2 * Common EFI (Extensible Firmware Interface) support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 1999 VA Linux Systems
6 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7 * Copyright (C) 1999-2002 Hewlett-Packard Co.
8 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Stephane Eranian <eranian@hpl.hp.com>
10 * Copyright (C) 2005-2008 Intel Co.
11 * Fenghua Yu <fenghua.yu@intel.com>
12 * Bibo Mao <bibo.mao@intel.com>
13 * Chandramouli Narayanan <mouli@linux.intel.com>
14 * Huang Ying <ying.huang@intel.com>
15 * Copyright (C) 2013 SuSE Labs
16 * Borislav Petkov <bp@suse.de> - runtime services VA mapping
18 * Copied from efi_32.c to eliminate the duplicated code between EFI
19 * 32/64 support code. --ying 2007-10-26
21 * All EFI Runtime Services are not implemented yet as EFI only
22 * supports physical mode addressing on SoftSDV. This is to be fixed
23 * in a future version. --drummond 1999-07-20
25 * Implemented EFI runtime services and virtual mode calls. --davidm
27 * Goutham Rao: <goutham.rao@intel.com>
28 * Skip non-WB memory and ignore empty memory ranges.
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
48 #include <asm/setup.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
58 #define EFI_MIN_RESERVE 5120
60 #define EFI_DUMMY_GUID \
61 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
63 static efi_char16_t efi_dummy_name
[6] = { 'D', 'U', 'M', 'M', 'Y', 0 };
65 struct efi_memory_map memmap
;
67 static struct efi efi_phys __initdata
;
68 static efi_system_table_t efi_systab __initdata
;
70 unsigned long x86_efi_facility
;
72 static __initdata efi_config_table_type_t arch_tables
[] = {
74 {UV_SYSTEM_TABLE_GUID
, "UVsystab", &efi
.uv_systab
},
76 {NULL_GUID
, NULL
, NULL
},
79 u64 efi_setup
; /* efi setup_data physical address */
82 * Returns 1 if 'facility' is enabled, 0 otherwise.
84 int efi_enabled(int facility
)
86 return test_bit(facility
, &x86_efi_facility
) != 0;
88 EXPORT_SYMBOL(efi_enabled
);
90 static bool __initdata disable_runtime
= false;
91 static int __init
setup_noefi(char *arg
)
93 disable_runtime
= true;
96 early_param("noefi", setup_noefi
);
99 EXPORT_SYMBOL(add_efi_memmap
);
101 static int __init
setup_add_efi_memmap(char *arg
)
106 early_param("add_efi_memmap", setup_add_efi_memmap
);
108 static bool efi_no_storage_paranoia
;
110 static int __init
setup_storage_paranoia(char *arg
)
112 efi_no_storage_paranoia
= true;
115 early_param("efi_no_storage_paranoia", setup_storage_paranoia
);
117 static efi_status_t
virt_efi_get_time(efi_time_t
*tm
, efi_time_cap_t
*tc
)
122 spin_lock_irqsave(&rtc_lock
, flags
);
123 status
= efi_call_virt2(get_time
, tm
, tc
);
124 spin_unlock_irqrestore(&rtc_lock
, flags
);
128 static efi_status_t
virt_efi_set_time(efi_time_t
*tm
)
133 spin_lock_irqsave(&rtc_lock
, flags
);
134 status
= efi_call_virt1(set_time
, tm
);
135 spin_unlock_irqrestore(&rtc_lock
, flags
);
139 static efi_status_t
virt_efi_get_wakeup_time(efi_bool_t
*enabled
,
146 spin_lock_irqsave(&rtc_lock
, flags
);
147 status
= efi_call_virt3(get_wakeup_time
,
148 enabled
, pending
, tm
);
149 spin_unlock_irqrestore(&rtc_lock
, flags
);
153 static efi_status_t
virt_efi_set_wakeup_time(efi_bool_t enabled
, efi_time_t
*tm
)
158 spin_lock_irqsave(&rtc_lock
, flags
);
159 status
= efi_call_virt2(set_wakeup_time
,
161 spin_unlock_irqrestore(&rtc_lock
