2 * Freescale MPC85xx, MPC83xx DMA Engine support
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
40 #include "dmaengine.h"
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
48 static const char msg_ld_oom
[] = "No free memory for link descriptor";
54 static void set_sr(struct fsldma_chan
*chan
, u32 val
)
56 DMA_OUT(chan
, &chan
->regs
->sr
, val
, 32);
59 static u32
get_sr(struct fsldma_chan
*chan
)
61 return DMA_IN(chan
, &chan
->regs
->sr
, 32);
64 static void set_cdar(struct fsldma_chan
*chan
, dma_addr_t addr
)
66 DMA_OUT(chan
, &chan
->regs
->cdar
, addr
| FSL_DMA_SNEN
, 64);
69 static dma_addr_t
get_cdar(struct fsldma_chan
*chan
)
71 return DMA_IN(chan
, &chan
->regs
->cdar
, 64) & ~FSL_DMA_SNEN
;
74 static u32
get_bcr(struct fsldma_chan
*chan
)
76 return DMA_IN(chan
, &chan
->regs
->bcr
, 32);
83 static void set_desc_cnt(struct fsldma_chan
*chan
,
84 struct fsl_dma_ld_hw
*hw
, u32 count
)
86 hw
->count
= CPU_TO_DMA(chan
, count
, 32);
89 static void set_desc_src(struct fsldma_chan
*chan
,
90 struct fsl_dma_ld_hw
*hw
, dma_addr_t src
)
94 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
95 ? ((u64
)FSL_DMA_SATR_SREADTYPE_SNOOP_READ
<< 32) : 0;
96 hw
->src_addr
= CPU_TO_DMA(chan
, snoop_bits
| src
, 64);
99 static void set_desc_dst(struct fsldma_chan
*chan
,
100 struct fsl_dma_ld_hw
*hw
, dma_addr_t dst
)
104 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
)
105 ? ((u64
)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE
<< 32) : 0;
106 hw
->dst_addr
= CPU_TO_DMA(chan
, snoop_bits
| dst
, 64);
109 static void set_desc_next(struct fsldma_chan
*chan
,
110 struct fsl_dma_ld_hw
*hw
, dma_addr_t next
)
114 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
116 hw
->next_ln_addr
= CPU_TO_DMA(chan
, snoop_bits
| next
, 64);
119 static void set_ld_eol(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
123 snoop_bits
= ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_83XX
)
126 desc
->hw
.next_ln_addr
= CPU_TO_DMA(chan
,
127 DMA_TO_CPU(chan
, desc
->hw
.next_ln_addr
, 64) | FSL_DMA_EOL
132 * DMA Engine Hardware Control Helpers
135 static void dma_init(struct fsldma_chan
*chan
)
137 /* Reset the channel */
138 DMA_OUT(chan
, &chan
->regs
->mr
, 0, 32);
140 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
141 case FSL_DMA_IP_85XX
:
142 /* Set the channel to below modes:
143 * EIE - Error interrupt enable
144 * EOLNIE - End of links interrupt enable
145 * BWC - Bandwidth sharing among channels
147 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_BWC
148 | FSL_DMA_MR_EIE
| FSL_DMA_MR_EOLNIE
, 32);
150 case FSL_DMA_IP_83XX
:
151 /* Set the channel to below modes:
152 * EOTIE - End-of-transfer interrupt enable
153 * PRC_RM - PCI read multiple
155 DMA_OUT(chan
, &chan
->regs
->mr
, FSL_DMA_MR_EOTIE
156 | FSL_DMA_MR_PRC_RM
, 32);
161 static int dma_is_idle(struct fsldma_chan
*chan
)
163 u32 sr
= get_sr(chan
);
164 return (!(sr
& FSL_DMA_SR_CB
)) || (sr
& FSL_DMA_SR_CH
);
168 * Start the DMA controller
171 * - the CDAR register must point to the start descriptor
172 * - the MRn[CS] bit must be cleared
174 static void dma_start(struct fsldma_chan
*chan
)
178 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
180 if (chan
->feature
& FSL_DMA_CHAN_PAUSE_EXT
) {
181 DMA_OUT(chan
, &chan
->regs
->bcr
, 0, 32);
182 mode
|= FSL_DMA_MR_EMP_EN
;
184 mode
&= ~FSL_DMA_MR_EMP_EN
;
187 if (chan
->feature
& FSL_DMA_CHAN_START_EXT
) {
188 mode
|= FSL_DMA_MR_EMS_EN
;
190 mode
&= ~FSL_DMA_MR_EMS_EN
;
191 mode
|= FSL_DMA_MR_CS
;
194 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
197 static void dma_halt(struct fsldma_chan
*chan
)
202 /* read the mode register */
203 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
206 * The 85xx controller supports channel abort, which will stop
207 * the current transfer. On 83xx, this bit is the transfer error
208 * mask bit, which should not be changed.
