2 * arch/arm/kernel/kprobes.c
6 * Abhishek Sagar <sagar.abhishek@gmail.com>
7 * Copyright (C) 2006, 2007 Motorola Inc.
9 * Nicolas Pitre <nico@marvell.com>
10 * Copyright (C) 2007 Marvell Ltd.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * General Public License for more details.
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/cacheflush.h>
34 #define MIN_STACK_SIZE(addr) \
35 min((unsigned long)MAX_STACK_SIZE, \
36 (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
38 #define flush_insns(addr, size) \
39 flush_icache_range((unsigned long)(addr), \
40 (unsigned long)(addr) + \
43 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
44 #define JPROBE_MAGIC_ADDR 0xffffffff
46 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
47 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
50 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
53 kprobe_opcode_t tmp_insn
[MAX_INSN_SIZE
];
54 unsigned long addr
= (unsigned long)p
->addr
;
56 kprobe_decode_insn_t
*decode_insn
;
59 if (in_exception_text(addr
))
62 #ifdef CONFIG_THUMB2_KERNEL
64 addr
&= ~1; /* Bit 0 would normally be set to indicate Thumb code */
65 insn
= ((u16
*)addr
)[0];
66 if (is_wide_instruction(insn
)) {
68 insn
|= ((u16
*)addr
)[1];
69 decode_insn
= thumb32_kprobe_decode_insn
;
71 decode_insn
= thumb16_kprobe_decode_insn
;
72 #else /* !CONFIG_THUMB2_KERNEL */
77 decode_insn
= arm_kprobe_decode_insn
;
81 p
->ainsn
.insn
= tmp_insn
;
83 switch ((*decode_insn
)(insn
, &p
->ainsn
)) {
84 case INSN_REJECTED
: /* not supported */
87 case INSN_GOOD
: /* instruction uses slot */
88 p
->ainsn
.insn
= get_insn_slot();
91 for (is
= 0; is
< MAX_INSN_SIZE
; ++is
)
92 p
->ainsn
.insn
[is
] = tmp_insn
[is
];
93 flush_insns(p
->ainsn
.insn
,
94 sizeof(p
->ainsn
.insn
[0]) * MAX_INSN_SIZE
);
95 p
->ainsn
.insn_fn
= (kprobe_insn_fn_t
*)
96 ((uintptr_t)p
->ainsn
.insn
| thumb
);
99 case INSN_GOOD_NO_SLOT
: /* instruction doesn't need insn slot */
100 p
->ainsn
.insn
= NULL
;
107 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
112 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
113 /* Remove any Thumb flag */
114 addr
= (void *)((uintptr_t)p
->addr
& ~1);
116 if (is_wide_instruction(p
->opcode
))
117 brkp
= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION
;
119 brkp
= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION
;
121 kprobe_opcode_t insn
= p
->opcode
;
124 brkp
= KPROBE_ARM_BREAKPOINT_INSTRUCTION
;
126 if (insn
>= 0xe0000000)
127 brkp
|= 0xe0000000; /* Unconditional instruction */
129 brkp
|= insn
& 0xf0000000; /* Copy condition from insn */
132 patch_text(addr
, brkp
);
136 * The actual disarming is done here on each CPU and synchronized using
137 * stop_machine. This synchronization is necessary on SMP to avoid removing
138 * a probe between the moment the 'Undefined Instruction' exception is raised
139 * and the moment the exception handler reads the faulting instruction from
140 * memory. It is also needed to atomically set the two half-words of a 32-bit
143 int __kprobes
__arch_disarm_kprobe(void *p
)
145 struct kprobe
*kp
= p
;
146 void *addr
= (void *)((uintptr_t)kp
->addr
& ~1);
148 __patch_text(addr
, kp
->opcode
);
153 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
155 stop_machine(__arch_disarm_kprobe
, p
, cpu_online_mask
);
158 void __kprobes
arch_remove_kprobe(struct kprobe
*p
)
161 free_insn_slot(p
->ainsn
.insn
, 0);
162 p
->ainsn
.insn
= NULL
;
166 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
168 kcb
->prev_kprobe
.kp
= kprobe_running();
169 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
172 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
174 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
175 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
178 static void __kprobes
set_current_kprobe(struct kprobe
*p
)
180 __this_cpu_write(current_kprobe
, p
);
183 static void __kprobes
184 singlestep_skip(struct kprobe
*p
, struct pt_regs
*regs
)
186 #ifdef CONFIG_THUMB2_KERNEL
187 regs
->ARM_cpsr
= it_advance(regs
->ARM_cpsr
);
188 if (is_wide_instruction(p
->opcode
))
197 static inline void __kprobes
198 singlestep(struct kprobe
*p
, struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
200 p
->ainsn
.insn_singlestep(p
, regs
);
204 * Called with IRQs disabled. IRQs must remain disabled from that point
205 * all the way until processing this kprobe is complete. The current
206 * kprobes implementation cannot process more than one nested level of
207 * kprobe, and that level is reserved for user kprobe handlers, so we can't
208 * risk encountering a new kprobe in an interrupt handler.