, flags
);
165 static efi_status_t
virt_efi_get_variable(efi_char16_t
*name
,
168 unsigned long *data_size
,
171 return efi_call_virt5(get_variable
,
176 static efi_status_t
virt_efi_get_next_variable(unsigned long *name_size
,
180 return efi_call_virt3(get_next_variable
,
181 name_size
, name
, vendor
);
184 static efi_status_t
virt_efi_set_variable(efi_char16_t
*name
,
187 unsigned long data_size
,
190 return efi_call_virt5(set_variable
,
195 static efi_status_t
virt_efi_query_variable_info(u32 attr
,
197 u64
*remaining_space
,
198 u64
*max_variable_size
)
200 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
201 return EFI_UNSUPPORTED
;
203 return efi_call_virt4(query_variable_info
, attr
, storage_space
,
204 remaining_space
, max_variable_size
);
207 static efi_status_t
virt_efi_get_next_high_mono_count(u32
*count
)
209 return efi_call_virt1(get_next_high_mono_count
, count
);
212 static void virt_efi_reset_system(int reset_type
,
214 unsigned long data_size
,
217 efi_call_virt4(reset_system
, reset_type
, status
,
221 static efi_status_t
virt_efi_update_capsule(efi_capsule_header_t
**capsules
,
223 unsigned long sg_list
)
225 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
226 return EFI_UNSUPPORTED
;
228 return efi_call_virt3(update_capsule
, capsules
, count
, sg_list
);
231 static efi_status_t
virt_efi_query_capsule_caps(efi_capsule_header_t
**capsules
,
236 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
237 return EFI_UNSUPPORTED
;
239 return efi_call_virt4(query_capsule_caps
, capsules
, count
, max_size
,
243 static efi_status_t __init
phys_efi_set_virtual_address_map(
244 unsigned long memory_map_size
,
245 unsigned long descriptor_size
,
246 u32 descriptor_version
,
247 efi_memory_desc_t
*virtual_map
)
251 efi_call_phys_prelog();
252 status
= efi_call_phys4(efi_phys
.set_virtual_address_map
,
253 memory_map_size
, descriptor_size
,
254 descriptor_version
, virtual_map
);
255 efi_call_phys_epilog();
259 static efi_status_t __init
phys_efi_get_time(efi_time_t
*tm
,
265 spin_lock_irqsave(&rtc_lock
, flags
);
266 efi_call_phys_prelog();
267 status
= efi_call_phys2(efi_phys
.get_time
, virt_to_phys(tm
),
269 efi_call_phys_epilog();
270 spin_unlock_irqrestore(&rtc_lock
, flags
);
274 int efi_set_rtc_mmss(const struct timespec
*now
)
276 unsigned long nowtime
= now
->tv_sec
;
282 status
= efi
.get_time(&eft
, &cap
);
283 if (status
!= EFI_SUCCESS
) {
284 pr_err("Oops: efitime: can't read time!\n");
288 rtc_time_to_tm(nowtime
, &tm
);
289 if (!rtc_valid_tm(&tm
)) {
290 eft
.year
= tm
.tm_year
+ 1900;
291 eft
.month
= tm
.tm_mon
+ 1;
292 eft
.day
= tm
.tm_mday
;
293 eft
.minute
= tm
.tm_min
;
294 eft
.second
= tm
.tm_sec
;
298 "%s: Invalid EFI RTC value: write of %lx to EFI RTC failed\n",
299 __FUNCTION__
, nowtime
);
303 status
= efi
.set_time(&eft
);
304 if (status
!= EFI_SUCCESS
) {
305 pr_err("Oops: efitime: can't write time!\n");
311 void efi_get_time(struct timespec
*now
)
317 status
= efi
.get_time(&eft
, &cap
);
318 if (status
!= EFI_SUCCESS
)
319 pr_err("Oops: efitime: can't read time!\n");
321 now
->tv_sec
= mktime(eft
.year
, eft
.month
, eft
.day
, eft
.hour
,
322 eft
.minute
, eft
.second
);
327 * Tell the kernel about the EFI memory map. This might include
328 * more than the max 128 entries that can fit in the e820 legacy
329 * (zeropage) memory map.
