2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
15 #include <linux/gfp.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dma-contiguous.h>
22 #include <linux/highmem.h>
23 #include <linux/memblock.h>
24 #include <linux/slab.h>
25 #include <linux/iommu.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sizes.h>
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
43 * The DMA API is built upon the notion of "buffer ownership". A buffer
44 * is either exclusively owned by the CPU (and therefore may be accessed
45 * by it) or exclusively owned by the DMA device. These helper functions
46 * represent the transitions between these two ownership states.
48 * Note, however, that on later ARMs, this notion does not work due to
49 * speculative prefetches. We model our approach on the assumption that
50 * the CPU does do speculative prefetches, which means we clean caches
51 * before transfers and delay cache invalidation until transfer completion.
54 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
55 size_t, enum dma_data_direction
);
56 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
57 size_t, enum dma_data_direction
);
60 * arm_dma_map_page - map a portion of a page for streaming DMA
61 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
62 * @page: page that buffer resides in
63 * @offset: offset into page for start of buffer
64 * @size: size of buffer to map
65 * @dir: DMA transfer direction
67 * Ensure that any data held in the cache is appropriately discarded
70 * The device owns this memory once this call has completed. The CPU
71 * can regain ownership by calling dma_unmap_page().
73 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
74 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
75 struct dma_attrs
*attrs
)
77 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
78 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
79 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
82 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
83 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
84 struct dma_attrs
*attrs
)
86 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
90 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
91 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
92 * @handle: DMA address of buffer
93 * @size: size of buffer (same as passed to dma_map_page)
94 * @dir: DMA transfer direction (same as passed to dma_map_page)
96 * Unmap a page streaming mode DMA translation. The handle and size
97 * must match what was provided in the previous dma_map_page() call.
98 * All other usages are undefined.
100 * After this call, reads by the CPU to the buffer are guaranteed to see
101 * whatever the device wrote there.
103 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
104 size_t size
, enum dma_data_direction dir
,
105 struct dma_attrs
*attrs
)
107 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
108 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
109 handle
& ~PAGE_MASK
, size
, dir
);
112 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
113 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
115 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
116 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
117 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
120 static void arm_dma_sync_single_for_device(struct device
*dev
,
121 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
123 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
124 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
125 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
128 struct dma_map_ops arm_dma_ops
= {
129 .alloc
= arm_dma_alloc
,
130 .free
= arm_dma_free
,
131 .mmap
= arm_dma_mmap
,
132 .get_sgtable
= arm_dma_get_sgtable
,
133 .map_page
= arm_dma_map_page
,
134 .unmap_page
= arm_dma_unmap_page
,
135 .map_sg
= arm_dma_map_sg
,
136 .unmap_sg
= arm_dma_unmap_sg
,
137 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
138 .sync_single_for_device
= arm_dma_sync_single_for_device
,
139 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
140 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
141 .set_dma_mask
= arm_dma_set_mask
,
143 EXPORT_SYMBOL(arm_dma_ops
);
145 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
146 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
);
147 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
148 dma_addr_t handle
, struct dma_attrs
*attrs
);
150 struct dma_map_ops arm_coherent_dma_ops
= {
151 .alloc
= arm_coherent_dma_alloc
,
152 .free
= arm_coherent_dma_free
,
153 .mmap
= arm_dma_mmap
,
154 .get_sgtable
= arm_dma_get_sgtable
,
155 .map_page
= arm_coherent_dma_map_page
,
156 .map_sg
= arm_dma_map_sg
,
157 .set_dma_mask
= arm_dma_set_mask
,
159 EXPORT_SYMBOL(arm_coherent_dma_ops
);
161 static int __dma_supported(struct device
*dev
, u64 mask
, bool warn
)
163 unsigned long max_dma_pfn
;
166 * If the mask allows for more memory than we can address,
167 * and we actually have that much memory, then we must
168 * indicate that DMA to this device is not supported.
170 if (sizeof(mask
) != sizeof(dma_addr_t
) &&
171 mask
> (dma_addr_t
)~0 &&
172 dma_to_pfn(dev
, ~0) < max_pfn
) {
174 dev_warn(dev
, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
176 dev_warn(dev
, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
181 max_dma_pfn
= min(max_pfn
, arm_dma_pfn_limit
);
184 * Translate the device's DMA mask to a PFN limit. This
185 * PFN number includes the page which we can DMA to.
187 if (dma_to_pfn(dev
, mask
) < max_dma_pfn
) {
189 dev_warn(dev
, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
191 dma_to_pfn(dev
, 0), dma_to_pfn(dev
, mask
) + 1,
199 static u64
get_coherent_dma_mask(struct device
*dev
)
201 u64 mask
= (u64
)DMA_BIT_MASK(32);
204 mask
= dev
->coherent_dma_mask
;
207 * Sanity check the DMA mask - it must be non-zero, and
208 * must be able to be satisfied by a DMA allocation.
211 dev_warn(dev
, "coherent DMA mask is unset\n");
215 if (!__dma_supported(dev
, mask
, true))
222 static void __dma_clear_buffer(struct page
*page
, size_t size
)
225 * Ensure that the allocated pages are zeroed, and that any data
226 * lurking in the kernel direct-mapped region is invalidated.