210 void __kprobes
kprobe_handler(struct pt_regs
*regs
)
212 struct kprobe
*p
, *cur
;
213 struct kprobe_ctlblk
*kcb
;
215 kcb
= get_kprobe_ctlblk();
216 cur
= kprobe_running();
218 #ifdef CONFIG_THUMB2_KERNEL
220 * First look for a probe which was registered using an address with
221 * bit 0 set, this is the usual situation for pointers to Thumb code.
222 * If not found, fallback to looking for one with bit 0 clear.
224 p
= get_kprobe((kprobe_opcode_t
*)(regs
->ARM_pc
| 1));
226 p
= get_kprobe((kprobe_opcode_t
*)regs
->ARM_pc
);
228 #else /* ! CONFIG_THUMB2_KERNEL */
229 p
= get_kprobe((kprobe_opcode_t
*)regs
->ARM_pc
);
234 /* Kprobe is pending, so we're recursing. */
235 switch (kcb
->kprobe_status
) {
236 case KPROBE_HIT_ACTIVE
:
237 case KPROBE_HIT_SSDONE
:
238 /* A pre- or post-handler probe got us here. */
239 kprobes_inc_nmissed_count(p
);
240 save_previous_kprobe(kcb
);
241 set_current_kprobe(p
);
242 kcb
->kprobe_status
= KPROBE_REENTER
;
243 singlestep(p
, regs
, kcb
);
244 restore_previous_kprobe(kcb
);
247 /* impossible cases */
250 } else if (p
->ainsn
.insn_check_cc(regs
->ARM_cpsr
)) {
251 /* Probe hit and conditional execution check ok. */
252 set_current_kprobe(p
);
253 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
256 * If we have no pre-handler or it returned 0, we
257 * continue with normal processing. If we have a
258 * pre-handler and it returned non-zero, it prepped
259 * for calling the break_handler below on re-entry,
260 * so get out doing nothing more here.
262 if (!p
->pre_handler
|| !p
->pre_handler(p
, regs
)) {
263 kcb
->kprobe_status
= KPROBE_HIT_SS
;
264 singlestep(p
, regs
, kcb
);
265 if (p
->post_handler
) {
266 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
267 p
->post_handler(p
, regs
, 0);
269 reset_current_kprobe();
273 * Probe hit but conditional execution check failed,
274 * so just skip the instruction and continue as if
275 * nothing had happened.
277 singlestep_skip(p
, regs
);
280 /* We probably hit a jprobe. Call its break handler. */
281 if (cur
->break_handler
&& cur
->break_handler(cur
, regs
)) {
282 kcb
->kprobe_status
= KPROBE_HIT_SS
;
283 singlestep(cur
, regs
, kcb
);
284 if (cur
->post_handler
) {
285 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
286 cur
->post_handler(cur
, regs
, 0);
289 reset_current_kprobe();
292 * The probe was removed and a race is in progress.
293 * There is nothing we can do about it. Let's restart
294 * the instruction. By the time we can restart, the
295 * real instruction will be there.
300 static int __kprobes
kprobe_trap_handler(struct pt_regs
*regs
, unsigned int instr
)
303 local_irq_save(flags
);
304 kprobe_handler(regs
);
305 local_irq_restore(flags
);
309 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, unsigned int fsr
)
311 struct kprobe
*cur
= kprobe_running();
312 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
314 switch (kcb
->kprobe_status
) {
318 * We are here because the instruction being single
319 * stepped caused a page fault. We reset the current
320 * kprobe and the PC to point back to the probe address
321 * and allow the page fault handler to continue as a
324 regs
->ARM_pc
= (long)cur
->addr
;
325 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
326 restore_previous_kprobe(kcb
);
328 reset_current_kprobe();
332 case KPROBE_HIT_ACTIVE
:
333 case KPROBE_HIT_SSDONE
:
335 * We increment the nmissed count for accounting,
336 * we can also use npre/npostfault count for accounting
337 * these specific fault cases.
