2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
75 #define DESCRIPTOR_CMD (0xf << 12)
81 __le32 branch_address
;
83 __le16 transfer_status
;
84 } __attribute__((aligned(16)));
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
101 struct fw_ohci
*ohci
;
102 struct page
*pages
[AR_BUFFERS
];
104 struct descriptor
*descriptors
;
105 dma_addr_t descriptors_bus
;
107 unsigned int last_buffer_index
;
109 struct tasklet_struct tasklet
;
114 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
115 struct descriptor
*d
,
116 struct descriptor
*last
);
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
122 struct descriptor_buffer
{
123 struct list_head list
;
124 dma_addr_t buffer_bus
;
127 struct descriptor buffer
[0];
131 struct fw_ohci
*ohci
;
133 int total_allocation
;
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
143 struct list_head buffer_list
;
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
149 struct descriptor_buffer
*buffer_tail
;
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
155 struct descriptor
*last
;
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
161 struct descriptor
*prev
;
164 descriptor_callback_t callback
;
166 struct tasklet_struct tasklet
;
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
177 struct fw_iso_context base
;
178 struct context context
;
180 size_t header_length
;
181 unsigned long flushing_completions
;
189 #define CONFIG_ROM_SIZE 1024
194 __iomem
char *registers
;
197 int request_generation
; /* for timestamping incoming requests */
199 unsigned int pri_req_max
;
201 bool bus_time_running
;
203 bool csr_state_setclear_abdicate
;
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
212 struct mutex phy_reg_mutex
;
215 dma_addr_t misc_buffer_bus
;
217 struct ar_context ar_request_ctx
;
218 struct ar_context ar_response_ctx
;
219 struct context at_request_ctx
;
220 struct context at_response_ctx
;
222 u32 it_context_support
;
223 u32 it_context_mask
; /* unoccupied IT contexts */
224 struct iso_context
*it_context_list
;
225 u64 ir_context_channels
; /* unoccupied channels */
226 u32 ir_context_support
;
227 u32 ir_context_mask
; /* unoccupied IR contexts */
228 struct iso_context
*ir_context_list
;
229 u64 mc_channels
; /* channels in use by the multichannel IR context */
233 dma_addr_t config_rom_bus
;
234 __be32
*next_config_rom
;
235 dma_addr_t next_config_rom_bus
;
239 dma_addr_t self_id_bus
;
240 struct work_struct bus_reset_work
;
242 u32 self_id_buffer
[512];
245 static struct workqueue_struct
*selfid_workqueue
;
247 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
249 return container_of(card
, struct fw_ohci
, card
);
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
253 #define IR_CONTEXT_BUFFER_FILL 0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
259 #define CONTEXT_RUN 0x8000
260 #define CONTEXT_WAKE 0x1000
261 #define CONTEXT_DEAD 0x0800
262 #define CONTEXT_ACTIVE 0x0400
264 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
268 #define OHCI1394_REGISTER_SIZE 0x800
269 #define OHCI1394_PCI_HCI_Control 0x40
270 #define SELF_ID_BUF_SIZE 0x800
271 #define OHCI_TCODE_PHY_PACKET 0x0e
272 #define OHCI_VERSION_1_1 0x010010
274 static char ohci_driver_name
[] = KBUILD_MODNAME
;
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
284 #define PCI_REV_ID_VIA_VT6306 0x46
286 #define QUIRK_CYCLE_TIMER 0x1
287 #define QUIRK_RESET_PACKET 0x2
288 #define QUIRK_BE_HEADERS 0x4
289 #define QUIRK_NO_1394A 0x8
290 #define QUIRK_NO_MSI 0x10
291 #define QUIRK_TI_SLLZ059 0x20
292 #define QUIRK_IR_WAKE 0x40
293 #define QUIRK_PHY_LCTRL_TIMEOUT 0x80
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297 unsigned short vendor
, device
, revision
, flags
;
299 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
302 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
305 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
306 QUIRK_PHY_LCTRL_TIMEOUT
| QUIRK_NO_MSI
},
308 {PCI_VENDOR_ID_ATT
, PCI_ANY_ID
, PCI_ANY_ID
,
309 QUIRK_PHY_LCTRL_TIMEOUT
},
311 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
314 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
317 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
320 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
323 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
324 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
326 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
327 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
329 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
330 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
332 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
333 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
335 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
338 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT630X
, PCI_REV_ID_VIA_VT6306
,
339 QUIRK_CYCLE_TIMER
| QUIRK_IR_WAKE
},
341 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
342 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
345 /* This overrides anything that was found in ohci_quirks[]. */
346 static int param_quirks
;
347 module_param_named(quirks
, param_quirks
, int, 0644);
348 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
349 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
350 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
351 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS
)
352 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
353 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
354 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
355 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE
)
356 ", phy LCtrl timeout = " __stringify(QUIRK_PHY_LCTRL_TIMEOUT
)
359 #define OHCI_PARAM_DEBUG_AT_AR 1
360 #define OHCI_PARAM_DEBUG_SELFIDS 2
361 #define OHCI_PARAM_DEBUG_IRQS 4
362 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
364 static int param_debug
;
365 module_param_named(debug
, param_debug
, int, 0644);
366 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
367 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
368 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
369 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
370 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
371 ", or a combination, or all = -1)");
373 static bool param_remote_dma
;
374 module_param_named(remote_dma
, param_remote_dma
, bool, 0444);
375 MODULE_PARM_DESC(remote_dma
, "Enable unfiltered remote DMA (default = N)");
377 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
379 if (likely(!(param_debug
&
380 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
383 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
384 !(evt
& OHCI1394_busReset
))
387 ohci_notice(ohci
, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
388 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
389 evt
& OHCI1394_RQPkt
? " AR_req" : "",
390 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
391 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
392 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
393 evt
& OHCI1394_isochRx
? " IR" : "",
394 evt
& OHCI1394_isochTx
? " IT" : "",
395 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
396 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
397 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
398 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
399 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
400 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
401 evt
& OHCI1394_busReset
? " busReset" : "",
402 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
403 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
404 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
405 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
406 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
407 OHCI1394_cycleInconsistent
|
408 OHCI1394_regAccessFail
| OHCI1394_busReset
)
412 static const char *speed
[] = {
413 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
415 static const char *power
[] = {
416 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
417 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
419 static const char port
[] = { '.', '-', 'p', 'c', };
421 static char _p(u32
*s
, int shift
)
423 return port
[*s
>> shift
& 3];
426 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
430 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
433 ohci_notice(ohci
, "%d selfIDs, generation %d, local node ID %04x\n",
434 self_id_count
, generation
, ohci
->node_id
);
436 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
437 if ((*s
& 1 << 23) == 0)
439 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