228 if (PageHighMem(page
)) {
229 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
230 phys_addr_t end
= base
+ size
;
232 void *ptr
= kmap_atomic(page
);
233 memset(ptr
, 0, PAGE_SIZE
);
234 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
239 outer_flush_range(base
, end
);
241 void *ptr
= page_address(page
);
242 memset(ptr
, 0, size
);
243 dmac_flush_range(ptr
, ptr
+ size
);
244 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
249 * Allocate a DMA buffer for 'dev' of size 'size' using the
250 * specified gfp mask. Note that 'size' must be page aligned.
252 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
, gfp_t gfp
)
254 unsigned long order
= get_order(size
);
255 struct page
*page
, *p
, *e
;
257 page
= alloc_pages(gfp
, order
);
262 * Now split the huge page and free the excess pages
264 split_page(page
, order
);
265 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
268 __dma_clear_buffer(page
, size
);
274 * Free a DMA buffer. 'size' must be page aligned.
276 static void __dma_free_buffer(struct page
*page
, size_t size
)
278 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
287 #ifdef CONFIG_HUGETLB_PAGE
288 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
291 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
292 pgprot_t prot
, struct page
**ret_page
,
295 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
296 pgprot_t prot
, struct page
**ret_page
,
300 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
,
303 struct vm_struct
*area
;
307 * DMA allocation can be mapped to user space, so lets
308 * set VM_USERMAP flags too.
310 area
= get_vm_area_caller(size
, VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
314 addr
= (unsigned long)area
->addr
;
315 area
->phys_addr
= __pfn_to_phys(page_to_pfn(page
));
317 if (ioremap_page_range(addr
, addr
+ size
, area
->phys_addr
, prot
)) {
318 vunmap((void *)addr
);
324 static void __dma_free_remap(void *cpu_addr
, size_t size
)
326 unsigned int flags
= VM_ARM_DMA_CONSISTENT
| VM_USERMAP
;
327 struct vm_struct
*area
= find_vm_area(cpu_addr
);
328 if (!area
|| (area
->flags
& flags
) != flags
) {
329 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
332 unmap_kernel_range((unsigned long)cpu_addr
, size
);
336 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
341 unsigned long *bitmap
;
342 unsigned long nr_pages
;
347 static struct dma_pool atomic_pool
= {
348 .size
= DEFAULT_DMA_COHERENT_POOL_SIZE
,
351 static int __init
early_coherent_pool(char *p
)
353 atomic_pool
.size
= memparse(p
, &p
);
356 early_param("coherent_pool", early_coherent_pool
);
358 void __init
init_dma_coherent_pool_size(unsigned long size
)
361 * Catch any attempt to set the pool size too late.
363 BUG_ON(atomic_pool
.vaddr
);
366 * Set architecture specific coherent pool size only if
367 * it has not been changed by kernel command line parameter.
369 if (atomic_pool
.size
== DEFAULT_DMA_COHERENT_POOL_SIZE
)
370 atomic_pool
.size
= size
;
374 * Initialise the coherent pool for atomic allocations.
376 static int __init
atomic_pool_init(void)
378 struct dma_pool
*pool
= &atomic_pool
;
379 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
380 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
381 unsigned long nr_pages
= pool
->size
>> PAGE_SHIFT
;
382 unsigned long *bitmap
;
386 int bitmap_size
= BITS_TO_LONGS(nr_pages
) * sizeof(long);
388 bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
392 pages
= kzalloc(nr_pages
* sizeof(struct page
*), GFP_KERNEL
);
396 if (IS_ENABLED(CONFIG_DMA_CMA
))
397 ptr
= __alloc_from_contiguous(NULL
, pool
->size
, prot
, &page
,
400 ptr
= __alloc_remap_buffer(NULL
, pool
->size
, gfp
, prot
, &page
,
405 for (i
= 0; i
< nr_pages
; i
++)
408 spin_lock_init(&pool
->lock
);
411 pool
->bitmap
= bitmap
;
412 pool
->nr_pages
= nr_pages
;
413 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
414 (unsigned)pool
->size
/ 1024);
422 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
423 (unsigned)pool
->size
/ 1024);
427 * CMA is activated by core_initcall, so we must be called after it.
429 postcore_initcall(atomic_pool_init
);
431 struct dma_contig_early_reserve
{
436 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
438 static int dma_mmu_remap_num __initdata
;
440 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
442 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
443 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
447 void __init
dma_contiguous_remap(void)
450 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
451 phys_addr_t start
= dma_mmu_remap
[i
].base
;
452 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
456 if (end
> arm_lowmem_limit
)
457 end
= arm_lowmem_limit
;
461 map
.pfn
= __phys_to_pfn(start
);
462 map
.virtual = __phys_to_virt(start
);
463 map
.length
= end
- start
;
464 map
.type
= MT_MEMORY_DMA_READY
;
467 * Clear previous low-memory mapping
469 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
471 pmd_clear(pmd_off_k(addr
));
473 iotable_init(&map
, 1);
477 static int __dma_update_pte(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
480 struct page
*page
= virt_to_page(addr
);
481 pgprot_t prot
= *(pgprot_t
*)data
;
483 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
487 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
489 unsigned long start
= (unsigned long) page_address(page
);
490 unsigned end
= start
+ size
;
492 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
493 flush_tlb_kernel_range(start
, end
);
496 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
497 pgprot_t prot
, struct page
**ret_page
,
502 page
= __dma_alloc_buffer(dev
, size
, gfp
);
506 ptr
= __dma_alloc_remap(page
, size
, gfp
, prot
, caller
);
508 __dma_free_buffer(page
, size
);
516 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
518 struct dma_pool
*pool
= &atomic_pool
;
519 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
523 unsigned long align_mask
;
526 WARN(1, "coherent pool not initialised!\n");
531 * Align the region allocation - allocations from pool are rather
532 * small, so align them to their order in pages, minimum is a page
533 * size. This helps reduce fragmentation of the DMA space.
