2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
14 #include <linux/bug.h>
15 #include <linux/compiler.h>
16 #include <linux/context_tracking.h>
17 #include <linux/kexec.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 #include <linux/spinlock.h>
25 #include <linux/kallsyms.h>
26 #include <linux/bootmem.h>
27 #include <linux/interrupt.h>
28 #include <linux/ptrace.h>
29 #include <linux/kgdb.h>
30 #include <linux/kdebug.h>
31 #include <linux/kprobes.h>
32 #include <linux/notifier.h>
33 #include <linux/kdb.h>
34 #include <linux/irq.h>
35 #include <linux/perf_event.h>
37 #include <asm/bootinfo.h>
38 #include <asm/branch.h>
39 #include <asm/break.h>
42 #include <asm/cpu-type.h>
45 #include <asm/fpu_emulator.h>
47 #include <asm/mipsregs.h>
48 #include <asm/mipsmtregs.h>
49 #include <asm/module.h>
50 #include <asm/pgtable.h>
51 #include <asm/ptrace.h>
52 #include <asm/sections.h>
53 #include <asm/tlbdebug.h>
54 #include <asm/traps.h>
55 #include <asm/uaccess.h>
56 #include <asm/watch.h>
57 #include <asm/mmu_context.h>
58 #include <asm/types.h>
59 #include <asm/stacktrace.h>
62 extern void check_wait(void);
63 extern asmlinkage
void rollback_handle_int(void);
64 extern asmlinkage
void handle_int(void);
65 extern u32 handle_tlbl
[];
66 extern u32 handle_tlbs
[];
67 extern u32 handle_tlbm
[];
68 extern asmlinkage
void handle_adel(void);
69 extern asmlinkage
void handle_ades(void);
70 extern asmlinkage
void handle_ibe(void);
71 extern asmlinkage
void handle_dbe(void);
72 extern asmlinkage
void handle_sys(void);
73 extern asmlinkage
void handle_bp(void);
74 extern asmlinkage
void handle_ri(void);
75 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
76 extern asmlinkage
void handle_ri_rdhwr(void);
77 extern asmlinkage
void handle_cpu(void);
78 extern asmlinkage
void handle_ov(void);
79 extern asmlinkage
void handle_tr(void);
80 extern asmlinkage
void handle_fpe(void);
81 extern asmlinkage
void handle_ftlb(void);
82 extern asmlinkage
void handle_mdmx(void);
83 extern asmlinkage
void handle_watch(void);
84 extern asmlinkage
void handle_mt(void);
85 extern asmlinkage
void handle_dsp(void);
86 extern asmlinkage
void handle_mcheck(void);
87 extern asmlinkage
void handle_reserved(void);
89 void (*board_be_init
)(void);
90 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
91 void (*board_nmi_handler_setup
)(void);
92 void (*board_ejtag_handler_setup
)(void);
93 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
94 void (*board_ebase_setup
)(void);
95 void(*board_cache_error_setup
)(void);
97 static void show_raw_backtrace(unsigned long reg29
)
99 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
102 printk("Call Trace:");
103 #ifdef CONFIG_KALLSYMS
106 while (!kstack_end(sp
)) {
107 unsigned long __user
*p
=
108 (unsigned long __user
*)(unsigned long)sp
++;
109 if (__get_user(addr
, p
)) {
110 printk(" (Bad stack address)");
113 if (__kernel_text_address(addr
))
119 #ifdef CONFIG_KALLSYMS
121 static int __init
set_raw_show_trace(char *str
)
126 __setup("raw_show_trace", set_raw_show_trace
);
129 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
131 unsigned long sp
= regs
->regs
[29];
132 unsigned long ra
= regs
->regs
[31];
133 unsigned long pc
= regs
->cp0_epc
;
138 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
139 show_raw_backtrace(sp
);
142 printk("Call Trace:\n");
145 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
151 * This routine abuses get_user()/put_user() to reference pointers
152 * with at least a bit of error checking ...
154 static void show_stacktrace(struct task_struct
*task
,
155 const struct pt_regs
*regs
)
157 const int field
= 2 * sizeof(unsigned long);
160 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
164 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
165 if (i
&& ((i
% (64 / field
)) == 0))
172 if (__get_user(stackdata
, sp
++)) {
173 printk(" (Bad stack address)");
177 printk(" %0*lx", field
, stackdata
);
181 show_backtrace(task
, regs
);
184 void show_stack(struct task_struct
*task
, unsigned long *sp
)
188 regs
.regs
[29] = (unsigned long)sp
;
192 if (task
&& task
!= current
) {
193 regs
.regs
[29] = task
->thread
.reg29
;
195 regs
.cp0_epc
= task
->thread
.reg31
;
196 #ifdef CONFIG_KGDB_KDB
197 } else if (atomic_read(&kgdb_active
) != -1 &&
199 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
200 #endif /* CONFIG_KGDB_KDB */
202 prepare_frametrace(®s
);
205 show_stacktrace(task
, ®s
);
208 static void show_code(unsigned int __user
*pc
)
211 unsigned short __user
*pc16
= NULL
;
215 if ((unsigned long)pc
& 1)
216 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
217 for(i
= -3 ; i
< 6 ; i
++) {
219 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
220 printk(" (Bad address in epc)\n");
223 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
227 static void __show_regs(const struct pt_regs
*regs
)
229 const int field
= 2 * sizeof(unsigned long);
230 unsigned int cause
= regs
->cp0_cause
;
233 show_regs_print_info(KERN_DEFAULT
);
236 * Saved main processor registers
238 for (i
= 0; i
< 32; ) {
242 printk(" %0*lx", field
, 0UL);
243 else if (i
== 26 || i
== 27)
244 printk(" %*s", field
, "");
246 printk(" %0*lx", field
, regs
->regs
[i
]);
253 #ifdef CONFIG_CPU_HAS_SMARTMIPS
254 printk("Acx : %0*lx\n", field
, regs
->acx
);
256 printk("Hi : %0*lx\n", field
, regs
->hi
);
257 printk("Lo : %0*lx\n", field
, regs
->lo
);
260 * Saved cp0 registers
262 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
263 (void *) regs
->cp0_epc
);
264 printk(" %s\n", print_tainted());
265 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
266 (void *) regs
->regs
[31]);
268 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
271 if (regs
->cp0_status
& ST0_KUO
)
273 if (regs
->cp0_status
& ST0_IEO
)
275 if (regs
->cp0_status
& ST0_KUP
)
277 if (regs
->cp0_status
& ST0_IEP
)
279 if (regs
->cp0_status
& ST0_KUC
)
281 if (regs
->cp0_status
& ST0_IEC
)
283 } else if (cpu_has_4kex
) {
284 if (regs
->cp0_status
& ST0_KX
)
286 if (regs
->cp0_status
& ST0_SX
)
288 if (regs
->cp0_status
& ST0_UX
)
290 switch (regs
->cp0_status
& ST0_KSU
) {
295 printk("SUPERVISOR ");
304 if (regs
->cp0_status
& ST0_ERL
)
306 if (regs
->cp0_status
& ST0_EXL
)
308 if (regs
->cp0_status
& ST0_IE
)
313 printk("Cause : %08x\n", cause
);
315 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
316 if (1 <= cause
&& cause
<= 5)
317 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
319 printk("PrId : %08x (%s)\n", read_c0_prid(),
324 * FIXME: really the generic show_regs should take a const pointer argument.
