA_CTLR_CHAN(ctlr
, slot
), &temp
);
1019 EXPORT_SYMBOL(edma_get_position
);
1022 * edma_set_src_index - configure DMA source address indexing
1023 * @slot: parameter RAM slot being configured
1024 * @src_bidx: byte offset between source arrays in a frame
1025 * @src_cidx: byte offset between source frames in a block
1027 * Offsets are specified to support either contiguous or discontiguous
1028 * memory transfers, or repeated access to a hardware register, as needed.
1029 * When accessing hardware registers, both offsets are normally zero.
1031 void edma_set_src_index(unsigned slot
, s16 src_bidx
, s16 src_cidx
)
1035 ctlr
= EDMA_CTLR(slot
);
1036 slot
= EDMA_CHAN_SLOT(slot
);
1038 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1039 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1040 0xffff0000, src_bidx
);
1041 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1042 0xffff0000, src_cidx
);
1045 EXPORT_SYMBOL(edma_set_src_index
);
1048 * edma_set_dest_index - configure DMA destination address indexing
1049 * @slot: parameter RAM slot being configured
1050 * @dest_bidx: byte offset between destination arrays in a frame
1051 * @dest_cidx: byte offset between destination frames in a block
1053 * Offsets are specified to support either contiguous or discontiguous
1054 * memory transfers, or repeated access to a hardware register, as needed.
1055 * When accessing hardware registers, both offsets are normally zero.
1057 void edma_set_dest_index(unsigned slot
, s16 dest_bidx
, s16 dest_cidx
)
1061 ctlr
= EDMA_CTLR(slot
);
1062 slot
= EDMA_CHAN_SLOT(slot
);
1064 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1065 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1066 0x0000ffff, dest_bidx
<< 16);
1067 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1068 0x0000ffff, dest_cidx
<< 16);
1071 EXPORT_SYMBOL(edma_set_dest_index
);
1074 * edma_set_transfer_params - configure DMA transfer parameters
1075 * @slot: parameter RAM slot being configured
1076 * @acnt: how many bytes per array (at least one)
1077 * @bcnt: how many arrays per frame (at least one)
1078 * @ccnt: how many frames per block (at least one)
1079 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1080 * the value to reload into bcnt when it decrements to zero
1081 * @sync_mode: ASYNC or ABSYNC
1083 * See the EDMA3 documentation to understand how to configure and link
1084 * transfers using the fields in PaRAM slots. If you are not doing it
1085 * all at once with edma_write_slot(), you will use this routine
1086 * plus two calls each for source and destination, setting the initial
1087 * address and saying how to index that address.
1089 * An example of an A-Synchronized transfer is a serial link using a
1090 * single word shift register. In that case, @acnt would be equal to
1091 * that word size; the serial controller issues a DMA synchronization
1092 * event to transfer each word, and memory access by the DMA transfer
1093 * controller will be word-at-a-time.
1095 * An example of an AB-Synchronized transfer is a device using a FIFO.
1096 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1097 * The controller with the FIFO issues DMA synchronization events when
1098 * the FIFO threshold is reached, and the DMA transfer controller will
1099 * transfer one frame to (or from) the FIFO. It will probably use
1100 * efficient burst modes to access memory.
1102 void edma_set_transfer_params(unsigned slot
,
1103 u16 acnt
, u16 bcnt
, u16 ccnt
,
1104 u16 bcnt_rld
, enum sync_dimension sync_mode
)
1108 ctlr
= EDMA_CTLR(slot
);
1109 slot
= EDMA_CHAN_SLOT(slot
);
1111 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1112 edma_parm_modify(ctlr
, PARM_LINK_BCNTRLD
, slot
,
1113 0x0000ffff, bcnt_rld
<< 16);
1114 if (sync_mode
== ASYNC
)
1115 edma_parm_and(ctlr
, PARM_OPT
, slot
, ~SYNCDIM
);
1117 edma_parm_or(ctlr
, PARM_OPT
, slot
, SYNCDIM
);
1118 /* Set the acount, bcount, ccount registers */
1119 edma_parm_write(ctlr
, PARM_A_B_CNT
, slot
, (bcnt
<< 16) | acnt
);
1120 edma_parm_write(ctlr
, PARM_CCNT
, slot
, ccnt
);
1123 EXPORT_SYMBOL(edma_set_transfer_params
);
1126 * edma_link - link one parameter RAM slot to another
1127 * @from: parameter RAM slot originating the link
1128 * @to: parameter RAM slot which is the link target
1130 * The originating slot should not be part of any active DMA transfer.