535 align_mask
= (1 << get_order(size
)) - 1;
537 spin_lock_irqsave(&pool
->lock
, flags
);
538 pageno
= bitmap_find_next_zero_area(pool
->bitmap
, pool
->nr_pages
,
539 0, count
, align_mask
);
540 if (pageno
< pool
->nr_pages
) {
541 bitmap_set(pool
->bitmap
, pageno
, count
);
542 ptr
= pool
->vaddr
+ PAGE_SIZE
* pageno
;
543 *ret_page
= pool
->pages
[pageno
];
545 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
546 "Please increase it with coherent_pool= kernel parameter!\n",
547 (unsigned)pool
->size
/ 1024);
549 spin_unlock_irqrestore(&pool
->lock
, flags
);
554 static bool __in_atomic_pool(void *start
, size_t size
)
556 struct dma_pool
*pool
= &atomic_pool
;
557 void *end
= start
+ size
;
558 void *pool_start
= pool
->vaddr
;
559 void *pool_end
= pool
->vaddr
+ pool
->size
;
561 if (start
< pool_start
|| start
>= pool_end
)
567 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
568 start
, end
- 1, pool_start
, pool_end
- 1);
573 static int __free_from_pool(void *start
, size_t size
)
575 struct dma_pool
*pool
= &atomic_pool
;
576 unsigned long pageno
, count
;
579 if (!__in_atomic_pool(start
, size
))
582 pageno
= (start
- pool
->vaddr
) >> PAGE_SHIFT
;
583 count
= size
>> PAGE_SHIFT
;
585 spin_lock_irqsave(&pool
->lock
, flags
);
586 bitmap_clear(pool
->bitmap
, pageno
, count
);
587 spin_unlock_irqrestore(&pool
->lock
, flags
);
592 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
593 pgprot_t prot
, struct page
**ret_page
,
596 unsigned long order
= get_order(size
);
597 size_t count
= size
>> PAGE_SHIFT
;
601 page
= dma_alloc_from_contiguous(dev
, count
, order
);
605 __dma_clear_buffer(page
, size
);
607 if (PageHighMem(page
)) {
608 ptr
= __dma_alloc_remap(page
, size
, GFP_KERNEL
, prot
, caller
);
610 dma_release_from_contiguous(dev
, page
, count
);
614 __dma_remap(page
, size
, prot
);
615 ptr
= page_address(page
);
621 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
622 void *cpu_addr
, size_t size
)
624 if (PageHighMem(page
))
625 __dma_free_remap(cpu_addr
, size
);
627 __dma_remap(page
, size
, PAGE_KERNEL
);
628 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
631 static inline pgprot_t
__get_dma_pgprot(struct dma_attrs
*attrs
, pgprot_t prot
)
633 prot
= dma_get_attr(DMA_ATTR_WRITE_COMBINE
, attrs
) ?
634 pgprot_writecombine(prot
) :
635 pgprot_dmacoherent(prot
);
641 #else /* !CONFIG_MMU */
645 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
646 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
647 #define __alloc_from_pool(size, ret_page) NULL
648 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
649 #define __free_from_pool(cpu_addr, size) 0
650 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
651 #define __dma_free_remap(cpu_addr, size) do { } while (0)
653 #endif /* CONFIG_MMU */
655 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
656 struct page
**ret_page
)
659 page
= __dma_alloc_buffer(dev
, size
, gfp
);
664 return page_address(page
);
669 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
670 gfp_t gfp
, pgprot_t prot
, bool is_coherent
, const void *caller
)
672 u64 mask
= get_coherent_dma_mask(dev
);
673 struct page
*page
= NULL
;
676 #ifdef CONFIG_DMA_API_DEBUG
677 u64 limit
= (mask
+ 1) & ~mask
;
678 if (limit
&& size
>= limit
) {
679 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
688 if (mask
< 0xffffffffULL
)
692 * Following is a work-around (a.k.a. hack) to prevent pages
693 * with __GFP_COMP being passed to split_page() which cannot
694 * handle them. The real problem is that this flag probably
695 * should be 0 on ARM as it is not supported on this
696 * platform; see CONFIG_HUGETLBFS.
698 gfp
&= ~(__GFP_COMP
);
700 *handle
= DMA_ERROR_CODE
;
701 size
= PAGE_ALIGN(size
);
703 if (is_coherent
|| nommu())
704 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
705 else if (!(gfp
& __GFP_WAIT
))
706 addr
= __alloc_from_pool(size
, &page
);
707 else if (!IS_ENABLED(CONFIG_DMA_CMA
))
708 addr
= __alloc_remap_buffer(dev
, size
, gfp
, prot
, &page
, caller
);
710 addr
= __alloc_from_contiguous(dev
, size
, prot
, &page
, caller
);
713 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
719 * Allocate DMA-coherent memory space and return both the kernel remapped
720 * virtual and bus address for that space.
722 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
723 gfp_t gfp
, struct dma_attrs
*attrs
)
725 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
728 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
731 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
732 __builtin_return_address(0));
735 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
736 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
738 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
741 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
744 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, true,
745 __builtin_return_address(0));
749 * Create userspace mapping for the DMA-coherent memory.