326 void show_regs(struct pt_regs
*regs
)
328 __show_regs((struct pt_regs
*)regs
);
331 void show_registers(struct pt_regs
*regs
)
333 const int field
= 2 * sizeof(unsigned long);
334 mm_segment_t old_fs
= get_fs();
338 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
339 current
->comm
, current
->pid
, current_thread_info(), current
,
340 field
, current_thread_info()->tp_value
);
341 if (cpu_has_userlocal
) {
344 tls
= read_c0_userlocal();
345 if (tls
!= current_thread_info()->tp_value
)
346 printk("*HwTLS: %0*lx\n", field
, tls
);
349 if (!user_mode(regs
))
350 /* Necessary for getting the correct stack content */
352 show_stacktrace(current
, regs
);
353 show_code((unsigned int __user
*) regs
->cp0_epc
);
358 static int regs_to_trapnr(struct pt_regs
*regs
)
360 return (regs
->cp0_cause
>> 2) & 0x1f;
363 static DEFINE_RAW_SPINLOCK(die_lock
);
365 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
367 static int die_counter
;
369 #ifdef CONFIG_MIPS_MT_SMTC
370 unsigned long dvpret
;
371 #endif /* CONFIG_MIPS_MT_SMTC */
375 if (notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
),
376 SIGSEGV
) == NOTIFY_STOP
)
380 raw_spin_lock_irq(&die_lock
);
381 #ifdef CONFIG_MIPS_MT_SMTC
383 #endif /* CONFIG_MIPS_MT_SMTC */
385 #ifdef CONFIG_MIPS_MT_SMTC
386 mips_mt_regdump(dvpret
);
387 #endif /* CONFIG_MIPS_MT_SMTC */
389 printk("%s[#%d]:\n", str
, ++die_counter
);
390 show_registers(regs
);
391 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
392 raw_spin_unlock_irq(&die_lock
);
397 panic("Fatal exception in interrupt");
400 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds");
402 panic("Fatal exception");
405 if (regs
&& kexec_should_crash(current
))
411 extern struct exception_table_entry __start___dbe_table
[];
412 extern struct exception_table_entry __stop___dbe_table
[];
415 " .section __dbe_table, \"a\"\n"
418 /* Given an address, look for it in the exception tables. */
419 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
421 const struct exception_table_entry
*e
;
423 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
425 e
= search_module_dbetables(addr
);
429 asmlinkage
void do_be(struct pt_regs
*regs
)
431 const int field
= 2 * sizeof(unsigned long);
432 const struct exception_table_entry
*fixup
= NULL
;
433 int data
= regs
->cp0_cause
& 4;
434 int action
= MIPS_BE_FATAL
;
435 enum ctx_state prev_state
;
437 prev_state
= exception_enter();
438 /* XXX For now. Fixme, this searches the wrong table ... */
439 if (data
&& !user_mode(regs
))
440 fixup
= search_dbe_tables(exception_epc(regs
));
443 action
= MIPS_BE_FIXUP
;
445 if (board_be_handler
)
446 action
= board_be_handler(regs
, fixup
!= NULL
);
449 case MIPS_BE_DISCARD
:
453 regs
->cp0_epc
= fixup
->nextinsn
;
462 * Assume it would be too dangerous to continue ...
464 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
465 data
? "Data" : "Instruction",
466 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
467 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, regs_to_trapnr(regs
),
468 SIGBUS
) == NOTIFY_STOP
)
471 die_if_kernel("Oops", regs
);
472 force_sig(SIGBUS
, current
);
475 exception_exit(prev_state
);
479 * ll/sc, rdhwr, sync emulation
482 #define OPCODE 0xfc000000
483 #define BASE 0x03e00000
484 #define RT 0x001f0000
485 #define OFFSET 0x0000ffff
486 #define LL 0xc0000000
487 #define SC 0xe0000000
488 #define SPEC0 0x00000000
489 #define SPEC3 0x7c000000
490 #define RD 0x0000f800
491 #define FUNC 0x0000003f
492 #define SYNC 0x0000000f
493 #define RDHWR 0x0000003b
495 /* microMIPS definitions */
496 #define MM_POOL32A_FUNC 0xfc00ffff
497 #define MM_RDHWR 0x00006b3c
498 #define MM_RS 0x001f0000
499 #define MM_RT 0x03e00000
502 * The ll_bit is cleared by r*_switch.S
506 struct task_struct
*ll_task
;
508 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
510 unsigned long value
, __user
*vaddr
;
514 * analyse the ll instruction that just caused a ri exception
515 * and put the referenced address to addr.
518 /* sign extend offset */
519 offset
= opcode
& OFFSET
;
523 vaddr
= (unsigned long __user
*)
524 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
526 if ((unsigned long)vaddr
& 3)
528 if (get_user(value
, vaddr
))
533 if (ll_task
== NULL
|| ll_task
== current
) {
542 regs
->regs
[(opcode
& RT
) >> 16] = value
;
547 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
549 unsigned long __user
*vaddr
;
554 * analyse the sc instruction that just caused a ri exception
555 * and put the referenced address to addr.
