2 * Copyright (C) 2009,2010,2011 Imagination Technologies Ltd.
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/atomic.h>
11 #include <linux/completion.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/spinlock.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/cache.h>
18 #include <linux/profile.h>
19 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/bootmem.h>
28 #include <asm/cacheflush.h>
29 #include <asm/cachepart.h>
30 #include <asm/core_reg.h>
32 #include <asm/global_lock.h>
33 #include <asm/metag_mem.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/pgalloc.h>
37 #include <asm/processor.h>
38 #include <asm/setup.h>
39 #include <asm/tlbflush.h>
40 #include <asm/hwthread.h>
41 #include <asm/traps.h>
43 #define SYSC_DCPART(n) (SYSC_DCPART0 + SYSC_xCPARTn_STRIDE * (n))
44 #define SYSC_ICPART(n) (SYSC_ICPART0 + SYSC_xCPARTn_STRIDE * (n))
46 DECLARE_PER_CPU(PTBI
, pTBI
);
48 void *secondary_data_stack
;
51 * structures for inter-processor calls
52 * - A collection of single bit ipi messages.
56 unsigned long ipi_count
;
60 static DEFINE_PER_CPU(struct ipi_data
, ipi_data
) = {
61 .lock
= __SPIN_LOCK_UNLOCKED(ipi_data
.lock
),
64 static DEFINE_SPINLOCK(boot_lock
);
66 static DECLARE_COMPLETION(cpu_running
);
69 * "thread" is assumed to be a valid Meta hardware thread ID.
71 static int boot_secondary(unsigned int thread
, struct task_struct
*idle
)
76 * set synchronisation state between this boot processor
77 * and the secondary one
79 spin_lock(&boot_lock
);
81 core_reg_write(TXUPC_ID
, 0, thread
, (unsigned int)secondary_startup
);
82 core_reg_write(TXUPC_ID
, 1, thread
, 0);
85 * Give the thread privilege (PSTAT) and clear potentially problematic
86 * bits in the process (namely ISTAT, CBMarker, CBMarkerI, LSM_STEP).
88 core_reg_write(TXUCT_ID
, TXSTATUS_REGNUM
, thread
, TXSTATUS_PSTAT_BIT
);
90 /* Clear the minim enable bit. */
91 val
= core_reg_read(TXUCT_ID
, TXPRIVEXT_REGNUM
, thread
);
92 core_reg_write(TXUCT_ID
, TXPRIVEXT_REGNUM
, thread
, val
& ~0x80);
95 * set the ThreadEnable bit (0x1) in the TXENABLE register
96 * for the specified thread - off it goes!
98 val
= core_reg_read(TXUCT_ID
, TXENABLE_REGNUM
, thread
);
99 core_reg_write(TXUCT_ID
, TXENABLE_REGNUM
, thread
, val
| 0x1);
102 * now the secondary core is starting up let it run its
103 * calibrations, then wait for it to finish
105 spin_unlock(&boot_lock
);
111 * describe_cachepart_change: describe a change to cache partitions.
112 * @thread: Hardware thread number.
113 * @label: Label of cache type, e.g. "dcache" or "icache".
114 * @sz: Total size of the cache.
115 * @old: Old cache partition configuration (*CPART* register).
116 * @new: New cache partition configuration (*CPART* register).
118 * If the cache partition has changed, prints a message to the log describing
121 static void describe_cachepart_change(unsigned int thread
, const char *label
,
122 unsigned int sz
, unsigned int old
,
125 unsigned int lor1
, land1
, gor1
, gand1
;
126 unsigned int lor2
, land2
, gor2
, gand2
;
127 unsigned int diff
= old
^ new;
132 pr_info("Thread %d: %s partition changed:", thread
, label
);
133 if (diff
& (SYSC_xCPARTL_OR_BITS
| SYSC_xCPARTL_AND_BITS
)) {
134 lor1
= (old
& SYSC_xCPARTL_OR_BITS
) >> SYSC_xCPARTL_OR_S
;
135 lor2
= (new & SYSC_xCPARTL_OR_BITS
) >> SYSC_xCPARTL_OR_S
;
136 land1
= (old
& SYSC_xCPARTL_AND_BITS
) >> SYSC_xCPARTL_AND_S
;
137 land2
= (new & SYSC_xCPARTL_AND_BITS
) >> SYSC_xCPARTL_AND_S
;
138 pr_cont(" L:%#x+%#x->%#x+%#x",
140 ((land1
+ 1) * sz
) >> 4,
142 ((land2
+ 1) * sz
) >> 4);
144 if (diff
& (SYSC_xCPARTG_OR_BITS
| SYSC_xCPARTG_AND_BITS
)) {
145 gor1
= (old
& SYSC_xCPARTG_OR_BITS
) >> SYSC_xCPARTG_OR_S
;
146 gor2
= (new & SYSC_xCPARTG_OR_BITS
) >> SYSC_xCPARTG_OR_S
;
147 gand1
= (old
& SYSC_xCPARTG_AND_BITS
) >> SYSC_xCPARTG_AND_S
;
148 gand2
= (new & SYSC_xCPARTG_AND_BITS
) >> SYSC_xCPARTG_AND_S
;
149 pr_cont(" G:%#x+%#x->%#x+%#x",
151 ((gand1
+ 1) * sz
) >> 4,
153 ((gand2
+ 1) * sz
) >> 4);
155 if (diff
& SYSC_CWRMODE_BIT
)
157 (new & SYSC_CWRMODE_BIT
) ? "+" : "-");
158 if (diff
& SYSC_DCPART_GCON_BIT
)
160 (new & SYSC_DCPART_GCON_BIT
) ? "+" : "-");
165 * setup_smp_cache: ensure cache coherency for new SMP thread.