751 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
752 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
753 struct dma_attrs
*attrs
)
757 unsigned long nr_vma_pages
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
758 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
759 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
760 unsigned long off
= vma
->vm_pgoff
;
762 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
764 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
767 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
768 ret
= remap_pfn_range(vma
, vma
->vm_start
,
770 vma
->vm_end
- vma
->vm_start
,
773 #endif /* CONFIG_MMU */
779 * Free a buffer as defined by the above mapping.
781 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
782 dma_addr_t handle
, struct dma_attrs
*attrs
,
785 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
787 if (dma_release_from_coherent(dev
, get_order(size
), cpu_addr
))
790 size
= PAGE_ALIGN(size
);
792 if (is_coherent
|| nommu()) {
793 __dma_free_buffer(page
, size
);
794 } else if (__free_from_pool(cpu_addr
, size
)) {
796 } else if (!IS_ENABLED(CONFIG_DMA_CMA
)) {
797 __dma_free_remap(cpu_addr
, size
);
798 __dma_free_buffer(page
, size
);
801 * Non-atomic allocations cannot be freed with IRQs disabled
803 WARN_ON(irqs_disabled());
804 __free_from_contiguous(dev
, page
, cpu_addr
, size
);
808 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
809 dma_addr_t handle
, struct dma_attrs
*attrs
)
811 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
814 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
815 dma_addr_t handle
, struct dma_attrs
*attrs
)
817 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
820 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
821 void *cpu_addr
, dma_addr_t handle
, size_t size
,
822 struct dma_attrs
*attrs
)
824 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
827 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
831 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
835 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
836 size_t size
, enum dma_data_direction dir
,
837 void (*op
)(const void *, size_t, int))
842 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
846 * A single sg entry may refer to multiple physically contiguous
847 * pages. But we still need to process highmem pages individually.
848 * If highmem is not configured then the bulk of this loop gets
855 page
= pfn_to_page(pfn
);
857 if (PageHighMem(page
)) {
858 if (len
+ offset
> PAGE_SIZE
)
859 len
= PAGE_SIZE
- offset
;
861 if (cache_is_vipt_nonaliasing()) {
862 vaddr
= kmap_atomic(page
);
863 op(vaddr
+ offset
, len
, dir
);
864 kunmap_atomic(vaddr
);
866 vaddr
= kmap_high_get(page
);
868 op(vaddr
+ offset
, len
, dir
);
873 vaddr
= page_address(page
) + offset
;
883 * Make an area consistent for devices.
884 * Note: Drivers should NOT use this function directly, as it will break
885 * platforms with CONFIG_DMABOUNCE.
886 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
888 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
889 size_t size
, enum dma_data_direction dir
)
893 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
895 paddr
= page_to_phys(page
) + off
;
896 if (dir
== DMA_FROM_DEVICE
) {
897 outer_inv_range(paddr
, paddr
+ size
);
899 outer_clean_range(paddr
, paddr
+ size
);
901 /* FIXME: non-speculating: flush on bidirectional mappings? */
904 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
905 size_t size
, enum dma_data_direction dir
)
907 unsigned long paddr
= page_to_phys(page
) + off
;
909 /* FIXME: non-speculating: not required */
910 /* don't bother invalidating if DMA to device */
911 if (dir
!= DMA_TO_DEVICE
)
912 outer_inv_range(paddr
, paddr
+ size
);
914 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
917 * Mark the D-cache clean for these pages to avoid extra flushing.
919 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
923 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
927 left
-= PAGE_SIZE
- off
;
929 while (left
>= PAGE_SIZE
) {
930 page
= pfn_to_page(pfn
++);
931 set_bit(PG_dcache_clean
, &page
->flags
);
938 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
939 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
940 * @sg: list of buffers
941 * @nents: number of buffers to map
942 * @dir: DMA transfer direction
944 * Map a set of buffers described by scatterlist in streaming mode for DMA.
945 * This is the scatter-gather version of the dma_map_single interface.
946 * Here the scatter gather list elements are each tagged with the
947 * appropriate dma address and length. They are obtained via
948 * sg_dma_{address,length}.
950 * Device ownership issues as mentioned for dma_map_single are the same
953 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
954 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
956 struct dma_map_ops
*ops
= get_dma_ops(dev
);
957 struct scatterlist
*s
;
960 for_each_sg(sg
, s
, nents
, i
) {
961 #ifdef CONFIG_NEED_SG_DMA_LENGTH
962 s
->dma_length
= s
->length
;
964 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
965 s
->length
, dir
, attrs
);
966 if (dma_mapping_error(dev
, s
->dma_address
))
972 for_each_sg(sg
, s
, i
, j
)
973 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
978 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
979 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
980 * @sg: list of buffers
981 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
982 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
984 * Unmap a set of streaming mode DMA translations. Again, CPU access
985 * rules concerning calls here are the same as for dma_unmap_single().