1132 void edma_link(unsigned from
, unsigned to
)
1134 unsigned ctlr_from
, ctlr_to
;
1136 ctlr_from
= EDMA_CTLR(from
);
1137 from
= EDMA_CHAN_SLOT(from
);
1138 ctlr_to
= EDMA_CTLR(to
);
1139 to
= EDMA_CHAN_SLOT(to
);
1141 if (from
>= edma_cc
[ctlr_from
]->num_slots
)
1143 if (to
>= edma_cc
[ctlr_to
]->num_slots
)
1145 edma_parm_modify(ctlr_from
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
1148 EXPORT_SYMBOL(edma_link
);
1151 * edma_unlink - cut link from one parameter RAM slot
1152 * @from: parameter RAM slot originating the link
1154 * The originating slot should not be part of any active DMA transfer.
1155 * Its link is set to 0xffff.
1157 void edma_unlink(unsigned from
)
1161 ctlr
= EDMA_CTLR(from
);
1162 from
= EDMA_CHAN_SLOT(from
);
1164 if (from
>= edma_cc
[ctlr
]->num_slots
)
1166 edma_parm_or(ctlr
, PARM_LINK_BCNTRLD
, from
, 0xffff);
1168 EXPORT_SYMBOL(edma_unlink
);
1170 /*-----------------------------------------------------------------------*/
1172 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1175 * edma_write_slot - write parameter RAM data for slot
1176 * @slot: number of parameter RAM slot being modified
1177 * @param: data to be written into parameter RAM slot
1179 * Use this to assign all parameters of a transfer at once. This
1180 * allows more efficient setup of transfers than issuing multiple
1181 * calls to set up those parameters in small pieces, and provides
1182 * complete control over all transfer options.
1184 void edma_write_slot(unsigned slot
, const struct edmacc_param
*param
)
1188 ctlr
= EDMA_CTLR(slot
);
1189 slot
= EDMA_CHAN_SLOT(slot
);
1191 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1193 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
), param
,
1196 EXPORT_SYMBOL(edma_write_slot
);
1199 * edma_read_slot - read parameter RAM data from slot
1200 * @slot: number of parameter RAM slot being copied
1201 * @param: where to store copy of parameter RAM data
1203 * Use this to read data from a parameter RAM slot, perhaps to
1204 * save them as a template for later reuse.
1206 void edma_read_slot(unsigned slot
, struct edmacc_param
*param
)
1210 ctlr
= EDMA_CTLR(slot
);
1211 slot
= EDMA_CHAN_SLOT(slot
);
1213 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1215 memcpy_fromio(param
, edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
1218 EXPORT_SYMBOL(edma_read_slot
);
1220 /*-----------------------------------------------------------------------*/
1222 /* Various EDMA channel control operations */
1225 * edma_pause - pause dma on a channel
1226 * @channel: on which edma_start() has been called
1228 * This temporarily disables EDMA hardware events on the specified channel,
1229 * preventing them from triggering new transfers on its behalf
1231 void edma_pause(unsigned channel
)
1235 ctlr
= EDMA_CTLR(channel
);
1236 channel
= EDMA_CHAN_SLOT(channel
);
1238 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1239 unsigned int mask
= BIT(channel
& 0x1f);
1241 edma_shadow0_write_array(ctlr
, SH_EECR
, channel
>> 5, mask
);
1244 EXPORT_SYMBOL(edma_pause
);
1247 * edma_resume - resumes dma on a paused channel
1248 * @channel: on which edma_pause() has been called
1250 * This re-enables EDMA hardware events on the specified channel.