210 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
211 mode
|= FSL_DMA_MR_CA
;
212 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
214 mode
&= ~FSL_DMA_MR_CA
;
217 /* stop the DMA controller */
218 mode
&= ~(FSL_DMA_MR_CS
| FSL_DMA_MR_EMS_EN
);
219 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
221 /* wait for the DMA controller to become idle */
222 for (i
= 0; i
< 100; i
++) {
223 if (dma_is_idle(chan
))
229 if (!dma_is_idle(chan
))
230 chan_err(chan
, "DMA halt timeout!\n");
234 * fsl_chan_set_src_loop_size - Set source address hold transfer size
235 * @chan : Freescale DMA channel
236 * @size : Address loop size, 0 for disable loop
238 * The set source address hold transfer size. The source
239 * address hold or loop transfer size is when the DMA transfer
240 * data from source address (SA), if the loop size is 4, the DMA will
241 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
242 * SA + 1 ... and so on.
244 static void fsl_chan_set_src_loop_size(struct fsldma_chan
*chan
, int size
)
248 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
252 mode
&= ~FSL_DMA_MR_SAHE
;
258 mode
|= FSL_DMA_MR_SAHE
| (__ilog2(size
) << 14);
262 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
266 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
267 * @chan : Freescale DMA channel
268 * @size : Address loop size, 0 for disable loop
270 * The set destination address hold transfer size. The destination
271 * address hold or loop transfer size is when the DMA transfer
272 * data to destination address (TA), if the loop size is 4, the DMA will
273 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
274 * TA + 1 ... and so on.
276 static void fsl_chan_set_dst_loop_size(struct fsldma_chan
*chan
, int size
)
280 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
284 mode
&= ~FSL_DMA_MR_DAHE
;
290 mode
|= FSL_DMA_MR_DAHE
| (__ilog2(size
) << 16);
294 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
298 * fsl_chan_set_request_count - Set DMA Request Count for external control
299 * @chan : Freescale DMA channel
300 * @size : Number of bytes to transfer in a single request
302 * The Freescale DMA channel can be controlled by the external signal DREQ#.
303 * The DMA request count is how many bytes are allowed to transfer before
304 * pausing the channel, after which a new assertion of DREQ# resumes channel
307 * A size of 0 disables external pause control. The maximum size is 1024.
309 static void fsl_chan_set_request_count(struct fsldma_chan
*chan
, int size
)
315 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
316 mode
|= (__ilog2(size
) << 24) & 0x0f000000;
318 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
322 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
323 * @chan : Freescale DMA channel
324 * @enable : 0 is disabled, 1 is enabled.
326 * The Freescale DMA channel can be controlled by the external signal DREQ#.
327 * The DMA Request Count feature should be used in addition to this feature
328 * to set the number of bytes to transfer before pausing the channel.
330 static void fsl_chan_toggle_ext_pause(struct fsldma_chan
*chan
, int enable
)
333 chan
->feature
|= FSL_DMA_CHAN_PAUSE_EXT
;
335 chan
->feature
&= ~FSL_DMA_CHAN_PAUSE_EXT
;
339 * fsl_chan_toggle_ext_start - Toggle channel external start status
340 * @chan : Freescale DMA channel
341 * @enable : 0 is disabled, 1 is enabled.
343 * If enable the external start, the channel can be started by an
344 * external DMA start pin. So the dma_start() does not start the
345 * transfer immediately. The DMA channel will wait for the
346 * control pin asserted.
348 static void fsl_chan_toggle_ext_start(struct fsldma_chan
*chan
, int enable
)
351 chan
->feature
|= FSL_DMA_CHAN_START_EXT
;
353 chan
->feature
&= ~FSL_DMA_CHAN_START_EXT
;
356 static void append_ld_queue(struct fsldma_chan
*chan
, struct fsl_desc_sw
*desc
)
358 struct fsl_desc_sw
*tail
= to_fsl_desc(chan
->ld_pending
.prev
);
360 if (list_empty(&chan
->ld_pending
))
364 * Add the hardware descriptor to the chain of hardware descriptors
365 * that already exists in memory.
367 * This will un-set the EOL bit of the existing transaction, and the
368 * last link in this transaction will become the EOL descriptor.
370 set_desc_next(chan
, &tail
->hw
, desc
->async_tx
.phys
);
373 * Add the software descriptor and all children to the list
374 * of pending transactions
377 list_splice_tail_init(&desc
->tx_list
, &chan
->ld_pending
);
380 static dma_cookie_t
fsl_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
382 struct fsldma_chan
*chan
= to_fsl_chan(tx
->chan
);
383 struct fsl_desc_sw
*desc
= tx_to_fsl_desc(tx
);
384 struct fsl_desc_sw
*child
;
386 dma_cookie_t cookie
= -EINVAL
;
388 spin_lock_irqsave(&chan
->desc_lock
, flags
);
391 * assign cookies to all of the software descriptors
392 * that make up this transaction
394 list_for_each_entry(child
, &desc
->tx_list
, node
) {
395 cookie
= dma_cookie_assign(&child
->async_tx
);
398 /* put this transaction onto the tail of the pending queue */
399 append_ld_queue(chan
, desc
);
401 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
407 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
408 * @chan : Freescale DMA channel
410 * Return - The descriptor allocated. NULL for failed.
