2 * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, yu.liu@freescale.com
5 * Scott Wood, scottwood@freescale.com
6 * Ashish Kalra, ashish.kalra@freescale.com
7 * Varun Sethi, varun.sethi@freescale.com
8 * Alexander Graf, agraf@suse.de
11 * This file is based on arch/powerpc/kvm/44x_tlb.c,
12 * by Hollis Blanchard <hollisb@us.ibm.com>.
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License, version 2, as
16 * published by the Free Software Foundation.
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/kvm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/highmem.h>
26 #include <linux/log2.h>
27 #include <linux/uaccess.h>
28 #include <linux/sched.h>
29 #include <linux/rwsem.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hugetlb.h>
32 #include <asm/kvm_ppc.h>
36 #include "e500_mmu_host.h"
38 #include "trace_booke.h"
40 #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1)
42 static struct kvmppc_e500_tlb_params host_tlb_params
[E500_TLB_NUM
];
44 static inline unsigned int tlb1_max_shadow_size(void)
46 /* reserve one entry for magic page */
47 return host_tlb_params
[1].entries
- tlbcam_index
- 1;
50 static inline u32
e500_shadow_mas3_attrib(u32 mas3
, int usermode
)
52 /* Mask off reserved bits. */
53 mas3
&= MAS3_ATTRIB_MASK
;
55 #ifndef CONFIG_KVM_BOOKE_HV
57 /* Guest is in supervisor mode,
58 * so we need to translate guest
59 * supervisor permissions into user permissions. */
60 mas3
&= ~E500_TLB_USER_PERM_MASK
;
61 mas3
|= (mas3
& E500_TLB_SUPER_PERM_MASK
) << 1;
63 mas3
|= E500_TLB_SUPER_PERM_MASK
;
69 * writing shadow tlb entry to host TLB
71 static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry
*stlbe
,
76 local_irq_save(flags
);
77 mtspr(SPRN_MAS0
, mas0
);
78 mtspr(SPRN_MAS1
, stlbe
->mas1
);
79 mtspr(SPRN_MAS2
, (unsigned long)stlbe
->mas2
);
80 mtspr(SPRN_MAS3
, (u32
)stlbe
->mas7_3
);
81 mtspr(SPRN_MAS7
, (u32
)(stlbe
->mas7_3
>> 32));
82 #ifdef CONFIG_KVM_BOOKE_HV
83 mtspr(SPRN_MAS8
, stlbe
->mas8
);
85 asm volatile("isync; tlbwe" : : : "memory");
87 #ifdef CONFIG_KVM_BOOKE_HV
88 /* Must clear mas8 for other host tlbwe's */
92 local_irq_restore(flags
);
94 trace_kvm_booke206_stlb_write(mas0
, stlbe
->mas8
, stlbe
->mas1
,
95 stlbe
->mas2
, stlbe
->mas7_3
);
99 * Acquire a mas0 with victim hint, as if we just took a TLB miss.
101 * We don't care about the address we're searching for, other than that it's
102 * in the right set and is not present in the TLB. Using a zero PID and a
103 * userspace address means we don't have to set and then restore MAS5, or
104 * calculate a proper MAS6 value.