440 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
441 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
442 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
443 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
446 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
448 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
449 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
452 static const char *evts
[] = {
453 [0x00] = "evt_no_status", [0x01] = "-reserved-",
454 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
455 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
456 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
457 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
458 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
459 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
460 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
461 [0x10] = "-reserved-", [0x11] = "ack_complete",
462 [0x12] = "ack_pending ", [0x13] = "-reserved-",
463 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
464 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
465 [0x18] = "-reserved-", [0x19] = "-reserved-",
466 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
467 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
468 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
469 [0x20] = "pending/cancelled",
471 static const char *tcodes
[] = {
472 [0x0] = "QW req", [0x1] = "BW req",
473 [0x2] = "W resp", [0x3] = "-reserved-",
474 [0x4] = "QR req", [0x5] = "BR req",
475 [0x6] = "QR resp", [0x7] = "BR resp",
476 [0x8] = "cycle start", [0x9] = "Lk req",
477 [0xa] = "async stream packet", [0xb] = "Lk resp",
478 [0xc] = "-reserved-", [0xd] = "-reserved-",
479 [0xe] = "link internal", [0xf] = "-reserved-",
482 static void log_ar_at_event(struct fw_ohci
*ohci
,
483 char dir
, int speed
, u32
*header
, int evt
)
485 int tcode
= header
[0] >> 4 & 0xf;
488 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
491 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
494 if (evt
== OHCI1394_evt_bus_reset
) {
495 ohci_notice(ohci
, "A%c evt_bus_reset, generation %d\n",
496 dir
, (header
[2] >> 16) & 0xff);
501 case 0x0: case 0x6: case 0x8:
502 snprintf(specific
, sizeof(specific
), " = %08x",
503 be32_to_cpu((__force __be32
)header
[3]));
505 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
506 snprintf(specific
, sizeof(specific
), " %x,%x",
507 header
[3] >> 16, header
[3] & 0xffff);
515 ohci_notice(ohci
, "A%c %s, %s\n",
516 dir
, evts
[evt
], tcodes
[tcode
]);
519 ohci_notice(ohci
, "A%c %s, PHY %08x %08x\n",
520 dir
, evts
[evt
], header
[1], header
[2]);
522 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
524 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
525 dir
, speed
, header
[0] >> 10 & 0x3f,
526 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
527 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
531 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
532 dir
, speed
, header
[0] >> 10 & 0x3f,
533 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
534 tcodes
[tcode
], specific
);
538 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
540 writel(data
, ohci
->registers
+ offset
);
543 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
545 return readl(ohci
->registers
+ offset
);
548 static inline void flush_writes(const struct fw_ohci
*ohci
)
550 /* Do a dummy read to flush writes. */
551 reg_read(ohci
, OHCI1394_Version
);
555 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
556 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
557 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
558 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
560 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
565 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
566 for (i
= 0; i
< 3 + 100; i
++) {
567 val
= reg_read(ohci
, OHCI1394_PhyControl
);
569 return -ENODEV
; /* Card was ejected. */
571 if (val
& OHCI1394_PhyControl_ReadDone
)
572 return OHCI1394_PhyControl_ReadData(val
);
575 * Try a few times without waiting. Sleeping is necessary
576 * only when the link/PHY interface is busy.
581 ohci_err(ohci
, "failed to read phy reg %d\n", addr
);
587 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
591 reg_write(ohci
, OHCI1394_PhyControl
,
592 OHCI1394_PhyControl_Write(addr
, val
));
593 for (i
= 0; i
< 3 + 100; i
++) {
594 val
= reg_read(ohci
, OHCI1394_PhyControl
);
596 return -ENODEV
; /* Card was ejected. */
598 if (!(val
& OHCI1394_PhyControl_WritePending
))
604 ohci_err(ohci
, "failed to write phy reg %d, val %u\n", addr
, val
);
610 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
611 int clear_bits
, int set_bits
)
613 int ret
= read_phy_reg(ohci
, addr
);
618 * The interrupt status bits are cleared by writing a one bit.
619 * Avoid clearing them unless explicitly requested in set_bits.
622 clear_bits
|= PHY_INT_STATUS_BITS
;
624 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
627 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
631 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
635 return read_phy_reg(ohci
, addr
);
638 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
640 struct fw_ohci
*ohci
= fw_ohci(card
);
643 mutex_lock(&ohci
->phy_reg_mutex
);
644 ret
= read_phy_reg(ohci
, addr
);
645 mutex_unlock(&ohci
->phy_reg_mutex
);
650 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
651 int clear_bits
, int set_bits
)
653 struct fw_ohci
*ohci
= fw_ohci(card
);
656 mutex_lock(&ohci
->phy_reg_mutex
);
657 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
658 mutex_unlock(&ohci
->phy_reg_mutex
);
663 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
665 return page_private(ctx
->pages
[i
]);
668 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
670 struct descriptor
*d
;
672 d
= &ctx
->descriptors
[index
];
673 d
->branch_address
&= cpu_to_le32(~0xf);
674 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
675 d
->transfer_status
= 0;
677 wmb(); /* finish init of new descriptors before branch_address update */
678 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
679 d
->branch_address
|= cpu_to_le32(1);
681 ctx
->last_buffer_index
= index
;
683 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
686 static void ar_context_release(struct ar_context
*ctx
)
691 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
693 for (i
= 0; i
< AR_BUFFERS
; i
++)
695 dma_unmap_page(ctx
->ohci
->card
.device
,
696 ar_buffer_bus(ctx
, i
),
697 PAGE_SIZE
, DMA_FROM_DEVICE
);
698 __free_page(ctx
->pages
[i
]);
702 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
704 struct fw_ohci
*ohci
= ctx
->ohci
;
706 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
707 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
710 ohci_err(ohci
, "AR error: %s; DMA stopped\n", error_msg
);
712 /* FIXME: restart? */
715 static inline unsigned int ar_next_buffer_index(unsigned int index
)
717 return (index
+ 1) % AR_BUFFERS
;
720 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
722 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
725 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
727 return ar_next_buffer_index(ctx
->last_buffer_index
);
731 * We search for the buffer that contains the last AR packet DMA data written
734 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
735 unsigned int *buffer_offset
)
737 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
738 __le16 res_count
, next_res_count
;
740 i
= ar_first_buffer_index(ctx
);
741 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
743 /* A buffer that is not yet completely filled must be the last one. */
744 while (i
!= last
&& res_count
== 0) {
746 /* Peek at the next descriptor. */
747 next_i
= ar_next_buffer_index(i
);
748 rmb(); /* read descriptors in order */
749 next_res_count
= ACCESS_ONCE(
750 ctx
->descriptors
[next_i
].res_count
);
752 * If the next descriptor is still empty, we must stop at this
755 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
757 * The exception is when the DMA data for one packet is
758 * split over three buffers; in this case, the middle
759 * buffer's descriptor might be never updated by the
760 * controller and look still empty, and we have to peek
763 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
764 next_i
= ar_next_buffer_index(next_i
);
766 next_res_count
= ACCESS_ONCE(
767 ctx
->descriptors
[next_i
].res_count
);
768 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
769 goto next_buffer_is_active
;
775 next_buffer_is_active
:
777 res_count
= next_res_count
;
780 rmb(); /* read res_count before the DMA data */
782 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
