Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / arch / x86 / kvm / cpuid.c
blobc6976257eff51281e023c264b355f166ce56dd5c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 * cpuid support routines
5 * derived from arch/x86/kvm/x86.c
7 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8 * Copyright IBM Corporation, 2008
10 * This work is licensed under the terms of the GNU GPL, version 2. See
11 * the COPYING file in the top-level directory.
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
26 static u32 xstate_required_size(u64 xstate_bv)
28 int feature_bit = 0;
29 u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
31 xstate_bv &= ~XSTATE_FPSSE;
32 while (xstate_bv) {
33 if (xstate_bv & 0x1) {
34 u32 eax, ebx, ecx, edx;
35 cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
36 ret = max(ret, eax + ebx);
39 xstate_bv >>= 1;
40 feature_bit++;
43 return ret;
46 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
48 struct kvm_cpuid_entry2 *best;
49 struct kvm_lapic *apic = vcpu->arch.apic;
51 best = kvm_find_cpuid_entry(vcpu, 1, 0);
52 if (!best)
53 return;
55 /* Update OSXSAVE bit */
56 if (cpu_has_xsave && best->function == 0x1) {
57 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
58 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
59 best->ecx |= bit(X86_FEATURE_OSXSAVE);
62 if (apic) {
63 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
64 apic->lapic_timer.timer_mode_mask = 3 << 17;
65 else
66 apic->lapic_timer.timer_mode_mask = 1 << 17;
69 best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
70 if (!best) {
71 vcpu->arch.guest_supported_xcr0 = 0;
72 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
73 } else {
74 vcpu->arch.guest_supported_xcr0 =
75 (best->eax | ((u64)best->edx << 32)) &
76 host_xcr0 & KVM_SUPPORTED_XCR0;
77 vcpu->arch.guest_xstate_size =
78 xstate_required_size(vcpu->arch.guest_supported_xcr0);
81 kvm_pmu_cpuid_update(vcpu);
84 static int is_efer_nx(void)
86 unsigned long long efer = 0;
88 rdmsrl_safe(MSR_EFER, &efer);
89 return efer & EFER_NX;
92 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
94 int i;
95 struct kvm_cpuid_entry2 *e, *entry;
97 entry = NULL;
98 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
99 e = &vcpu->arch.cpuid_entries[i];
100 if (e->function == 0x80000001) {
101 entry = e;
102 break;
105 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
106 entry->edx &= ~(1 << 20);
107 printk(KERN_INFO "kvm: guest NX capability removed\n");
111 /* when an old userspace process fills a new kernel module */
112 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
113 struct kvm_cpuid *cpuid,
114 struct kvm_cpuid_entry __user *entries)
116 int r, i;
117 struct kvm_cpuid_entry *cpuid_entries;
119 r = -E2BIG;
120 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
121 goto out;
122 r = -ENOMEM;
123 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
124 if (!cpuid_entries)
125 goto out;
126 r = -EFAULT;
127 if (copy_from_user(cpuid_entries, entries,
128 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
129 goto out_free;
130 for (i = 0; i < cpuid->nent; i++) {
131 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
132 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
133 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
134 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
135 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
136 vcpu->arch.cpuid_entries[i].index = 0;
137 vcpu->arch.cpuid_entries[i].flags = 0;
138 vcpu->arch.cpuid_entries[i].padding[0] = 0;
139 vcpu->arch.cpuid_entries[i].padding[1] = 0;
140 vcpu->arch.cpuid_entries[i].padding[2] = 0;
142 vcpu->arch.cpuid_nent = cpuid->nent;
143 cpuid_fix_nx_cap(vcpu);
144 r = 0;
145 kvm_apic_set_version(vcpu);
146 kvm_x86_ops->cpuid_update(vcpu);
147 kvm_update_cpuid(vcpu);
149 out_free:
150 vfree(cpuid_entries);
151 out:
152 return r;