987 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
988 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
990 struct dma_map_ops
*ops
= get_dma_ops(dev
);
991 struct scatterlist
*s
;
995 for_each_sg(sg
, s
, nents
, i
)
996 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1000 * arm_dma_sync_sg_for_cpu
1001 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1002 * @sg: list of buffers
1003 * @nents: number of buffers to map (returned from dma_map_sg)
1004 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1006 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1007 int nents
, enum dma_data_direction dir
)
1009 struct dma_map_ops
*ops
= get_dma_ops(dev
);
1010 struct scatterlist
*s
;
1013 for_each_sg(sg
, s
, nents
, i
)
1014 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
1019 * arm_dma_sync_sg_for_device
1020 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1021 * @sg: list of buffers
1022 * @nents: number of buffers to map (returned from dma_map_sg)
1023 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1025 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1026 int nents
, enum dma_data_direction dir
)
1028 struct dma_map_ops
*ops
= get_dma_ops(dev
);
1029 struct scatterlist
*s
;
1032 for_each_sg(sg
, s
, nents
, i
)
1033 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1038 * Return whether the given device DMA address mask can be supported
1039 * properly. For example, if your device can only drive the low 24-bits
1040 * during bus mastering, then you would pass 0x00ffffff as the mask
1043 int dma_supported(struct device
*dev
, u64 mask
)
1045 return __dma_supported(dev
, mask
, false);
1047 EXPORT_SYMBOL(dma_supported
);
1049 int arm_dma_set_mask(struct device
*dev
, u64 dma_mask
)
1051 if (!dev
->dma_mask
|| !dma_supported(dev
, dma_mask
))
1054 *dev
->dma_mask
= dma_mask
;
1059 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1061 static int __init
dma_debug_do_init(void)
1063 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
1066 fs_initcall(dma_debug_do_init
);
1068 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1072 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1075 unsigned int order
= get_order(size
);
1076 unsigned int align
= 0;
1077 unsigned int count
, start
;
1078 unsigned long flags
;
1080 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1081 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1083 count
= ((PAGE_ALIGN(size
) >> PAGE_SHIFT
) +
1084 (1 << mapping
->order
) - 1) >> mapping
->order
;
1086 if (order
> mapping
->order
)
1087 align
= (1 << (order
- mapping
->order
)) - 1;
1089 spin_lock_irqsave(&mapping
->lock
, flags
);
1090 start
= bitmap_find_next_zero_area(mapping
->bitmap
, mapping
->bits
, 0,
1092 if (start
> mapping
->bits
) {
1093 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1094 return DMA_ERROR_CODE
;
1097 bitmap_set(mapping
->bitmap
, start
, count
);
1098 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1100 return mapping
->base
+ (start
<< (mapping
->order
+ PAGE_SHIFT
));
1103 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1104 dma_addr_t addr
, size_t size
)
1106 unsigned int start
= (addr
- mapping
->base
) >>
1107 (mapping
->order
+ PAGE_SHIFT
);
1108 unsigned int count
= ((size
>> PAGE_SHIFT
) +
1109 (1 << mapping
->order
) - 1) >> mapping
->order
;
1110 unsigned long flags
;
1112 spin_lock_irqsave(&mapping
->lock
, flags
);
1113 bitmap_clear(mapping
->bitmap
, start
, count
);
1114 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1117 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1118 gfp_t gfp
, struct dma_attrs
*attrs
)
1120 struct page
**pages
;
1121 int count
= size
>> PAGE_SHIFT
;
1122 int array_size
= count
* sizeof(struct page
*);
1125 if (array_size
<= PAGE_SIZE
)
1126 pages
= kzalloc(array_size
, gfp
);
1128 pages
= vzalloc(array_size
);
1132 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
))
1134 unsigned long order
= get_order(size
);
1137 page
= dma_alloc_from_contiguous(dev
, count
, order
);
1141 __dma_clear_buffer(page
, size
);
1143 for (i
= 0; i
< count
; i
++)
1144 pages
[i
] = page
+ i
;
1150 * IOMMU can map any pages, so himem can also be used here
1152 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1155 int j
, order
= __fls(count
);
1157 pages
[i
] = alloc_pages(gfp
, order
);
1158 while (!pages
[i
] && order
)
1159 pages
[i
] = alloc_pages(gfp
, --order
);
1164 split_page(pages
[i
], order
);
1167 pages
[i
+ j
] = pages
[i
] + j
;
1170 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
);
1172 count
-= 1 << order
;
1179 __free_pages(pages
[i
], 0);
1180 if (array_size
<= PAGE_SIZE
)
1187 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1188 size_t size
, struct dma_attrs
*attrs
)
1190 int count
= size
>> PAGE_SHIFT
;
1191 int array_size
= count
* sizeof(struct page
*);
1194 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
)) {
1195 dma_release_from_contiguous(dev
, pages
[0], count
);
1197 for (i
= 0; i
< count
; i
++)
1199 __free_pages(pages
[i
], 0);
1202 if (array_size
<= PAGE_SIZE
)
1210 * Create a CPU mapping for a specified pages
1213 __iommu_alloc_remap(struct page
**pages
, size_t size
, gfp_t gfp
, pgprot_t prot
,
1216 unsigned int i
, nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1217 struct vm_struct
*area
;
1220 area
= get_vm_area_caller(size
, VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
1225 area
->pages
= pages
;
1226 area
->nr_pages
= nr_pages
;
1227 p
= (unsigned long)area
->addr
;
1229 for (i
= 0; i
< nr_pages
; i
++) {
1230 phys_addr_t phys
= __pfn_to_phys(page_to_pfn(pages
[i
]));
1231 if (ioremap_page_range(p
, p
+ PAGE_SIZE
, phys
, prot
))
1237 unmap_kernel_range((unsigned long)area
->addr
, size
);
1243 * Create a mapping in device IO address space for specified pages
1246 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
)
1248 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1249 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1250 dma_addr_t dma_addr
, iova
;
1251 int i
, ret
= DMA_ERROR_CODE
;
1253 dma_addr
= __alloc_iova(mapping
, size
);
1254 if (dma_addr
== DMA_ERROR_CODE
)
1258 for (i
= 0; i
< count
; ) {
1259 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1260 phys_addr_t phys
= page_to_phys(pages
[i
]);
1261 unsigned int len
, j
;
1263 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1264 if (page_to_pfn(pages
[j
]) != next_pfn
)
1267 len
= (j
- i
) << PAGE_SHIFT
;
1268 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1269 IOMMU_READ
|IOMMU_WRITE
);
1277 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1278 __free_iova(mapping
, dma_addr
, size
);
1279 return DMA_ERROR_CODE