558 /* sign extend offset */
559 offset
= opcode
& OFFSET
;
563 vaddr
= (unsigned long __user
*)
564 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
565 reg
= (opcode
& RT
) >> 16;
567 if ((unsigned long)vaddr
& 3)
572 if (ll_bit
== 0 || ll_task
!= current
) {
580 if (put_user(regs
->regs
[reg
], vaddr
))
589 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
590 * opcodes are supposed to result in coprocessor unusable exceptions if
591 * executed on ll/sc-less processors. That's the theory. In practice a
592 * few processors such as NEC's VR4100 throw reserved instruction exceptions
593 * instead, so we're doing the emulation thing in both exception handlers.
595 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
597 if ((opcode
& OPCODE
) == LL
) {
598 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
600 return simulate_ll(regs
, opcode
);
602 if ((opcode
& OPCODE
) == SC
) {
603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
605 return simulate_sc(regs
, opcode
);
608 return -1; /* Must be something else ... */
612 * Simulate trapping 'rdhwr' instructions to provide user accessible
613 * registers not implemented in hardware.
615 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
617 struct thread_info
*ti
= task_thread_info(current
);
619 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
622 case 0: /* CPU number */
623 regs
->regs
[rt
] = smp_processor_id();
625 case 1: /* SYNCI length */
626 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
627 current_cpu_data
.icache
.linesz
);
629 case 2: /* Read count register */
630 regs
->regs
[rt
] = read_c0_count();
632 case 3: /* Count register resolution */
633 switch (current_cpu_type()) {
643 regs
->regs
[rt
] = ti
->tp_value
;
650 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
652 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
653 int rd
= (opcode
& RD
) >> 11;
654 int rt
= (opcode
& RT
) >> 16;
656 simulate_rdhwr(regs
, rd
, rt
);
664 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned short opcode
)
666 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
667 int rd
= (opcode
& MM_RS
) >> 16;
668 int rt
= (opcode
& MM_RT
) >> 21;
669 simulate_rdhwr(regs
, rd
, rt
);
677 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
679 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
680 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
685 return -1; /* Must be something else ... */
688 asmlinkage
void do_ov(struct pt_regs
*regs
)
690 enum ctx_state prev_state
;
693 prev_state
= exception_enter();
694 die_if_kernel("Integer overflow", regs
);
696 info
.si_code
= FPE_INTOVF
;
697 info
.si_signo
= SIGFPE
;
699 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
700 force_sig_info(SIGFPE
, &info
, current
);
701 exception_exit(prev_state
);
704 int process_fpemu_return(int sig
, void __user
*fault_addr
)
706 if (sig
== SIGSEGV
|| sig
== SIGBUS
) {
707 struct siginfo si
= {0};
708 si
.si_addr
= fault_addr
;
710 if (sig
== SIGSEGV
) {
711 if (find_vma(current
->mm
, (unsigned long)fault_addr
))
712 si
.si_code
= SEGV_ACCERR
;
714 si
.si_code
= SEGV_MAPERR
;
716 si
.si_code
= BUS_ADRERR
;
718 force_sig_info(sig
, &si
, current
);
721 force_sig(sig
, current
);
729 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
731 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
733 enum ctx_state prev_state
;
734 siginfo_t info
= {0};
736 prev_state
= exception_enter();
737 if (notify_die(DIE_FP
, "FP exception", regs
, 0, regs_to_trapnr(regs
),
738 SIGFPE
) == NOTIFY_STOP
)
740 die_if_kernel("FP exception in kernel code", regs
);
742 if (fcr31
& FPU_CSR_UNI_X
) {
744 void __user
*fault_addr
= NULL
;
747 * Unimplemented operation exception. If we've got the full
748 * software emulator on-board, let's use it...
750 * Force FPU to dump state into task/thread context. We're
751 * moving a lot of data here for what is probably a single
752 * instruction, but the alternative is to pre-decode the FP
753 * register operands before invoking the emulator, which seems
754 * a bit extreme for what should be an infrequent event.
756 /* Ensure 'resume' not overwrite saved fp context again. */
759 /* Run the emulator */
760 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
764 * We can't allow the emulated instruction to leave any of
765 * the cause bit set in $fcr31.
767 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
769 /* Restore the hardware register state */
770 own_fpu(1); /* Using the FPU again. */
772 /* If something went wrong, signal */
773 process_fpemu_return(sig
, fault_addr
);
776 } else if (fcr31
& FPU_CSR_INV_X
)
777 info
.si_code
= FPE_FLTINV
;
778 else if (fcr31
& FPU_CSR_DIV_X
)
779 info
.si_code
= FPE_FLTDIV
;
780 else if (fcr31
& FPU_CSR_OVF_X
)
781 info
.si_code
= FPE_FLTOVF
;
782 else if (fcr31
& FPU_CSR_UDF_X
)
783 info
.si_code
= FPE_FLTUND
;
784 else if (fcr31
& FPU_CSR_INE_X
)
785 info
.si_code
= FPE_FLTRES
;
787 info
.si_code
= __SI_FAULT
;
788 info
.si_signo
= SIGFPE
;
790 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
791 force_sig_info(SIGFPE
, &info
, current
);
794 exception_exit(prev_state
);
797 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
803 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
804 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
806 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
808 if (notify_die(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
),
809 SIGTRAP
) == NOTIFY_STOP
)
813 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
814 * insns, even for trap and break codes that indicate arithmetic
815 * failures. Weird ...
816 * But should we continue the brokenness??? --macro
821 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
822 die_if_kernel(b
, regs
);
823 if (code
== BRK_DIVZERO
)
824 info
.si_code
= FPE_INTDIV
;
826 info
.si_code
= FPE_INTOVF
;
827 info
.si_signo
= SIGFPE
;
829 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
830 force_sig_info(SIGFPE
, &info
, current
);
833 die_if_kernel("Kernel bug detected", regs
);
834 force_sig(SIGTRAP
, current
);
838 * Address errors may be deliberately induced by the FPU
839 * emulator to retake control of the CPU after executing the
840 * instruction in the delay slot of an emulated branch.