412 static struct fsl_desc_sw
*fsl_dma_alloc_descriptor(struct fsldma_chan
*chan
)
414 struct fsl_desc_sw
*desc
;
417 desc
= dma_pool_alloc(chan
->desc_pool
, GFP_ATOMIC
, &pdesc
);
419 chan_dbg(chan
, "out of memory for link descriptor\n");
423 memset(desc
, 0, sizeof(*desc
));
424 INIT_LIST_HEAD(&desc
->tx_list
);
425 dma_async_tx_descriptor_init(&desc
->async_tx
, &chan
->common
);
426 desc
->async_tx
.tx_submit
= fsl_dma_tx_submit
;
427 desc
->async_tx
.phys
= pdesc
;
429 #ifdef FSL_DMA_LD_DEBUG
430 chan_dbg(chan
, "LD %p allocated\n", desc
);
437 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
438 * @chan : Freescale DMA channel
440 * This function will create a dma pool for descriptor allocation.
442 * Return - The number of descriptors allocated.
444 static int fsl_dma_alloc_chan_resources(struct dma_chan
*dchan
)
446 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
448 /* Has this channel already been allocated? */
453 * We need the descriptor to be aligned to 32bytes
454 * for meeting FSL DMA specification requirement.
456 chan
->desc_pool
= dma_pool_create(chan
->name
, chan
->dev
,
457 sizeof(struct fsl_desc_sw
),
458 __alignof__(struct fsl_desc_sw
), 0);
459 if (!chan
->desc_pool
) {
460 chan_err(chan
, "unable to allocate descriptor pool\n");
464 /* there is at least one descriptor free to be allocated */
469 * fsldma_free_desc_list - Free all descriptors in a queue
470 * @chan: Freescae DMA channel
471 * @list: the list to free
473 * LOCKING: must hold chan->desc_lock
475 static void fsldma_free_desc_list(struct fsldma_chan
*chan
,
476 struct list_head
*list
)
478 struct fsl_desc_sw
*desc
, *_desc
;
480 list_for_each_entry_safe(desc
, _desc
, list
, node
) {
481 list_del(&desc
->node
);
482 #ifdef FSL_DMA_LD_DEBUG
483 chan_dbg(chan
, "LD %p free\n", desc
);
485 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
489 static void fsldma_free_desc_list_reverse(struct fsldma_chan
*chan
,
490 struct list_head
*list
)
492 struct fsl_desc_sw
*desc
, *_desc
;
494 list_for_each_entry_safe_reverse(desc
, _desc
, list
, node
) {
495 list_del(&desc
->node
);
496 #ifdef FSL_DMA_LD_DEBUG
497 chan_dbg(chan
, "LD %p free\n", desc
);
499 dma_pool_free(chan
->desc_pool
, desc
, desc
->async_tx
.phys
);
504 * fsl_dma_free_chan_resources - Free all resources of the channel.
505 * @chan : Freescale DMA channel
507 static void fsl_dma_free_chan_resources(struct dma_chan
*dchan
)
509 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
512 chan_dbg(chan
, "free all channel resources\n");
513 spin_lock_irqsave(&chan
->desc_lock
, flags
);
514 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
515 fsldma_free_desc_list(chan
, &chan
->ld_running
);
516 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
518 dma_pool_destroy(chan
->desc_pool
);
519 chan
->desc_pool
= NULL
;
522 static struct dma_async_tx_descriptor
*
523 fsl_dma_prep_interrupt(struct dma_chan
*dchan
, unsigned long flags
)
525 struct fsldma_chan
*chan
;
526 struct fsl_desc_sw
*new;
531 chan
= to_fsl_chan(dchan
);
533 new = fsl_dma_alloc_descriptor(chan
);
535 chan_err(chan
, "%s\n", msg_ld_oom
);
539 new->async_tx
.cookie
= -EBUSY
;
540 new->async_tx
.flags
= flags
;
542 /* Insert the link descriptor to the LD ring */
543 list_add_tail(&new->node
, &new->tx_list
);
545 /* Set End-of-link to the last link descriptor of new list */
546 set_ld_eol(chan
, new);
548 return &new->async_tx
;
551 static struct dma_async_tx_descriptor
*
552 fsl_dma_prep_memcpy(struct dma_chan
*dchan
,
553 dma_addr_t dma_dst
, dma_addr_t dma_src
,
554 size_t len
, unsigned long flags
)
556 struct fsldma_chan
*chan
;
557 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new;
566 chan
= to_fsl_chan(dchan
);
570 /* Allocate the link descriptor from DMA pool */
571 new = fsl_dma_alloc_descriptor(chan
);
573 chan_err(chan
, "%s\n", msg_ld_oom
);
577 copy
= min(len
, (size_t)FSL_DMA_BCR_MAX_CNT
);
579 set_desc_cnt(chan
, &new->hw
, copy
);
580 set_desc_src(chan
, &new->hw
, dma_src
);
581 set_desc_dst(chan
, &new->hw
, dma_dst
);
586 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
588 new->async_tx
.cookie
= 0;
589 async_tx_ack(&new->async_tx
);
596 /* Insert the link descriptor to the LD ring */
597 list_add_tail(&new->node
, &first
->tx_list
);
600 new->async_tx
.flags
= flags
; /* client is in control of this ack */
601 new->async_tx
.cookie
= -EBUSY
;
603 /* Set End-of-link to the last link descriptor of new list */
604 set_ld_eol(chan
, new);
606 return &first
->async_tx
;
612 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
616 static struct dma_async_tx_descriptor
*fsl_dma_prep_sg(struct dma_chan
*dchan
,
617 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
618 struct scatterlist
*src_sg
, unsigned int src_nents
,
621 struct fsl_desc_sw
*first
= NULL
, *prev
= NULL
, *new = NULL
;
622 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
623 size_t dst_avail
, src_avail
;
627 /* basic sanity checks */
628 if (dst_nents
== 0 || src_nents
== 0)
631 if (dst_sg
== NULL
|| src_sg
== NULL
)
635 * TODO: should we check that both scatterlists have the same
636 * TODO: number of bytes in total? Is that really an error?