155 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
156 struct kvm_cpuid2 *cpuid,
157 struct kvm_cpuid_entry2 __user *entries)
159 int r;
161 r = -E2BIG;
162 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
163 goto out;
164 r = -EFAULT;
165 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
166 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
167 goto out;
168 vcpu->arch.cpuid_nent = cpuid->nent;
169 kvm_apic_set_version(vcpu);
170 kvm_x86_ops->cpuid_update(vcpu);
171 kvm_update_cpuid(vcpu);
172 return 0;
174 out:
175 return r;
178 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
179 struct kvm_cpuid2 *cpuid,
180 struct kvm_cpuid_entry2 __user *entries)
182 int r;
184 r = -E2BIG;
185 if (cpuid->nent < vcpu->arch.cpuid_nent)
186 goto out;
187 r = -EFAULT;
188 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
189 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
190 goto out;
191 return 0;
193 out:
194 cpuid->nent = vcpu->arch.cpuid_nent;
195 return r;
198 static void cpuid_mask(u32 *word, int wordnum)
200 *word &= boot_cpu_data.x86_capability[wordnum];
203 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
204 u32 index)
206 entry->function = function;
207 entry->index = index;
208 cpuid_count(entry->function, entry->index,
209 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
210 entry->flags = 0;
213 static bool supported_xcr0_bit(unsigned bit)
215 u64 mask = ((u64)1 << bit);
217 return mask & KVM_SUPPORTED_XCR0 & host_xcr0;
220 #define F(x) bit(X86_FEATURE_##x)
222 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
223 u32 func, u32 index, int *nent, int maxnent)
225 switch (func) {
226 case 0:
227 entry->eax = 1; /* only one leaf currently */
228 ++*nent;
229 break;
230 case 1:
231 entry->ecx = F(MOVBE);
232 ++*nent;
233 break;
234 default:
235 break;
238 entry->function = func;
239 entry->index = index;
241 return 0;
244 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
245 u32 index, int *nent, int maxnent)
247 int r;
248 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
249 #ifdef CONFIG_X86_64
250 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
251 ? F(GBPAGES) : 0;
252 unsigned f_lm = F(LM);
253 #else
254 unsigned f_gbpages = 0;
255 unsigned f_lm = 0;
256 #endif
257 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
258 unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
260 /* cpuid 1.edx */
261 const u32 kvm_supported_word0_x86_features =
262 F(FPU) | F(VME) | F(DE) | F(PSE) |
263 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
264 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
265 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
266 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
267 0 /* Reserved, DS, ACPI */ | F(MMX) |
268 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
269 0 /* HTT, TM, Reserved, PBE */;
270 /* cpuid 0x80000001.edx */
271 const u32 kvm_supported_word1_x86_features =
272 F(FPU) | F(VME) | F(DE) | F(PSE) |
273 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
274 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
275 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
276 F(PAT) | F(PSE36) | 0 /* Reserved */ |
277 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
278 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
279 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
280 /* cpuid 1.ecx */
281 const u32 kvm_supported_word4_x86_features =
282 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
283 0 /* DS-CPL, VMX, SMX, EST */ |
284 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
285 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
286 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
287 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
288 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
289 F(F16C) | F(RDRAND);
290 /* cpuid 0x80000001.ecx */
291 const u32 kvm_supported_word6_x86_features =