842 * Terminate if exception was recognized as a delay slot return
843 * otherwise handle as normal.
845 if (do_dsemulret(regs
))
848 die_if_kernel("Math emu break/trap", regs
);
849 force_sig(SIGTRAP
, current
);
852 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
853 die_if_kernel(b
, regs
);
854 force_sig(SIGTRAP
, current
);
858 asmlinkage
void do_bp(struct pt_regs
*regs
)
860 unsigned int opcode
, bcode
;
861 enum ctx_state prev_state
;
865 prev_state
= exception_enter();
866 if (get_isa16_mode(regs
->cp0_epc
)) {
868 epc
= exception_epc(regs
);
870 if ((__get_user(instr
[0], (u16 __user
*)msk_isa16_mode(epc
)) ||
871 (__get_user(instr
[1], (u16 __user
*)msk_isa16_mode(epc
+ 2)))))
873 opcode
= (instr
[0] << 16) | instr
[1];
876 if (__get_user(instr
[0], (u16 __user
*)msk_isa16_mode(epc
)))
878 bcode
= (instr
[0] >> 6) & 0x3f;
879 do_trap_or_bp(regs
, bcode
, "Break");
883 if (__get_user(opcode
, (unsigned int __user
*) exception_epc(regs
)))
888 * There is the ancient bug in the MIPS assemblers that the break
889 * code starts left to bit 16 instead to bit 6 in the opcode.
890 * Gas is bug-compatible, but not always, grrr...
891 * We handle both cases with a simple heuristics. --macro
893 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
894 if (bcode
>= (1 << 10))
898 * notify the kprobe handlers, if instruction is likely to
903 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
904 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
908 case BRK_KPROBE_SSTEPBP
:
909 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
910 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
918 do_trap_or_bp(regs
, bcode
, "Break");
921 exception_exit(prev_state
);
925 force_sig(SIGSEGV
, current
);
929 asmlinkage
void do_tr(struct pt_regs
*regs
)
931 u32 opcode
, tcode
= 0;
932 enum ctx_state prev_state
;
934 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
936 prev_state
= exception_enter();
937 if (get_isa16_mode(regs
->cp0_epc
)) {
938 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
939 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
941 opcode
= (instr
[0] << 16) | instr
[1];
942 /* Immediate versions don't provide a code. */
943 if (!(opcode
& OPCODE
))
944 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
946 if (__get_user(opcode
, (u32 __user
*)epc
))
948 /* Immediate versions don't provide a code. */
949 if (!(opcode
& OPCODE
))
950 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
953 do_trap_or_bp(regs
, tcode
, "Trap");
956 exception_exit(prev_state
);
960 force_sig(SIGSEGV
, current
);
964 asmlinkage
void do_ri(struct pt_regs
*regs
)
966 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
967 unsigned long old_epc
= regs
->cp0_epc
;
968 unsigned long old31
= regs
->regs
[31];
969 enum ctx_state prev_state
;
970 unsigned int opcode
= 0;
973 prev_state
= exception_enter();
974 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, regs_to_trapnr(regs
),
975 SIGILL
) == NOTIFY_STOP
)
978 die_if_kernel("Reserved instruction in kernel code", regs
);
980 if (unlikely(compute_return_epc(regs
) < 0))
983 if (get_isa16_mode(regs
->cp0_epc
)) {
984 unsigned short mmop
[2] = { 0 };
986 if (unlikely(get_user(mmop
[0], epc
) < 0))
988 if (unlikely(get_user(mmop
[1], epc
) < 0))
990 opcode
= (mmop
[0] << 16) | mmop
[1];
993 status
= simulate_rdhwr_mm(regs
, opcode
);
995 if (unlikely(get_user(opcode
, epc
) < 0))
998 if (!cpu_has_llsc
&& status
< 0)
999 status
= simulate_llsc(regs
, opcode
);
1002 status
= simulate_rdhwr_normal(regs
, opcode
);
1005 status
= simulate_sync(regs
, opcode
);
1011 if (unlikely(status
> 0)) {
1012 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1013 regs
->regs
[31] = old31
;
1014 force_sig(status
, current
);
1018 exception_exit(prev_state
);
1022 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1023 * emulated more than some threshold number of instructions, force migration to
1024 * a "CPU" that has FP support.
1026 static void mt_ase_fp_affinity(void)
1028 #ifdef CONFIG_MIPS_MT_FPAFF
1029 if (mt_fpemul_threshold
> 0 &&
1030 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
1032 * If there's no FPU present, or if the application has already
1033 * restricted the allowed set to exclude any CPUs with FPUs,
1034 * we'll skip the procedure.
1036 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
1039 current
->thread
.user_cpus_allowed
1040 = current
->cpus_allowed
;
1041 cpus_and(tmask
, current
->cpus_allowed
,
1043 set_cpus_allowed_ptr(current
, &tmask
);
1044 set_thread_flag(TIF_FPUBOUND
);
1047 #endif /* CONFIG_MIPS_MT_FPAFF */
1051 * No lock; only written during early bootup by CPU 0.
1053 static RAW_NOTIFIER_HEAD(cu2_chain
);
1055 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1057 return raw_notifier_chain_register(&cu2_chain
, nb
);
1060 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1062 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1065 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1068 struct pt_regs
*regs
= data
;
1070 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1071 "instruction", regs
);
1072 force_sig(SIGILL
, current
);
1077 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1079 enum ctx_state prev_state
;
1080 unsigned int __user
*epc
;
1081 unsigned long old_epc
, old31
;
1082 unsigned int opcode
;
1085 unsigned long __maybe_unused flags
;
1087 prev_state
= exception_enter();
1088 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1091 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1095 epc
= (unsigned int __user
*)exception_epc(regs
);
1096 old_epc
= regs
->cp0_epc
;
1097 old31
= regs
->regs
[31];
1101 if (unlikely(compute_return_epc(regs
) < 0))
1104 if (get_isa16_mode(regs
->cp0_epc
)) {
1105 unsigned short mmop
[2] = { 0 };
1107 if (unlikely(get_user(mmop
[0], epc
) < 0))
1109 if (unlikely(get_user(mmop
[1], epc
) < 0))
1111 opcode
= (mmop
[0] << 16) | mmop
[1];
1114 status
= simulate_rdhwr_mm(regs
, opcode
);
1116 if (unlikely(get_user(opcode
, epc
) < 0))
1119 if (!cpu_has_llsc
&& status
< 0)
1120 status
= simulate_llsc(regs
, opcode
);
1123 status
= simulate_rdhwr_normal(regs
, opcode
);
1129 if (unlikely(status
> 0)) {
1130 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1131 regs
->regs
[31] = old31
;
1132 force_sig(status
, current
);
1139 * Old (MIPS I and MIPS II) processors will set this code
1140 * for COP1X opcode instructions that replaced the original
1141 * COP3 space. We don't limit COP1 space instructions in
1142 * the emulator according to the CPU ISA, so we want to
1143 * treat COP1X instructions consistently regardless of which
1144 * code the CPU chose. Therefore we redirect this trap to
1145 * the FP emulator too.