106 static u32
get_host_mas0(unsigned long eaddr
)
111 local_irq_save(flags
);
113 asm volatile("tlbsx 0, %0" : : "b" (eaddr
& ~CONFIG_PAGE_OFFSET
));
114 mas0
= mfspr(SPRN_MAS0
);
115 local_irq_restore(flags
);
120 /* sesel is for tlb1 only */
121 static inline void write_host_tlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
122 int tlbsel
, int sesel
, struct kvm_book3e_206_tlb_entry
*stlbe
)
127 mas0
= get_host_mas0(stlbe
->mas2
);
128 __write_host_tlbe(stlbe
, mas0
);
130 __write_host_tlbe(stlbe
,
132 MAS0_ESEL(to_htlb1_esel(sesel
)));
136 /* sesel is for tlb1 only */
137 static void write_stlbe(struct kvmppc_vcpu_e500
*vcpu_e500
,
138 struct kvm_book3e_206_tlb_entry
*gtlbe
,
139 struct kvm_book3e_206_tlb_entry
*stlbe
,
140 int stlbsel
, int sesel
)
145 stid
= kvmppc_e500_get_tlb_stid(&vcpu_e500
->vcpu
, gtlbe
);
147 stlbe
->mas1
|= MAS1_TID(stid
);
148 write_host_tlbe(vcpu_e500
, stlbsel
, sesel
, stlbe
);
152 #ifdef CONFIG_KVM_E500V2
153 /* XXX should be a hook in the gva2hpa translation */
154 void kvmppc_map_magic(struct kvm_vcpu
*vcpu
)
156 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
157 struct kvm_book3e_206_tlb_entry magic
;
158 ulong shared_page
= ((ulong
)vcpu
->arch
.shared
) & PAGE_MASK
;
162 pfn
= (pfn_t
)virt_to_phys((void *)shared_page
) >> PAGE_SHIFT
;
163 get_page(pfn_to_page(pfn
));
166 stid
= kvmppc_e500_get_sid(vcpu_e500
, 0, 0, 0, 0);
168 magic
.mas1
= MAS1_VALID
| MAS1_TS
| MAS1_TID(stid
) |
169 MAS1_TSIZE(BOOK3E_PAGESZ_4K
);
170 magic
.mas2
= vcpu
->arch
.magic_page_ea
| MAS2_M
;
171 magic
.mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
172 MAS3_SW
| MAS3_SR
| MAS3_UW
| MAS3_UR
;
175 __write_host_tlbe(&magic
, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index
));
180 void inval_gtlbe_on_host(struct kvmppc_vcpu_e500
*vcpu_e500
, int tlbsel
,
183 struct kvm_book3e_206_tlb_entry
*gtlbe
=
184 get_entry(vcpu_e500
, tlbsel
, esel
);
185 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
].ref
;
187 /* Don't bother with unmapped entries */
188 if (!(ref
->flags
& E500_TLB_VALID
)) {
189 WARN(ref
->flags
& (E500_TLB_BITMAP
| E500_TLB_TLB0
),
190 "%s: flags %x\n", __func__
, ref
->flags
);
191 WARN_ON(tlbsel
== 1 && vcpu_e500
->g2h_tlb1_map
[esel
]);
194 if (tlbsel
== 1 && ref
->flags
& E500_TLB_BITMAP
) {
195 u64 tmp
= vcpu_e500
->g2h_tlb1_map
[esel
];
199 local_irq_save(flags
);
201 hw_tlb_indx
= __ilog2_u64(tmp
& -tmp
);
204 MAS0_ESEL(to_htlb1_esel(hw_tlb_indx
)));
206 asm volatile("tlbwe");
207 vcpu_e500
->h2g_tlb1_rmap
[hw_tlb_indx
] = 0;
211 vcpu_e500
->g2h_tlb1_map
[esel
] = 0;
212 ref
->flags
&= ~(E500_TLB_BITMAP
| E500_TLB_VALID
);
213 local_irq_restore(flags
);
216 if (tlbsel
== 1 && ref
->flags
& E500_TLB_TLB0
) {
218 * TLB1 entry is backed by 4k pages. This should happen
219 * rarely and is not worth optimizing. Invalidate everything.