339 kprobes_inc_nmissed_count(cur
);
342 * We come here because instructions in the pre/post
343 * handler caused the page_fault, this could happen
344 * if handler tries to access user space by
345 * copy_from_user(), get_user() etc. Let the
346 * user-specified handler try to fix it.
348 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, fsr
))
359 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
360 unsigned long val
, void *data
)
363 * notify_die() is currently never called on ARM,
364 * so this callback is currently empty.
370 * When a retprobed function returns, trampoline_handler() is called,
371 * calling the kretprobe's handler. We construct a struct pt_regs to
372 * give a view of registers r0-r11 to the user return-handler. This is
373 * not a complete pt_regs structure, but that should be plenty sufficient
374 * for kretprobe handlers which should normally be interested in r0 only
377 void __naked __kprobes
kretprobe_trampoline(void)
379 __asm__
__volatile__ (
380 "stmdb sp!, {r0 - r11} \n\t"
382 "bl trampoline_handler \n\t"
384 "ldmia sp!, {r0 - r11} \n\t"
385 #ifdef CONFIG_THUMB2_KERNEL
393 /* Called from kretprobe_trampoline */
394 static __used __kprobes
void *trampoline_handler(struct pt_regs
*regs
)
396 struct kretprobe_instance
*ri
= NULL
;
397 struct hlist_head
*head
, empty_rp
;
398 struct hlist_node
*tmp
;
399 unsigned long flags
, orig_ret_address
= 0;
400 unsigned long trampoline_address
= (unsigned long)&kretprobe_trampoline
;
402 INIT_HLIST_HEAD(&empty_rp
);
403 kretprobe_hash_lock(current
, &head
, &flags
);
406 * It is possible to have multiple instances associated with a given
407 * task either because multiple functions in the call path have
408 * a return probe installed on them, and/or more than one return
409 * probe was registered for a target function.
411 * We can handle this because:
412 * - instances are always inserted at the head of the list
413 * - when multiple return probes are registered for the same
414 * function, the first instance's ret_addr will point to the
415 * real return address, and all the rest will point to
416 * kretprobe_trampoline
418 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
419 if (ri
->task
!= current
)
420 /* another task is sharing our hash bucket */
423 if (ri
->rp
&& ri
->rp
->handler
) {
424 __this_cpu_write(current_kprobe
, &ri
->rp
->kp
);
425 get_kprobe_ctlblk()->kprobe_status
= KPROBE_HIT_ACTIVE
;
426 ri
->rp
->handler(ri
, regs
);
427 __this_cpu_write(current_kprobe
, NULL
);
430 orig_ret_address
= (unsigned long)ri
->ret_addr
;
431 recycle_rp_inst(ri
, &empty_rp
);
433 if (orig_ret_address
!= trampoline_address
)
435 * This is the real return address. Any other
436 * instances associated with this task are for
437 * other calls deeper on the call stack
442 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
443 kretprobe_hash_unlock(current
, &flags
);
445 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
446 hlist_del(&ri
->hlist
);
450 return (void *)orig_ret_address
;
453 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
454 struct pt_regs
*regs
)
456 ri
->ret_addr
= (kprobe_opcode_t
*)regs
->ARM_lr
;
458 /* Replace the return addr with trampoline addr. */
459 regs
->ARM_lr
= (unsigned long)&kretprobe_trampoline
;
462 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
464 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
465 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
466 long sp_addr
= regs
->ARM_sp
;
469 kcb
->jprobe_saved_regs
= *regs
;
470 memcpy(kcb
->jprobes_stack
, (void *)sp_addr
, MIN_STACK_SIZE(sp_addr
));
471 regs
->ARM_pc
= (long)jp
->entry
;
473 cpsr
= regs
->ARM_cpsr
| PSR_I_BIT
;
474 #ifdef CONFIG_THUMB2_KERNEL
475 /* Set correct Thumb state in cpsr */
476 if (regs
->ARM_pc
& 1)
481 regs
->ARM_cpsr
= cpsr
;
487 void __kprobes
jprobe_return(void)
489 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
491 __asm__
__volatile__ (
493 * Setup an empty pt_regs. Fill SP and PC fields as
494 * they're needed by longjmp_break_handler.