1147 * Then some newer FPU-less processors use this code
1148 * erroneously too, so they are covered by this choice
1151 if (raw_cpu_has_fpu
)
1156 if (used_math()) /* Using the FPU again. */
1158 else { /* First time FPU user. */
1163 if (!raw_cpu_has_fpu
|| err
) {
1165 void __user
*fault_addr
= NULL
;
1166 sig
= fpu_emulator_cop1Handler(regs
,
1167 ¤t
->thread
.fpu
,
1169 if (!process_fpemu_return(sig
, fault_addr
) && !err
)
1170 mt_ase_fp_affinity();
1176 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1180 force_sig(SIGILL
, current
);
1183 exception_exit(prev_state
);
1186 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1188 enum ctx_state prev_state
;
1190 prev_state
= exception_enter();
1191 force_sig(SIGILL
, current
);
1192 exception_exit(prev_state
);
1196 * Called with interrupts disabled.
1198 asmlinkage
void do_watch(struct pt_regs
*regs
)
1200 enum ctx_state prev_state
;
1203 prev_state
= exception_enter();
1205 * Clear WP (bit 22) bit of cause register so we don't loop
1208 cause
= read_c0_cause();
1209 cause
&= ~(1 << 22);
1210 write_c0_cause(cause
);
1213 * If the current thread has the watch registers loaded, save
1214 * their values and send SIGTRAP. Otherwise another thread
1215 * left the registers set, clear them and continue.
1217 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1218 mips_read_watch_registers();
1220 force_sig(SIGTRAP
, current
);
1222 mips_clear_watch_registers();
1225 exception_exit(prev_state
);
1228 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1230 const int field
= 2 * sizeof(unsigned long);
1231 int multi_match
= regs
->cp0_status
& ST0_TS
;
1232 enum ctx_state prev_state
;
1234 prev_state
= exception_enter();
1238 printk("Index : %0x\n", read_c0_index());
1239 printk("Pagemask: %0x\n", read_c0_pagemask());
1240 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
1241 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
1242 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
1247 show_code((unsigned int __user
*) regs
->cp0_epc
);
1250 * Some chips may have other causes of machine check (e.g. SB1
1253 panic("Caught Machine Check exception - %scaused by multiple "
1254 "matching entries in the TLB.",
1255 (multi_match
) ? "" : "not ");
1258 asmlinkage
void do_mt(struct pt_regs
*regs
)
1262 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1263 >> VPECONTROL_EXCPT_SHIFT
;
1266 printk(KERN_DEBUG
"Thread Underflow\n");
1269 printk(KERN_DEBUG
"Thread Overflow\n");
1272 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1275 printk(KERN_DEBUG
"Gating Storage Exception\n");
1278 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1281 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1284 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1288 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1290 force_sig(SIGILL
, current
);
1294 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1297 panic("Unexpected DSP exception");
1299 force_sig(SIGILL
, current
);
1302 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1305 * Game over - no way to handle this if it ever occurs. Most probably
1306 * caused by a new unknown cpu type or after another deadly
1307 * hard/software error.
1310 panic("Caught reserved exception %ld - should not happen.",
1311 (regs
->cp0_cause
& 0x7f) >> 2);
1314 static int __initdata l1parity
= 1;
1315 static int __init
nol1parity(char *s
)
1320 __setup("nol1par", nol1parity
);
1321 static int __initdata l2parity
= 1;
1322 static int __init
nol2parity(char *s
)
1327 __setup("nol2par", nol2parity
);
1330 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1331 * it different ways.