1252 void edma_resume(unsigned channel
)
1256 ctlr
= EDMA_CTLR(channel
);
1257 channel
= EDMA_CHAN_SLOT(channel
);
1259 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1260 unsigned int mask
= BIT(channel
& 0x1f);
1262 edma_shadow0_write_array(ctlr
, SH_EESR
, channel
>> 5, mask
);
1265 EXPORT_SYMBOL(edma_resume
);
1267 int edma_trigger_channel(unsigned channel
)
1272 ctlr
= EDMA_CTLR(channel
);
1273 channel
= EDMA_CHAN_SLOT(channel
);
1274 mask
= BIT(channel
& 0x1f);
1276 edma_shadow0_write_array(ctlr
, SH_ESR
, (channel
>> 5), mask
);
1278 pr_debug("EDMA: ESR%d %08x\n", (channel
>> 5),
1279 edma_shadow0_read_array(ctlr
, SH_ESR
, (channel
>> 5)));
1282 EXPORT_SYMBOL(edma_trigger_channel
);
1285 * edma_start - start dma on a channel
1286 * @channel: channel being activated
1288 * Channels with event associations will be triggered by their hardware
1289 * events, and channels without such associations will be triggered by
1290 * software. (At this writing there is no interface for using software
1291 * triggers except with channels that don't support hardware triggers.)
1293 * Returns zero on success, else negative errno.
1295 int edma_start(unsigned channel
)
1299 ctlr
= EDMA_CTLR(channel
);
1300 channel
= EDMA_CHAN_SLOT(channel
);
1302 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1303 int j
= channel
>> 5;
1304 unsigned int mask
= BIT(channel
& 0x1f);
1306 /* EDMA channels without event association */
1307 if (test_bit(channel
, edma_cc
[ctlr
]->edma_unused
)) {
1308 pr_debug("EDMA: ESR%d %08x\n", j
,
1309 edma_shadow0_read_array(ctlr
, SH_ESR
, j
));
1310 edma_shadow0_write_array(ctlr
, SH_ESR
, j
, mask
);
1314 /* EDMA channel with event association */
1315 pr_debug("EDMA: ER%d %08x\n", j
,
1316 edma_shadow0_read_array(ctlr
, SH_ER
, j
));
1317 /* Clear any pending event or error */
1318 edma_write_array(ctlr
, EDMA_ECR
, j
, mask
);
1319 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1321 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1322 edma_shadow0_write_array(ctlr
, SH_EESR
, j
, mask
);
1323 pr_debug("EDMA: EER%d %08x\n", j
,
1324 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1330 EXPORT_SYMBOL(edma_start
);
1333 * edma_stop - stops dma on the channel passed
1334 * @channel: channel being deactivated
1336 * When @lch is a channel, any active transfer is paused and
1337 * all pending hardware events are cleared. The current transfer
1338 * may not be resumed, and the channel's Parameter RAM should be
1339 * reinitialized before being reused.
1341 void edma_stop(unsigned channel
)
1345 ctlr
= EDMA_CTLR(channel
);
1346 channel
= EDMA_CHAN_SLOT(channel
);
1348 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1349 int j
= channel
>> 5;
1350 unsigned int mask
= BIT(channel
& 0x1f);
1352 edma_shadow0_write_array(ctlr
, SH_EECR
, j
, mask
);
1353 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1354 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1355 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1357 pr_debug("EDMA: EER%d %08x\n", j
,
1358 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1360 /* REVISIT: consider guarding against inappropriate event
1361 * chaining by overwriting with dummy_paramset.
1365 EXPORT_SYMBOL(edma_stop
);
1367 /******************************************************************************
1369 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1370 * been removed before EDMA has finished.It is usedful for removable media.
1372 * ch_no - channel no
1374 * Return: zero on success, or corresponding error no on failure
1376 * FIXME this should not be needed ... edma_stop() should suffice.