783 if (*buffer_offset
> PAGE_SIZE
) {
785 ar_context_abort(ctx
, "corrupted descriptor");
791 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
792 unsigned int end_buffer_index
,
793 unsigned int end_buffer_offset
)
797 i
= ar_first_buffer_index(ctx
);
798 while (i
!= end_buffer_index
) {
799 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
800 ar_buffer_bus(ctx
, i
),
801 PAGE_SIZE
, DMA_FROM_DEVICE
);
802 i
= ar_next_buffer_index(i
);
804 if (end_buffer_offset
> 0)
805 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
806 ar_buffer_bus(ctx
, i
),
807 end_buffer_offset
, DMA_FROM_DEVICE
);
810 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
811 #define cond_le32_to_cpu(v) \
812 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
814 #define cond_le32_to_cpu(v) le32_to_cpu(v)
817 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
819 struct fw_ohci
*ohci
= ctx
->ohci
;
821 u32 status
, length
, tcode
;
824 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
825 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
826 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
828 tcode
= (p
.header
[0] >> 4) & 0x0f;
830 case TCODE_WRITE_QUADLET_REQUEST
:
831 case TCODE_READ_QUADLET_RESPONSE
:
832 p
.header
[3] = (__force __u32
) buffer
[3];
833 p
.header_length
= 16;
834 p
.payload_length
= 0;
837 case TCODE_READ_BLOCK_REQUEST
:
838 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
839 p
.header_length
= 16;
840 p
.payload_length
= 0;
843 case TCODE_WRITE_BLOCK_REQUEST
:
844 case TCODE_READ_BLOCK_RESPONSE
:
845 case TCODE_LOCK_REQUEST
:
846 case TCODE_LOCK_RESPONSE
:
847 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
848 p
.header_length
= 16;
849 p
.payload_length
= p
.header
[3] >> 16;
850 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
851 ar_context_abort(ctx
, "invalid packet length");
856 case TCODE_WRITE_RESPONSE
:
857 case TCODE_READ_QUADLET_REQUEST
:
858 case OHCI_TCODE_PHY_PACKET
:
859 p
.header_length
= 12;
860 p
.payload_length
= 0;
864 ar_context_abort(ctx
, "invalid tcode");
868 p
.payload
= (void *) buffer
+ p
.header_length
;
870 /* FIXME: What to do about evt_* errors? */
871 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
872 status
= cond_le32_to_cpu(buffer
[length
]);
873 evt
= (status
>> 16) & 0x1f;
876 p
.speed
= (status
>> 21) & 0x7;
877 p
.timestamp
= status
& 0xffff;
878 p
.generation
= ohci
->request_generation
;
880 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
883 * Several controllers, notably from NEC and VIA, forget to
884 * write ack_complete status at PHY packet reception.
886 if (evt
== OHCI1394_evt_no_status
&&
887 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
888 p
.ack
= ACK_COMPLETE
;
891 * The OHCI bus reset handler synthesizes a PHY packet with
892 * the new generation number when a bus reset happens (see
893 * section 8.4.2.3). This helps us determine when a request
894 * was received and make sure we send the response in the same
895 * generation. We only need this for requests; for responses
896 * we use the unique tlabel for finding the matching
899 * Alas some chips sometimes emit bus reset packets with a
900 * wrong generation. We set the correct generation for these
901 * at a slightly incorrect time (in bus_reset_work).
903 if (evt
== OHCI1394_evt_bus_reset
) {
904 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
905 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
906 } else if (ctx
== &ohci
->ar_request_ctx
) {
907 fw_core_handle_request(&ohci
->card
, &p
);
909 fw_core_handle_response(&ohci
->card
, &p
);
912 return buffer
+ length
+ 1;
915 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
920 next
= handle_ar_packet(ctx
, p
);
929 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
933 i
= ar_first_buffer_index(ctx
);
934 while (i
!= end_buffer
) {
935 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
936 ar_buffer_bus(ctx
, i
),
937 PAGE_SIZE
, DMA_FROM_DEVICE
);
938 ar_context_link_page(ctx
, i
);
939 i
= ar_next_buffer_index(i
);
943 static void ar_context_tasklet(unsigned long data
)
945 struct ar_context
*ctx
= (struct ar_context
*)data
;
946 unsigned int end_buffer_index
, end_buffer_offset
;
953 end_buffer_index
= ar_search_last_active_buffer(ctx
,
955 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
956 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
958 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
960 * The filled part of the overall buffer wraps around; handle
961 * all packets up to the buffer end here. If the last packet
962 * wraps around, its tail will be visible after the buffer end
963 * because the buffer start pages are mapped there again.
965 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
966 p
= handle_ar_packets(ctx
, p
, buffer_end
);
969 /* adjust p to point back into the actual buffer */
970 p
-= AR_BUFFERS
* PAGE_SIZE
;
973 p
= handle_ar_packets(ctx
, p
, end
);
976 ar_context_abort(ctx
, "inconsistent descriptor");
981 ar_recycle_buffers(ctx
, end_buffer_index
);
989 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
990 unsigned int descriptors_offset
, u32 regs
)
994 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
995 struct descriptor
*d
;
999 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
1001 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1002 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
1005 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
1006 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
1007 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
1008 __free_page(ctx
->pages
[i
]);
1009 ctx
->pages
[i
] = NULL
;
1012 set_page_private(ctx
->pages
[i
], dma_addr
);
1015 for (i
= 0; i
< AR_BUFFERS
; i
++)
1016 pages
[i
] = ctx
->pages
[i
];
1017 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
1018 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1019 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
1024 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1025 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1027 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1028 d
= &ctx
->descriptors
[i
];
1029 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1030 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1032 DESCRIPTOR_BRANCH_ALWAYS
);
1033 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1034 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1035 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1041 ar_context_release(ctx
);
1046 static void ar_context_run(struct ar_context
*ctx
)
1050 for (i
= 0; i
< AR_BUFFERS
; i
++)
1051 ar_context_link_page(ctx
, i
);
1053 ctx
->pointer
= ctx
->buffer
;
1055 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1056 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1059 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1063 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1065 /* figure out which descriptor the branch address goes in */
1066 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1072 static void context_tasklet(unsigned long data
)
1074 struct context
*ctx
= (struct context
*) data
;
1075 struct descriptor
*d
, *last
;
1078 struct descriptor_buffer
*desc
;
1080 desc
= list_entry(ctx
->buffer_list
.next
,
1081 struct descriptor_buffer
, list
);
1083 while (last
->branch_address
!= 0) {
1084 struct descriptor_buffer
*old_desc
= desc
;
1085 address
= le32_to_cpu(last
->branch_address
);
1088 ctx
->current_bus
= address
;
1090 /* If the branch address points to a buffer outside of the
1091 * current buffer, advance to the next buffer. */
1092 if (address
< desc
->buffer_bus
||
1093 address
>= desc
->buffer_bus
+ desc
->used
)
1094 desc
= list_entry(desc
->list
.next
,
1095 struct descriptor_buffer
, list
);
1096 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1097 last
= find_branch_descriptor(d
, z
);
1099 if (!ctx
->callback(ctx
, d
, last
))
1102 if (old_desc
!= desc
) {
1103 /* If we've advanced to the next buffer, move the
1104 * previous buffer to the free list. */
1105 unsigned long flags
;
1107 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1108 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1109 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1116 * Allocate a new buffer and add it to the list of free buffers for this
1117 * context. Must be called with ohci->lock held.
1119 static int context_add_buffer(struct context
*ctx
)
1121 struct descriptor_buffer
*desc
;
1122 dma_addr_t
uninitialized_var(bus_addr
);
1126 * 16MB of descriptors should be far more than enough for any DMA
1127 * program. This will catch run-away userspace or DoS attacks.