1333 static inline void parity_protection_init(void)
1335 switch (current_cpu_type()) {
1340 case CPU_INTERAPTIV
:
1343 #define ERRCTL_PE 0x80000000
1344 #define ERRCTL_L2P 0x00800000
1345 unsigned long errctl
;
1346 unsigned int l1parity_present
, l2parity_present
;
1348 errctl
= read_c0_ecc();
1349 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1351 /* probe L1 parity support */
1352 write_c0_ecc(errctl
| ERRCTL_PE
);
1353 back_to_back_c0_hazard();
1354 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1356 /* probe L2 parity support */
1357 write_c0_ecc(errctl
|ERRCTL_L2P
);
1358 back_to_back_c0_hazard();
1359 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1361 if (l1parity_present
&& l2parity_present
) {
1363 errctl
|= ERRCTL_PE
;
1364 if (l1parity
^ l2parity
)
1365 errctl
|= ERRCTL_L2P
;
1366 } else if (l1parity_present
) {
1368 errctl
|= ERRCTL_PE
;
1369 } else if (l2parity_present
) {
1371 errctl
|= ERRCTL_L2P
;
1373 /* No parity available */
1376 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1378 write_c0_ecc(errctl
);
1379 back_to_back_c0_hazard();
1380 errctl
= read_c0_ecc();
1381 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1383 if (l1parity_present
)
1384 printk(KERN_INFO
"Cache parity protection %sabled\n",
1385 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1387 if (l2parity_present
) {
1388 if (l1parity_present
&& l1parity
)
1389 errctl
^= ERRCTL_L2P
;
1390 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1391 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1399 write_c0_ecc(0x80000000);
1400 back_to_back_c0_hazard();
1401 /* Set the PE bit (bit 31) in the c0_errctl register. */
1402 printk(KERN_INFO
"Cache parity protection %sabled\n",
1403 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1407 /* Clear the DE bit (bit 16) in the c0_status register. */
1408 printk(KERN_INFO
"Enable cache parity protection for "
1409 "MIPS 20KC/25KF CPUs.\n");
1410 clear_c0_status(ST0_DE
);
1417 asmlinkage
void cache_parity_error(void)
1419 const int field
= 2 * sizeof(unsigned long);
1420 unsigned int reg_val
;
1422 /* For the moment, report the problem and hang. */
1423 printk("Cache error exception:\n");
1424 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1425 reg_val
= read_c0_cacheerr();
1426 printk("c0_cacheerr == %08x\n", reg_val
);
1428 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1429 reg_val
& (1<<30) ? "secondary" : "primary",
1430 reg_val
& (1<<31) ? "data" : "insn");
1431 if (cpu_has_mips_r2
&&
1432 ((current_cpu_data
.processor_id
&& 0xff0000) == PRID_COMP_MIPS
)) {
1433 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1434 reg_val
& (1<<29) ? "ED " : "",
1435 reg_val
& (1<<28) ? "ET " : "",
1436 reg_val
& (1<<27) ? "ES " : "",
1437 reg_val
& (1<<26) ? "EE " : "",
1438 reg_val
& (1<<25) ? "EB " : "",
1439 reg_val
& (1<<24) ? "EI " : "",
1440 reg_val
& (1<<23) ? "E1 " : "",
1441 reg_val
& (1<<22) ? "E0 " : "");
1443 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1444 reg_val
& (1<<29) ? "ED " : "",
1445 reg_val
& (1<<28) ? "ET " : "",
1446 reg_val
& (1<<26) ? "EE " : "",
1447 reg_val
& (1<<25) ? "EB " : "",
1448 reg_val
& (1<<24) ? "EI " : "",
1449 reg_val
& (1<<23) ? "E1 " : "",
1450 reg_val
& (1<<22) ? "E0 " : "");
1452 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1454 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1455 if (reg_val
& (1<<22))
1456 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1458 if (reg_val
& (1<<23))
1459 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1462 panic("Can't handle the cache error!");
1465 asmlinkage
void do_ftlb(void)
1467 const int field
= 2 * sizeof(unsigned long);
1468 unsigned int reg_val
;
1470 /* For the moment, report the problem and hang. */
1471 if (cpu_has_mips_r2
&&
1472 ((current_cpu_data
.processor_id
&& 0xff0000) == PRID_COMP_MIPS
)) {
1473 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1475 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1476 reg_val
= read_c0_cacheerr();
1477 pr_err("c0_cacheerr == %08x\n", reg_val
);
1479 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1480 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1482 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1483 reg_val
& (1<<30) ? "secondary" : "primary",
1484 reg_val
& (1<<31) ? "data" : "insn");
1487 pr_err("FTLB error exception\n");
1489 /* Just print the cacheerr bits for now */
1490 cache_parity_error();
1494 * SDBBP EJTAG debug exception handler.
1495 * We skip the instruction and return to the next instruction.
1497 void ejtag_exception_handler(struct pt_regs
*regs
)
1499 const int field
= 2 * sizeof(unsigned long);
1500 unsigned long depc
, old_epc
, old_ra
;
1503 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1504 depc
= read_c0_depc();
1505 debug
= read_c0_debug();
1506 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1507 if (debug
& 0x80000000) {
1509 * In branch delay slot.
1510 * We cheat a little bit here and use EPC to calculate the
1511 * debug return address (DEPC). EPC is restored after the
1514 old_epc
= regs
->cp0_epc
;
1515 old_ra
= regs
->regs
[31];
1516 regs
->cp0_epc
= depc
;
1517 compute_return_epc(regs
);
1518 depc
= regs
->cp0_epc
;
1519 regs
->cp0_epc
= old_epc
;
1520 regs
->regs
[31] = old_ra
;
1523 write_c0_depc(depc
);
1526 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1527 write_c0_debug(debug
| 0x100);
1532 * NMI exception handler.
1533 * No lock; only written during early bootup by CPU 0.
1535 static RAW_NOTIFIER_HEAD(nmi_chain
);
1537 int register_nmi_notifier(struct notifier_block
*nb
)
1539 return raw_notifier_chain_register(&nmi_chain
, nb
);
1542 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1546 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1548 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1549 smp_processor_id(), regs
->cp0_epc
);
1550 regs
->cp0_epc
= read_c0_errorepc();
1554 #define VECTORSPACING 0x100 /* for EI/VI mode */
1556 unsigned long ebase
;
1557 unsigned long exception_handlers
[32];
1558 unsigned long vi_handlers
[64];
1560 void __init
*set_except_vector(int n
, void *addr
)
1562 unsigned long handler
= (unsigned long) addr
;
1563 unsigned long old_handler
;
1565 #ifdef CONFIG_CPU_MICROMIPS
1567 * Only the TLB handlers are cache aligned with an even
1568 * address. All other handlers are on an odd address and
1569 * require no modification. Otherwise, MIPS32 mode will
1570 * be entered when handling any TLB exceptions. That
1571 * would be bad...since we must stay in microMIPS mode.
1573 if (!(handler
& 0x1))
1576 old_handler
= xchg(&exception_handlers
[n
], handler
);
1578 if (n
== 0 && cpu_has_divec
) {
1579 #ifdef CONFIG_CPU_MICROMIPS
1580 unsigned long jump_mask
= ~((1 << 27) - 1);
1582 unsigned long jump_mask
= ~((1 << 28) - 1);
1584 u32
*buf
= (u32
*)(ebase
+ 0x200);
1585 unsigned int k0
= 26;
1586 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1587 uasm_i_j(&buf
, handler
& ~jump_mask
);
1590 UASM_i_LA(&buf
, k0
, handler
);
1591 uasm_i_jr(&buf
, k0
);
1594 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1596 return (void *)old_handler
;
1599 static void do_default_vi(void)
1601 show_regs(get_irq_regs());
1602 panic("Caught unexpected vectored interrupt.");
1605 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1607 unsigned long handler
;
1608 unsigned long old_handler
= vi_handlers
[n
];
1609 int srssets
= current_cpu_data
.srsets
;
1613 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1616 handler
= (unsigned long) do_default_vi
;
1619 handler
= (unsigned long) addr
;
1620 vi_handlers
[n
] = handler
;
1622 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1625 panic("Shadow register set %d not supported", srs
);
1628 if (board_bind_eic_interrupt
)
1629 board_bind_eic_interrupt(n
, srs
);
1630 } else if (cpu_has_vint
) {
1631 /* SRSMap is only defined if shadow sets are implemented */
1633 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1638 * If no shadow set is selected then use the default handler
1639 * that does normal register saving and standard interrupt exit
1641 extern char except_vec_vi
, except_vec_vi_lui
;
1642 extern char except_vec_vi_ori
, except_vec_vi_end
;
1643 extern char rollback_except_vec_vi
;
1644 char *vec_start
= using_rollback_handler() ?