1378 *****************************************************************************/
1380 void edma_clean_channel(unsigned channel
)
1384 ctlr
= EDMA_CTLR(channel
);
1385 channel
= EDMA_CHAN_SLOT(channel
);
1387 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1388 int j
= (channel
>> 5);
1389 unsigned int mask
= BIT(channel
& 0x1f);
1391 pr_debug("EDMA: EMR%d %08x\n", j
,
1392 edma_read_array(ctlr
, EDMA_EMR
, j
));
1393 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1394 /* Clear the corresponding EMR bits */
1395 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1397 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1398 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(16) | BIT(1) | BIT(0));
1401 EXPORT_SYMBOL(edma_clean_channel
);
1404 * edma_clear_event - clear an outstanding event on the DMA channel
1406 * channel - channel number
1408 void edma_clear_event(unsigned channel
)
1412 ctlr
= EDMA_CTLR(channel
);
1413 channel
= EDMA_CHAN_SLOT(channel
);
1415 if (channel
>= edma_cc
[ctlr
]->num_channels
)
1418 edma_write(ctlr
, EDMA_ECR
, BIT(channel
));
1420 edma_write(ctlr
, EDMA_ECRH
, BIT(channel
- 32));
1422 EXPORT_SYMBOL(edma_clear_event
);
1424 #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1426 static int edma_of_read_u32_to_s16_array(const struct device_node
*np
,
1427 const char *propname
, s16
*out_values
,
1432 ret
= of_property_read_u16_array(np
, propname
, out_values
, sz
);
1443 static int edma_xbar_event_map(struct device
*dev
,
1444 struct device_node
*node
,
1445 struct edma_soc_info
*pdata
, int len
)
1448 struct resource res
;
1450 const s16 (*xbar_chans
)[2];
1451 u32 shift
, offset
, mux
;
1453 xbar_chans
= devm_kzalloc(dev
,
1454 len
/sizeof(s16
) + 2*sizeof(s16
),
1459 ret
= of_address_to_resource(node
, 1, &res
);
1463 xbar
= devm_ioremap(dev
, res
.start
, resource_size(&res
));
1467 ret
= edma_of_read_u32_to_s16_array(node
,
1468 "ti,edma-xbar-event-map",
1474 for (i
= 0; xbar_chans
[i
][0] != -1; i
++) {
1475 shift
= (xbar_chans
[i
][1] & 0x03) << 3;
1476 offset
= xbar_chans
[i
][1] & 0xfffffffc;
1477 mux
= readl(xbar
+ offset
);
1478 mux
&= ~(0xff << shift
);
1479 mux
|= xbar_chans
[i
][0] << shift
;
1480 writel(mux
, (xbar
+ offset
));
1483 pdata
->xbar_chans
= xbar_chans
;
1488 static int edma_of_parse_dt(struct device
*dev
,
1489 struct device_node
*node
,
1490 struct edma_soc_info
*pdata
)
1494 struct property
*prop
;
1496 struct edma_rsv_info
*rsv_info
;
1497 s8 (*queue_tc_map
)[2], (*queue_priority_map
)[2];
1499 memset(pdata
, 0, sizeof(struct edma_soc_info
));
1501 ret
= of_property_read_u32(node
, "dma-channels", &value
);
1504 pdata
->n_channel
= value
;
1506 ret
= of_property_read_u32(node
, "ti,edma-regions", &value
);
1509 pdata
->n_region
= value
;
1511 ret
= of_property_read_u32(node
, "ti,edma-slots", &value
);
1514 pdata
->n_slot
= value
;
1518 rsv_info
= devm_kzalloc(dev
, sizeof(struct edma_rsv_info
), GFP_KERNEL
);
1521 pdata
->rsv
= rsv_info
;
1523 queue_tc_map
= devm_kzalloc(dev
, 8*sizeof(s8
), GFP_KERNEL
);