639 /* get prepared for the loop */
640 dst_avail
= sg_dma_len(dst_sg
);
641 src_avail
= sg_dma_len(src_sg
);
643 /* run until we are out of scatterlist entries */
646 /* create the largest transaction possible */
647 len
= min_t(size_t, src_avail
, dst_avail
);
648 len
= min_t(size_t, len
, FSL_DMA_BCR_MAX_CNT
);
652 dst
= sg_dma_address(dst_sg
) + sg_dma_len(dst_sg
) - dst_avail
;
653 src
= sg_dma_address(src_sg
) + sg_dma_len(src_sg
) - src_avail
;
655 /* allocate and populate the descriptor */
656 new = fsl_dma_alloc_descriptor(chan
);
658 chan_err(chan
, "%s\n", msg_ld_oom
);
662 set_desc_cnt(chan
, &new->hw
, len
);
663 set_desc_src(chan
, &new->hw
, src
);
664 set_desc_dst(chan
, &new->hw
, dst
);
669 set_desc_next(chan
, &prev
->hw
, new->async_tx
.phys
);
671 new->async_tx
.cookie
= 0;
672 async_tx_ack(&new->async_tx
);
675 /* Insert the link descriptor to the LD ring */
676 list_add_tail(&new->node
, &first
->tx_list
);
678 /* update metadata */
683 /* fetch the next dst scatterlist entry */
684 if (dst_avail
== 0) {
686 /* no more entries: we're done */
690 /* fetch the next entry: if there are no more: done */
691 dst_sg
= sg_next(dst_sg
);
696 dst_avail
= sg_dma_len(dst_sg
);
699 /* fetch the next src scatterlist entry */
700 if (src_avail
== 0) {
702 /* no more entries: we're done */
706 /* fetch the next entry: if there are no more: done */
707 src_sg
= sg_next(src_sg
);
712 src_avail
= sg_dma_len(src_sg
);
716 new->async_tx
.flags
= flags
; /* client is in control of this ack */
717 new->async_tx
.cookie
= -EBUSY
;
719 /* Set End-of-link to the last link descriptor of new list */
720 set_ld_eol(chan
, new);
722 return &first
->async_tx
;
728 fsldma_free_desc_list_reverse(chan
, &first
->tx_list
);
733 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
735 * @sgl: scatterlist to transfer to/from
736 * @sg_len: number of entries in @scatterlist
737 * @direction: DMA direction
738 * @flags: DMAEngine flags
739 * @context: transaction context (ignored)
741 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
742 * DMA_SLAVE API, this gets the device-specific information from the
743 * chan->private variable.
745 static struct dma_async_tx_descriptor
*fsl_dma_prep_slave_sg(
746 struct dma_chan
*dchan
, struct scatterlist
*sgl
, unsigned int sg_len
,
747 enum dma_transfer_direction direction
, unsigned long flags
,
751 * This operation is not supported on the Freescale DMA controller
753 * However, we need to provide the function pointer to allow the
754 * device_control() method to work.