496 * We allocate some slack between the original SP and start of
497 * our fabricated regs. To be precise we want to have worst case
498 * covered which is STMFD with all 16 regs so we allocate 2 *
499 * sizeof(struct_pt_regs)).
501 * This is to prevent any simulated instruction from writing
502 * over the regs when they are accessing the stack.
504 #ifdef CONFIG_THUMB2_KERNEL
505 "sub r0, %0, %1 \n\t"
508 "sub sp, %0, %1 \n\t"
510 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR
)"\n\t"
511 "str %0, [sp, %2] \n\t"
512 "str r0, [sp, %3] \n\t"
514 "bl kprobe_handler \n\t"
517 * Return to the context saved by setjmp_pre_handler
518 * and restored by longjmp_break_handler.
520 #ifdef CONFIG_THUMB2_KERNEL
521 "ldr lr, [sp, %2] \n\t" /* lr = saved sp */
522 "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */
523 "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */
524 "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */
526 "ldmia sp, {r0 - r12} \n\t"
528 "ldr lr, [sp], #4 \n\t"
531 "ldr r0, [sp, %4] \n\t"
532 "msr cpsr_cxsf, r0 \n\t"
533 "ldmia sp, {r0 - pc} \n\t"
536 : "r" (kcb
->jprobe_saved_regs
.ARM_sp
),
537 "I" (sizeof(struct pt_regs
) * 2),
538 "J" (offsetof(struct pt_regs
, ARM_sp
)),
539 "J" (offsetof(struct pt_regs
, ARM_pc
)),
540 "J" (offsetof(struct pt_regs
, ARM_cpsr
)),
541 "J" (offsetof(struct pt_regs
, ARM_lr
))
545 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
547 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
548 long stack_addr
= kcb
->jprobe_saved_regs
.ARM_sp
;
549 long orig_sp
= regs
->ARM_sp
;
550 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
552 if (regs
->ARM_pc
== JPROBE_MAGIC_ADDR
) {
553 if (orig_sp
!= stack_addr
) {
554 struct pt_regs
*saved_regs
=
555 (struct pt_regs
*)kcb
->jprobe_saved_regs
.ARM_sp
;
556 printk("current sp %lx does not match saved sp %lx\n",
557 orig_sp
, stack_addr
);
558 printk("Saved registers for jprobe %p\n", jp
);
559 show_regs(saved_regs
);
560 printk("Current registers\n");
564 *regs
= kcb
->jprobe_saved_regs
;
565 memcpy((void *)stack_addr
, kcb
->jprobes_stack
,
566 MIN_STACK_SIZE(stack_addr
));
567 preempt_enable_no_resched();
573 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
578 #ifdef CONFIG_THUMB2_KERNEL
580 static struct undef_hook kprobes_thumb16_break_hook
= {
581 .instr_mask
= 0xffff,
582 .instr_val
= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION
,
583 .cpsr_mask
= MODE_MASK
,
584 .cpsr_val
= SVC_MODE
,
585 .fn
= kprobe_trap_handler
,
588 static struct undef_hook kprobes_thumb32_break_hook
= {
589 .instr_mask
= 0xffffffff,
590 .instr_val
= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION
,
591 .cpsr_mask
= MODE_MASK
,
592 .cpsr_val
= SVC_MODE
,
593 .fn
= kprobe_trap_handler
,
596 #else /* !CONFIG_THUMB2_KERNEL */
598 static struct undef_hook kprobes_arm_break_hook
= {
599 .instr_mask
= 0x0fffffff,
600 .instr_val
= KPROBE_ARM_BREAKPOINT_INSTRUCTION
,
601 .cpsr_mask
= MODE_MASK
,
602 .cpsr_val
= SVC_MODE
,
603 .fn
= kprobe_trap_handler
,
606 #endif /* !CONFIG_THUMB2_KERNEL */
608 int __init
arch_init_kprobes()
610 arm_kprobe_decode_init();
611 #ifdef CONFIG_THUMB2_KERNEL
612 register_undef_hook(&kprobes_thumb16_break_hook
);
613 register_undef_hook(&kprobes_thumb32_break_hook
);
615 register_undef_hook(&kprobes_arm_break_hook
);