1527 for (i
= 0; i
< 3; i
++) {
1528 queue_tc_map
[i
][0] = i
;
1529 queue_tc_map
[i
][1] = i
;
1531 queue_tc_map
[i
][0] = -1;
1532 queue_tc_map
[i
][1] = -1;
1534 pdata
->queue_tc_mapping
= queue_tc_map
;
1536 queue_priority_map
= devm_kzalloc(dev
, 8*sizeof(s8
), GFP_KERNEL
);
1537 if (!queue_priority_map
)
1540 for (i
= 0; i
< 3; i
++) {
1541 queue_priority_map
[i
][0] = i
;
1542 queue_priority_map
[i
][1] = i
;
1544 queue_priority_map
[i
][0] = -1;
1545 queue_priority_map
[i
][1] = -1;
1547 pdata
->queue_priority_mapping
= queue_priority_map
;
1549 pdata
->default_queue
= 0;
1551 prop
= of_find_property(node
, "ti,edma-xbar-event-map", &sz
);
1553 ret
= edma_xbar_event_map(dev
, node
, pdata
, sz
);
1558 static struct of_dma_filter_info edma_filter_info
= {
1559 .filter_fn
= edma_filter_fn
,
1562 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
1563 struct device_node
*node
)
1565 struct edma_soc_info
*info
;
1568 info
= devm_kzalloc(dev
, sizeof(struct edma_soc_info
), GFP_KERNEL
);
1570 return ERR_PTR(-ENOMEM
);
1572 ret
= edma_of_parse_dt(dev
, node
, info
);
1574 return ERR_PTR(ret
);
1576 dma_cap_set(DMA_SLAVE
, edma_filter_info
.dma_cap
);
1577 of_dma_controller_register(dev
->of_node
, of_dma_simple_xlate
,
1583 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
1584 struct device_node
*node
)
1586 return ERR_PTR(-ENOSYS
);
1590 static int edma_probe(struct platform_device
*pdev
)
1592 struct edma_soc_info
**info
= pdev
->dev
.platform_data
;
1593 struct edma_soc_info
*ninfo
[EDMA_MAX_CC
] = {NULL
};
1594 s8 (*queue_priority_mapping
)[2];
1595 s8 (*queue_tc_mapping
)[2];
1596 int i
, j
, off
, ln
, found
= 0;
1598 const s16 (*rsv_chans
)[2];
1599 const s16 (*rsv_slots
)[2];
1600 const s16 (*xbar_chans
)[2];
1601 int irq
[EDMA_MAX_CC
] = {0, 0};
1602 int err_irq
[EDMA_MAX_CC
] = {0, 0};
1603 struct resource
*r
[EDMA_MAX_CC
] = {NULL
};
1604 struct resource res
[EDMA_MAX_CC
];
1607 struct device_node
*node
= pdev
->dev
.of_node
;
1608 struct device
*dev
= &pdev
->dev
;
1612 /* Check if this is a second instance registered */
1614 dev_err(dev
, "only one EDMA instance is supported via DT\n");
1618 ninfo
[0] = edma_setup_info_from_dt(dev
, node
);
1619 if (IS_ERR(ninfo
[0])) {
1620 dev_err(dev
, "failed to get DT data\n");
1621 return PTR_ERR(ninfo
[0]);
1630 pm_runtime_enable(dev
);
1631 ret
= pm_runtime_get_sync(dev
);
1633 dev_err(dev
, "pm_runtime_get_sync() failed\n");
1637 for (j
= 0; j
< EDMA_MAX_CC
; j
++) {
1644 ret
= of_address_to_resource(node
, j
, &res
[j
]);
1648 sprintf(res_name
, "edma_cc%d", j
);
1649 r
[j
] = platform_get_resource_byname(pdev
,
1662 edmacc_regs_base
[j
] = devm_ioremap_resource(&pdev
->dev
, r
[j
]);
1663 if (IS_ERR(edmacc_regs_base
[j
]))
1664 return PTR_ERR(edmacc_regs_base
[j
]);
1666 edma_cc
[j
] = devm_kzalloc(&pdev
->dev
, sizeof(struct edma
),
1671 edma_cc
[j
]->num_channels
= min_t(unsigned, info
[j
]->n_channel
,
1673 edma_cc
[j
]->num_slots
= min_t(unsigned, info
[j
]->n_slot
,
1674 EDMA_MAX_PARAMENTRY
);
1675 edma_cc
[j
]->num_cc