1129 if (ctx
->total_allocation
>= 16*1024*1024)
1132 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1133 &bus_addr
, GFP_ATOMIC
);
1137 offset
= (void *)&desc
->buffer
- (void *)desc
;
1138 desc
->buffer_size
= PAGE_SIZE
- offset
;
1139 desc
->buffer_bus
= bus_addr
+ offset
;
1142 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1143 ctx
->total_allocation
+= PAGE_SIZE
;
1148 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1149 u32 regs
, descriptor_callback_t callback
)
1153 ctx
->total_allocation
= 0;
1155 INIT_LIST_HEAD(&ctx
->buffer_list
);
1156 if (context_add_buffer(ctx
) < 0)
1159 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1160 struct descriptor_buffer
, list
);
1162 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1163 ctx
->callback
= callback
;
1166 * We put a dummy descriptor in the buffer that has a NULL
1167 * branch address and looks like it's been sent. That way we
1168 * have a descriptor to append DMA programs to.
1170 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1171 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1172 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1173 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1174 ctx
->last
= ctx
->buffer_tail
->buffer
;
1175 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1181 static void context_release(struct context
*ctx
)
1183 struct fw_card
*card
= &ctx
->ohci
->card
;
1184 struct descriptor_buffer
*desc
, *tmp
;
1186 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1187 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1189 ((void *)&desc
->buffer
- (void *)desc
));
1192 /* Must be called with ohci->lock held */
1193 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1194 int z
, dma_addr_t
*d_bus
)
1196 struct descriptor
*d
= NULL
;
1197 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1199 if (z
* sizeof(*d
) > desc
->buffer_size
)
1202 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1203 /* No room for the descriptor in this buffer, so advance to the
1206 if (desc
->list
.next
== &ctx
->buffer_list
) {
1207 /* If there is no free buffer next in the list,
1209 if (context_add_buffer(ctx
) < 0)
1212 desc
= list_entry(desc
->list
.next
,
1213 struct descriptor_buffer
, list
);
1214 ctx
->buffer_tail
= desc
;
1217 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1218 memset(d
, 0, z
* sizeof(*d
));
1219 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1224 static void context_run(struct context
*ctx
, u32 extra
)
1226 struct fw_ohci
*ohci
= ctx
->ohci
;
1228 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1229 le32_to_cpu(ctx
->last
->branch_address
));
1230 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1231 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1232 ctx
->running
= true;
1236 static void context_append(struct context
*ctx
,
1237 struct descriptor
*d
, int z
, int extra
)
1240 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1241 struct descriptor
*d_branch
;
1243 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1245 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1247 wmb(); /* finish init of new descriptors before branch_address update */
1249 d_branch
= find_branch_descriptor(ctx
->prev
, ctx
->prev_z
);
1250 d_branch
->branch_address
= cpu_to_le32(d_bus
| z
);
1253 * VT6306 incorrectly checks only the single descriptor at the
1254 * CommandPtr when the wake bit is written, so if it's a
1255 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1256 * the branch address in the first descriptor.
1258 * Not doing this for transmit contexts since not sure how it interacts
1259 * with skip addresses.
1261 if (unlikely(ctx
->ohci
->quirks
& QUIRK_IR_WAKE
) &&
1262 d_branch
!= ctx
->prev
&&
1263 (ctx
->prev
->control
& cpu_to_le16(DESCRIPTOR_CMD
)) ==
1264 cpu_to_le16(DESCRIPTOR_INPUT_MORE
)) {
1265 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1272 static void context_stop(struct context
*ctx
)
1274 struct fw_ohci
*ohci
= ctx
->ohci
;
1278 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1279 ctx
->running
= false;
1281 for (i
= 0; i
< 1000; i
++) {
1282 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1283 if ((reg
& CONTEXT_ACTIVE
) == 0)
1289 ohci_err(ohci
, "DMA context still active (0x%08x)\n", reg
);
1292 struct driver_data
{
1294 struct fw_packet
*packet
;
1298 * This function apppends a packet to the DMA queue for transmission.
1299 * Must always be called with the ochi->lock held to ensure proper
1300 * generation handling and locking around packet queue manipulation.
1302 static int at_context_queue_packet(struct context
*ctx
,
1303 struct fw_packet
*packet
)
1305 struct fw_ohci
*ohci
= ctx
->ohci
;
1306 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1307 struct driver_data
*driver_data
;
1308 struct descriptor
*d
, *last
;
1312 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1314 packet
->ack
= RCODE_SEND_ERROR
;
1318 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1319 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1322 * The DMA format for asynchronous link packets is different
1323 * from the IEEE1394 layout, so shift the fields around
1327 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1328 header
= (__le32
*) &d
[1];
1330 case TCODE_WRITE_QUADLET_REQUEST
:
1331 case TCODE_WRITE_BLOCK_REQUEST
:
1332 case TCODE_WRITE_RESPONSE
:
1333 case TCODE_READ_QUADLET_REQUEST
:
1334 case TCODE_READ_BLOCK_REQUEST
:
1335 case TCODE_READ_QUADLET_RESPONSE
:
1336 case TCODE_READ_BLOCK_RESPONSE
:
1337 case TCODE_LOCK_REQUEST
:
1338 case TCODE_LOCK_RESPONSE
:
1339 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1340 (packet
->speed
<< 16));
1341 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1342 (packet
->header
[0] & 0xffff0000));
1343 header
[2] = cpu_to_le32(packet
->header
[2]);
1345 if (TCODE_IS_BLOCK_PACKET(tcode
))
1346 header
[3] = cpu_to_le32(packet
->header
[3]);
1348 header
[3] = (__force __le32
) packet
->header
[3];
1350 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1353 case TCODE_LINK_INTERNAL
:
1354 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1355 (packet
->speed
<< 16));
1356 header
[1] = cpu_to_le32(packet
->header
[1]);
1357 header
[2] = cpu_to_le32(packet
->header
[2]);
1358 d
[0].req_count
= cpu_to_le16(12);
1360 if (is_ping_packet(&packet
->header
[1]))
1361 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1364 case TCODE_STREAM_DATA
:
1365 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1366 (packet
->speed
<< 16));
1367 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1368 d
[0].req_count
= cpu_to_le16(8);
1373 packet
->ack
= RCODE_SEND_ERROR
;
1377 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1378 driver_data
= (struct driver_data
*) &d
[3];
1379 driver_data
->packet
= packet
;
1380 packet
->driver_data
= driver_data
;
1382 if (packet
->payload_length
> 0) {
1383 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1384 payload_bus
= dma_map_single(ohci
->card
.device
,
1386 packet
->payload_length
,
1388 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1389 packet
->ack
= RCODE_SEND_ERROR
;
1392 packet
->payload_bus
= payload_bus
;
1393 packet
->payload_mapped
= true;
1395 memcpy(driver_data
->inline_data
, packet
->payload
,
1396 packet
->payload_length
);
1397 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1400 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1401 d
[2].data_address
= cpu_to_le32(payload_bus
);
1409 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1410 DESCRIPTOR_IRQ_ALWAYS
|
1411 DESCRIPTOR_BRANCH_ALWAYS
);
1413 /* FIXME: Document how the locking works. */
1414 if (ohci
->generation
!= packet
->generation
) {
1415 if (packet
->payload_mapped
)
1416 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1417 packet
->payload_length
, DMA_TO_DEVICE
);
1418 packet
->ack
= RCODE_GENERATION
;
1422 context_append(ctx
, d
, z
, 4 - z
);
1425 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1427 context_run(ctx
, 0);
1432 static void at_context_flush(struct context
*ctx
)
1434 tasklet_disable(&ctx
->tasklet
);
1436 ctx
->flushing
= true;
1437 context_tasklet((unsigned long)ctx
);
1438 ctx
->flushing
= false;
1440 tasklet_enable(&ctx
->tasklet
);
1443 static int handle_at_packet(struct context
*context
,
1444 struct descriptor
*d
,
1445 struct descriptor
*last
)
1447 struct driver_data
*driver_data
;
1448 struct fw_packet
*packet
;
1449 struct fw_ohci
*ohci
= context
->ohci
;
1452 if (last
->transfer_status
== 0 && !context
->flushing
)
1453 /* This descriptor isn't done yet, stop iteration. */
1456 driver_data
= (struct driver_data
*) &d
[3];
1457 packet
= driver_data
->packet
;
1459 /* This packet was cancelled, just continue. */
1462 if (packet
->payload_mapped
)
1463 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1464 packet
->payload_length
, DMA_TO_DEVICE
);
1466 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1467 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1469 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1472 case OHCI1394_evt_timeout
:
1473 /* Async response transmit timed out. */
1474 packet
->ack
= RCODE_CANCELLED
;
1477 case OHCI1394_evt_flushed
:
1479 * The packet was flushed should give same error as
1480 * when we try to use a stale generation count.