221 kvmppc_e500_tlbil_all(vcpu_e500
);
222 ref
->flags
&= ~(E500_TLB_TLB0
| E500_TLB_VALID
);
226 * If TLB entry is still valid then it's a TLB0 entry, and thus
227 * backed by at most one host tlbe per shadow pid
229 if (ref
->flags
& E500_TLB_VALID
)
230 kvmppc_e500_tlbil_one(vcpu_e500
, gtlbe
);
232 /* Mark the TLB as not backed by the host anymore */
236 static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry
*tlbe
)
238 return tlbe
->mas7_3
& (MAS3_SW
|MAS3_UW
);
241 static inline void kvmppc_e500_ref_setup(struct tlbe_ref
*ref
,
242 struct kvm_book3e_206_tlb_entry
*gtlbe
,
243 pfn_t pfn
, unsigned int wimg
)
246 ref
->flags
= E500_TLB_VALID
;
248 /* Use guest supplied MAS2_G and MAS2_E */
249 ref
->flags
|= (gtlbe
->mas2
& MAS2_ATTRIB_MASK
) | wimg
;
251 /* Mark the page accessed */
252 kvm_set_pfn_accessed(pfn
);
254 if (tlbe_is_writable(gtlbe
))
255 kvm_set_pfn_dirty(pfn
);
258 static inline void kvmppc_e500_ref_release(struct tlbe_ref
*ref
)
260 if (ref
->flags
& E500_TLB_VALID
) {
261 /* FIXME: don't log bogus pfn for TLB1 */
262 trace_kvm_booke206_ref_release(ref
->pfn
, ref
->flags
);
267 static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500
*vcpu_e500
)
269 if (vcpu_e500
->g2h_tlb1_map
)
270 memset(vcpu_e500
->g2h_tlb1_map
, 0,
271 sizeof(u64
) * vcpu_e500
->gtlb_params
[1].entries
);
272 if (vcpu_e500
->h2g_tlb1_rmap
)
273 memset(vcpu_e500
->h2g_tlb1_rmap
, 0,
274 sizeof(unsigned int) * host_tlb_params
[1].entries
);
277 static void clear_tlb_privs(struct kvmppc_vcpu_e500
*vcpu_e500
)
282 for (tlbsel
= 0; tlbsel
<= 1; tlbsel
++) {
283 for (i
= 0; i
< vcpu_e500
->gtlb_params
[tlbsel
].entries
; i
++) {
284 struct tlbe_ref
*ref
=
285 &vcpu_e500
->gtlb_priv
[tlbsel
][i
].ref
;
286 kvmppc_e500_ref_release(ref
);
291 void kvmppc_core_flush_tlb(struct kvm_vcpu
*vcpu
)
293 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
294 kvmppc_e500_tlbil_all(vcpu_e500
);
295 clear_tlb_privs(vcpu_e500
);
296 clear_tlb1_bitmap(vcpu_e500
);
299 /* TID must be supplied by the caller */
300 static void kvmppc_e500_setup_stlbe(
301 struct kvm_vcpu
*vcpu
,
302 struct kvm_book3e_206_tlb_entry
*gtlbe
,
303 int tsize
, struct tlbe_ref
*ref
, u64 gvaddr
,
304 struct kvm_book3e_206_tlb_entry
*stlbe
)
306 pfn_t pfn
= ref
->pfn
;
307 u32 pr
= vcpu
->arch
.shared
->msr
& MSR_PR
;
309 BUG_ON(!(ref
->flags
& E500_TLB_VALID
));
311 /* Force IPROT=0 for all guest mappings. */
312 stlbe
->mas1
= MAS1_TSIZE(tsize
) | get_tlb_sts(gtlbe
) | MAS1_VALID
;
313 stlbe
->mas2
= (gvaddr
& MAS2_EPN
) | (ref
->flags
& E500_TLB_MAS2_ATTR
);
314 stlbe
->mas7_3
= ((u64
)pfn
<< PAGE_SHIFT
) |
315 e500_shadow_mas3_attrib(gtlbe
->mas7_3
, pr
);
317 #ifdef CONFIG_KVM_BOOKE_HV
318 stlbe
->mas8
= MAS8_TGS
| vcpu
->kvm
->arch
.lpid
;
322 static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
323 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
324 int tlbsel
, struct kvm_book3e_206_tlb_entry
*stlbe
,
325 struct tlbe_ref
*ref
)
327 struct kvm_memory_slot
*slot
;
328 unsigned long pfn
= 0; /* silence GCC warning */
331 int tsize
= BOOK3E_PAGESZ_4K
;
333 unsigned long mmu_seq
;
334 struct kvm
*kvm
= vcpu_e500
->vcpu
.kvm
;
335 unsigned long tsize_pages
= 0;
337 unsigned int wimg
= 0;
340 /* used to check for invalidations in progress */
341 mmu_seq
= kvm
->mmu_notifier_seq
;
345 * Translate guest physical to true physical, acquiring
346 * a page reference if it is normal, non-reserved memory.