332 static void __init
do_add_efi_memmap(void)
336 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
337 efi_memory_desc_t
*md
= p
;
338 unsigned long long start
= md
->phys_addr
;
339 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
343 case EFI_LOADER_CODE
:
344 case EFI_LOADER_DATA
:
345 case EFI_BOOT_SERVICES_CODE
:
346 case EFI_BOOT_SERVICES_DATA
:
347 case EFI_CONVENTIONAL_MEMORY
:
348 if (md
->attribute
& EFI_MEMORY_WB
)
349 e820_type
= E820_RAM
;
351 e820_type
= E820_RESERVED
;
353 case EFI_ACPI_RECLAIM_MEMORY
:
354 e820_type
= E820_ACPI
;
356 case EFI_ACPI_MEMORY_NVS
:
357 e820_type
= E820_NVS
;
359 case EFI_UNUSABLE_MEMORY
:
360 e820_type
= E820_UNUSABLE
;
364 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
365 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
366 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
368 e820_type
= E820_RESERVED
;
371 e820_add_region(start
, size
, e820_type
);
373 sanitize_e820_map(e820
.map
, ARRAY_SIZE(e820
.map
), &e820
.nr_map
);
376 int __init
efi_memblock_x86_reserve_range(void)
378 struct efi_info
*e
= &boot_params
.efi_info
;
382 /* Can't handle data above 4GB at this time */
383 if (e
->efi_memmap_hi
) {
384 pr_err("Memory map is above 4GB, disabling EFI.\n");
387 pmap
= e
->efi_memmap
;
389 pmap
= (e
->efi_memmap
| ((__u64
)e
->efi_memmap_hi
<< 32));
391 memmap
.phys_map
= (void *)pmap
;
392 memmap
.nr_map
= e
->efi_memmap_size
/
394 memmap
.desc_size
= e
->efi_memdesc_size
;
395 memmap
.desc_version
= e
->efi_memdesc_version
;
397 memblock_reserve(pmap
, memmap
.nr_map
* memmap
.desc_size
);
399 efi
.memmap
= &memmap
;
404 static void __init
print_efi_memmap(void)
407 efi_memory_desc_t
*md
;
411 for (p
= memmap
.map
, i
= 0;
413 p
+= memmap
.desc_size
, i
++) {
415 pr_info("mem%02u: type=%u, attr=0x%llx, "
416 "range=[0x%016llx-0x%016llx) (%lluMB)\n",
417 i
, md
->type
, md
->attribute
, md
->phys_addr
,
418 md
->phys_addr
+ (md
->num_pages
<< EFI_PAGE_SHIFT
),
419 (md
->num_pages
>> (20 - EFI_PAGE_SHIFT
)));
421 #endif /* EFI_DEBUG */
424 void __init
efi_reserve_boot_services(void)
428 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
429 efi_memory_desc_t
*md
= p
;
430 u64 start
= md
->phys_addr
;
431 u64 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
433 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
434 md
->type
!= EFI_BOOT_SERVICES_DATA
)
436 /* Only reserve where possible:
437 * - Not within any already allocated areas
438 * - Not over any memory area (really needed, if above?)
