2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
20 #include <asm/xsave.h>
26 static u32
xstate_required_size(u64 xstate_bv
)
29 u32 ret
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
31 xstate_bv
&= ~XSTATE_FPSSE
;
33 if (xstate_bv
& 0x1) {
34 u32 eax
, ebx
, ecx
, edx
;
35 cpuid_count(0xD, feature_bit
, &eax
, &ebx
, &ecx
, &edx
);
36 ret
= max(ret
, eax
+ ebx
);
46 void kvm_update_cpuid(struct kvm_vcpu
*vcpu
)
48 struct kvm_cpuid_entry2
*best
;
49 struct kvm_lapic
*apic
= vcpu
->arch
.apic
;
51 best
= kvm_find_cpuid_entry(vcpu
, 1, 0);
55 /* Update OSXSAVE bit */
56 if (cpu_has_xsave
&& best
->function
== 0x1) {
57 best
->ecx
&= ~(bit(X86_FEATURE_OSXSAVE
));
58 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
))
59 best
->ecx
|= bit(X86_FEATURE_OSXSAVE
);
63 if (best
->ecx
& bit(X86_FEATURE_TSC_DEADLINE_TIMER
))
64 apic
->lapic_timer
.timer_mode_mask
= 3 << 17;
66 apic
->lapic_timer
.timer_mode_mask
= 1 << 17;
69 best
= kvm_find_cpuid_entry(vcpu
, 0xD, 0);
71 vcpu
->arch
.guest_supported_xcr0
= 0;
72 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
74 vcpu
->arch
.guest_supported_xcr0
=
75 (best
->eax
| ((u64
)best
->edx
<< 32)) &
76 host_xcr0
& KVM_SUPPORTED_XCR0
;
77 vcpu
->arch
.guest_xstate_size
=
78 xstate_required_size(vcpu
->arch
.guest_supported_xcr0
);
81 kvm_pmu_cpuid_update(vcpu
);
84 static int is_efer_nx(void)
86 unsigned long long efer
= 0;
88 rdmsrl_safe(MSR_EFER
, &efer
);
89 return efer
& EFER_NX
;
92 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
95 struct kvm_cpuid_entry2
*e
, *entry
;
98 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
99 e
= &vcpu
->arch
.cpuid_entries
[i
];
100 if (e
->function
== 0x80000001) {
105 if (entry
&& (entry
->edx
& (1 << 20)) && !is_efer_nx()) {
106 entry
->edx
&= ~(1 << 20);
107 printk(KERN_INFO
"kvm: guest NX capability removed\n");
111 /* when an old userspace process fills a new kernel module */
112 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
113 struct kvm_cpuid
*cpuid
,
114 struct kvm_cpuid_entry __user
*entries
)
117 struct kvm_cpuid_entry
*cpuid_entries
;
120 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
123 cpuid_entries
= vmalloc(sizeof(struct kvm_cpuid_entry
) * cpuid
->nent
);
127 if (copy_from_user(cpuid_entries
, entries
,
128 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
130 for (i
= 0; i
< cpuid
->nent
; i
++) {
131 vcpu
->arch
.cpuid_entries
[i
].function
= cpuid_entries
[i
].function
;
132 vcpu
->arch
.cpuid_entries
[i
].eax
= cpuid_entries
[i
].eax
;
133 vcpu
->arch
.cpuid_entries
[i
].ebx
= cpuid_entries
[i
].ebx
;
134 vcpu
->arch
.cpuid_entries
[i
].ecx
= cpuid_entries
[i
].ecx
;
135 vcpu
->arch
.cpuid_entries
[i
].edx
= cpuid_entries
[i
].edx
;
136 vcpu
->arch
.cpuid_entries
[i
].index
= 0;
137 vcpu
->arch
.cpuid_entries
[i
].flags
= 0;
138 vcpu
->arch
.cpuid_entries
[i
].padding
[0] = 0;
139 vcpu
->arch
.cpuid_entries
[i
].padding
[1] = 0;
140 vcpu
->arch
.cpuid_entries
[i
].padding
[2] = 0;
142 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
143 cpuid_fix_nx_cap(vcpu
);
145 kvm_apic_set_version(vcpu
);
146 kvm_x86_ops