759 static int fsl_dma_device_control(struct dma_chan
*dchan
,
760 enum dma_ctrl_cmd cmd
, unsigned long arg
)
762 struct dma_slave_config
*config
;
763 struct fsldma_chan
*chan
;
770 chan
= to_fsl_chan(dchan
);
773 case DMA_TERMINATE_ALL
:
774 spin_lock_irqsave(&chan
->desc_lock
, flags
);
776 /* Halt the DMA engine */
779 /* Remove and free all of the descriptors in the LD queue */
780 fsldma_free_desc_list(chan
, &chan
->ld_pending
);
781 fsldma_free_desc_list(chan
, &chan
->ld_running
);
784 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
787 case DMA_SLAVE_CONFIG
:
788 config
= (struct dma_slave_config
*)arg
;
790 /* make sure the channel supports setting burst size */
791 if (!chan
->set_request_count
)
794 /* we set the controller burst size depending on direction */
795 if (config
->direction
== DMA_MEM_TO_DEV
)
796 size
= config
->dst_addr_width
* config
->dst_maxburst
;
798 size
= config
->src_addr_width
* config
->src_maxburst
;
800 chan
->set_request_count(chan
, size
);
803 case FSLDMA_EXTERNAL_START
:
805 /* make sure the channel supports external start */
806 if (!chan
->toggle_ext_start
)
809 chan
->toggle_ext_start(chan
, arg
);
820 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
821 * @chan: Freescale DMA channel
822 * @desc: descriptor to cleanup and free
824 * This function is used on a descriptor which has been executed by the DMA
825 * controller. It will run any callbacks, submit any dependencies, and then
826 * free the descriptor.
828 static void fsldma_cleanup_descriptor(struct fsldma_chan
*chan
,
829 struct fsl_desc_sw
*desc
)
831 struct dma_async_tx_descriptor
*txd
= &desc
->async_tx
;
833 /* Run the link descriptor callback function */
835 #ifdef FSL_DMA_LD_DEBUG
836 chan_dbg(chan
, "LD %p callback\n", desc
);
838 txd
->callback(txd
->callback_param
);
841 /* Run any dependencies */
842 dma_run_dependencies(txd
);
844 dma_descriptor_unmap(txd
);
845 #ifdef FSL_DMA_LD_DEBUG
846 chan_dbg(chan
, "LD %p free\n", desc
);
848 dma_pool_free(chan
->desc_pool
, desc
, txd
->phys
);
852 * fsl_chan_xfer_ld_queue - transfer any pending transactions
853 * @chan : Freescale DMA channel
855 * HARDWARE STATE: idle
856 * LOCKING: must hold chan->desc_lock
858 static void fsl_chan_xfer_ld_queue(struct fsldma_chan
*chan
)
860 struct fsl_desc_sw
*desc
;
863 * If the list of pending descriptors is empty, then we
864 * don't need to do any work at all
866 if (list_empty(&chan
->ld_pending
)) {
867 chan_dbg(chan
, "no pending LDs\n");
872 * The DMA controller is not idle, which means that the interrupt
873 * handler will start any queued transactions when it runs after
874 * this transaction finishes
877 chan_dbg(chan
, "DMA controller still busy\n");
882 * If there are some link descriptors which have not been
883 * transferred, we need to start the controller
887 * Move all elements from the queue of pending transactions
888 * onto the list of running transactions
890 chan_dbg(chan
, "idle, starting controller\n");
891 desc
= list_first_entry(&chan
->ld_pending
, struct fsl_desc_sw
, node
);
892 list_splice_tail_init(&chan
->ld_pending
, &chan
->ld_running
);
895 * The 85xx DMA controller doesn't clear the channel start bit
896 * automatically at the end of a transfer. Therefore we must clear
897 * it in software before starting the transfer.
899 if ((chan
->feature
& FSL_DMA_IP_MASK
) == FSL_DMA_IP_85XX
) {
902 mode
= DMA_IN(chan
, &chan
->regs
->mr
, 32);
903 mode
&= ~FSL_DMA_MR_CS
;
904 DMA_OUT(chan
, &chan
->regs
->mr
, mode
, 32);
908 * Program the descriptor's address into the DMA controller,
909 * then start the DMA transaction
911 set_cdar(chan
, desc
->async_tx
.phys
);
919 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
920 * @chan : Freescale DMA channel
922 static void fsl_dma_memcpy_issue_pending(struct dma_chan
*dchan
)
924 struct fsldma_chan
*chan
= to_fsl_chan(dchan
);
927 spin_lock_irqsave(&chan
->desc_lock
, flags
);
928 fsl_chan_xfer_ld_queue(chan
);
929 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
933 * fsl_tx_status - Determine the DMA status
934 * @chan : Freescale DMA channel
936 static enum dma_status
fsl_tx_status(struct dma_chan
*dchan
,
938 struct dma_tx_state
*txstate
)
940 return dma_cookie_status(dchan
, cookie
, txstate
);
943 /*----------------------------------------------------------------------------*/
944 /* Interrupt Handling */
945 /*----------------------------------------------------------------------------*/
947 static irqreturn_t
fsldma_chan_irq(int irq
, void *data
)
949 struct fsldma_chan
*chan
= data
;
952 /* save and clear the status register */
955 chan_dbg(chan
, "irq: stat = 0x%x\n", stat
);
957 /* check that this was really our device */
958 stat
&= ~(FSL_DMA_SR_CB
| FSL_DMA_SR_CH
);
962 if (stat
& FSL_DMA_SR_TE
)
963 chan_err(chan
, "Transfer Error!\n");
967 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
968 * trigger a PE interrupt.