= min_t(unsigned, info
[j
]->n_cc
,
1678 edma_cc
[j
]->default_queue
= info
[j
]->default_queue
;
1680 dev_dbg(&pdev
->dev
, "DMA REG BASE ADDR=%p\n",
1681 edmacc_regs_base
[j
]);
1683 for (i
= 0; i
< edma_cc
[j
]->num_slots
; i
++)
1684 memcpy_toio(edmacc_regs_base
[j
] + PARM_OFFSET(i
),
1685 &dummy_paramset
, PARM_SIZE
);
1687 /* Mark all channels as unused */
1688 memset(edma_cc
[j
]->edma_unused
, 0xff,
1689 sizeof(edma_cc
[j
]->edma_unused
));
1693 /* Clear the reserved channels in unused list */
1694 rsv_chans
= info
[j
]->rsv
->rsv_chans
;
1696 for (i
= 0; rsv_chans
[i
][0] != -1; i
++) {
1697 off
= rsv_chans
[i
][0];
1698 ln
= rsv_chans
[i
][1];
1700 edma_cc
[j
]->edma_unused
);
1704 /* Set the reserved slots in inuse list */
1705 rsv_slots
= info
[j
]->rsv
->rsv_slots
;
1707 for (i
= 0; rsv_slots
[i
][0] != -1; i
++) {
1708 off
= rsv_slots
[i
][0];
1709 ln
= rsv_slots
[i
][1];
1711 edma_cc
[j
]->edma_inuse
);
1716 /* Clear the xbar mapped channels in unused list */
1717 xbar_chans
= info
[j
]->xbar_chans
;
1719 for (i
= 0; xbar_chans
[i
][1] != -1; i
++) {
1720 off
= xbar_chans
[i
][1];
1722 edma_cc
[j
]->edma_unused
);
1727 irq
[j
] = irq_of_parse_and_map(node
, 0);
1729 sprintf(irq_name
, "edma%d", j
);
1730 irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1732 edma_cc
[j
]->irq_res_start
= irq
[j
];
1733 status
= devm_request_irq(&pdev
->dev
, irq
[j
],
1734 dma_irq_handler
, 0, "edma",
1738 "devm_request_irq %d failed --> %d\n",
1744 err_irq
[j
] = irq_of_parse_and_map(node
, 2);
1746 sprintf(irq_name
, "edma%d_err", j
);
1747 err_irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1749 edma_cc
[j
]->irq_res_end
= err_irq
[j
];
1750 status
= devm_request_irq(&pdev
->dev
, err_irq
[j
],
1751 dma_ccerr_handler
, 0,
1752 "edma_error", &pdev
->dev
);
1755 "devm_request_irq %d failed --> %d\n",
1756 err_irq
[j
], status
);
1760 for (i
= 0; i
< edma_cc
[j
]->num_channels
; i
++)
1761 map_dmach_queue(j
, i
, info
[j
]->default_queue
);
1763 queue_tc_mapping
= info
[j
]->queue_tc_mapping
;
1764 queue_priority_mapping
= info
[j
]->queue_priority_mapping
;
1766 /* Event queue to TC mapping */
1767 for (i
= 0; queue_tc_mapping
[i
][0] != -1; i
++)
1768 map_queue_tc(j
, queue_tc_mapping
[i
][0],
1769 queue_tc_mapping
[i
][1]);
1771 /* Event queue priority mapping */
1772 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1773 assign_priority_to_queue(j
,
1774 queue_priority_mapping
[i
][0],
1775 queue_priority_mapping
[i
][1]);
1777 /* Map the channel to param entry if channel mapping logic
1780 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1783 for (i
= 0; i
< info
[j
]->n_region
; i
++) {
1784 edma_write_array2(j
, EDMA_DRAE
, i
, 0, 0x0);
1785 edma_write_array2(j
, EDMA_DRAE
, i
, 1, 0x0);
1786 edma_write_array(j
, EDMA_QRAE
, i
, 0x0);
1794 static struct platform_driver edma_driver
= {
1797 .of_match_table
= edma_of_ids
,
1799 .probe
= edma_probe
,
1802 static int __init
edma_init(void)
1804 return platform_driver_probe(&edma_driver
, edma_probe
);
1806 arch_initcall(edma_init
);