439 * - Not within any part of the kernel
440 * - Not the bios reserved area
442 if ((start
+ size
> __pa_symbol(_text
)
443 && start
<= __pa_symbol(_end
)) ||
444 !e820_all_mapped(start
, start
+size
, E820_RAM
) ||
445 memblock_is_region_reserved(start
, size
)) {
446 /* Could not reserve, skip it */
448 memblock_dbg("Could not reserve boot range "
449 "[0x%010llx-0x%010llx]\n",
450 start
, start
+size
-1);
452 memblock_reserve(start
, size
);
456 void __init
efi_unmap_memmap(void)
458 clear_bit(EFI_MEMMAP
, &x86_efi_facility
);
460 early_iounmap(memmap
.map
, memmap
.nr_map
* memmap
.desc_size
);
465 void __init
efi_free_boot_services(void)
469 if (!efi_is_native())
472 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
473 efi_memory_desc_t
*md
= p
;
474 unsigned long long start
= md
->phys_addr
;
475 unsigned long long size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
477 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
478 md
->type
!= EFI_BOOT_SERVICES_DATA
)
481 /* Could not reserve boot area */
485 free_bootmem_late(start
, size
);
491 static int __init
efi_systab_init(void *phys
)
493 if (efi_enabled(EFI_64BIT
)) {
494 efi_system_table_64_t
*systab64
;
495 struct efi_setup_data
*data
= NULL
;
499 data
= early_memremap(efi_setup
, sizeof(*data
));
503 systab64
= early_ioremap((unsigned long)phys
,
505 if (systab64
== NULL
) {
506 pr_err("Couldn't map the system table!\n");
508 early_iounmap(data
, sizeof(*data
));
512 efi_systab
.hdr
= systab64
->hdr
;
513 efi_systab
.fw_vendor
= data
? (unsigned long)data
->fw_vendor
:
515 tmp
|= data
? data
->fw_vendor
: systab64
->fw_vendor
;
516 efi_systab
.fw_revision
= systab64
->fw_revision
;
517 efi_systab
.con_in_handle
= systab64
->con_in_handle
;
518 tmp
|= systab64
->con_in_handle
;
519 efi_systab
.con_in
= systab64
->con_in
;
520 tmp
|= systab64
->con_in
;
521 efi_systab
.con_out_handle
= systab64
->con_out_handle
;
522 tmp
|= systab64
->con_out_handle
;
523 efi_systab
.con_out
= systab64
->con_out
;
524 tmp
|= systab64
->con_out
;
525 efi_systab
.stderr_handle
= systab64
->stderr_handle
;
526 tmp
|= systab64
->stderr_handle
;
527 efi_systab
.stderr
= systab64
->stderr
;
528 tmp
|= systab64
->stderr
;
529 efi_systab
.runtime
= data
?
530 (void *)(unsigned long)data
->runtime
:
531 (void *)(unsigned long)systab64
->runtime
;
532 tmp
|= data
? data
->runtime
: systab64
->runtime
;
533 efi_systab
.boottime
= (void *)(unsigned long)systab64
->boottime
;
534 tmp
|= systab64
->boottime
;
535 efi_systab
.nr_tables
= systab64
->nr_tables
;
536 efi_systab
.tables
= data
? (unsigned long)data
->tables
:
538 tmp
|= data
? data
->tables
: systab64
->tables
;
540 early_iounmap(systab64
, sizeof(*systab64
));
542 early_iounmap(data
, sizeof(*data
));
545 pr_err("EFI data located above 4GB, disabling EFI.\n");
550 efi_system_table_32_t
*systab32
;
552 systab32
= early_ioremap((unsigned long)phys
,
554 if (systab32
== NULL
) {
555 pr_err("Couldn't map the system table!\n");
559 efi_systab
.hdr
= systab32
->hdr
;
560 efi_systab
.fw_vendor
= systab32
->fw_vendor
;
561 efi_systab
.fw_revision
= systab32
->fw_revision
;
562 efi_systab
.con_in_handle
= systab32
->con_in_handle
;
563 efi_systab
.con_in
= systab32
->con_in
;
564 efi_systab
.con_out_handle
= systab32
->con_out_handle
;
565 efi_systab
.con_out
= systab32
->con_out
;
566 efi_systab
.stderr_handle
= systab32
->stderr_handle
;
567 efi_systab
.stderr
= systab32
->stderr
;
568 efi_systab
.runtime
= (void *)(unsigned long)systab32
->runtime
;
569 efi_systab
.boottime
= (void *)(unsigned long)systab32
->boottime
;
570 efi_systab
.nr_tables
= systab32
->nr_tables
;
571 efi_systab
.tables
= systab32
->tables
;
573 early_iounmap(systab32
, sizeof(*systab32
));
576 efi
.systab
= &efi_systab
;
579 * Verify the EFI Table
581 if (efi
.systab
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
) {
582 pr_err("System table signature incorrect!\n");
585 if ((efi
.systab
->hdr
.revision
>> 16) == 0)
586 pr_err("Warning: System table version "
587 "%d.%02d, expected 1.00 or greater!\n",
588 efi
.systab
->hdr
.revision
>> 16,
589 efi
.systab
->hdr
.revision
& 0xffff);
594 static int __init
efi_runtime_init(void)
596 efi_runtime_services_t
*runtime
;
599 * Check out the runtime services table. We need to map
600 * the runtime services table so that we can grab the physical
601 * address of several of the EFI runtime functions, needed to
602 * set the firmware into virtual mode.