970 if (stat
& FSL_DMA_SR_PE
) {
971 chan_dbg(chan
, "irq: Programming Error INT\n");
972 stat
&= ~FSL_DMA_SR_PE
;
973 if (get_bcr(chan
) != 0)
974 chan_err(chan
, "Programming Error!\n");
978 * For MPC8349, EOCDI event need to update cookie
979 * and start the next transfer if it exist.
981 if (stat
& FSL_DMA_SR_EOCDI
) {
982 chan_dbg(chan
, "irq: End-of-Chain link INT\n");
983 stat
&= ~FSL_DMA_SR_EOCDI
;
987 * If it current transfer is the end-of-transfer,
988 * we should clear the Channel Start bit for
989 * prepare next transfer.
991 if (stat
& FSL_DMA_SR_EOLNI
) {
992 chan_dbg(chan
, "irq: End-of-link INT\n");
993 stat
&= ~FSL_DMA_SR_EOLNI
;
996 /* check that the DMA controller is really idle */
997 if (!dma_is_idle(chan
))
998 chan_err(chan
, "irq: controller not idle!\n");
1000 /* check that we handled all of the bits */
1002 chan_err(chan
, "irq: unhandled sr 0x%08x\n", stat
);
1005 * Schedule the tasklet to handle all cleanup of the current
1006 * transaction. It will start a new transaction if there is
1009 tasklet_schedule(&chan
->tasklet
);
1010 chan_dbg(chan
, "irq: Exit\n");
1014 static void dma_do_tasklet(unsigned long data
)
1016 struct fsldma_chan
*chan
= (struct fsldma_chan
*)data
;
1017 struct fsl_desc_sw
*desc
, *_desc
;
1018 LIST_HEAD(ld_cleanup
);
1019 unsigned long flags
;
1021 chan_dbg(chan
, "tasklet entry\n");
1023 spin_lock_irqsave(&chan
->desc_lock
, flags
);
1025 /* update the cookie if we have some descriptors to cleanup */
1026 if (!list_empty(&chan
->ld_running
)) {
1027 dma_cookie_t cookie
;
1029 desc
= to_fsl_desc(chan
->ld_running
.prev
);
1030 cookie
= desc
->async_tx
.cookie
;
1031 dma_cookie_complete(&desc
->async_tx
);
1033 chan_dbg(chan
, "completed_cookie=%d\n", cookie
);
1037 * move the descriptors to a temporary list so we can drop the lock
1038 * during the entire cleanup operation
1040 list_splice_tail_init(&chan
->ld_running
, &ld_cleanup
);
1042 /* the hardware is now idle and ready for more */
1046 * Start any pending transactions automatically
1048 * In the ideal case, we keep the DMA controller busy while we go
1049 * ahead and free the descriptors below.
1051 fsl_chan_xfer_ld_queue(chan
);
1052 spin_unlock_irqrestore(&chan
->desc_lock
, flags
);
1054 /* Run the callback for each descriptor, in order */
1055 list_for_each_entry_safe(desc
, _desc
, &ld_cleanup
, node
) {
1057 /* Remove from the list of transactions */
1058 list_del(&desc
->node
);
1060 /* Run all cleanup for this descriptor */
1061 fsldma_cleanup_descriptor(chan
, desc
);
1064 chan_dbg(chan
, "tasklet exit\n");
1067 static irqreturn_t
fsldma_ctrl_irq(int irq
, void *data
)
1069 struct fsldma_device
*fdev
= data
;
1070 struct fsldma_chan
*chan
;
1071 unsigned int handled
= 0;
1075 gsr
= (fdev
->feature
& FSL_DMA_BIG_ENDIAN
) ? in_be32(fdev
->regs
)
1076 : in_le32(fdev
->regs
);
1078 dev_dbg(fdev
->dev
, "IRQ: gsr 0x%.8x\n", gsr
);
1080 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1081 chan
= fdev
->chan
[i
];
1086 dev_dbg(fdev
->dev
, "IRQ: chan %d\n", chan
->id
);
1087 fsldma_chan_irq(irq
, chan
);
1095 return IRQ_RETVAL(handled
);
1098 static void fsldma_free_irqs(struct fsldma_device
*fdev
)
1100 struct fsldma_chan
*chan
;
1103 if (fdev
->irq
!= NO_IRQ
) {
1104 dev_dbg(fdev
->dev
, "free per-controller IRQ\n");
1105 free_irq(fdev
->irq
, fdev
);
1109 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1110 chan
= fdev
->chan
[i
];
1111 if (chan
&& chan
->irq
!= NO_IRQ
) {
1112 chan_dbg(chan
, "free per-channel IRQ\n");
1113 free_irq(chan
->irq
, chan
);
1118 static int fsldma_request_irqs(struct fsldma_device
*fdev
)
1120 struct fsldma_chan
*chan
;
1124 /* if we have a per-controller IRQ, use that */
1125 if (fdev
->irq