292 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
293 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
294 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
295 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
297 /* cpuid 0xC0000001.edx */
298 const u32 kvm_supported_word5_x86_features =
299 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
300 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
301 F(PMM) | F(PMM_EN);
303 /* cpuid 7.0.ebx */
304 const u32 kvm_supported_word9_x86_features =
305 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
306 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
308 /* all calls to cpuid_count() should be made on the same cpu */
309 get_cpu();
311 r = -E2BIG;
313 if (*nent >= maxnent)
314 goto out;
316 do_cpuid_1_ent(entry, function, index);
317 ++*nent;
319 switch (function) {
320 case 0:
321 entry->eax = min(entry->eax, (u32)0xd);
322 break;
323 case 1:
324 entry->edx &= kvm_supported_word0_x86_features;
325 cpuid_mask(&entry->edx, 0);
326 entry->ecx &= kvm_supported_word4_x86_features;
327 cpuid_mask(&entry->ecx, 4);
328 /* we support x2apic emulation even if host does not support
329 * it since we emulate x2apic in software */
330 entry->ecx |= F(X2APIC);
331 break;
332 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
333 * may return different values. This forces us to get_cpu() before
334 * issuing the first command, and also to emulate this annoying behavior
335 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
336 case 2: {
337 int t, times = entry->eax & 0xff;
339 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
340 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
341 for (t = 1; t < times; ++t) {
342 if (*nent >= maxnent)
343 goto out;
345 do_cpuid_1_ent(&entry[t], function, 0);
346 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
347 ++*nent;
349 break;
351 /* function 4 has additional index. */
352 case 4: {
353 int i, cache_type;
355 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
356 /* read more entries until cache_type is zero */
357 for (i = 1; ; ++i) {
358 if (*nent >= maxnent)
359 goto out;
361 cache_type = entry[i - 1].eax & 0x1f;
362 if (!cache_type)
363 break;
364 do_cpuid_1_ent(&entry[i], function, i);
365 entry[i].flags |=
366 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
367 ++*nent;
369 break;
371 case 7: {
372 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
373 /* Mask ebx against host capability word 9 */
374 if (index == 0) {
375 entry->ebx &= kvm_supported_word9_x86_features;
376 cpuid_mask(&entry->ebx, 9);
377 // TSC_ADJUST is emulated
378 entry->ebx |= F(TSC_ADJUST);
379 } else
380 entry->ebx = 0;
381 entry->eax = 0;
382 entry->ecx = 0;
383 entry->edx = 0;
384 break;
386 case 9:
387 break;
388 case 0xa: { /* Architectural Performance Monitoring */
389 struct x86_pmu_capability cap;
390 union cpuid10_eax eax;
391 union cpuid10_edx edx;
393 perf_get_x86_pmu_capability(&cap);
396 * Only support guest architectural pmu on a host
397 * with architectural pmu.
399 if (!cap.version)
400 memset(&cap, 0, sizeof(cap));
402 eax.split.version_id = min(cap.version, 2);
403 eax.split.num_counters = cap.num_counters_gp;
404 eax.split.bit_width = cap.bit_width_gp;
405 eax.split.mask_length = cap.events_mask_len;
407 edx.split.num_counters_fixed = cap.num_counters_fixed;
408 edx.split.bit_width_fixed = cap.bit_width_fixed;
409 edx.split.reserved = 0;
411 entry->eax = eax.full;
412 entry->ebx = cap.events_mask;
413 entry->ecx = 0;
414 entry->edx = edx.full;
415 break;
417 /* function 0xb has additional index. */
418 case 0xb: {
419 int i, level_type;
421 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
422 /* read more entries until level_type is zero */
423 for (i = 1; ; ++i) {
424 if (*nent >= maxnent)
425 goto out;
427 level_type = entry[i - 1].ecx & 0xff00;
428 if (!level_type)
429 break;
430 do_cpuid_1_ent(&entry[i], function, i);
431 entry[i].flags |=
432 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
433 ++*nent;
435 break;
437 case 0xd: {
438 int idx, i;
440 entry->eax &= host_xcr0 & KVM_SUPPORTED_XCR0;
441 entry->edx &= (host_xcr0 & KVM_SUPPORTED_XCR0) >> 32;
442 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
443 for (idx = 1, i = 1; idx < 64; ++idx) {
444 if (*nent >= maxnent)
445 goto out;
447 do_cpuid_1_ent(&entry[i], function, idx);
448 if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
449 continue;
450 entry[i].flags |=
451 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
452 ++*nent;
453 ++i;
455 break;
457 case KVM_CPUID_SIGNATURE: {
458 static const char signature[12] = "KVMKVMKVM\0\0";
459 const u32 *sigptr = (const u32 *)signature;
460 entry->eax = KVM_CPUID_FEATURES;
461 entry->ebx = sigptr[0];
462 entry->ecx = sigptr[1];
463 entry->edx = sigptr[2];
464 break;
466 case KVM_CPUID_FEATURES:
467 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
468 (1 << KVM_FEATURE_NOP_IO_DELAY) |
469 (1 << KVM_FEATURE_CLOCKSOURCE2) |
470 (1 << KVM_FEATURE_ASYNC_PF) |
471 (1 << KVM_FEATURE_PV_EOI) |
472 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
473 (1 << KVM_FEATURE_PV_UNHALT);
475 if (sched_info_on())
476 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
478 entry->ebx = 0;
479 entry->ecx = 0;
480 entry->edx = 0;
481 break;
482 case 0x80000000:
483 entry->eax = min(entry->eax, 0x8000001a);
484 break;
485 case 0x80000001:
486 entry->edx &= kvm_supported_word1_x86_features;
487 cpuid_mask(&entry->edx, 1);
488 entry->ecx &= kvm_supported_word6_x86_features;
489 cpuid_mask(&entry->ecx, 6);
490 break;
491 case 0x80000008: {
492 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
493 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
494 unsigned phys_as = entry->eax & 0xff;
496 if (!g_phys_as)
497 g_phys_as = phys_as;
498 entry->eax = g_phys_as | (virt_as << 8);
499 entry->ebx = entry->edx = 0;
500 break;
502 case 0x80000019:
503 entry->ecx = entry->edx = 0;
504 break;
505 case 0x8000001a:
506 break;
507 case 0x8000001d:
508 break;
509 /*Add support for Centaur's CPUID instruction*/
510 case 0xC0000000:
511 /*Just support up to 0xC0000004 now*/
512 entry->eax = min(entry->eax, 0xC0000004);
513 break;
514 case 0xC0000001:
515 entry->edx &= kvm_supported_word5_x86_features;
516 cpuid_mask(&entry->edx, 5);
517 break;
518 case 3: /* Processor serial number */
519 case 5: /* MONITOR/MWAIT */
520 case 6: /* Thermal management */
521 case 0x80000007: /* Advanced power management */
522 case 0xC0000002:
523 case 0xC0000003:
524 case 0xC0000004:
525 default:
526 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
527 break;
530 kvm_x86_ops->set_supported_cpuid(function, entry);
532 r = 0;
534 out:
535 put_cpu();
537 return r;
540 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
541 u32 idx, int *nent, int maxnent, unsigned int type)
543 if (type == KVM_GET_EMULATED_CPUID)
544 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
546 return __do_cpuid_ent(entry, func, idx, nent, maxnent);
549 #undef F
551 struct kvm_cpuid_param {
552 u32 func;
553 u32 idx;
554 bool has_leaf_count;
555 bool (*qualifier)(const struct kvm_cpuid_param *param);
558 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
560 return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
563 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
564 __u32 num_entries, unsigned int ioctl_type)
566 int i;
567 __u32 pad[3];
569 if (ioctl_type != KVM_GET_EMULATED_CPUID)
570 return false;
573 * We want to make sure that ->padding is being passed clean from
574 * userspace in case we want to use it for something in the future.
576 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
577 * have to give ourselves satisfied only with the emulated side. /me
578 * sheds a tear.
580 for (i = 0; i < num_entries; i++) {
581 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
582 return true;
584 if (pad[0] || pad[1] || pad[2])
585 return true;
587 return false;
590 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
591 struct kvm_cpuid_entry2 __user *entries,
592 unsigned int type)
594 struct kvm_cpuid_entry2 *cpuid_entries;
595 int limit, nent = 0, r = -E2BIG, i;
596 u32 func;
597 static const struct kvm_cpuid_param param[] = {
598 { .func = 0, .has_leaf_count = true },
599 { .func = 0x80000000, .has_leaf_count = true },
600 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
601 { .func = KVM_CPUID_SIGNATURE },
602 { .func = KVM_CPUID_FEATURES },
605 if (cpuid->nent < 1)
606 goto out;
607 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
608 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
610 if (sanity_check_entries(entries, cpuid->nent, type))
611 return -EINVAL;
613 r = -ENOMEM;
614 cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
615 if (!cpuid_entries)
616 goto out;
618 r = 0;
619 for (i = 0; i < ARRAY_SIZE(param); i++) {
620 const struct kvm_cpuid_param *ent = &param[i];
622 if (ent->qualifier && !ent->qualifier(ent))
623 continue;
625 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
626 &nent, cpuid->nent, type);
628 if (r)
629 goto out_free;
631 if (!ent->has_leaf_count)
632 continue;
634 limit = cpuid_entries[nent - 1].eax;
635 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
636 r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
637 &nent, cpuid->nent, type);
639 if (r)
640 goto out_free;
643 r = -EFAULT;
644 if (copy_to_user(entries, cpuid_entries,
645 nent * sizeof(struct kvm_cpuid_entry2)))
646 goto out_free;
647 cpuid->nent = nent;
648 r = 0;
650 out_free:
651 vfree(cpuid_entries);
652 out:
653 return r;
656 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
658 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
659 int j, nent = vcpu->arch.cpuid_nent;
661 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
662 /* when no next entry is found, the current entry[i] is reselected */
663 for (j = i + 1; ; j = (j + 1) % nent) {
664 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
665 if (ej->function == e->function) {
666 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
667 return j;
670 return 0; /* silence gcc, even though control never reaches here */
673 /* find an entry with matching function, matching index (if needed), and that
674 * should be read next (if it's stateful) */
675 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
676 u32 function, u32 index)
678 if (e->function != function)
679 return 0;
680 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
681 return 0;
682 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
683 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
684 return 0;
685 return 1;
688 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
689 u32 function, u32 index)
691 int i;
692 struct kvm_cpuid_entry2 *best = NULL;
694 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
695 struct kvm_cpuid_entry2 *e;
697 e = &vcpu->arch.cpuid_entries[i];
698 if (is_matching_cpuid_entry(e, function, index)) {
699 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
700 move_to_next_stateful_cpuid_entry(vcpu, i);
701 best = e;
702 break;
705 return best;
707 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
709 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
711 struct kvm_cpuid_entry2 *best;
713 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
714 if (!best || best->eax < 0x80000008)
715 goto not_found;
716 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
717 if (best)
718 return best->eax & 0xff;
719 not_found:
720 return 36;
724 * If no match is found, check whether we exceed the vCPU's limit
725 * and return the content of the highest valid _standard_ leaf instead.
726 * This is to satisfy the CPUID specification.
728 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
729 u32 function, u32 index)
731 struct kvm_cpuid_entry2 *maxlevel;
733 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
734 if (!maxlevel || maxlevel->eax >= function)
735 return NULL;
736 if (function & 0x80000000) {
737 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
738 if (!maxlevel)
739 return NULL;
741 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
744 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
746 u32 function = *eax, index = *ecx;
747 struct kvm_cpuid_entry2 *best;
749 best = kvm_find_cpuid_entry(vcpu, function, index);
751 if (!best)
752 best = check_cpuid_limit(vcpu, function, index);
754 if (best) {
755 *eax = best->eax;
756 *ebx = best->ebx;
757 *ecx = best->ecx;
758 *edx = best->edx;
759 } else
760 *eax = *ebx = *ecx = *edx = 0;
761 trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
763 EXPORT_SYMBOL_GPL(kvm_cpuid);
765 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
767 u32 function, eax, ebx, ecx, edx;
769 function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
770 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
771 kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
772 kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
773 kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
774 kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
775 kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
776 kvm_x86_ops->skip_emulated_instruction(vcpu);
778 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);