604 runtime
= early_ioremap((unsigned long)efi
.systab
->runtime
,
605 sizeof(efi_runtime_services_t
));
607 pr_err("Could not map the runtime service table!\n");
611 * We will only need *early* access to the following
612 * two EFI runtime services before set_virtual_address_map
615 efi_phys
.get_time
= (efi_get_time_t
*)runtime
->get_time
;
616 efi_phys
.set_virtual_address_map
=
617 (efi_set_virtual_address_map_t
*)
618 runtime
->set_virtual_address_map
;
620 * Make efi_get_time can be called before entering
623 efi
.get_time
= phys_efi_get_time
;
624 early_iounmap(runtime
, sizeof(efi_runtime_services_t
));
629 static int __init
efi_memmap_init(void)
631 /* Map the EFI memory map */
632 memmap
.map
= early_ioremap((unsigned long)memmap
.phys_map
,
633 memmap
.nr_map
* memmap
.desc_size
);
634 if (memmap
.map
== NULL
) {
635 pr_err("Could not map the memory map!\n");
638 memmap
.map_end
= memmap
.map
+ (memmap
.nr_map
* memmap
.desc_size
);
647 * A number of config table entries get remapped to virtual addresses
648 * after entering EFI virtual mode. However, the kexec kernel requires
649 * their physical addresses therefore we pass them via setup_data and
650 * correct those entries to their respective physical addresses here.
652 * Currently only handles smbios which is necessary for some firmware
655 static int __init
efi_reuse_config(u64 tables
, int nr_tables
)
659 struct efi_setup_data
*data
;
664 if (!efi_enabled(EFI_64BIT
))
667 data
= early_memremap(efi_setup
, sizeof(*data
));
676 sz
= sizeof(efi_config_table_64_t
);
678 p
= tablep
= early_memremap(tables
, nr_tables
* sz
);
680 pr_err("Could not map Configuration table!\n");
685 for (i
= 0; i
< efi
.systab
->nr_tables
; i
++) {
688 guid
= ((efi_config_table_64_t
*)p
)->guid
;
690 if (!efi_guidcmp(guid
, SMBIOS_TABLE_GUID
))
691 ((efi_config_table_64_t
*)p
)->table
= data
->smbios
;
694 early_iounmap(tablep
, nr_tables
* sz
);
697 early_iounmap(data
, sizeof(*data
));
702 void __init
efi_init(void)
705 char vendor
[100] = "unknown";
710 if (boot_params
.efi_info
.efi_systab_hi
||
711 boot_params
.efi_info
.efi_memmap_hi
) {
712 pr_info("Table located above 4GB, disabling EFI.\n");
715 efi_phys
.systab
= (efi_system_table_t
*)boot_params
.efi_info
.efi_systab
;
717 efi_phys
.systab
= (efi_system_table_t
*)
718 (boot_params
.efi_info
.efi_systab
|
719 ((__u64
)boot_params
.efi_info
.efi_systab_hi
<<32));
722 if (efi_systab_init(efi_phys
.systab
))
725 set_bit(EFI_SYSTEM_TABLES
, &x86_efi_facility
);
727 efi
.config_table
= (unsigned long)efi
.systab
->tables
;
728 efi
.fw_vendor
= (unsigned long)efi
.systab
->fw_vendor
;
729 efi
.runtime
= (unsigned long)efi
.systab
->runtime
;
732 * Show what we know for posterity
734 c16
= tmp
= early_ioremap(efi
.systab
->fw_vendor
, 2);
736 for (i
= 0; i
< sizeof(vendor
) - 1 && *c16
; ++i
)
740 pr_err("Could not map the firmware vendor!\n");
741 early_iounmap(tmp
, 2);
743 pr_info("EFI v%u.%.02u by %s\n",
744 efi
.systab
->hdr
.revision
>> 16,
745 efi
.systab
->hdr
.revision
& 0xffff, vendor
);
747 if (efi_reuse_config(efi
.systab
->tables
, efi
.systab
->nr_tables
))
750 if (efi_config_init(arch_tables
))
753 set_bit(EFI_CONFIG_TABLES
, &x86_efi_facility
);
756 * Note: We currently don't support runtime services on an EFI
757 * that doesn't match the kernel 32/64-bit mode.
760 if (!efi_is_native())
761 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
763 if (disable_runtime
|| efi_runtime_init())
765 set_bit(EFI_RUNTIME_SERVICES
, &x86_efi_facility
);
767 if (efi_memmap_init())
770 set_bit(EFI_MEMMAP
, &x86_efi_facility
);
775 void __init
efi_late_init(void)
780 void __init
efi_set_executable(efi_memory_desc_t
*md
, bool executable
)
784 addr
= md
->virt_addr
;
785 npages
= md
->num_pages
;
787 memrange_efi_to_native(&addr
, &npages
);
790 set_memory_x(addr
, npages
);
792 set_memory_nx(addr
, npages
);
795 static void __init
runtime_code_page_mkexec(void)
797 efi_memory_desc_t
*md
;
800 /* Make EFI runtime service code area executable */
801 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
804 if (md
->type
!= EFI_RUNTIME_SERVICES_CODE
)
807 efi_set_executable(md
, true);
811 void efi_memory_uc(u64 addr
, unsigned long size
)
813 unsigned long page_shift
= 1UL << EFI_PAGE_SHIFT
;
816 npages
= round_up(size
, page_shift
) / page_shift
;
817 memrange_efi_to_native(&addr
, &npages
);
818 set_memory_uc(addr
, npages
);
821 void __init
old_map_region(efi_memory_desc_t
*md
)
823 u64 start_pfn
, end_pfn
, end
;
827 start_pfn
= PFN_DOWN(md
->phys_addr
);
828 size
= md
->num_pages
<< PAGE_SHIFT
;
829 end
= md
->phys_addr
+ size
;
830 end_pfn
= PFN_UP(end
);
832 if (pfn_range_is_mapped(start_pfn
, end_pfn
)) {
833 va
= __va(md
->phys_addr
);
835 if (!(md
->attribute
& EFI_MEMORY_WB
))
836 efi_memory_uc((u64
)(unsigned long)va
, size
);
838 va
= efi_ioremap(md
->phys_addr
, size
,
839 md
->type
, md
->attribute
);
841 md
->virt_addr
= (u64
) (unsigned long) va
;
843 pr_err("ioremap of 0x%llX failed!\n",
844 (unsigned long long)md
->phys_addr
);
847 /* Merge contiguous regions of the same type and attribute */
848 static void __init
efi_merge_regions(void)
851 efi_memory_desc_t
*md
, *prev_md
= NULL
;
853 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
862 if (prev_md
->type
!= md
->type
||
863 prev_md
->attribute
!= md
->attribute
) {
868 prev_size
= prev_md
->num_pages
<< EFI_PAGE_SHIFT
;
870 if (md
->phys_addr
== (prev_md
->phys_addr
+ prev_size
)) {
871 prev_md
->num_pages
+= md
->num_pages
;
872 md
->type
= EFI_RESERVED_TYPE
;
880 static void __init
get_systab_virt_addr(efi_memory_desc_t
*md
)
885 size
= md
->num_pages
<< EFI_PAGE_SHIFT
;
886 end
= md
->phys_addr
+ size
;
887 systab
= (u64
)(unsigned long)efi_phys
.systab
;
888 if (md
->phys_addr
<= systab
&& systab
< end
) {
889 systab
+= md
->virt_addr
- md
->phys_addr
;
890 efi
.systab
= (efi_system_table_t
*)(unsigned long)systab
;
894 static int __init
save_runtime_map(void)
896 efi_memory_desc_t
*md
;
897 void *tmp
, *p
, *q
= NULL
;
900 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
903 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
) ||
904 (md
->type
== EFI_BOOT_SERVICES_CODE
) ||
905 (md
->type
== EFI_BOOT_SERVICES_DATA
))
907 tmp
= krealloc(q
, (count
+ 1) * memmap
.desc_size
, GFP_KERNEL
);
912 memcpy(q
+ count
* memmap
.desc_size
, md
, memmap
.desc_size
);
916 efi_runtime_map_setup(q
, count
, memmap
.desc_size
);
925 * Map efi regions which were passed via setup_data. The virt_addr is a fixed
926 * addr which was used in first kernel of a kexec boot.
928 static void __init
efi_map_regions_fixed(void)
931 efi_memory_desc_t
*md
;
933 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
935 efi_map_region_fixed(md
); /* FIXME: add error handling */
936 get_systab_virt_addr(md
);
942 * Map efi memory ranges for runtime serivce and update new_memmap with virtual
945 static void * __init
efi_map_regions(int *count
)
947 efi_memory_desc_t
*md
;
948 void *p
, *tmp
, *new_memmap
= NULL
;
950 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
952 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
)) {
954 if (md
->type
!= EFI_BOOT_SERVICES_CODE
&&
955 md
->type
!= EFI_BOOT_SERVICES_DATA
)
961 get_systab_virt_addr(md
);
963 tmp
= krealloc(new_memmap
, (*count
+ 1) * memmap
.desc_size
,
968 memcpy(new_memmap
+ (*count
* memmap
.desc_size
), md
,
980 * This function will switch the EFI runtime services to virtual mode.
981 * Essentially, we look through the EFI memmap and map every region that
982 * has the runtime attribute bit set in its memory descriptor into the
983 * ->trampoline_pgd page table using a top-down VA allocation scheme.
985 * The old method which used to update that memory descriptor with the
986 * virtual address obtained from ioremap() is still supported when the
987 * kernel is booted with efi=old_map on its command line. Same old
988 * method enabled the runtime services to be called without having to
989 * thunk back into physical mode for every invocation.
991 * The new method does a pagetable switch in a preemption-safe manner
992 * so that we're in a different address space when calling a runtime
993 * function. For function arguments passing we do copy the PGDs of the
994 * kernel page table into ->trampoline_pgd prior to each call.
996 * Specially for kexec boot, efi runtime maps in previous kernel should
997 * be passed in via setup_data. In that case runtime ranges will be mapped
998 * to the same virtual addresses as the first kernel.
1000 void __init
efi_enter_virtual_mode(void)
1002 efi_status_t status
;
1003 void *new_memmap
= NULL
;
1009 * We don't do virtual mode, since we don't do runtime services, on
1012 if (!efi_is_native()) {
1018 efi_map_regions_fixed();
1020 efi_merge_regions();
1021 new_memmap
= efi_map_regions(&count
);
1023 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
1028 err
= save_runtime_map();
1030 pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
1032 BUG_ON(!efi
.systab
);
1034 efi_setup_page_tables();
1035 efi_sync_low_kernel_mappings();
1038 status
= phys_efi_set_virtual_address_map(
1039 memmap
.desc_size
* count
,
1041 memmap
.desc_version
,
1042 (efi_memory_desc_t
*)__pa(new_memmap
));
1044 if (status
!= EFI_SUCCESS
) {
1045 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
1047 panic("EFI call to SetVirtualAddressMap() failed!");
1052 * Now that EFI is in virtual mode, update the function
1053 * pointers in the runtime service table to the new virtual addresses.
1055 * Call EFI services through wrapper functions.
1057 efi
.runtime_version
= efi_systab
.hdr
.revision
;
1058 efi
.get_time
= virt_efi_get_time
;
1059 efi
.set_time
= virt_efi_set_time
;
1060 efi
.get_wakeup_time
= virt_efi_get_wakeup_time
;
1061 efi
.set_wakeup_time
= virt_efi_set_wakeup_time
;
1062 efi
.get_variable
= virt_efi_get_variable
;
1063 efi
.get_next_variable
= virt_efi_get_next_variable
;
1064 efi
.set_variable
= virt_efi_set_variable
;
1065 efi
.get_next_high_mono_count
= virt_efi_get_next_high_mono_count
;
1066 efi
.reset_system
= virt_efi_reset_system
;
1067 efi
.set_virtual_address_map
= NULL
;
1068 efi
.query_variable_info
= virt_efi_query_variable_info
;
1069 efi
.update_capsule
= virt_efi_update_capsule
;
1070 efi
.query_capsule_caps
= virt_efi_query_capsule_caps
;
1072 if (efi_enabled(EFI_OLD_MEMMAP
) && (__supported_pte_mask
& _PAGE_NX
))
1073 runtime_code_page_mkexec();
1077 /* clean DUMMY object */
1078 efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
1079 EFI_VARIABLE_NON_VOLATILE
|
1080 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
1081 EFI_VARIABLE_RUNTIME_ACCESS
,
1086 * Convenience functions to obtain memory types and attributes
1088 u32
efi_mem_type(unsigned long phys_addr
)
1090 efi_memory_desc_t
*md
;
1093 if (!efi_enabled(EFI_MEMMAP
))
1096 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
1098 if ((md
->phys_addr
<= phys_addr
) &&
1099 (phys_addr
< (md
->phys_addr
+
1100 (md
->num_pages
<< EFI_PAGE_SHIFT
))))
1106 u64
efi_mem_attributes(unsigned long phys_addr
)
1108 efi_memory_desc_t
*md
;
1111 for (p
= memmap
.map
; p
< memmap
.map_end
; p
+= memmap
.desc_size
) {
1113 if ((md
->phys_addr
<= phys_addr
) &&
1114 (phys_addr
< (md
->phys_addr
+
1115 (md
->num_pages
<< EFI_PAGE_SHIFT
))))
1116 return md
->attribute
;
1122 * Some firmware has serious problems when using more than 50% of the EFI
1123 * variable store, i.e. it triggers bugs that can brick machines. Ensure that
1124 * we never use more than this safe limit.
1126 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
1129 efi_status_t
efi_query_variable_store(u32 attributes
, unsigned long size
)
1131 efi_status_t status
;
1132 u64 storage_size
, remaining_size
, max_size
;
1134 if (!(attributes
& EFI_VARIABLE_NON_VOLATILE
))
1137 status
= efi
.query_variable_info(attributes
, &storage_size
,
1138 &remaining_size
, &max_size
);
1139 if (status
!= EFI_SUCCESS
)
1143 * Some firmware implementations refuse to boot if there's insufficient
1144 * space in the variable store. We account for that by refusing the
1145 * write if permitting it would reduce the available space to under
1146 * 5KB. This figure was provided by Samsung, so should be safe.
1148 if ((remaining_size
- size
< EFI_MIN_RESERVE
) &&
1149 !efi_no_storage_paranoia
) {
1152 * Triggering garbage collection may require that the firmware
1153 * generate a real EFI_OUT_OF_RESOURCES error. We can force
1154 * that by attempting to use more space than is available.
1156 unsigned long dummy_size
= remaining_size
+ 1024;
1157 void *dummy
= kzalloc(dummy_size
, GFP_ATOMIC
);
1160 return EFI_OUT_OF_RESOURCES
;
1162 status
= efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
1163 EFI_VARIABLE_NON_VOLATILE
|
1164 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
1165 EFI_VARIABLE_RUNTIME_ACCESS
,
1168 if (status
== EFI_SUCCESS
) {
1170 * This should have failed, so if it didn't make sure
1171 * that we delete it...
1173 efi
.set_variable(efi_dummy_name
, &EFI_DUMMY_GUID
,
1174 EFI_VARIABLE_NON_VOLATILE
|
1175 EFI_VARIABLE_BOOTSERVICE_ACCESS
|
1176 EFI_VARIABLE_RUNTIME_ACCESS
,
1183 * The runtime code may now have triggered a garbage collection
1184 * run, so check the variable info again
1186 status
= efi
.query_variable_info(attributes
, &storage_size
,
1187 &remaining_size
, &max_size
);
1189 if (status
!= EFI_SUCCESS
)
1193 * There still isn't enough room, so return an error
1195 if (remaining_size
- size
< EFI_MIN_RESERVE
)
1196 return EFI_OUT_OF_RESOURCES
;
1201 EXPORT_SYMBOL_GPL(efi_query_variable_store
);
1203 static int __init
parse_efi_cmdline(char *str
)
1208 if (!strncmp(str
, "old_map", 7))
1209 set_bit(EFI_OLD_MEMMAP
, &x86_efi_facility
);
1213 early_param("efi", parse_efi_cmdline
);