!= NO_IRQ
) {
1126 dev_dbg(fdev
->dev
, "request per-controller IRQ\n");
1127 ret
= request_irq(fdev
->irq
, fsldma_ctrl_irq
, IRQF_SHARED
,
1128 "fsldma-controller", fdev
);
1132 /* no per-controller IRQ, use the per-channel IRQs */
1133 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1134 chan
= fdev
->chan
[i
];
1138 if (chan
->irq
== NO_IRQ
) {
1139 chan_err(chan
, "interrupts property missing in device tree\n");
1144 chan_dbg(chan
, "request per-channel IRQ\n");
1145 ret
= request_irq(chan
->irq
, fsldma_chan_irq
, IRQF_SHARED
,
1146 "fsldma-chan", chan
);
1148 chan_err(chan
, "unable to request per-channel IRQ\n");
1156 for (/* none */; i
>= 0; i
--) {
1157 chan
= fdev
->chan
[i
];
1161 if (chan
->irq
== NO_IRQ
)
1164 free_irq(chan
->irq
, chan
);
1170 /*----------------------------------------------------------------------------*/
1171 /* OpenFirmware Subsystem */
1172 /*----------------------------------------------------------------------------*/
1174 static int fsl_dma_chan_probe(struct fsldma_device
*fdev
,
1175 struct device_node
*node
, u32 feature
, const char *compatible
)
1177 struct fsldma_chan
*chan
;
1178 struct resource res
;
1182 chan
= kzalloc(sizeof(*chan
), GFP_KERNEL
);
1184 dev_err(fdev
->dev
, "no free memory for DMA channels!\n");
1189 /* ioremap registers for use */
1190 chan
->regs
= of_iomap(node
, 0);
1192 dev_err(fdev
->dev
, "unable to ioremap registers\n");
1197 err
= of_address_to_resource(node
, 0, &res
);
1199 dev_err(fdev
->dev
, "unable to find 'reg' property\n");
1200 goto out_iounmap_regs
;
1203 chan
->feature
= feature
;
1205 fdev
->feature
= chan
->feature
;
1208 * If the DMA device's feature is different than the feature
1209 * of its channels, report the bug
1211 WARN_ON(fdev
->feature
!= chan
->feature
);
1213 chan
->dev
= fdev
->dev
;
1214 chan
->id
= (res
.start
& 0xfff) < 0x300 ?
1215 ((res
.start
- 0x100) & 0xfff) >> 7 :
1216 ((res
.start
- 0x200) & 0xfff) >> 7;
1217 if (chan
->id
>= FSL_DMA_MAX_CHANS_PER_DEVICE
) {
1218 dev_err(fdev
->dev
, "too many channels for device\n");
1220 goto out_iounmap_regs
;
1223 fdev
->chan
[chan
->id
] = chan
;
1224 tasklet_init(&chan
->tasklet
, dma_do_tasklet
, (unsigned long)chan
);
1225 snprintf(chan
->name
, sizeof(chan
->name
), "chan%d", chan
->id
);
1227 /* Initialize the channel */
1230 /* Clear cdar registers */
1233 switch (chan
->feature
& FSL_DMA_IP_MASK
) {
1234 case FSL_DMA_IP_85XX
:
1235 chan
->toggle_ext_pause
= fsl_chan_toggle_ext_pause
;
1236 case FSL_DMA_IP_83XX
:
1237 chan
->toggle_ext_start
= fsl_chan_toggle_ext_start
;
1238 chan
->set_src_loop_size
= fsl_chan_set_src_loop_size
;
1239 chan
->set_dst_loop_size
= fsl_chan_set_dst_loop_size
;
1240 chan
->set_request_count
= fsl_chan_set_request_count
;
1243 spin_lock_init(&chan
->desc_lock
);
1244 INIT_LIST_HEAD(&chan
->ld_pending
);
1245 INIT_LIST_HEAD(&chan
->ld_running
);
1248 chan
->common
.device
= &fdev
->common
;
1249 dma_cookie_init(&chan
->common
);
1251 /* find the IRQ line, if it exists in the device tree */
1252 chan
->irq
= irq_of_parse_and_map(node
, 0);
1254 /* Add the channel to DMA device channel list */
1255 list_add_tail(&chan
->common
.device_node
, &fdev
->common
.channels
);
1256 fdev
->common
.chancnt
++;
1258 dev_info(fdev
->dev
, "#%d (%s), irq %d\n", chan
->id
, compatible
,
1259 chan
->irq
!= NO_IRQ
? chan
->irq
: fdev
->irq
);
1264 iounmap(chan
->regs
);
1271 static void fsl_dma_chan_remove(struct fsldma_chan
*chan
)
1273 irq_dispose_mapping(chan
->irq
);
1274 list_del(&chan
->common
.device_node
);
1275 iounmap(chan
->regs
);
1279 static int fsldma_of_probe(struct platform_device
*op
)
1281 struct fsldma_device
*fdev
;
1282 struct device_node
*child
;
1285 fdev