1482 packet
->ack
= RCODE_GENERATION
;
1485 case OHCI1394_evt_missing_ack
:
1486 if (context
->flushing
)
1487 packet
->ack
= RCODE_GENERATION
;
1490 * Using a valid (current) generation count, but the
1491 * node is not on the bus or not sending acks.
1493 packet
->ack
= RCODE_NO_ACK
;
1497 case ACK_COMPLETE
+ 0x10:
1498 case ACK_PENDING
+ 0x10:
1499 case ACK_BUSY_X
+ 0x10:
1500 case ACK_BUSY_A
+ 0x10:
1501 case ACK_BUSY_B
+ 0x10:
1502 case ACK_DATA_ERROR
+ 0x10:
1503 case ACK_TYPE_ERROR
+ 0x10:
1504 packet
->ack
= evt
- 0x10;
1507 case OHCI1394_evt_no_status
:
1508 if (context
->flushing
) {
1509 packet
->ack
= RCODE_GENERATION
;
1515 packet
->ack
= RCODE_SEND_ERROR
;
1519 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1524 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1525 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1526 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1527 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1528 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1530 static void handle_local_rom(struct fw_ohci
*ohci
,
1531 struct fw_packet
*packet
, u32 csr
)
1533 struct fw_packet response
;
1534 int tcode
, length
, i
;
1536 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1537 if (TCODE_IS_BLOCK_PACKET(tcode
))
1538 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1542 i
= csr
- CSR_CONFIG_ROM
;
1543 if (i
+ length
> CONFIG_ROM_SIZE
) {
1544 fw_fill_response(&response
, packet
->header
,
1545 RCODE_ADDRESS_ERROR
, NULL
, 0);
1546 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1547 fw_fill_response(&response
, packet
->header
,
1548 RCODE_TYPE_ERROR
, NULL
, 0);
1550 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1551 (void *) ohci
->config_rom
+ i
, length
);
1554 fw_core_handle_response(&ohci
->card
, &response
);
1557 static void handle_local_lock(struct fw_ohci
*ohci
,
1558 struct fw_packet
*packet
, u32 csr
)
1560 struct fw_packet response
;
1561 int tcode
, length
, ext_tcode
, sel
, try;
1562 __be32
*payload
, lock_old
;
1563 u32 lock_arg
, lock_data
;
1565 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1566 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1567 payload
= packet
->payload
;
1568 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1570 if (tcode
== TCODE_LOCK_REQUEST
&&
1571 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1572 lock_arg
= be32_to_cpu(payload
[0]);
1573 lock_data
= be32_to_cpu(payload
[1]);
1574 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1578 fw_fill_response(&response
, packet
->header
,
1579 RCODE_TYPE_ERROR
, NULL
, 0);
1583 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1584 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1585 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1586 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1588 for (try = 0; try < 20; try++)
1589 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1590 lock_old
= cpu_to_be32(reg_read(ohci
,
1592 fw_fill_response(&response
, packet
->header
,
1594 &lock_old
, sizeof(lock_old
));
1598 ohci_err(ohci
, "swap not done (CSR lock timeout)\n");
1599 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1602 fw_core_handle_response(&ohci
->card
, &response
);
1605 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1609 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1610 packet
->ack
= ACK_PENDING
;
1611 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1615 ((unsigned long long)
1616 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1618 csr
= offset
- CSR_REGISTER_BASE
;
1620 /* Handle config rom reads. */
1621 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1622 handle_local_rom(ctx
->ohci
, packet
, csr
);
1624 case CSR_BUS_MANAGER_ID
:
1625 case CSR_BANDWIDTH_AVAILABLE
:
1626 case CSR_CHANNELS_AVAILABLE_HI
:
1627 case CSR_CHANNELS_AVAILABLE_LO
:
1628 handle_local_lock(ctx
->ohci
, packet
, csr
);
1631 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1632 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1634 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1638 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1639 packet
->ack
= ACK_COMPLETE
;
1640 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1644 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1646 unsigned long flags
;
1649 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1651 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1652 ctx
->ohci
->generation
== packet
->generation
) {
1653 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1654 handle_local_request(ctx
, packet
);
1658 ret
= at_context_queue_packet(ctx
, packet
);
1659 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1662 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1666 static void detect_dead_context(struct fw_ohci
*ohci
,
1667 const char *name
, unsigned int regs
)
1671 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1672 if (ctl
& CONTEXT_DEAD
)
1673 ohci_err(ohci
, "DMA context %s has stopped, error code: %s\n",
1674 name
, evts
[ctl
& 0x1f]);
1677 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1682 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1683 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1684 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1685 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1686 for (i
= 0; i
< 32; ++i
) {
1687 if (!(ohci
->it_context_support
& (1 << i
)))
1689 sprintf(name
, "IT%u", i
);
1690 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1692 for (i
= 0; i
< 32; ++i
) {
1693 if (!(ohci
->ir_context_support
& (1 << i
)))
1695 sprintf(name
, "IR%u", i
);
1696 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1698 /* TODO: maybe try to flush and restart the dead contexts */
1701 static u32
cycle_timer_ticks(u32 cycle_timer
)
1705 ticks
= cycle_timer
& 0xfff;
1706 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1707 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1713 * Some controllers exhibit one or more of the following bugs when updating the
1714 * iso cycle timer register:
1715 * - When the lowest six bits are wrapping around to zero, a read that happens
1716 * at the same time will return garbage in the lowest ten bits.
1717 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1718 * not incremented for about 60 ns.
1719 * - Occasionally, the entire register reads zero.