->cpuid_update(vcpu
);
147 kvm_update_cpuid(vcpu
);
150 vfree(cpuid_entries
);
155 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu
*vcpu
,
156 struct kvm_cpuid2
*cpuid
,
157 struct kvm_cpuid_entry2 __user
*entries
)
162 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
165 if (copy_from_user(&vcpu
->arch
.cpuid_entries
, entries
,
166 cpuid
->nent
* sizeof(struct kvm_cpuid_entry2
)))
168 vcpu
->arch
.cpuid_nent
= cpuid
->nent
;
169 kvm_apic_set_version(vcpu
);
170 kvm_x86_ops
->cpuid_update(vcpu
);
171 kvm_update_cpuid(vcpu
);
178 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu
*vcpu
,
179 struct kvm_cpuid2
*cpuid
,
180 struct kvm_cpuid_entry2 __user
*entries
)
185 if (cpuid
->nent
< vcpu
->arch
.cpuid_nent
)
188 if (copy_to_user(entries
, &vcpu
->arch
.cpuid_entries
,
189 vcpu
->arch
.cpuid_nent
* sizeof(struct kvm_cpuid_entry2
)))
194 cpuid
->nent
= vcpu
->arch
.cpuid_nent
;
198 static void cpuid_mask(u32
*word
, int wordnum
)
200 *word
&= boot_cpu_data
.x86_capability
[wordnum
];
203 static void do_cpuid_1_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
206 entry
->function
= function
;
207 entry
->index
= index
;
208 cpuid_count(entry
->function
, entry
->index
,
209 &entry
->eax
, &entry
->ebx
, &entry
->ecx
, &entry
->edx
);
213 static bool supported_xcr0_bit(unsigned bit
)
215 u64 mask
= ((u64
)1 << bit
);
217 return mask
& KVM_SUPPORTED_XCR0
& host_xcr0
;
220 #define F(x) bit(X86_FEATURE_##x)
222 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2
*entry
,
223 u32 func
, u32 index
, int *nent
, int maxnent
)
227 entry
->eax
= 1; /* only one leaf currently */
231 entry
->ecx
= F(MOVBE
);
238 entry
->function
= func
;
239 entry
->index
= index
;
244 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 function
,
245 u32 index
, int *nent
, int maxnent
)
248 unsigned f_nx
= is_efer_nx() ? F(NX
) : 0;
250 unsigned f_gbpages
= (kvm_x86_ops
->get_lpage_level() == PT_PDPE_LEVEL
)
252 unsigned f_lm
= F(LM
);
254 unsigned f_gbpages
= 0;
257 unsigned f_rdtscp
= kvm_x86_ops
->rdtscp_supported() ? F(RDTSCP
) : 0;
258 unsigned f_invpcid
= kvm_x86_ops
->invpcid_supported() ? F(INVPCID
) : 0;
261 const u32 kvm_supported_word0_x86_features
=
262 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
263 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
264 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SEP
) |
265 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
266 F(PAT
) | F(PSE36
) | 0 /* PSN */ | F(CLFLSH
) |
267 0 /* Reserved, DS, ACPI */ | F(MMX
) |
268 F(FXSR
) | F(XMM
) | F(XMM2
) | F(SELFSNOOP
) |
269 0 /* HTT, TM, Reserved, PBE */;
270 /* cpuid 0x80000001.edx */
271 const u32 kvm_supported_word1_x86_features
=
272 F(FPU
) | F(VME
) | F(DE
) | F(PSE
) |
273 F(TSC
) | F(MSR
) | F(PAE
) | F(MCE
) |
274 F(CX8
) | F(APIC
) | 0 /* Reserved */ | F(SYSCALL
) |
275 F(MTRR
) | F(PGE
) | F(MCA
) | F(CMOV
) |
276 F(PAT
) | F(PSE36
) | 0 /* Reserved */ |
277 f_nx
| 0 /* Reserved */ | F(MMXEXT
) | F(MMX
) |
278 F(FXSR
) | F(FXSR_OPT
) | f_gbpages
| f_rdtscp
|
279 0 /* Reserved */ | f_lm
| F(3DNOWEXT
) | F(3DNOW
);
281 const u32 kvm_supported_word4_x86_features
=
282 F(XMM3
) | F(PCLMULQDQ
) | 0 /* DTES64, MONITOR */ |
283 0 /* DS-CPL, VMX, SMX, EST */ |
284 0 /* TM2 */ | F(SSSE3
) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
285 F(FMA
) | F(CX16
) | 0 /* xTPR Update, PDCM */ |
286 F(PCID
) | 0 /* Reserved, DCA */ | F(XMM4_1
) |
287 F(XMM4_2
) | F(X2APIC
) | F(MOVBE
) | F(POPCNT
) |
288 0 /* Reserved*/ | F(AES
) | F(XSAVE
) | 0 /* OSXSAVE */ | F(AVX
) |
290 /* cpuid 0x80000001.ecx */
291 const u32 kvm_supported_word6_x86_features
=
292 F(LAHF_LM
) | F(CMP_LEGACY
) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
293 F(CR8_LEGACY
) | F(ABM
) | F(SSE4A
) | F(MISALIGNSSE
) |
294 F(3DNOWPREFETCH
) | F(OSVW
) | 0 /* IBS */ | F(XOP
) |
295 0 /* SKINIT, WDT, LWP */ | F(FMA4
) | F(TBM
);
297 /* cpuid 0xC0000001.edx */
298 const u32 kvm_supported_word5_x86_features
=
299 F(XSTORE
) | F(XSTORE_EN
) | F(XCRYPT
) | F(XCRYPT_EN
) |
300 F(ACE2
) | F(ACE2_EN
) | F(PHE
) | F(PHE_EN
) |
304 const u32 kvm_supported_word9_x86_features
=
305 F(FSGSBASE
) | F(BMI1
) | F(HLE
) | F(AVX2
) | F(SMEP
) |
306 F(BMI2
) | F(ERMS
) | f_invpcid
| F(RTM
);
308 /* all calls to cpuid_count() should be made on the same cpu */
313 if (*nent
>= maxnent
)
316 do_cpuid_1_ent(entry
, function
, index
);
321 entry
->eax
= min(entry
->eax
, (u32
)0xd);
324 entry
->edx
&= kvm_supported_word0_x86_features
;
325 cpuid_mask(&entry
->edx
, 0);
326 entry
->ecx
&= kvm_supported_word4_x86_features
;
327 cpuid_mask(&entry
->ecx
, 4);
328 /* we support x2apic emulation even if host does not support
329 * it since we emulate x2apic in software */
330 entry
->ecx
|= F(X2APIC
);
332 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
333 * may return different values. This forces us to get_cpu() before
334 * issuing the first command, and also to emulate this annoying behavior
335 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
337 int t
, times
= entry
->eax
& 0xff;
339 entry
->flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
340 entry
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
341 for (t
= 1; t
< times
; ++t
) {
342 if (*nent
>= maxnent
)
345 do_cpuid_1_ent(&entry
[t
], function
, 0);
346 entry
[t
].flags
|= KVM_CPUID_FLAG_STATEFUL_FUNC
;
351 /* function 4 has additional index. */
355 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
356 /* read more entries until cache_type is zero */
358 if (*nent
>= maxnent
)
361 cache_type
= entry
[i
- 1].eax
& 0x1f;
364 do_cpuid_1_ent(&entry
[i
], function
, i
);
366 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
372 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
373 /* Mask ebx against host capability word 9 */
375 entry
->ebx
&= kvm_supported_word9_x86_features
;
376 cpuid_mask(&entry
->ebx
, 9);
377 // TSC_ADJUST is emulated
378 entry
->ebx
|= F(TSC_ADJUST
);
388 case 0xa: { /* Architectural Performance Monitoring */
389 struct x86_pmu_capability cap
;
390 union cpuid10_eax eax
;
391 union cpuid10_edx edx
;
393 perf_get_x86_pmu_capability(&cap
);
396 * Only support guest architectural pmu on a host
397 * with architectural pmu.
400 memset(&cap
, 0, sizeof(cap
));
402 eax
.split
.version_id
= min(cap
.version
, 2);
403 eax
.split
.num_counters
= cap
.num_counters_gp
;
404 eax
.split
.bit_width
= cap
.bit_width_gp
;
405 eax
.split
.mask_length
= cap
.events_mask_len
;
407 edx
.split
.num_counters_fixed
= cap
.num_counters_fixed
;
408 edx
.split
.bit_width_fixed
= cap
.bit_width_fixed
;
409 edx
.split
.reserved
= 0;
411 entry
->eax
= eax
.full
;
412 entry
->ebx
= cap
.events_mask
;
414 entry
->edx
= edx
.full
;
417 /* function 0xb has additional index. */
421 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
422 /* read more entries until level_type is zero */
424 if (*nent
>= maxnent
)
427 level_type
= entry
[i
- 1].ecx
& 0xff00;
430 do_cpuid_1_ent(&entry
[i
], function
, i
);
432 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
440 entry
->eax
&= host_xcr0
& KVM_SUPPORTED_XCR0
;
441 entry
->edx
&= (host_xcr0
& KVM_SUPPORTED_XCR0
) >> 32;
442 entry
->flags
|= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
443 for (idx
= 1, i
= 1; idx
< 64; ++idx
) {
444 if (*nent
>= maxnent
)
447 do_cpuid_1_ent(&entry
[i
], function
, idx
);
448 if (entry
[i
].eax
== 0 || !supported_xcr0_bit(idx
))
451 KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
457 case KVM_CPUID_SIGNATURE
: {
458 static const char signature
[12] = "KVMKVMKVM\0\0";
459 const u32
*sigptr
= (const u32
*)signature
;
460 entry
->eax
= KVM_CPUID_FEATURES
;
461 entry
->ebx
= sigptr
[0];
462 entry
->ecx
= sigptr
[1];
463 entry
->edx
= sigptr
[2];
466 case KVM_CPUID_FEATURES
:
467 entry
->eax
= (1 << KVM_FEATURE_CLOCKSOURCE
) |
468 (1 << KVM_FEATURE_NOP_IO_DELAY
) |
469 (1 << KVM_FEATURE_CLOCKSOURCE2
) |
470 (1 << KVM_FEATURE_ASYNC_PF
) |
471 (1 << KVM_FEATURE_PV_EOI
) |
472 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
) |
473 (1 << KVM_FEATURE_PV_UNHALT
);
476 entry
->eax
|= (1 << KVM_FEATURE_STEAL_TIME
);
483 entry
->eax
= min(entry
->eax
, 0x8000001a);
486 entry
->edx
&= kvm_supported_word1_x86_features
;
487 cpuid_mask(&entry
->edx
, 1);
488 entry
->ecx
&= kvm_supported_word6_x86_features
;
489 cpuid_mask(&entry
->ecx
, 6);
492 unsigned g_phys_as
= (entry
->eax
>> 16) & 0xff;
493 unsigned virt_as
= max((entry
->eax
>> 8) & 0xff, 48U);
494 unsigned phys_as
= entry
->eax
& 0xff;
498 entry
->eax
= g_phys_as
| (virt_as
<< 8);
499 entry
->ebx
= entry
->edx
= 0;
503 entry
->ecx
= entry
->edx
= 0;
509 /*Add support for Centaur's CPUID instruction*/
511 /*Just support up to 0xC0000004 now*/
512 entry
->eax
= min(entry
->eax
, 0xC0000004);
515 entry
->edx
&= kvm_supported_word5_x86_features
;
516 cpuid_mask(&entry
->edx
, 5);
518 case 3: /* Processor serial number */
519 case 5: /* MONITOR/MWAIT */
520 case 6: /* Thermal management */
521 case 0x80000007: /* Advanced power management */
526 entry
->eax
= entry
->ebx
= entry
->ecx
= entry
->edx
= 0;
530 kvm_x86_ops
->set_supported_cpuid(function
, entry
);
540 static int do_cpuid_ent(struct kvm_cpuid_entry2
*entry
, u32 func
,
541 u32 idx
, int *nent
, int maxnent
, unsigned int type
)
543 if (type
== KVM_GET_EMULATED_CPUID
)
544 return __do_cpuid_ent_emulated(entry
, func
, idx
, nent
, maxnent
);
546 return __do_cpuid_ent(entry
, func
, idx
, nent
, maxnent
);
551 struct kvm_cpuid_param
{
555 bool (*qualifier
)(const struct kvm_cpuid_param
*param
);
558 static bool is_centaur_cpu(const struct kvm_cpuid_param
*param
)
560 return boot_cpu_data
.x86_vendor
== X86_VENDOR_CENTAUR
;
563 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user
*entries
,
564 __u32 num_entries
, unsigned int ioctl_type
)
569 if (ioctl_type
!= KVM_GET_EMULATED_CPUID
)
573 * We want to make sure that ->padding is being passed clean from
574 * userspace in case we want to use it for something in the future.
576 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
577 * have to give ourselves satisfied only with the emulated side. /me
580 for (i
= 0; i
< num_entries
; i
++) {
581 if (copy_from_user(pad
, entries
[i
].padding
, sizeof(pad
)))
584 if (pad
[0] || pad
[1] || pad
[2])
590 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2
*cpuid
,
591 struct kvm_cpuid_entry2 __user
*entries
,
594 struct kvm_cpuid_entry2
*cpuid_entries
;
595 int limit
, nent
= 0, r
= -E2BIG
, i
;
597 static const struct kvm_cpuid_param param
[] = {
598 { .func
= 0, .has_leaf_count
= true },
599 { .func
= 0x80000000, .has_leaf_count
= true },
600 { .func
= 0xC0000000, .qualifier
= is_centaur_cpu
, .has_leaf_count
= true },
601 { .func
= KVM_CPUID_SIGNATURE
},
602 { .func
= KVM_CPUID_FEATURES
},
607 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
608 cpuid
->nent
= KVM_MAX_CPUID_ENTRIES
;
610 if (sanity_check_entries(entries
, cpuid
->nent
, type
))
614 cpuid_entries
= vzalloc(sizeof(struct kvm_cpuid_entry2
) * cpuid
->nent
);
619 for (i
= 0; i
< ARRAY_SIZE(param
); i
++) {
620 const struct kvm_cpuid_param
*ent
= ¶m
[i
];
622 if (ent
->qualifier
&& !ent
->qualifier(ent
))
625 r
= do_cpuid_ent(&cpuid_entries
[nent
], ent
->func
, ent
->idx
,
626 &nent
, cpuid
->nent
, type
);
631 if (!ent
->has_leaf_count
)
634 limit
= cpuid_entries
[nent
- 1].eax
;
635 for (func
= ent
->func
+ 1; func
<= limit
&& nent
< cpuid
->nent
&& r
== 0; ++func
)
636 r
= do_cpuid_ent(&cpuid_entries
[nent
], func
, ent
->idx
,
637 &nent
, cpuid
->nent
, type
);
644 if (copy_to_user(entries
, cpuid_entries
,
645 nent
* sizeof(struct kvm_cpuid_entry2
)))
651 vfree(cpuid_entries
);
656 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu
*vcpu
, int i
)
658 struct kvm_cpuid_entry2
*e
= &vcpu
->arch
.cpuid_entries
[i
];
659 int j
, nent
= vcpu
->arch
.cpuid_nent
;
661 e
->flags
&= ~KVM_CPUID_FLAG_STATE_READ_NEXT
;
662 /* when no next entry is found, the current entry[i] is reselected */
663 for (j
= i
+ 1; ; j
= (j
+ 1) % nent
) {
664 struct kvm_cpuid_entry2
*ej
= &vcpu
->arch
.cpuid_entries
[j
];
665 if (ej
->function
== e
->function
) {
666 ej
->flags
|= KVM_CPUID_FLAG_STATE_READ_NEXT
;
670 return 0; /* silence gcc, even though control never reaches here */
673 /* find an entry with matching function, matching index (if needed), and that
674 * should be read next (if it's stateful) */
675 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2
*e
,
676 u32 function
, u32 index
)
678 if (e
->function
!= function
)
680 if ((e
->flags
& KVM_CPUID_FLAG_SIGNIFCANT_INDEX
) && e
->index
!= index
)
682 if ((e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
) &&
683 !(e
->flags
& KVM_CPUID_FLAG_STATE_READ_NEXT
))
688 struct kvm_cpuid_entry2
*kvm_find_cpuid_entry(struct kvm_vcpu
*vcpu
,
689 u32 function
, u32 index
)
692 struct kvm_cpuid_entry2
*best
= NULL
;
694 for (i
= 0; i
< vcpu
->arch
.cpuid_nent
; ++i
) {
695 struct kvm_cpuid_entry2
*e
;
697 e
= &vcpu
->arch
.cpuid_entries
[i
];
698 if (is_matching_cpuid_entry(e
, function
, index
)) {
699 if (e
->flags
& KVM_CPUID_FLAG_STATEFUL_FUNC
)
700 move_to_next_stateful_cpuid_entry(vcpu
, i
);
707 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry
);
709 int cpuid_maxphyaddr(struct kvm_vcpu
*vcpu
)
711 struct kvm_cpuid_entry2
*best
;
713 best
= kvm_find_cpuid_entry(vcpu
, 0x80000000, 0);
714 if (!best
|| best
->eax
< 0x80000008)
716 best
= kvm_find_cpuid_entry(vcpu
, 0x80000008, 0);
718 return best
->eax
& 0xff;
724 * If no match is found, check whether we exceed the vCPU's limit
725 * and return the content of the highest valid _standard_ leaf instead.
726 * This is to satisfy the CPUID specification.
728 static struct kvm_cpuid_entry2
* check_cpuid_limit(struct kvm_vcpu
*vcpu
,
729 u32 function
, u32 index
)
731 struct kvm_cpuid_entry2
*maxlevel
;
733 maxlevel
= kvm_find_cpuid_entry(vcpu
, function
& 0x80000000, 0);
734 if (!maxlevel
|| maxlevel
->eax
>= function
)
736 if (function
& 0x80000000) {
737 maxlevel
= kvm_find_cpuid_entry(vcpu
, 0, 0);
741 return kvm_find_cpuid_entry(vcpu
, maxlevel
->eax
, index
);
744 void kvm_cpuid(struct kvm_vcpu
*vcpu
, u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
746 u32 function
= *eax
, index
= *ecx
;
747 struct kvm_cpuid_entry2
*best
;
749 best
= kvm_find_cpuid_entry(vcpu
, function
, index
);
752 best
= check_cpuid_limit(vcpu
, function
, index
);
760 *eax
= *ebx
= *ecx
= *edx
= 0;
761 trace_kvm_cpuid(function
, *eax
, *ebx
, *ecx
, *edx
);
763 EXPORT_SYMBOL_GPL(kvm_cpuid
);
765 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
767 u32 function
, eax
, ebx
, ecx
, edx
;
769 function
= eax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
770 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
771 kvm_cpuid(vcpu
, &eax
, &ebx
, &ecx
, &edx
);
772 kvm_register_write(vcpu
, VCPU_REGS_RAX
, eax
);
773 kvm_register_write(vcpu
, VCPU_REGS_RBX
, ebx
);
774 kvm_register_write(vcpu
, VCPU_REGS_RCX
, ecx
);
775 kvm_register_write(vcpu
, VCPU_REGS_RDX
, edx
);
776 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
778 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);