= kzalloc(sizeof(*fdev
), GFP_KERNEL
);
1287 dev_err(&op
->dev
, "No enough memory for 'priv'\n");
1292 fdev
->dev
= &op
->dev
;
1293 INIT_LIST_HEAD(&fdev
->common
.channels
);
1295 /* ioremap the registers for use */
1296 fdev
->regs
= of_iomap(op
->dev
.of_node
, 0);
1298 dev_err(&op
->dev
, "unable to ioremap registers\n");
1303 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1304 fdev
->irq
= irq_of_parse_and_map(op
->dev
.of_node
, 0);
1306 dma_cap_set(DMA_MEMCPY
, fdev
->common
.cap_mask
);
1307 dma_cap_set(DMA_INTERRUPT
, fdev
->common
.cap_mask
);
1308 dma_cap_set(DMA_SG
, fdev
->common
.cap_mask
);
1309 dma_cap_set(DMA_SLAVE
, fdev
->common
.cap_mask
);
1310 fdev
->common
.device_alloc_chan_resources
= fsl_dma_alloc_chan_resources
;
1311 fdev
->common
.device_free_chan_resources
= fsl_dma_free_chan_resources
;
1312 fdev
->common
.device_prep_dma_interrupt
= fsl_dma_prep_interrupt
;
1313 fdev
->common
.device_prep_dma_memcpy
= fsl_dma_prep_memcpy
;
1314 fdev
->common
.device_prep_dma_sg
= fsl_dma_prep_sg
;
1315 fdev
->common
.device_tx_status
= fsl_tx_status
;
1316 fdev
->common
.device_issue_pending
= fsl_dma_memcpy_issue_pending
;
1317 fdev
->common
.device_prep_slave_sg
= fsl_dma_prep_slave_sg
;
1318 fdev
->common
.device_control
= fsl_dma_device_control
;
1319 fdev
->common
.dev
= &op
->dev
;
1321 dma_set_mask(&(op
->dev
), DMA_BIT_MASK(36));
1323 platform_set_drvdata(op
, fdev
);
1326 * We cannot use of_platform_bus_probe() because there is no
1327 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1330 for_each_child_of_node(op
->dev
.of_node
, child
) {
1331 if (of_device_is_compatible(child
, "fsl,eloplus-dma-channel")) {
1332 fsl_dma_chan_probe(fdev
, child
,
1333 FSL_DMA_IP_85XX
| FSL_DMA_BIG_ENDIAN
,
1334 "fsl,eloplus-dma-channel");
1337 if (of_device_is_compatible(child
, "fsl,elo-dma-channel")) {
1338 fsl_dma_chan_probe(fdev
, child
,
1339 FSL_DMA_IP_83XX
| FSL_DMA_LITTLE_ENDIAN
,
1340 "fsl,elo-dma-channel");
1345 * Hookup the IRQ handler(s)
1347 * If we have a per-controller interrupt, we prefer that to the
1348 * per-channel interrupts to reduce the number of shared interrupt
1349 * handlers on the same IRQ line
1351 err
= fsldma_request_irqs(fdev
);
1353 dev_err(fdev
->dev
, "unable to request IRQs\n");
1357 dma_async_device_register(&fdev
->common
);
1361 irq_dispose_mapping(fdev
->irq
);
1367 static int fsldma_of_remove(struct platform_device
*op
)
1369 struct fsldma_device
*fdev
;
1372 fdev
= platform_get_drvdata(op
);
1373 dma_async_device_unregister(&fdev
->common
);
1375 fsldma_free_irqs(fdev
);
1377 for (i
= 0; i
< FSL_DMA_MAX_CHANS_PER_DEVICE
; i
++) {
1379 fsl_dma_chan_remove(fdev
->chan
[i
]);
1382 iounmap(fdev
->regs
);
1388 static const struct of_device_id fsldma_of_ids
[] = {
1389 { .compatible
= "fsl,elo3-dma", },
1390 { .compatible
= "fsl,eloplus-dma", },
1391 { .compatible
= "fsl,elo-dma", },
1395 static struct platform_driver fsldma_of_driver
= {
1397 .name
= "fsl-elo-dma",
1398 .owner
= THIS_MODULE
,
1399 .of_match_table
= fsldma_of_ids
,
1401 .probe
= fsldma_of_probe
,
1402 .remove
= fsldma_of_remove
,
1405 /*----------------------------------------------------------------------------*/
1406 /* Module Init / Exit */
1407 /*----------------------------------------------------------------------------*/
1409 static __init
int fsldma_init(void)
1411 pr_info("Freescale Elo series DMA driver\n");
1412 return platform_driver_register(&fsldma_of_driver
);
1415 static void __exit
fsldma_exit(void)
1417 platform_driver_unregister(&fsldma_of_driver
);
1420 subsys_initcall(fsldma_init
);
1421 module_exit(fsldma_exit
);
1423 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424 MODULE_LICENSE("GPL");