;
1282 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1284 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1287 * add optional in-page offset from iova to size and align
1288 * result to page size
1290 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1293 iommu_unmap(mapping
->domain
, iova
, size
);
1294 __free_iova(mapping
, iova
, size
);
1298 static struct page
**__atomic_get_pages(void *addr
)
1300 struct dma_pool
*pool
= &atomic_pool
;
1301 struct page
**pages
= pool
->pages
;
1302 int offs
= (addr
- pool
->vaddr
) >> PAGE_SHIFT
;
1304 return pages
+ offs
;
1307 static struct page
**__iommu_get_pages(void *cpu_addr
, struct dma_attrs
*attrs
)
1309 struct vm_struct
*area
;
1311 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1312 return __atomic_get_pages(cpu_addr
);
1314 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1317 area
= find_vm_area(cpu_addr
);
1318 if (area
&& (area
->flags
& VM_ARM_DMA_CONSISTENT
))
1323 static void *__iommu_alloc_atomic(struct device
*dev
, size_t size
,
1329 addr
= __alloc_from_pool(size
, &page
);
1333 *handle
= __iommu_create_mapping(dev
, &page
, size
);
1334 if (*handle
== DMA_ERROR_CODE
)
1340 __free_from_pool(addr
, size
);
1344 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1345 dma_addr_t handle
, size_t size
)
1347 __iommu_remove_mapping(dev
, handle
, size
);
1348 __free_from_pool(cpu_addr
, size
);
1351 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1352 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
1354 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1355 struct page
**pages
;
1358 *handle
= DMA_ERROR_CODE
;
1359 size
= PAGE_ALIGN(size
);
1361 if (gfp
& GFP_ATOMIC
)
1362 return __iommu_alloc_atomic(dev
, size
, handle
);
1365 * Following is a work-around (a.k.a. hack) to prevent pages
1366 * with __GFP_COMP being passed to split_page() which cannot
1367 * handle them. The real problem is that this flag probably
1368 * should be 0 on ARM as it is not supported on this
1369 * platform; see CONFIG_HUGETLBFS.
1371 gfp
&= ~(__GFP_COMP
);
1373 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
);
1377 *handle
= __iommu_create_mapping(dev
, pages
, size
);
1378 if (*handle
== DMA_ERROR_CODE
)
1381 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1384 addr
= __iommu_alloc_remap(pages
, size
, gfp
, prot
,
1385 __builtin_return_address(0));
1392 __iommu_remove_mapping(dev
, *handle
, size
);
1394 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1398 static int arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1399 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1400 struct dma_attrs
*attrs
)
1402 unsigned long uaddr
= vma
->vm_start
;
1403 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1404 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1406 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1412 int ret
= vm_insert_page(vma
, uaddr
, *pages
++);
1414 pr_err("Remapping memory failed: %d\n", ret
);
1419 } while (usize
> 0);
1425 * free a page as defined by the above mapping.
1426 * Must not be called with IRQs disabled.
1428 void arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1429 dma_addr_t handle
, struct dma_attrs
*attrs
)
1431 struct page
**pages
;
1432 size
= PAGE_ALIGN(size
);
1434 if (__in_atomic_pool(cpu_addr
, size
)) {
1435 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
);
1439 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1441 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1445 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
)) {
1446 unmap_kernel_range((unsigned long)cpu_addr
, size
);
1450 __iommu_remove_mapping(dev
, handle
, size
);
1451 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1454 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1455 void *cpu_addr
, dma_addr_t dma_addr
,
1456 size_t size
, struct dma_attrs
*attrs
)
1458 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1459 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1464 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1468 static int __dma_direction_to_prot(enum dma_data_direction dir
)
1473 case DMA_BIDIRECTIONAL
:
1474 prot
= IOMMU_READ
| IOMMU_WRITE
;
1479 case DMA_FROM_DEVICE
:
1490 * Map a part of the scatter-gather list into contiguous io address space
1492 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1493 size_t size
, dma_addr_t
*handle
,
1494 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1497 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1498 dma_addr_t iova
, iova_base
;
1501 struct scatterlist
*s
;
1504 size
= PAGE_ALIGN(size
);
1505 *handle
= DMA_ERROR_CODE
;
1507 iova_base
= iova
= __alloc_iova(mapping
, size
);
1508 if (iova
== DMA_ERROR_CODE
)
1511 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1512 phys_addr_t phys
= page_to_phys(sg_page(s
));
1513 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1516 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1517 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1519 prot
= __dma_direction_to_prot(dir
);
1521 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1524 count
+= len
>> PAGE_SHIFT
;
1527 *handle
= iova_base
;
1531 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1532 __free_iova(mapping
, iova_base
, size
);
1536 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1537 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1540 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1542 unsigned int offset
= s
->offset
;
1543 unsigned int size
= s
->offset
+ s
->length
;
1544 unsigned int max
= dma_get_max_seg_size(dev
);
1546 for (i
= 1; i
< nents
; i
++) {
1549 s
->dma_address
= DMA_ERROR_CODE
;
1552 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1553 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1554 dir
, attrs
, is_coherent
) < 0)
1557 dma
->dma_address
+= offset
;
1558 dma
->dma_length
= size
- offset
;
1560 size
= offset
= s
->offset
;
1567 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1571 dma
->dma_address
+= offset
;
1572 dma
->dma_length
= size
- offset
;
1577 for_each_sg(sg
, s
, count
, i
)
1578 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1583 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1584 * @dev: valid struct device pointer
1585 * @sg: list of buffers
1586 * @nents: number of buffers to map
1587 * @dir: DMA transfer direction
1589 * Map a set of i/o coherent buffers described by scatterlist in streaming
1590 * mode for DMA. The scatter gather list elements are merged together (if
1591 * possible) and tagged with the appropriate dma address and length. They are
1592 * obtained via sg_dma_{address,length}.