1645 &rollback_except_vec_vi
: &except_vec_vi
;
1646 #ifdef CONFIG_MIPS_MT_SMTC
1648 * We need to provide the SMTC vectored interrupt handler
1649 * not only with the address of the handler, but with the
1650 * Status.IM bit to be masked before going there.
1652 extern char except_vec_vi_mori
;
1653 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1654 const int mori_offset
= &except_vec_vi_mori
- vec_start
+ 2;
1656 const int mori_offset
= &except_vec_vi_mori
- vec_start
;
1658 #endif /* CONFIG_MIPS_MT_SMTC */
1659 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1660 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
1661 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
1663 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1664 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1666 const int handler_len
= &except_vec_vi_end
- vec_start
;
1668 if (handler_len
> VECTORSPACING
) {
1670 * Sigh... panicing won't help as the console
1671 * is probably not configured :(
1673 panic("VECTORSPACING too small");
1676 set_handler(((unsigned long)b
- ebase
), vec_start
,
1677 #ifdef CONFIG_CPU_MICROMIPS
1682 #ifdef CONFIG_MIPS_MT_SMTC
1683 BUG_ON(n
> 7); /* Vector index %d exceeds SMTC maximum. */
1685 h
= (u16
*)(b
+ mori_offset
);
1687 #endif /* CONFIG_MIPS_MT_SMTC */
1688 h
= (u16
*)(b
+ lui_offset
);
1689 *h
= (handler
>> 16) & 0xffff;
1690 h
= (u16
*)(b
+ ori_offset
);
1691 *h
= (handler
& 0xffff);
1692 local_flush_icache_range((unsigned long)b
,
1693 (unsigned long)(b
+handler_len
));
1697 * In other cases jump directly to the interrupt handler. It
1698 * is the handler's responsibility to save registers if required
1699 * (eg hi/lo) and return from the exception using "eret".
1705 #ifdef CONFIG_CPU_MICROMIPS
1706 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
1708 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
1710 h
[0] = (insn
>> 16) & 0xffff;
1711 h
[1] = insn
& 0xffff;
1714 local_flush_icache_range((unsigned long)b
,
1715 (unsigned long)(b
+8));
1718 return (void *)old_handler
;
1721 void *set_vi_handler(int n
, vi_handler_t addr
)
1723 return set_vi_srs_handler(n
, addr
, 0);
1726 extern void tlb_init(void);
1731 int cp0_compare_irq
;
1732 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
1733 int cp0_compare_irq_shift
;
1736 * Performance counter IRQ or -1 if shared with timer
1738 int cp0_perfcount_irq
;
1739 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1743 static int __init
ulri_disable(char *s
)
1745 pr_info("Disabling ulri\n");
1750 __setup("noulri", ulri_disable
);
1752 void per_cpu_trap_init(bool is_boot_cpu
)
1754 unsigned int cpu
= smp_processor_id();
1755 unsigned int status_set
= ST0_CU0
;
1756 unsigned int hwrena
= cpu_hwrena_impl_bits
;
1757 #ifdef CONFIG_MIPS_MT_SMTC
1758 int secondaryTC
= 0;
1759 int bootTC
= (cpu
== 0);
1762 * Only do per_cpu_trap_init() for first TC of Each VPE.
1763 * Note that this hack assumes that the SMTC init code
1764 * assigns TCs consecutively and in ascending order.
1767 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1768 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1770 #endif /* CONFIG_MIPS_MT_SMTC */
1773 * Disable coprocessors and select 32-bit or 64-bit addressing
1774 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1775 * flag that some firmware may have left set and the TS bit (for
1776 * IP27). Set XX for ISA IV code to work.
1779 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1781 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
1782 status_set
|= ST0_XX
;
1784 status_set
|= ST0_MX
;
1786 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1789 if (cpu_has_mips_r2
)
1790 hwrena
|= 0x0000000f;
1792 if (!noulri
&& cpu_has_userlocal
)
1793 hwrena
|= (1 << 29);
1796 write_c0_hwrena(hwrena
);
1798 #ifdef CONFIG_MIPS_MT_SMTC
1800 #endif /* CONFIG_MIPS_MT_SMTC */
1802 if (cpu_has_veic
|| cpu_has_vint
) {
1803 unsigned long sr
= set_c0_status(ST0_BEV
);
1804 write_c0_ebase(ebase
);
1805 write_c0_status(sr
);
1806 /* Setting vector spacing enables EI/VI mode */
1807 change_c0_intctl(0x3e0, VECTORSPACING
);
1809 if (cpu_has_divec
) {
1810 if (cpu_has_mipsmt
) {
1811 unsigned int vpflags
= dvpe();
1812 set_c0_cause(CAUSEF_IV
);
1815 set_c0_cause(CAUSEF_IV
);
1819 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1821 * o read IntCtl.IPTI to determine the timer interrupt
1822 * o read IntCtl.IPPCI to determine the performance counter interrupt
1824 if (cpu_has_mips_r2
) {
1825 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
1826 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
1827 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
1828 if (cp0_perfcount_irq
== cp0_compare_irq
)
1829 cp0_perfcount_irq
= -1;
1831 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1832 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
1833 cp0_perfcount_irq
= -1;
1836 #ifdef CONFIG_MIPS_MT_SMTC
1838 #endif /* CONFIG_MIPS_MT_SMTC */
1840 if (!cpu_data
[cpu
].asid_cache
)
1841 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1843 atomic_inc(&init_mm
.mm_count
);
1844 current
->active_mm
= &init_mm
;
1845 BUG_ON(current
->mm
);
1846 enter_lazy_tlb(&init_mm
, current
);
1848 #ifdef CONFIG_MIPS_MT_SMTC
1850 #endif /* CONFIG_MIPS_MT_SMTC */
1851 /* Boot CPU's cache setup in setup_arch(). */
1855 #ifdef CONFIG_MIPS_MT_SMTC
1856 } else if (!secondaryTC
) {
1858 * First TC in non-boot VPE must do subset of tlb_init()
1859 * for MMU countrol registers.
