1 #ifndef _ASM_POWERPC_PGTABLE_H
2 #define _ASM_POWERPC_PGTABLE_H
6 #include <linux/mmdebug.h>
7 #include <asm/processor.h> /* For TASK_SIZE */
13 #endif /* !__ASSEMBLY__ */
15 #if defined(CONFIG_PPC64)
16 # include <asm/pgtable-ppc64.h>
18 # include <asm/pgtable-ppc32.h>
22 * We save the slot number & secondary bit in the second half of the
23 * PTE page. We use the 8 bytes per each pte entry.
25 #define PTE_PAGE_HIDX_OFFSET (PTRS_PER_PTE * 8)
29 #include <asm/tlbflush.h>
31 /* Generic accessors to PTE bits */
32 static inline int pte_write(pte_t pte
) { return pte_val(pte
) & _PAGE_RW
; }
33 static inline int pte_dirty(pte_t pte
) { return pte_val(pte
) & _PAGE_DIRTY
; }
34 static inline int pte_young(pte_t pte
) { return pte_val(pte
) & _PAGE_ACCESSED
; }
35 static inline int pte_file(pte_t pte
) { return pte_val(pte
) & _PAGE_FILE
; }
36 static inline int pte_special(pte_t pte
) { return pte_val(pte
) & _PAGE_SPECIAL
; }
37 static inline int pte_none(pte_t pte
) { return (pte_val(pte
) & ~_PTE_NONE_MASK
) == 0; }
38 static inline pgprot_t
pte_pgprot(pte_t pte
) { return __pgprot(pte_val(pte
) & PAGE_PROT_BITS
); }
40 #ifdef CONFIG_NUMA_BALANCING
42 static inline int pte_present(pte_t pte
)
44 return pte_val(pte
) & (_PAGE_PRESENT
| _PAGE_NUMA
);
47 #define pte_numa pte_numa
48 static inline int pte_numa(pte_t pte
)
50 return (pte_val(pte
) &
51 (_PAGE_NUMA
|_PAGE_PRESENT
)) == _PAGE_NUMA
;
54 #define pte_mknonnuma pte_mknonnuma
55 static inline pte_t
pte_mknonnuma(pte_t pte
)
57 pte_val(pte
) &= ~_PAGE_NUMA
;
58 pte_val(pte
) |= _PAGE_PRESENT
| _PAGE_ACCESSED
;
62 #define pte_mknuma pte_mknuma
63 static inline pte_t
pte_mknuma(pte_t pte
)
66 * We should not set _PAGE_NUMA on non present ptes. Also clear the
67 * present bit so that hash_page will return 1 and we collect this
70 if (pte_present(pte
)) {
71 pte_val(pte
) |= _PAGE_NUMA
;
72 pte_val(pte
) &= ~_PAGE_PRESENT
;
78 #define pmd_numa pmd_numa
79 static inline int pmd_numa(pmd_t pmd
)
81 return pte_numa(pmd_pte(pmd
));
84 #define pmd_mknonnuma pmd_mknonnuma
85 static inline pmd_t
pmd_mknonnuma(pmd_t pmd
)
87 return pte_pmd(pte_mknonnuma(pmd_pte(pmd
)));
90 #define pmd_mknuma pmd_mknuma
91 static inline pmd_t
pmd_mknuma(pmd_t pmd
)
93 return pte_pmd(pte_mknuma(pmd_pte(pmd
)));
98 static inline int pte_present(pte_t pte
)
100 return pte_val(pte
) & _PAGE_PRESENT
;
102 #endif /* CONFIG_NUMA_BALANCING */
104 /* Conversion functions: convert a page and protection to a page entry,
105 * and a page entry and page directory to the page they refer to.
107 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
110 static inline pte_t
pfn_pte(unsigned long pfn
, pgprot_t pgprot
) {
111 return __pte(((pte_basic_t
)(pfn
) << PTE_RPN_SHIFT
) |
112 pgprot_val(pgprot
)); }
113 static inline unsigned long pte_pfn(pte_t pte
) {
114 return pte_val(pte
) >> PTE_RPN_SHIFT
; }
116 /* Keep these as a macros to avoid include dependency mess */
117 #define pte_page(x) pfn_to_page(pte_pfn(x))
118 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
120 /* Generic modifiers for PTE bits */
121 static inline pte_t
pte_wrprotect(pte_t pte
) {
122 pte_val(pte
) &= ~(_PAGE_RW
| _PAGE_HWWRITE
); return pte
; }
123 static inline pte_t
pte_mkclean(pte_t pte
) {
124 pte_val(pte
) &= ~(_PAGE_DIRTY
| _PAGE_HWWRITE
); return pte
; }
125 static inline pte_t
pte_mkold(pte_t pte
) {
126 pte_val(pte
) &= ~_PAGE_ACCESSED
; return pte
; }
127 static inline pte_t
pte_mkwrite(pte_t pte
) {
128 pte_val(pte
) |= _PAGE_RW
; return pte
; }
129 static inline pte_t
pte_mkdirty(pte_t pte
) {
130 pte_val(pte
) |= _PAGE_DIRTY
; return pte
; }
131 static inline pte_t
pte_mkyoung(pte_t pte
) {
132 pte_val(pte
) |= _PAGE_ACCESSED
; return pte
; }
133 static inline pte_t
pte_mkspecial(pte_t pte
) {
134 pte_val(pte
) |= _PAGE_SPECIAL
; return pte
; }
135 static inline pte_t
pte_mkhuge(pte_t pte
) {
137 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
139 pte_val(pte
) = (pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
);
144 /* Insert a PTE, top-level function is out of line. It uses an inline
145 * low level function in the respective pgtable-* files
147 extern void set_pte_at(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
,
150 /* This low level function performs the actual PTE insertion
151 * Setting the PTE depends on the MMU type and other factors. It's
152 * an horrible mess that I'm not going to try to clean up now but
153 * I'm keeping it in one place rather than spread around
155 static inline void __set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
156 pte_t
*ptep
, pte_t pte
, int percpu
)
158 #if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
159 /* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
160 * helper pte_update() which does an atomic update. We need to do that
161 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
162 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
163 * the hash bits instead (ie, same as the non-SMP case)
166 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
167 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
169 pte_update(ptep
, ~_PAGE_HASHPTE
, pte_val(pte
));
171 #elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
172 /* Second case is 32-bit with 64-bit PTE. In this case, we
173 * can just store as long as we do the two halves in the right order
174 * with a barrier in between. This is possible because we take care,
175 * in the hash code, to pre-invalidate if the PTE was already hashed,
176 * which synchronizes us with any concurrent invalidation.