1594 int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1595 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1597 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1601 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1602 * @dev: valid struct device pointer
1603 * @sg: list of buffers
1604 * @nents: number of buffers to map
1605 * @dir: DMA transfer direction
1607 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1608 * The scatter gather list elements are merged together (if possible) and
1609 * tagged with the appropriate dma address and length. They are obtained via
1610 * sg_dma_{address,length}.
1612 int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1613 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1615 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1618 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1619 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1622 struct scatterlist
*s
;
1625 for_each_sg(sg
, s
, nents
, i
) {
1627 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1630 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1631 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1637 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1638 * @dev: valid struct device pointer
1639 * @sg: list of buffers
1640 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1641 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1643 * Unmap a set of streaming mode DMA translations. Again, CPU access
1644 * rules concerning calls here are the same as for dma_unmap_single().
1646 void arm_coherent_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1647 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1649 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1653 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1654 * @dev: valid struct device pointer
1655 * @sg: list of buffers
1656 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1657 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1659 * Unmap a set of streaming mode DMA translations. Again, CPU access
1660 * rules concerning calls here are the same as for dma_unmap_single().
1662 void arm_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1663 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1665 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1669 * arm_iommu_sync_sg_for_cpu
1670 * @dev: valid struct device pointer
1671 * @sg: list of buffers
1672 * @nents: number of buffers to map (returned from dma_map_sg)
1673 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1675 void arm_iommu_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1676 int nents
, enum dma_data_direction dir
)
1678 struct scatterlist
*s
;
1681 for_each_sg(sg
, s
, nents
, i
)
1682 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1687 * arm_iommu_sync_sg_for_device
1688 * @dev: valid struct device pointer
1689 * @sg: list of buffers
1690 * @nents: number of buffers to map (returned from dma_map_sg)
1691 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1693 void arm_iommu_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1694 int nents
, enum dma_data_direction dir
)
1696 struct scatterlist
*s
;
1699 for_each_sg(sg
, s
, nents
, i
)
1700 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1705 * arm_coherent_iommu_map_page
1706 * @dev: valid struct device pointer
1707 * @page: page that buffer resides in
1708 * @offset: offset into page for start of buffer
1709 * @size: size of buffer to map
1710 * @dir: DMA transfer direction
1712 * Coherent IOMMU aware version of arm_dma_map_page()
1714 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1715 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1716 struct dma_attrs
*attrs
)
1718 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1719 dma_addr_t dma_addr
;
1720 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1722 dma_addr
= __alloc_iova(mapping
, len
);
1723 if (dma_addr
== DMA_ERROR_CODE
)
1726 prot
= __dma_direction_to_prot(dir
);
1728 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1732 return dma_addr
+ offset
;
1734 __free_iova(mapping
, dma_addr
, len
);
1735 return DMA_ERROR_CODE
;
1739 * arm_iommu_map_page
1740 * @dev: valid struct device pointer
1741 * @page: page that buffer resides in
1742 * @offset: offset into page for start of buffer
1743 * @size: size of buffer to map
1744 * @dir: DMA transfer direction
1746 * IOMMU aware version of arm_dma_map_page()
1748 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1749 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1750 struct dma_attrs
*attrs
)
1752 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1753 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1755 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1759 * arm_coherent_iommu_unmap_page
1760 * @dev: valid struct device pointer
1761 * @handle: DMA address of buffer
1762 * @size: size of buffer (same as passed to dma_map_page)
1763 * @dir: DMA transfer direction (same as passed to dma_map_page)
1765 * Coherent IOMMU aware version of arm_dma_unmap_page()
1767 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1768 size_t size
, enum dma_data_direction dir
,
1769 struct dma_attrs
*attrs
)
1771 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1772 dma_addr_t iova
= handle
& PAGE_MASK
;
1773 int offset
= handle
& ~PAGE_MASK
;
1774 int len
= PAGE_ALIGN(size
+ offset
);
1779 iommu_unmap(mapping
->domain
, iova
, len
);
1780 __free_iova(mapping
, iova
, len
);
1784 * arm_iommu_unmap_page
1785 * @dev: valid struct device pointer
1786 * @handle: DMA address of buffer
1787 * @size: size of buffer (same as passed to dma_map_page)
1788 * @dir: DMA transfer direction (same as passed to dma_map_page)
1790 * IOMMU aware version of arm_dma_unmap_page()