1861 write_c0_pagemask(PM_DEFAULT_MASK
);
1864 #endif /* CONFIG_MIPS_MT_SMTC */
1865 TLBMISS_HANDLER_SETUP();
1868 /* Install CPU exception handler */
1869 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1871 #ifdef CONFIG_CPU_MICROMIPS
1872 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
1874 memcpy((void *)(ebase
+ offset
), addr
, size
);
1876 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1879 static char panic_null_cerr
[] =
1880 "Trying to set NULL cache error exception handler";
1883 * Install uncached CPU exception handler.
1884 * This is suitable only for the cache error exception which is the only
1885 * exception handler that is being run uncached.
1887 void set_uncached_handler(unsigned long offset
, void *addr
,
1890 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
1893 panic(panic_null_cerr
);
1895 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
1898 static int __initdata rdhwr_noopt
;
1899 static int __init
set_rdhwr_noopt(char *str
)
1905 __setup("rdhwr_noopt", set_rdhwr_noopt
);
1907 void __init
trap_init(void)
1909 extern char except_vec3_generic
;
1910 extern char except_vec4
;
1911 extern char except_vec3_r4000
;
1916 #if defined(CONFIG_KGDB)
1917 if (kgdb_early_setup
)
1918 return; /* Already done */
1921 if (cpu_has_veic
|| cpu_has_vint
) {
1922 unsigned long size
= 0x200 + VECTORSPACING
*64;
1923 ebase
= (unsigned long)
1924 __alloc_bootmem(size
, 1 << fls(size
), 0);
1926 #ifdef CONFIG_KVM_GUEST
1927 #define KVM_GUEST_KSEG0 0x40000000
1928 ebase
= KVM_GUEST_KSEG0
;
1932 if (cpu_has_mips_r2
)
1933 ebase
+= (read_c0_ebase() & 0x3ffff000);
1936 if (cpu_has_mmips
) {
1937 unsigned int config3
= read_c0_config3();
1939 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
1940 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
1942 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
1945 if (board_ebase_setup
)
1946 board_ebase_setup();
1947 per_cpu_trap_init(true);
1950 * Copy the generic exception handlers to their final destination.
1951 * This will be overriden later as suitable for a particular
1954 set_handler(0x180, &except_vec3_generic
, 0x80);
1957 * Setup default vectors
1959 for (i
= 0; i
<= 31; i
++)
1960 set_except_vector(i
, handle_reserved
);
1963 * Copy the EJTAG debug exception vector handler code to it's final
1966 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
1967 board_ejtag_handler_setup();
1970 * Only some CPUs have the watch exceptions.
1973 set_except_vector(23, handle_watch
);
1976 * Initialise interrupt handlers
1978 if (cpu_has_veic
|| cpu_has_vint
) {
1979 int nvec
= cpu_has_veic
? 64 : 8;
1980 for (i
= 0; i
< nvec
; i
++)
1981 set_vi_handler(i
, NULL
);
1983 else if (cpu_has_divec
)
1984 set_handler(0x200, &except_vec4
, 0x8);
1987 * Some CPUs can enable/disable for cache parity detection, but does
1988 * it different ways.
1990 parity_protection_init();
1993 * The Data Bus Errors / Instruction Bus Errors are signaled
1994 * by external hardware. Therefore these two exceptions
1995 * may have board specific handlers.
2000 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2002 set_except_vector(1, handle_tlbm
);
2003 set_except_vector(2, handle_tlbl
);
2004 set_except_vector(3, handle_tlbs
);
2006 set_except_vector(4, handle_adel
);
2007 set_except_vector(5, handle_ades
);
2009 set_except_vector(6, handle_ibe
);
2010 set_except_vector(7, handle_dbe
);
2012 set_except_vector(8, handle_sys
);
2013 set_except_vector(9, handle_bp
);
2014 set_except_vector(10, rdhwr_noopt
? handle_ri
:
2015 (cpu_has_vtag_icache
?
2016 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
2017 set_except_vector(11, handle_cpu
);
2018 set_except_vector(12, handle_ov
);
2019 set_except_vector(13, handle_tr
);
2021 if (current_cpu_type() == CPU_R6000
||
2022 current_cpu_type() == CPU_R6000A
) {
2024 * The R6000 is the only R-series CPU that features a machine
2025 * check exception (similar to the R4000 cache error) and
2026 * unaligned ldc1/sdc1 exception. The handlers have not been
2027 * written yet. Well, anyway there is no R6000 machine on the
2028 * current list of targets for Linux/MIPS.
2029 * (Duh, crap, there is someone with a triple R6k machine)
2031 //set_except_vector(14, handle_mc);
2032 //set_except_vector(15, handle_ndc);
2036 if (board_nmi_handler_setup
)
2037 board_nmi_handler_setup();
2039 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2040 set_except_vector(15, handle_fpe
);
2042 set_except_vector(16, handle_ftlb
);
2043 set_except_vector(22, handle_mdmx
);
2046 set_except_vector(24, handle_mcheck
);
2049 set_except_vector(25, handle_mt
);
2051 set_except_vector(26, handle_dsp
);
2053 if (board_cache_error_setup
)
2054 board_cache_error_setup();
2057 /* Special exception: R4[04]00 uses also the divec space. */
2058 set_handler(0x180, &except_vec3_r4000
, 0x100);
2059 else if (cpu_has_4kex
)
2060 set_handler(0x180, &except_vec3_generic
, 0x80);
2062 set_handler(0x080, &except_vec3_generic
, 0x80);
2064 local_flush_icache_range(ebase
, ebase
+ 0x400);
2066 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2068 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */