3 #include <asm/pgalloc.h>
4 #include <asm/pgtable.h>
6 #include <asm/fixmap.h>
8 #define PGALLOC_GFP GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO
11 #define PGALLOC_USER_GFP __GFP_HIGHMEM
13 #define PGALLOC_USER_GFP 0
16 gfp_t __userpte_alloc_gfp
= PGALLOC_GFP
| PGALLOC_USER_GFP
;
18 pte_t
*pte_alloc_one_kernel(struct mm_struct
*mm
, unsigned long address
)
20 return (pte_t
*)__get_free_page(PGALLOC_GFP
);
23 pgtable_t
pte_alloc_one(struct mm_struct
*mm
, unsigned long address
)
27 pte
= alloc_pages(__userpte_alloc_gfp
, 0);
30 if (!pgtable_page_ctor(pte
)) {
37 static int __init
setup_userpte(char *arg
)
43 * "userpte=nohigh" disables allocation of user pagetables in
46 if (strcmp(arg
, "nohigh") == 0)
47 __userpte_alloc_gfp
&= ~__GFP_HIGHMEM
;
52 early_param("userpte", setup_userpte
);
54 void ___pte_free_tlb(struct mmu_gather
*tlb
, struct page
*pte
)
56 pgtable_page_dtor(pte
);
57 paravirt_release_pte(page_to_pfn(pte
));
58 tlb_remove_page(tlb
, pte
);
61 #if PAGETABLE_LEVELS > 2
62 void ___pmd_free_tlb(struct mmu_gather
*tlb
, pmd_t
*pmd
)
64 struct page
*page
= virt_to_page(pmd
);
65 paravirt_release_pmd(__pa(pmd
) >> PAGE_SHIFT
);
67 * NOTE! For PAE, any changes to the top page-directory-pointer-table
68 * entries need a full cr3 reload to flush.
71 tlb
->need_flush_all
= 1;
73 pgtable_pmd_page_dtor(page
);
74 tlb_remove_page(tlb
, page
);
77 #if PAGETABLE_LEVELS > 3
78 void ___pud_free_tlb(struct mmu_gather
*tlb
, pud_t
*pud
)
80 paravirt_release_pud(__pa(pud
) >> PAGE_SHIFT
);
81 tlb_remove_page(tlb
, virt_to_page(pud
));
83 #endif /* PAGETABLE_LEVELS > 3 */
84 #endif /* PAGETABLE_LEVELS > 2 */
86 static inline void pgd_list_add(pgd_t
*pgd
)
88 struct page
*page
= virt_to_page(pgd
);
90 list_add(&page
->lru
, &pgd_list
);
93 static inline void pgd_list_del(pgd_t
*pgd
)
95 struct page
*page
= virt_to_page(pgd
);
100 #define UNSHARED_PTRS_PER_PGD \
101 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
104 static void pgd_set_mm(pgd_t
*pgd
, struct mm_struct
*mm
)
106 BUILD_BUG_ON(sizeof(virt_to_page(pgd
)->index
) < sizeof(mm
));
107 virt_to_page(pgd
)->index
= (pgoff_t
)mm
;
110 struct mm_struct
*pgd_page_get_mm(struct page
*page
)
112 return (struct mm_struct
*)page
->index
;
115 static void pgd_ctor(struct mm_struct
*mm
, pgd_t
*pgd
)
117 /* If the pgd points to a shared pagetable level (either the
118 ptes in non-PAE, or shared PMD in PAE), then just copy the
119 references from swapper_pg_dir. */
120 if (PAGETABLE_LEVELS
== 2 ||
121 (PAGETABLE_LEVELS
== 3 && SHARED_KERNEL_PMD
) ||
122 PAGETABLE_LEVELS
== 4) {
123 clone_pgd_range(pgd
+ KERNEL_PGD_BOUNDARY
,
124 swapper_pg_dir
+ KERNEL_PGD_BOUNDARY
,
128 /* list required to sync kernel mapping updates */
129 if (!SHARED_KERNEL_PMD
) {
135 static void pgd_dtor(pgd_t
*pgd
)
137 if (SHARED_KERNEL_PMD
)
140 spin_lock(&pgd_lock
);
142 spin_unlock(&pgd_lock
);
146 * List of all pgd's needed for non-PAE so it can invalidate entries
147 * in both cached and uncached pgd's; not needed for PAE since the
148 * kernel pmd is shared. If PAE were not to share the pmd a similar
149 * tactic would be needed. This is essentially codepath-based locking
150 * against pageattr.c; it is the unique case in which a valid change
151 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
152 * vmalloc faults work because attached pagetables are never freed.
156 #ifdef CONFIG_X86_PAE
158 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
159 * updating the top-level pagetable entries to guarantee the
160 * processor notices the update. Since this is expensive, and
161 * all 4 top-level entries are used almost immediately in a
162 * new process's life, we just pre-populate them here.
164 * Also, if we're in a paravirt environment where the kernel pmd is
165 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
166 * and initialize the kernel pmds here.
168 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
170 void pud_populate(struct mm_struct
*mm
, pud_t
*pudp
, pmd_t
*pmd
)
172 paravirt_alloc_pmd(mm
, __pa(pmd
) >> PAGE_SHIFT
);
174 /* Note: almost everything apart from _PAGE_PRESENT is
175 reserved at the pmd (PDPT) level. */
176 set_pud(pudp
, __pud(__pa(pmd
) | _PAGE_PRESENT
));
179 * According to Intel App note "TLBs, Paging-Structure Caches,
180 * and Their Invalidation", April 2007, document 317080-001,
181 * section 8.1: in PAE mode we explicitly have to flush the
182 * TLB via cr3 if the top-level pgd is changed...
186 #else /* !CONFIG_X86_PAE */
188 /* No need to prepopulate any pagetable entries in non-PAE modes. */
189 #define PREALLOCATED_PMDS 0
191 #endif /* CONFIG_X86_PAE */
193 static void free_pmds(pmd_t
*pmds
[])
197 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++)
199 pgtable_pmd_page_dtor(virt_to_page(pmds
[i
]));
200 free_page((unsigned long)pmds
[i
]);
204 static int preallocate_pmds(pmd_t
*pmds
[])
209 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
210 pmd_t
*pmd
= (pmd_t
*)__get_free_page(PGALLOC_GFP
);
213 if (pmd
&& !pgtable_pmd_page_ctor(virt_to_page(pmd
))) {
214 free_page((unsigned long)pmd
);
230 * Mop up any pmd pages which may still be attached to the pgd.
231 * Normally they will be freed by munmap/exit_mmap, but any pmd we
232 * preallocate which never got a corresponding vma will need to be
235 static void pgd_mop_up_pmds(struct mm_struct
*mm
, pgd_t
*pgdp
)
239 for(i
= 0; i
< PREALLOCATED_PMDS
; i
++) {
242 if (pgd_val(pgd
) != 0) {
243 pmd_t
*pmd
= (pmd_t
*)pgd_page_vaddr(pgd
);
245 pgdp
[i
] = native_make_pgd(0);
247 paravirt_release_pmd(pgd_val(pgd
) >> PAGE_SHIFT
);
253 static void pgd_prepopulate_pmd(struct mm_struct
*mm
, pgd_t
*pgd
, pmd_t
*pmds
[])
258 if (PREALLOCATED_PMDS
== 0) /* Work around gcc-3.4.x bug */
261 pud
= pud_offset(pgd
, 0);
263 for (i
= 0; i
< PREALLOCATED_PMDS
; i
++, pud
++) {
264 pmd_t
*pmd
= pmds
[i
];
266 if (i
>= KERNEL_PGD_BOUNDARY
)
267 memcpy(pmd
, (pmd_t
*)pgd_page_vaddr(swapper_pg_dir
[i
]),
268 sizeof(pmd_t
) * PTRS_PER_PMD
);
270 pud_populate(mm
, pud
, pmd
);
274 pgd_t
*pgd_alloc(struct mm_struct
*mm
)
277 pmd_t
*pmds
[PREALLOCATED_PMDS
];
279 pgd
= (pgd_t
*)__get_free_page(PGALLOC_GFP
);
286 if (preallocate_pmds(pmds
) != 0)
289 if (paravirt_pgd_alloc(mm
) != 0)
293 * Make sure that pre-populating the pmds is atomic with
294 * respect to anything walking the pgd_list, so that they
295 * never see a partially populated pgd.
297 spin_lock(&pgd_lock
);
300 pgd_prepopulate_pmd(mm
, pgd
, pmds
);
302 spin_unlock(&pgd_lock
);
309 free_page((unsigned long)pgd
);
314 void pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
316 pgd_mop_up_pmds(mm
, pgd
);
318 paravirt_pgd_free(mm
, pgd
);
319 free_page((unsigned long)pgd
);
323 * Used to set accessed or dirty bits in the page table entries
324 * on other architectures. On x86, the accessed and dirty bits
325 * are tracked by hardware. However, do_wp_page calls this function
326 * to also make the pte writeable at the same time the dirty bit is
327 * set. In that case we do actually need to write the PTE.
329 int ptep_set_access_flags(struct vm_area_struct
*vma
,
330 unsigned long address
, pte_t
*ptep
,
331 pte_t entry
, int dirty
)
333 int changed
= !pte_same(*ptep
, entry
);
335 if (changed
&& dirty
) {
337 pte_update_defer(vma
->vm_mm
, address
, ptep
);
343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
344 int pmdp_set_access_flags(struct vm_area_struct
*vma
,
345 unsigned long address
, pmd_t
*pmdp
,
346 pmd_t entry
, int dirty
)
348 int changed
= !pmd_same(*pmdp
, entry
);
350 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
352 if (changed
&& dirty
) {
354 pmd_update_defer(vma
->vm_mm
, address
, pmdp
);
356 * We had a write-protection fault here and changed the pmd
357 * to to more permissive. No need to flush the TLB for that,
358 * #PF is architecturally guaranteed to do that and in the
359 * worst-case we'll generate a spurious fault.
367 int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
368 unsigned long addr
, pte_t
*ptep
)
372 if (pte_young(*ptep
))
373 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
374 (unsigned long *) &ptep
->pte
);
377 pte_update(vma
->vm_mm
, addr
, ptep
);
382 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
383 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
384 unsigned long addr
, pmd_t
*pmdp
)
388 if (pmd_young(*pmdp
))
389 ret
= test_and_clear_bit(_PAGE_BIT_ACCESSED
,
390 (unsigned long *)pmdp
);
393 pmd_update(vma
->vm_mm
, addr
, pmdp
);
399 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
400 unsigned long address
, pte_t
*ptep
)
404 young
= ptep_test_and_clear_young(vma
, address
, ptep
);
406 flush_tlb_page(vma
, address
);
411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
412 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
413 unsigned long address
, pmd_t
*pmdp
)
417 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
419 young
= pmdp_test_and_clear_young(vma
, address
, pmdp
);
421 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
426 void pmdp_splitting_flush(struct vm_area_struct
*vma
,
427 unsigned long address
, pmd_t
*pmdp
)
430 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
431 set
= !test_and_set_bit(_PAGE_BIT_SPLITTING
,
432 (unsigned long *)pmdp
);
434 pmd_update(vma
->vm_mm
, address
, pmdp
);
435 /* need tlb flush only to serialize against gup-fast */
436 flush_tlb_range(vma
, address
, address
+ HPAGE_PMD_SIZE
);
442 * reserve_top_address - reserves a hole in the top of kernel address space
443 * @reserve - size of hole to reserve
445 * Can be used to relocate the fixmap area and poke a hole in the top
446 * of kernel address space to make room for a hypervisor.
448 void __init
reserve_top_address(unsigned long reserve
)
451 BUG_ON(fixmaps_set
> 0);
452 printk(KERN_INFO
"Reserving virtual address space above 0x%08x\n",
454 __FIXADDR_TOP
= -reserve
- PAGE_SIZE
;
460 void __native_set_fixmap(enum fixed_addresses idx
, pte_t pte
)
462 unsigned long address
= __fix_to_virt(idx
);
464 if (idx
>= __end_of_fixed_addresses
) {
468 set_pte_vaddr(address
, pte
);
472 void native_set_fixmap(enum fixed_addresses idx
, phys_addr_t phys
,
475 __native_set_fixmap(idx
, pfn_pte(phys
>> PAGE_SHIFT
, flags
));