1792 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1793 size_t size
, enum dma_data_direction dir
,
1794 struct dma_attrs
*attrs
)
1796 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1797 dma_addr_t iova
= handle
& PAGE_MASK
;
1798 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1799 int offset
= handle
& ~PAGE_MASK
;
1800 int len
= PAGE_ALIGN(size
+ offset
);
1805 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1806 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1808 iommu_unmap(mapping
->domain
, iova
, len
);
1809 __free_iova(mapping
, iova
, len
);
1812 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
1813 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1815 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1816 dma_addr_t iova
= handle
& PAGE_MASK
;
1817 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1818 unsigned int offset
= handle
& ~PAGE_MASK
;
1823 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1826 static void arm_iommu_sync_single_for_device(struct device
*dev
,
1827 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1829 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1830 dma_addr_t iova
= handle
& PAGE_MASK
;
1831 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1832 unsigned int offset
= handle
& ~PAGE_MASK
;
1837 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1840 struct dma_map_ops iommu_ops
= {
1841 .alloc
= arm_iommu_alloc_attrs
,
1842 .free
= arm_iommu_free_attrs
,
1843 .mmap
= arm_iommu_mmap_attrs
,
1844 .get_sgtable
= arm_iommu_get_sgtable
,
1846 .map_page
= arm_iommu_map_page
,
1847 .unmap_page
= arm_iommu_unmap_page
,
1848 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
1849 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
1851 .map_sg
= arm_iommu_map_sg
,
1852 .unmap_sg
= arm_iommu_unmap_sg
,
1853 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
1854 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
1856 .set_dma_mask
= arm_dma_set_mask
,
1859 struct dma_map_ops iommu_coherent_ops
= {
1860 .alloc
= arm_iommu_alloc_attrs
,
1861 .free
= arm_iommu_free_attrs
,
1862 .mmap
= arm_iommu_mmap_attrs
,
1863 .get_sgtable
= arm_iommu_get_sgtable
,
1865 .map_page
= arm_coherent_iommu_map_page
,
1866 .unmap_page
= arm_coherent_iommu_unmap_page
,
1868 .map_sg
= arm_coherent_iommu_map_sg
,
1869 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
1871 .set_dma_mask
= arm_dma_set_mask
,
1875 * arm_iommu_create_mapping
1876 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1877 * @base: start address of the valid IO address space
1878 * @size: size of the valid IO address space
1879 * @order: accuracy of the IO addresses allocations
1881 * Creates a mapping structure which holds information about used/unused
1882 * IO address ranges, which is required to perform memory allocation and
1883 * mapping with IOMMU aware functions.
1885 * The client device need to be attached to the mapping with
1886 * arm_iommu_attach_device function.
1888 struct dma_iommu_mapping
*
1889 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, size_t size
,
1892 unsigned int count
= size
>> (PAGE_SHIFT
+ order
);
1893 unsigned int bitmap_size
= BITS_TO_LONGS(count
) * sizeof(long);
1894 struct dma_iommu_mapping
*mapping
;
1898 return ERR_PTR(-EINVAL
);
1900 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
1904 mapping
->bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1905 if (!mapping
->bitmap
)
1908 mapping
->base
= base
;
1909 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
1910 mapping
->order
= order
;
1911 spin_lock_init(&mapping
->lock
);
1913 mapping
->domain
= iommu_domain_alloc(bus
);
1914 if (!mapping
->domain
)
1917 kref_init(&mapping
->kref
);
1920 kfree(mapping
->bitmap
);
1924 return ERR_PTR(err
);
1926 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
1928 static void release_iommu_mapping(struct kref
*kref
)
1930 struct dma_iommu_mapping
*mapping
=
1931 container_of(kref
, struct dma_iommu_mapping
, kref
);
1933 iommu_domain_free(mapping
->domain
);
1934 kfree(mapping
->bitmap
);
1938 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
1941 kref_put(&mapping
->kref
, release_iommu_mapping
);
1943 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
1946 * arm_iommu_attach_device
1947 * @dev: valid struct device pointer
1948 * @mapping: io address space mapping structure (returned from
1949 * arm_iommu_create_mapping)
1951 * Attaches specified io address space mapping to the provided device,
1952 * this replaces the dma operations (dma_map_ops pointer) with the
1953 * IOMMU aware version. More than one client might be attached to
1954 * the same io address space mapping.
1956 int arm_iommu_attach_device(struct device
*dev
,
1957 struct dma_iommu_mapping
*mapping
)
1961 err
= iommu_attach_device(mapping
->domain
, dev
);
1965 kref_get(&mapping
->kref
);
1966 dev
->archdata
.mapping
= mapping
;
1967 set_dma_ops(dev
, &iommu_ops
);
1969 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
1972 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
1975 * arm_iommu_detach_device
1976 * @dev: valid struct device pointer
1978 * Detaches the provided device from a previously attached map.
1979 * This voids the dma operations (dma_map_ops pointer)
1981 void arm_iommu_detach_device(struct device
*dev
)
1983 struct dma_iommu_mapping
*mapping
;
1985 mapping
= to_dma_iommu_mapping(dev
);
1987 dev_warn(dev
, "Not attached\n");
1991 iommu_detach_device(mapping
->domain
, dev
);
1992 kref_put(&mapping
->kref
, release_iommu_mapping
);
1993 dev
->archdata
.mapping
= NULL
;
1994 set_dma_ops(dev
, NULL
);
1996 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
1998 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);