166 * @thread: New hardware thread number.
168 * Ensures that coherency is enabled and that the threads share the same cache
171 static void setup_smp_cache(unsigned int thread
)
173 unsigned int this_thread
, lflags
;
174 unsigned int dcsz
, dcpart_this
, dcpart_old
, dcpart_new
;
175 unsigned int icsz
, icpart_old
, icpart_new
;
178 * Copy over the current thread's cache partition configuration to the
179 * new thread so that they share cache partitions.
181 __global_lock2(lflags
);
182 this_thread
= hard_processor_id();
183 /* Share dcache partition */
184 dcpart_this
= metag_in32(SYSC_DCPART(this_thread
));
185 dcpart_old
= metag_in32(SYSC_DCPART(thread
));
186 dcpart_new
= dcpart_this
;
187 #if PAGE_OFFSET < LINGLOBAL_BASE
189 * For the local data cache to be coherent the threads must also have
192 dcpart_new
|= SYSC_DCPART_GCON_BIT
;
193 metag_out32(dcpart_new
, SYSC_DCPART(this_thread
));
195 metag_out32(dcpart_new
, SYSC_DCPART(thread
));
196 /* Share icache partition too */
197 icpart_new
= metag_in32(SYSC_ICPART(this_thread
));
198 icpart_old
= metag_in32(SYSC_ICPART(thread
));
199 metag_out32(icpart_new
, SYSC_ICPART(thread
));
200 __global_unlock2(lflags
);
203 * Log if the cache partitions were altered so the user is aware of any
204 * potential unintentional cache wastage.
206 dcsz
= get_dcache_size();
207 icsz
= get_dcache_size();
208 describe_cachepart_change(this_thread
, "dcache", dcsz
,
209 dcpart_this
, dcpart_new
);
210 describe_cachepart_change(thread
, "dcache", dcsz
,
211 dcpart_old
, dcpart_new
);
212 describe_cachepart_change(thread
, "icache", icsz
,
213 icpart_old
, icpart_new
);
216 int __cpu_up(unsigned int cpu
, struct task_struct
*idle
)
218 unsigned int thread
= cpu_2_hwthread_id
[cpu
];
221 load_pgd(swapper_pg_dir
, thread
);
225 setup_smp_cache(thread
);
228 * Tell the secondary CPU where to find its idle thread's stack.
230 secondary_data_stack
= task_stack_page(idle
);
235 * Now bring the CPU into our world.
237 ret
= boot_secondary(thread
, idle
);
240 * CPU was successfully started, wait for it
241 * to come online or time out.
243 wait_for_completion_timeout(&cpu_running
,
244 msecs_to_jiffies(1000));
246 if (!cpu_online(cpu
))
250 secondary_data_stack
= NULL
;
253 pr_crit("CPU%u: processor failed to boot\n", cpu
);
256 * FIXME: We need to clean up the new idle thread. --rmk
263 #ifdef CONFIG_HOTPLUG_CPU
264 static DECLARE_COMPLETION(cpu_killed
);
267 * __cpu_disable runs on the processor to be shutdown.
269 int __cpu_disable(void)
271 unsigned int cpu
= smp_processor_id();
274 * Take this CPU offline. Once we clear this, we can't return,
275 * and we must not schedule until we're ready to give up the cpu.
277 set_cpu_online(cpu
, false);
280 * OK - migrate IRQs away from this CPU
285 * Flush user cache and TLB mappings, and then remove this CPU
286 * from the vm mask set of all processes.
289 local_flush_tlb_all();
291 clear_tasks_mm_cpumask(cpu
);
297 * called on the thread which is asking for a CPU to be shutdown -
298 * waits until shutdown has completed, or it is timed out.
300 void __cpu_die(unsigned int cpu
)
302 if (!wait_for_completion_timeout(&cpu_killed
, msecs_to_jiffies(1)))
303 pr_err("CPU%u: unable to kill\n", cpu
);
307 * Called from the idle thread for the CPU which has been shutdown.
309 * Note that we do not return from this function. If this cpu is
310 * brought online again it will need to run secondary_startup().
317 complete(&cpu_killed
);
319 asm ("XOR TXENABLE, D0Re0,D0Re0\n");
321 #endif /* CONFIG_HOTPLUG_CPU */
324 * Called by both boot and secondaries to move global data into
325 * per-processor storage.
327 void smp_store_cpu_info(unsigned int cpuid
)
329 struct cpuinfo_metag
*cpu_info
= &per_cpu(cpu_data
, cpuid
);
331 cpu_info
->loops_per_jiffy
= loops_per_jiffy
;
335 * This is the secondary CPU boot entry. We're using this CPUs
336 * idle thread stack and the global page tables.
338 asmlinkage
void secondary_start_kernel(void)
340 struct mm_struct
*mm
= &init_mm
;
341 unsigned int cpu
= smp_processor_id();
344 * All kernel threads share the same mm context; grab a
345 * reference and switch to it.
347 atomic_inc(&mm
->mm_users
);
348 atomic_inc(&mm
->mm_count
);
349 current
->active_mm
= mm
;
350 cpumask_set_cpu(cpu
, mm_cpumask(mm
));
351 enter_lazy_tlb(mm
, current
);
352 local_flush_tlb_all();
355 * TODO: Some day it might be useful for each Linux CPU to
356 * have its own TBI structure. That would allow each Linux CPU
357 * to run different interrupt handlers for the same IRQ
360 * For now, simply copying the pointer to the boot CPU's TBI
361 * structure is sufficient because we always want to run the
362 * same interrupt handler whatever CPU takes the interrupt.
364 per_cpu(pTBI
, cpu
) = __TBI(TBID_ISTAT_BIT
);
366 if (!per_cpu(pTBI
, cpu
))
367 panic("No TBI found!");
369 per_cpu_trap_init(cpu
);
375 notify_cpu_starting(cpu
);
377 pr_info("CPU%u (thread %u): Booted secondary processor\n",
378 cpu
, cpu_2_hwthread_id
[cpu
]);
381 smp_store_cpu_info(cpu
);
384 * OK, now it's safe to let the boot CPU continue
386 set_cpu_online(cpu
, true);
387 complete(&cpu_running
);
390 * Enable local interrupts.
392 tbi_startup_interrupt(TBID_SIGNUM_TRT
);
396 * OK, it's off to the idle thread for us
398 cpu_startup_entry(CPUHP_ONLINE
);
401 void __init
smp_cpus_done(unsigned int max_cpus
)
404 unsigned long bogosum
= 0;
406 for_each_online_cpu(cpu
)
407 bogosum
+= per_cpu(cpu_data
, cpu
).loops_per_jiffy
;
409 pr_info("SMP: Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
411 bogosum
/ (500000/HZ
),
412 (bogosum
/ (5000/HZ
)) % 100);
415 void __init
smp_prepare_cpus(unsigned int max_cpus
)
417 unsigned int cpu
= smp_processor_id();
419 init_new_context(current
, &init_mm
);
420 current_thread_info()->cpu
= cpu
;
422 smp_store_cpu_info(cpu
);
423 init_cpu_present(cpu_possible_mask
);
426 void __init
smp_prepare_boot_cpu(void)
428 unsigned int cpu
= smp_processor_id();
430 per_cpu(pTBI
, cpu
) = __TBI(TBID_ISTAT_BIT
);
432 if (!per_cpu(pTBI
, cpu
))
433 panic("No TBI found!");
436 static void smp_cross_call(cpumask_t callmap
, enum ipi_msg_type msg
);
438 static void send_ipi_message(const struct cpumask
*mask
, enum ipi_msg_type msg
)
445 local_irq_save(flags
);
447 for_each_cpu(cpu
, mask
) {
448 struct ipi_data
*ipi
= &per_cpu(ipi_data
, cpu
);
450 spin_lock(&ipi
->lock
);
453 * KICK interrupts are queued in hardware so we'll get
454 * multiple interrupts if we call smp_cross_call()
455 * multiple times for one msg. The problem is that we
456 * only have one bit for each message - we can't queue
459 * The first time through ipi_handler() we'll clear
460 * the msg bit, having done all the work. But when we
461 * return we'll get _another_ interrupt (and another,
462 * and another until we've handled all the queued
463 * KICKs). Running ipi_handler() when there's no work
464 * to do is bad because that's how kick handler
465 * chaining detects who the KICK was intended for.
466 * See arch/metag/kernel/kick.c for more details.
468 * So only add 'cpu' to 'map' if we haven't already
469 * queued a KICK interrupt for 'msg'.
471 if (!(ipi
->bits
& (1 << msg
))) {
472 ipi
->bits
|= 1 << msg
;
473 cpumask_set_cpu(cpu
, &map
);
476 spin_unlock(&ipi
->lock
);
480 * Call the platform specific cross-CPU call function.
482 smp_cross_call(map
, msg
);
484 local_irq_restore(flags
);
487 void arch_send_call_function_ipi_mask(const struct cpumask
*mask
)
489 send_ipi_message(mask
, IPI_CALL_FUNC
);
492 void arch_send_call_function_single_ipi(int cpu
)
494 send_ipi_message(cpumask_of(cpu
), IPI_CALL_FUNC
);
497 void show_ipi_list(struct seq_file
*p
)
503 for_each_present_cpu(cpu
)
504 seq_printf(p
, " %10lu", per_cpu(ipi_data
, cpu
).ipi_count
);
509 static DEFINE_SPINLOCK(stop_lock
);
512 * Main handler for inter-processor interrupts
514 * For Meta, the ipimask now only identifies a single
515 * category of IPI (Bit 1 IPIs have been replaced by a
516 * different mechanism):
518 * Bit 0 - Inter-processor function call
520 static int do_IPI(void)
522 unsigned int cpu
= smp_processor_id();
523 struct ipi_data
*ipi
= &per_cpu(ipi_data
, cpu
);
524 unsigned long msgs
, nextmsg
;
529 spin_lock(&ipi
->lock
);
531 nextmsg
= msgs
& -msgs
;
532 ipi
->bits
&= ~nextmsg
;
533 spin_unlock(&ipi
->lock
);
538 nextmsg
= ffz(~nextmsg
);
545 generic_smp_call_function_interrupt();
549 pr_crit("CPU%u: Unknown IPI message 0x%lx\n",
558 void smp_send_reschedule(int cpu
)
560 send_ipi_message(cpumask_of(cpu
), IPI_RESCHEDULE
);
563 static void stop_this_cpu(void *data
)
565 unsigned int cpu
= smp_processor_id();
567 if (system_state
== SYSTEM_BOOTING
||
568 system_state
== SYSTEM_RUNNING
) {
569 spin_lock(&stop_lock
);
570 pr_crit("CPU%u: stopping\n", cpu
);
572 spin_unlock(&stop_lock
);
575 set_cpu_online(cpu
, false);
579 hard_processor_halt(HALT_OK
);
582 void smp_send_stop(void)
584 smp_call_function(stop_this_cpu
, NULL
, 0);
590 int setup_profiling_timer(unsigned int multiplier
)
596 * We use KICKs for inter-processor interrupts.
598 * For every CPU in "callmap" the IPI data must already have been
599 * stored in that CPU's "ipi_data" member prior to calling this
602 static void kick_raise_softirq(cpumask_t callmap
, unsigned int irq
)
606 for_each_cpu(cpu
, &callmap
) {
609 thread
= cpu_2_hwthread_id
[cpu
];
611 BUG_ON(thread
== BAD_HWTHREAD_ID
);
613 metag_out32(1, T0KICKI
+ (thread
* TnXKICK_STRIDE
));
617 static TBIRES
ipi_handler(TBIRES State
, int SigNum
, int Triggers
,
618 int Inst
, PTBI pTBI
, int *handled
)
625 static struct kick_irq_handler ipi_irq
= {
629 static void smp_cross_call(cpumask_t callmap
, enum ipi_msg_type msg
)
631 kick_raise_softirq(callmap
, 1);
634 static inline unsigned int get_core_count(void)
637 unsigned int ret
= 0;
639 for (i
= 0; i
< CONFIG_NR_CPUS
; i
++) {
640 if (core_reg_read(TXUCT_ID
, TXENABLE_REGNUM
, i
))
648 * Initialise the CPU possible map early - this describes the CPUs
649 * which may be present or become present in the system.
651 void __init
smp_init_cpus(void)
653 unsigned int i
, ncores
= get_core_count();
655 /* If no hwthread_map early param was set use default mapping */
656 for (i
= 0; i
< NR_CPUS
; i
++)
657 if (cpu_2_hwthread_id
[i
] == BAD_HWTHREAD_ID
) {
658 cpu_2_hwthread_id
[i
] = i
;
659 hwthread_id_2_cpu
[i
] = i
;
662 for (i
= 0; i
< ncores
; i
++)
663 set_cpu_possible(i
, true);
665 kick_register_func(&ipi_irq
);