348 * gfn_to_memslot() must succeed because otherwise we wouldn't
349 * have gotten this far. Eventually we should just pass the slot
350 * pointer through from the first lookup.
352 slot
= gfn_to_memslot(vcpu_e500
->vcpu
.kvm
, gfn
);
353 hva
= gfn_to_hva_memslot(slot
, gfn
);
356 struct vm_area_struct
*vma
;
357 down_read(¤t
->mm
->mmap_sem
);
359 vma
= find_vma(current
->mm
, hva
);
360 if (vma
&& hva
>= vma
->vm_start
&&
361 (vma
->vm_flags
& VM_PFNMAP
)) {
363 * This VMA is a physically contiguous region (e.g.
364 * /dev/mem) that bypasses normal Linux page
365 * management. Find the overlap between the
366 * vma and the memslot.
369 unsigned long start
, end
;
370 unsigned long slot_start
, slot_end
;
374 start
= vma
->vm_pgoff
;
376 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
);
378 pfn
= start
+ ((hva
- vma
->vm_start
) >> PAGE_SHIFT
);
380 slot_start
= pfn
- (gfn
- slot
->base_gfn
);
381 slot_end
= slot_start
+ slot
->npages
;
383 if (start
< slot_start
)
388 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
392 * e500 doesn't implement the lowest tsize bit,
395 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
398 * Now find the largest tsize (up to what the guest
399 * requested) that will cover gfn, stay within the
400 * range, and for which gfn and pfn are mutually
404 for (; tsize
> BOOK3E_PAGESZ_4K
; tsize
-= 2) {
405 unsigned long gfn_start
, gfn_end
;
406 tsize_pages
= 1 << (tsize
- 2);
408 gfn_start
= gfn
& ~(tsize_pages
- 1);
409 gfn_end
= gfn_start
+ tsize_pages
;
411 if (gfn_start
+ pfn
- gfn
< start
)
413 if (gfn_end
+ pfn
- gfn
> end
)
415 if ((gfn
& (tsize_pages
- 1)) !=
416 (pfn
& (tsize_pages
- 1)))
419 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
420 pfn
&= ~(tsize_pages
- 1);
423 } else if (vma
&& hva
>= vma
->vm_start
&&
424 (vma
->vm_flags
& VM_HUGETLB
)) {
425 unsigned long psize
= vma_kernel_pagesize(vma
);
427 tsize
= (gtlbe
->mas1
& MAS1_TSIZE_MASK
) >>
431 * Take the largest page size that satisfies both host
434 tsize
= min(__ilog2(psize
) - 10, tsize
);
437 * e500 doesn't implement the lowest tsize bit,
440 tsize
= max(BOOK3E_PAGESZ_4K
, tsize
& ~1);
443 up_read(¤t
->mm
->mmap_sem
);
446 if (likely(!pfnmap
)) {
447 tsize_pages
= 1 << (tsize
+ 10 - PAGE_SHIFT
);
448 pfn
= gfn_to_pfn_memslot(slot
, gfn
);
449 if (is_error_noslot_pfn(pfn
)) {
450 if (printk_ratelimit())
451 pr_err("%s: real page not found for gfn %lx\n",
452 __func__
, (long)gfn
);
456 /* Align guest and physical address to page map boundaries */
457 pfn
&= ~(tsize_pages
- 1);
458 gvaddr
&= ~((tsize_pages
<< PAGE_SHIFT
) - 1);
461 spin_lock(&kvm
->mmu_lock
);
462 if (mmu_notifier_retry(kvm
, mmu_seq
)) {
468 pgdir
= vcpu_e500
->vcpu
.arch
.pgdir
;
469 ptep
= lookup_linux_ptep(pgdir
, hva
, &tsize_pages
);
470 if (pte_present(*ptep
))
471 wimg
= (*ptep
>> PTE_WIMGE_SHIFT
) & MAS2_WIMGE_MASK
;
473 if (printk_ratelimit())
474 pr_err("%s: pte not present: gfn %lx, pfn %lx\n",
475 __func__
, (long)gfn
, pfn
);
478 kvmppc_e500_ref_setup(ref
, gtlbe
, pfn
, wimg
);
480 kvmppc_e500_setup_stlbe(&vcpu_e500
->vcpu
, gtlbe
, tsize
,
483 /* Clear i-cache for new pages */
484 kvmppc_mmu_flush_icache(pfn
);
487 spin_unlock(&kvm
->mmu_lock
);
489 /* Drop refcount on page, so that mmu notifiers can clear it */
490 kvm_release_pfn_clean(pfn
);
495 /* XXX only map the one-one case, for now use TLB0 */
496 static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500
*vcpu_e500
, int esel
,
497 struct kvm_book3e_206_tlb_entry
*stlbe
)
499 struct kvm_book3e_206_tlb_entry
*gtlbe
;
500 struct tlbe_ref
*ref
;
505 gtlbe
= get_entry(vcpu_e500
, 0, esel
);
506 ref
= &vcpu_e500
->gtlb_priv
[0][esel
].ref
;
508 r
= kvmppc_e500_shadow_map(vcpu_e500
, get_tlb_eaddr(gtlbe
),
509 get_tlb_raddr(gtlbe
) >> PAGE_SHIFT
,
510 gtlbe
, 0, stlbe
, ref
);
514 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, stlbsel
, sesel
);
519 static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500
*vcpu_e500
,
520 struct tlbe_ref
*ref
,
523 unsigned int sesel
= vcpu_e500
->host_tlb1_nv
++;
525 if (unlikely(vcpu_e500
->host_tlb1_nv
>= tlb1_max_shadow_size()))
526 vcpu_e500
->host_tlb1_nv
= 0;
528 if (vcpu_e500
->h2g_tlb1_rmap
[sesel
]) {
529 unsigned int idx
= vcpu_e500
->h2g_tlb1_rmap
[sesel
] - 1;
530 vcpu_e500
->g2h_tlb1_map
[idx
] &= ~(1ULL << sesel
);
533 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_BITMAP
;
534 vcpu_e500
->g2h_tlb1_map
[esel
] |= (u64
)1 << sesel
;
535 vcpu_e500
->h2g_tlb1_rmap
[sesel
] = esel
+ 1;
536 WARN_ON(!(ref
->flags
& E500_TLB_VALID
));
541 /* Caller must ensure that the specified guest TLB entry is safe to insert into
543 /* For both one-one and one-to-many */
544 static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500
*vcpu_e500
,
545 u64 gvaddr
, gfn_t gfn
, struct kvm_book3e_206_tlb_entry
*gtlbe
,
546 struct kvm_book3e_206_tlb_entry
*stlbe
, int esel
)
548 struct tlbe_ref
*ref
= &vcpu_e500
->gtlb_priv
[1][esel
].ref
;
552 r
= kvmppc_e500_shadow_map(vcpu_e500
, gvaddr
, gfn
, gtlbe
, 1, stlbe
,
557 /* Use TLB0 when we can only map a page with 4k */
558 if (get_tlb_tsize(stlbe
) == BOOK3E_PAGESZ_4K
) {
559 vcpu_e500
->gtlb_priv
[1][esel
].ref
.flags
|= E500_TLB_TLB0
;
560 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 0, 0);
564 /* Otherwise map into TLB1 */
565 sesel
= kvmppc_e500_tlb1_map_tlb1(vcpu_e500
, ref
, esel
);
566 write_stlbe(vcpu_e500
, gtlbe
, stlbe
, 1, sesel
);
571 void kvmppc_mmu_map(struct kvm_vcpu
*vcpu
, u64 eaddr
, gpa_t gpaddr
,
574 struct kvmppc_vcpu_e500
*vcpu_e500
= to_e500(vcpu
);
575 struct tlbe_priv
*priv
;
576 struct kvm_book3e_206_tlb_entry
*gtlbe
, stlbe
;
577 int tlbsel
= tlbsel_of(index
);
578 int esel
= esel_of(index
);
580 gtlbe
= get_entry(vcpu_e500
, tlbsel
, esel
);
584 priv
= &vcpu_e500
->gtlb_priv
[tlbsel
][esel
];
586 /* Triggers after clear_tlb_privs or on initial mapping */
587 if (!(priv
->ref
.flags
& E500_TLB_VALID
)) {
588 kvmppc_e500_tlb0_map(vcpu_e500
, esel
, &stlbe
);
590 kvmppc_e500_setup_stlbe(vcpu
, gtlbe
, BOOK3E_PAGESZ_4K
,
591 &priv
->ref
, eaddr
, &stlbe
);
592 write_stlbe(vcpu_e500
, gtlbe
, &stlbe
, 0, 0);
597 gfn_t gfn
= gpaddr
>> PAGE_SHIFT
;
598 kvmppc_e500_tlb1_map(vcpu_e500
, eaddr
, gfn
, gtlbe
, &stlbe
,
609 /************* MMU Notifiers *************/
611 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
613 trace_kvm_unmap_hva(hva
);
616 * Flush all shadow tlb entries everywhere. This is slow, but
617 * we are 100% sure that we catch the to be unmapped page
619 kvm_flush_remote_tlbs(kvm
);
624 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
626 /* kvm_unmap_hva flushes everything anyways */
627 kvm_unmap_hva(kvm
, start
);
632 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
634 /* XXX could be more clever ;) */
638 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
640 /* XXX could be more clever ;) */
644 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
646 /* The page will get remapped properly on its next fault */
647 kvm_unmap_hva(kvm
, hva
);
650 /*****************************************/
652 int e500_mmu_host_init(struct kvmppc_vcpu_e500
*vcpu_e500
)
654 host_tlb_params
[0].entries
= mfspr(SPRN_TLB0CFG
) & TLBnCFG_N_ENTRY
;
655 host_tlb_params
[1].entries
= mfspr(SPRN_TLB1CFG
) & TLBnCFG_N_ENTRY
;
658 * This should never happen on real e500 hardware, but is
659 * architecturally possible -- e.g. in some weird nested
660 * virtualization case.
662 if (host_tlb_params
[0].entries
== 0 ||
663 host_tlb_params
[1].entries
== 0) {
664 pr_err("%s: need to know host tlb size\n", __func__
);
668 host_tlb_params
[0].ways
= (mfspr(SPRN_TLB0CFG
) & TLBnCFG_ASSOC
) >>
670 host_tlb_params
[1].ways
= host_tlb_params
[1].entries
;
672 if (!is_power_of_2(host_tlb_params
[0].entries
) ||
673 !is_power_of_2(host_tlb_params
[0].ways
) ||
674 host_tlb_params
[0].entries
< host_tlb_params
[0].ways
||
675 host_tlb_params
[0].ways
== 0) {
676 pr_err("%s: bad tlb0 host config: %u entries %u ways\n",
677 __func__
, host_tlb_params
[0].entries
,
678 host_tlb_params
[0].ways
);
682 host_tlb_params
[0].sets
=
683 host_tlb_params
[0].entries
/ host_tlb_params
[0].ways
;
684 host_tlb_params
[1].sets
= 1;
686 vcpu_e500
->h2g_tlb1_rmap
= kzalloc(sizeof(unsigned int) *
687 host_tlb_params
[1].entries
,
689 if (!vcpu_e500
->h2g_tlb1_rmap
)
695 void e500_mmu_host_uninit(struct kvmppc_vcpu_e500
*vcpu_e500
)
697 kfree(vcpu_e500
->h2g_tlb1_rmap
);