177 * In the percpu case, we also fallback to the simple update preserving
181 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
182 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
185 #if _PAGE_HASHPTE != 0
186 if (pte_val(*ptep
) & _PAGE_HASHPTE
)
187 flush_hash_entry(mm
, ptep
, addr
);
189 __asm__
__volatile__("\
193 : "=m" (*ptep
), "=m" (*((unsigned char *)ptep
+4))
194 : "r" (pte
) : "memory");
196 #elif defined(CONFIG_PPC_STD_MMU_32)
197 /* Third case is 32-bit hash table in UP mode, we need to preserve
198 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
199 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
200 * and see we need to keep track that this PTE needs invalidating
202 *ptep
= __pte((pte_val(*ptep
) & _PAGE_HASHPTE
)
203 | (pte_val(pte
) & ~_PAGE_HASHPTE
));
206 /* Anything else just stores the PTE normally. That covers all 64-bit
207 * cases, and 32-bit non-hash with 32-bit PTEs.
214 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
215 extern int ptep_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
216 pte_t
*ptep
, pte_t entry
, int dirty
);
219 * Macro to mark a page protection value as "uncacheable".
222 #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
225 #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
226 _PAGE_NO_CACHE | _PAGE_GUARDED))
228 #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
231 #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
234 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
235 _PAGE_COHERENT | _PAGE_WRITETHRU))
237 #define pgprot_cached_noncoherent(prot) \
238 (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
240 #define pgprot_writecombine pgprot_noncached_wc
243 extern pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
244 unsigned long size
, pgprot_t vma_prot
);
245 #define __HAVE_PHYS_MEM_ACCESS_PROT
248 * ZERO_PAGE is a global shared page that is always zero: used
249 * for zero-mapped memory areas etc..
251 extern unsigned long empty_zero_page
[];
252 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
254 extern pgd_t swapper_pg_dir
[];
256 extern void paging_init(void);
259 * kern_addr_valid is intended to indicate whether an address is a valid
260 * kernel address. Most 32-bit archs define it as always true (like this)
261 * but most 64-bit archs actually perform a test. What should we do here?
263 #define kern_addr_valid(addr) (1)
265 #include <asm-generic/pgtable.h>
269 * This gets called at the end of handling a page fault, when
270 * the kernel has put a new PTE into the page table for the process.
271 * We use it to ensure coherency between the i-cache and d-cache
272 * for the page which has just been mapped in.
273 * On machines which use an MMU hash table, we use this to put a
274 * corresponding HPTE into the hash table ahead of time, instead of
275 * waiting for the inevitable extra hash-table miss exception.
277 extern void update_mmu_cache(struct vm_area_struct
*, unsigned long, pte_t
*);
279 extern int gup_hugepd(hugepd_t
*hugepd
, unsigned pdshift
, unsigned long addr
,
280 unsigned long end
, int write
, struct page
**pages
, int *nr
);
282 extern int gup_hugepte(pte_t
*ptep
, unsigned long sz
, unsigned long addr
,
283 unsigned long end
, int write
, struct page
**pages
, int *nr
);
284 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
285 #define pmd_large(pmd) 0
286 #define has_transparent_hugepage() 0
288 pte_t
*find_linux_pte_or_hugepte(pgd_t
*pgdir
, unsigned long ea
,
291 static inline pte_t
*lookup_linux_ptep(pgd_t
*pgdir
, unsigned long hva
,
292 unsigned long *pte_sizep
)
295 unsigned long ps
= *pte_sizep
;
298 ptep
= find_linux_pte_or_hugepte(pgdir
, hva
, &shift
);
302 *pte_sizep
= 1ul << shift
;
304 *pte_sizep
= PAGE_SIZE
;
311 #endif /* __ASSEMBLY__ */
313 #endif /* __KERNEL__ */
314 #endif /* _ASM_POWERPC_PGTABLE_H */