1721 * To catch these, we read the register three times and ensure that the
1722 * difference between each two consecutive reads is approximately the same, i.e.
1723 * less than twice the other. Furthermore, any negative difference indicates an
1724 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1725 * execute, so we have enough precision to compute the ratio of the differences.)
1727 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1734 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1736 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1739 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1743 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1744 t0
= cycle_timer_ticks(c0
);
1745 t1
= cycle_timer_ticks(c1
);
1746 t2
= cycle_timer_ticks(c2
);
1749 } while ((diff01
<= 0 || diff12
<= 0 ||
1750 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1758 * This function has to be called at least every 64 seconds. The bus_time
1759 * field stores not only the upper 25 bits of the BUS_TIME register but also
1760 * the most significant bit of the cycle timer in bit 6 so that we can detect
1761 * changes in this bit.
1763 static u32
update_bus_time(struct fw_ohci
*ohci
)
1765 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1767 if (unlikely(!ohci
->bus_time_running
)) {
1768 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1769 ohci
->bus_time
= (lower_32_bits(get_seconds()) & ~0x7f) |
1770 (cycle_time_seconds
& 0x40);
1771 ohci
->bus_time_running
= true;
1774 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1775 ohci
->bus_time
+= 0x40;
1777 return ohci
->bus_time
| cycle_time_seconds
;
1780 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1784 mutex_lock(&ohci
->phy_reg_mutex
);
1785 reg
= write_phy_reg(ohci
, 7, port_index
);
1787 reg
= read_phy_reg(ohci
, 8);
1788 mutex_unlock(&ohci
->phy_reg_mutex
);
1792 switch (reg
& 0x0f) {
1794 return 2; /* is child node (connected to parent node) */
1796 return 3; /* is parent node (connected to child node) */
1798 return 1; /* not connected */
1801 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1807 for (i
= 0; i
< self_id_count
; i
++) {
1808 entry
= ohci
->self_id_buffer
[i
];
1809 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1811 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1817 static int initiated_reset(struct fw_ohci
*ohci
)
1822 mutex_lock(&ohci
->phy_reg_mutex
);
1823 reg
= write_phy_reg(ohci
, 7, 0xe0); /* Select page 7 */
1825 reg
= read_phy_reg(ohci
, 8);
1827 reg
= write_phy_reg(ohci
, 8, reg
); /* set PMODE bit */
1829 reg
= read_phy_reg(ohci
, 12); /* read register 12 */
1831 if ((reg
& 0x08) == 0x08) {
1832 /* bit 3 indicates "initiated reset" */
1838 mutex_unlock(&ohci
->phy_reg_mutex
);
1843 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1844 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1845 * Construct the selfID from phy register contents.
1847 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1849 int reg
, i
, pos
, status
;
1850 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1851 u32 self_id
= 0x8040c800;
1853 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1854 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1856 "node ID not valid, new bus reset in progress\n");
1859 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1861 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1864 self_id
|= ((reg
& 0x07) << 8); /* power class */
1866 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1869 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1871 for (i
= 0; i
< 3; i
++) {
1872 status
= get_status_for_port(ohci
, i
);
1875 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1878 self_id
|= initiated_reset(ohci
);
1880 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1882 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1883 &(ohci
->self_id_buffer
[pos
]),
1884 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1885 ohci
->self_id_buffer
[pos
] = self_id
;
1888 return self_id_count
;
1891 static void bus_reset_work(struct work_struct
*work
)
1893 struct fw_ohci
*ohci
=
1894 container_of(work
, struct fw_ohci
, bus_reset_work
);
1895 int self_id_count
, generation
, new_generation
, i
, j
;
1897 void *free_rom
= NULL
;
1898 dma_addr_t free_rom_bus
= 0;
1901 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1902 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1904 "node ID not valid, new bus reset in progress\n");
1907 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1908 ohci_notice(ohci
, "malconfigured bus\n");
1911 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1912 OHCI1394_NodeID_nodeNumber
);
1914 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1915 if (!(ohci
->is_root
&& is_new_root
))
1916 reg_write(ohci
, OHCI1394_LinkControlSet
,
1917 OHCI1394_LinkControl_cycleMaster
);
1918 ohci
->is_root
= is_new_root
;
1920 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1921 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1922 ohci_notice(ohci
, "self ID receive error\n");
1926 * The count in the SelfIDCount register is the number of
1927 * bytes in the self ID receive buffer. Since we also receive
1928 * the inverted quadlets and a header quadlet, we shift one
1929 * bit extra to get the actual number of self IDs.
1931 self_id_count
= (reg
>> 3) & 0xff;
1933 if (self_id_count
> 252) {
1934 ohci_notice(ohci
, "bad selfIDSize (%08x)\n", reg
);
1938 generation
= (cond_le32_to_cpu(ohci
->self_id
[0]) >> 16) & 0xff;
1941 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1942 u32 id
= cond_le32_to_cpu(ohci
->self_id
[i
]);
1943 u32 id2
= cond_le32_to_cpu(ohci
->self_id
[i
+ 1]);
1947 * If the invalid data looks like a cycle start packet,
1948 * it's likely to be the result of the cycle master
1949 * having a wrong gap count. In this case, the self IDs
1950 * so far are valid and should be processed so that the
1951 * bus manager can then correct the gap count.
1953 if (id
== 0xffff008f) {
1954 ohci_notice(ohci
, "ignoring spurious self IDs\n");
1959 ohci_notice(ohci
, "bad self ID %d/%d (%08x != ~%08x)\n",
1960 j
, self_id_count
, id
, id2
);
1963 ohci
->self_id_buffer
[j
] = id
;
1966 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1967 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1968 if (self_id_count
< 0) {
1970 "could not construct local self ID\n");
1975 if (self_id_count
== 0) {
1976 ohci_notice(ohci
, "no self IDs\n");
1982 * Check the consistency of the self IDs we just read. The
1983 * problem we face is that a new bus reset can start while we
1984 * read out the self IDs from the DMA buffer. If this happens,
1985 * the DMA buffer will be overwritten with new self IDs and we
1986 * will read out inconsistent data. The OHCI specification
1987 * (section 11.2) recommends a technique similar to
1988 * linux/seqlock.h, where we remember the generation of the
1989 * self IDs in the buffer before reading them out and compare
1990 * it to the current generation after reading them out. If
1991 * the two generations match we know we have a consistent set
1995 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1996 if (new_generation
!= generation
) {
1997 ohci_notice(ohci
, "new bus reset, discarding self ids\n");
2001 /* FIXME: Document how the locking works. */
2002 spin_lock_irq(&ohci
->lock
);
2004 ohci
->generation
= -1; /* prevent AT packet queueing */
2005 context_stop(&ohci
->at_request_ctx
);
2006 context_stop(&ohci
->at_response_ctx
);
2008 spin_unlock_irq(&ohci
->lock
);
2011 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2012 * packets in the AT queues and software needs to drain them.
2013 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2015 at_context_flush(&ohci
->at_request_ctx
);
2016 at_context_flush(&ohci
->at_response_ctx
);
2018 spin_lock_irq(&ohci
->lock
);
2020 ohci
->generation
= generation
;
2021 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
2023 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
2024 ohci
->request_generation
= generation
;
2027 * This next bit is unrelated to the AT context stuff but we
2028 * have to do it under the spinlock also. If a new config rom
2029 * was set up before this reset, the old one is now no longer
2030 * in use and we can free it. Update the config rom pointers
2031 * to point to the current config rom and clear the
2032 * next_config_rom pointer so a new update can take place.
2035 if (ohci
->next_config_rom
!= NULL
) {
2036 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
2037 free_rom
= ohci
->config_rom
;
2038 free_rom_bus
= ohci
->config_rom_bus
;
2040 ohci
->config_rom
= ohci
->next_config_rom
;
2041 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
2042 ohci
->next_config_rom
= NULL
;
2045 * Restore config_rom image and manually update
2046 * config_rom registers. Writing the header quadlet
2047 * will indicate that the config rom is ready, so we
2050 reg_write(ohci
, OHCI1394_BusOptions
,
2051 be32_to_cpu(ohci
->config_rom
[2]));
2052 ohci
->config_rom
[0] = ohci
->next_header
;
2053 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
2054 be32_to_cpu(ohci
->next_header
));
2057 if (param_remote_dma
) {
2058 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
2059 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2062 spin_unlock_irq(&ohci
->lock
);
2065 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2066 free_rom
, free_rom_bus
);
2068 log_selfids(ohci
, generation
, self_id_count
);
2070 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2071 self_id_count
, ohci
->self_id_buffer
,
2072 ohci
->csr_state_setclear_abdicate
);
2073 ohci
->csr_state_setclear_abdicate
= false;
2076 static irqreturn_t
irq_handler(int irq
, void *data
)
2078 struct fw_ohci
*ohci
= data
;
2079 u32 event
, iso_event
;
2082 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2084 if (!event
|| !~event
)
2088 * busReset and postedWriteErr must not be cleared yet
2089 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2091 reg_write(ohci
, OHCI1394_IntEventClear
,
2092 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2093 log_irqs(ohci
, event
);
2095 if (event
& OHCI1394_selfIDComplete
)
2096 queue_work(selfid_workqueue
, &ohci
->bus_reset_work
);
2098 if (event
& OHCI1394_RQPkt
)
2099 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2101 if (event
& OHCI1394_RSPkt
)
2102 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2104 if (event
& OHCI1394_reqTxComplete
)
2105 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2107 if (event
& OHCI1394_respTxComplete
)
2108 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2110 if (event
& OHCI1394_isochRx
) {
2111 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2112 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2115 i
= ffs(iso_event
) - 1;
2117 &ohci
->ir_context_list
[i
].context
.tasklet
);
2118 iso_event
&= ~(1 << i
);
2122 if (event
& OHCI1394_isochTx
) {
2123 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2124 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2127 i
= ffs(iso_event
) - 1;
2129 &ohci
->it_context_list
[i
].context
.tasklet
);
2130 iso_event
&= ~(1 << i
);
2134 if (unlikely(event
& OHCI1394_regAccessFail
))
2135 ohci_err(ohci
, "register access failure\n");
2137 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2138 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2139 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2140 reg_write(ohci
, OHCI1394_IntEventClear
,
2141 OHCI1394_postedWriteErr
);
2142 if (printk_ratelimit())
2143 ohci_err(ohci
, "PCI posted write error\n");
2146 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2147 if (printk_ratelimit())
2148 ohci_notice(ohci
, "isochronous cycle too long\n");
2149 reg_write(ohci
, OHCI1394_LinkControlSet
,
2150 OHCI1394_LinkControl_cycleMaster
);
2153 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2155 * We need to clear this event bit in order to make
2156 * cycleMatch isochronous I/O work. In theory we should
2157 * stop active cycleMatch iso contexts now and restart
2158 * them at least two cycles later. (FIXME?)
2160 if (printk_ratelimit())
2161 ohci_notice(ohci
, "isochronous cycle inconsistent\n");
2164 if (unlikely(event
& OHCI1394_unrecoverableError
))
2165 handle_dead_contexts(ohci
);
2167 if (event
& OHCI1394_cycle64Seconds
) {
2168 spin_lock(&ohci
->lock
);
2169 update_bus_time(ohci
);
2170 spin_unlock(&ohci
->lock
);
2177 static int software_reset(struct fw_ohci
*ohci
)
2182 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2183 for (i
= 0; i
< 500; i
++) {
2184 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2186 return -ENODEV
; /* Card was ejected. */
2188 if (!(val
& OHCI1394_HCControl_softReset
))
2197 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2199 size_t size
= length
* 4;
2201 memcpy(dest
, src
, size
);
2202 if (size
< CONFIG_ROM_SIZE
)
2203 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2206 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2209 int ret
, clear
, set
, offset
;
2211 /* Check if the driver should configure link and PHY. */
2212 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2213 OHCI1394_HCControl_programPhyEnable
))
2216 /* Paranoia: check whether the PHY supports 1394a, too. */
2217 enable_1394a
= false;
2218 ret
= read_phy_reg(ohci
, 2);
2221 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2222 ret
= read_paged_phy_reg(ohci
, 1, 8);
2226 enable_1394a
= true;
2229 if (ohci
->quirks
& QUIRK_NO_1394A
)
2230 enable_1394a
= false;
2232 /* Configure PHY and link consistently. */
2235 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2237 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2240 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2245 offset
= OHCI1394_HCControlSet
;
2247 offset
= OHCI1394_HCControlClear
;
2248 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2250 /* Clean up: configuration has been taken care of. */
2251 reg_write(ohci
, OHCI1394_HCControlClear
,
2252 OHCI1394_HCControl_programPhyEnable
);
2257 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2259 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2260 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2263 reg
= read_phy_reg(ohci
, 2);
2266 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2269 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2270 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2279 static int ohci_enable(struct fw_card
*card
,
2280 const __be32
*config_rom
, size_t length
)
2282 struct fw_ohci
*ohci
= fw_ohci(card
);
2283 u32 lps
, version
, irqs
;
2286 if (software_reset(ohci
)) {
2287 ohci_err(ohci
, "failed to reset ohci card\n");
2292 * Now enable LPS, which we need in order to start accessing
2293 * most of the registers. In fact, on some cards (ALI M5251),
2294 * accessing registers in the SClk domain without LPS enabled
2295 * will lock up the machine. Wait 50msec to make sure we have
2296 * full link enabled. However, with some cards (well, at least
2297 * a JMicron PCIe card), we have to try again sometimes.
2299 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2300 * cannot actually use the phy at that time. These need tens of
2301 * millisecods pause between LPS write and first phy access too.
2303 * But do not wait for 50msec on Agere/LSI cards. Their phy
2304 * arbitration state machine may time out during such a long wait.
2307 reg_write(ohci
, OHCI1394_HCControlSet
,
2308 OHCI1394_HCControl_LPS
|
2309 OHCI1394_HCControl_postedWriteEnable
);
2312 if (!(ohci
->quirks
& QUIRK_PHY_LCTRL_TIMEOUT
))
2315 for (lps
= 0, i
= 0; !lps
&& i
< 150; i
++) {
2317 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2318 OHCI1394_HCControl_LPS
;
2322 ohci_err(ohci
, "failed to set Link Power Status\n");
2326 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2327 ret
= probe_tsb41ba3d(ohci
);
2331 ohci_notice(ohci
, "local TSB41BA3D phy\n");
2333 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2336 reg_write(ohci
, OHCI1394_HCControlClear
,
2337 OHCI1394_HCControl_noByteSwapData
);
2339 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2340 reg_write(ohci
, OHCI1394_LinkControlSet
,
2341 OHCI1394_LinkControl_cycleTimerEnable
|
2342 OHCI1394_LinkControl_cycleMaster
);
2344 reg_write(ohci
, OHCI1394_ATRetries
,
2345 OHCI1394_MAX_AT_REQ_RETRIES
|
2346 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2347 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2350 ohci
->bus_time_running
= false;
2352 for (i
= 0; i
< 32; i
++)
2353 if (ohci
->ir_context_support
& (1 << i
))
2354 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2355 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2357 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2358 if (version
>= OHCI_VERSION_1_1
) {
2359 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2361 card
->broadcast_channel_auto_allocated
= true;
2364 /* Get implemented bits of the priority arbitration request counter. */
2365 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2366 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2367 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2368 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2370 reg_write(ohci
, OHCI1394_PhyUpperBound
, FW_MAX_PHYSICAL_RANGE
>> 16);
2371 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2372 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2374 ret
= configure_1394a_enhancements(ohci
);
2378 /* Activate link_on bit and contender bit in our self ID packets.*/
2379 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2384 * When the link is not yet enabled, the atomic config rom
2385 * update mechanism described below in ohci_set_config_rom()
2386 * is not active. We have to update ConfigRomHeader and
2387 * BusOptions manually, and the write to ConfigROMmap takes
2388 * effect immediately. We tie this to the enabling of the
2389 * link, so we have a valid config rom before enabling - the
2390 * OHCI requires that ConfigROMhdr and BusOptions have valid
2391 * values before enabling.
2393 * However, when the ConfigROMmap is written, some controllers
2394 * always read back quadlets 0 and 2 from the config rom to
2395 * the ConfigRomHeader and BusOptions registers on bus reset.
2396 * They shouldn't do that in this initial case where the link
2397 * isn't enabled. This means we have to use the same
2398 * workaround here, setting the bus header to 0 and then write
2399 * the right values in the bus reset tasklet.
2403 ohci
->next_config_rom
=
2404 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2405 &ohci
->next_config_rom_bus
,
2407 if (ohci
->next_config_rom
== NULL
)
2410 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2413 * In the suspend case, config_rom is NULL, which
2414 * means that we just reuse the old config rom.
2416 ohci
->next_config_rom
= ohci
->config_rom
;
2417 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2420 ohci
->next_header
= ohci
->next_config_rom
[0];
2421 ohci
->next_config_rom
[0] = 0;
2422 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2423 reg_write(ohci
, OHCI1394_BusOptions
,
2424 be32_to_cpu(ohci
->next_config_rom
[2]));
2425 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2427 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2429 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2430 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2431 OHCI1394_isochTx
| OHCI1394_isochRx
|
2432 OHCI1394_postedWriteErr
|
2433 OHCI1394_selfIDComplete
|
2434 OHCI1394_regAccessFail
|
2435 OHCI1394_cycleInconsistent
|
2436 OHCI1394_unrecoverableError
|
2437 OHCI1394_cycleTooLong
|
2438 OHCI1394_masterIntEnable
;
2439 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2440 irqs
|= OHCI1394_busReset
;
2441 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2443 reg_write(ohci
, OHCI1394_HCControlSet
,
2444 OHCI1394_HCControl_linkEnable
|
2445 OHCI1394_HCControl_BIBimageValid
);
2447 reg_write(ohci
, OHCI1394_LinkControlSet
,
2448 OHCI1394_LinkControl_rcvSelfID
|
2449 OHCI1394_LinkControl_rcvPhyPkt
);
2451 ar_context_run(&ohci
->ar_request_ctx
);
2452 ar_context_run(&ohci
->ar_response_ctx
);
2456 /* We are ready to go, reset bus to finish initialization. */
2457 fw_schedule_bus_reset(&ohci
->card
, false, true);
2462 static int ohci_set_config_rom(struct fw_card
*card
,
2463 const __be32
*config_rom
, size_t length
)
2465 struct fw_ohci
*ohci
;
2466 __be32
*next_config_rom
;
2467 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2469 ohci
= fw_ohci(card
);
2472 * When the OHCI controller is enabled, the config rom update
2473 * mechanism is a bit tricky, but easy enough to use. See
2474 * section 5.5.6 in the OHCI specification.
2476 * The OHCI controller caches the new config rom address in a
2477 * shadow register (ConfigROMmapNext) and needs a bus reset
2478 * for the changes to take place. When the bus reset is
2479 * detected, the controller loads the new values for the
2480 * ConfigRomHeader and BusOptions registers from the specified
2481 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2482 * shadow register. All automatically and atomically.
2484 * Now, there's a twist to this story. The automatic load of
2485 * ConfigRomHeader and BusOptions doesn't honor the
2486 * noByteSwapData bit, so with a be32 config rom, the
2487 * controller will load be32 values in to these registers
2488 * during the atomic update, even on litte endian
2489 * architectures. The workaround we use is to put a 0 in the
2490 * header quadlet; 0 is endian agnostic and means that the
2491 * config rom isn't ready yet. In the bus reset tasklet we
2492 * then set up the real values for the two registers.
2494 * We use ohci->lock to avoid racing with the code that sets
2495 * ohci->next_config_rom to NULL (see bus_reset_work).
2499 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2500 &next_config_rom_bus
, GFP_KERNEL
);
2501 if (next_config_rom
== NULL
)
2504 spin_lock_irq(&ohci
->lock
);
2507 * If there is not an already pending config_rom update,
2508 * push our new allocation into the ohci->next_config_rom
2509 * and then mark the local variable as null so that we
2510 * won't deallocate the new buffer.
2512 * OTOH, if there is a pending config_rom update, just
2513 * use that buffer with the new config_rom data, and
2514 * let this routine free the unused DMA allocation.
2517 if (ohci
->next_config_rom
== NULL
) {
2518 ohci
->next_config_rom
= next_config_rom
;
2519 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2520 next_config_rom
= NULL
;
2523 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2525 ohci
->next_header
= config_rom
[0];
2526 ohci
->next_config_rom
[0] = 0;
2528 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2530 spin_unlock_irq(&ohci
->lock
);
2532 /* If we didn't use the DMA allocation, delete it. */
2533 if (next_config_rom
!= NULL
)
2534 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2535 next_config_rom
, next_config_rom_bus
);
2538 * Now initiate a bus reset to have the changes take
2539 * effect. We clean up the old config rom memory and DMA
2540 * mappings in the bus reset tasklet, since the OHCI
2541 * controller could need to access it before the bus reset
2545 fw_schedule_bus_reset(&ohci
->card
, true, true);
2550 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2552 struct fw_ohci
*ohci
= fw_ohci(card
);
2554 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2557 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2559 struct fw_ohci
*ohci
= fw_ohci(card
);
2561 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2564 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2566 struct fw_ohci
*ohci
= fw_ohci(card
);
2567 struct context
*ctx
= &ohci
->at_request_ctx
;
2568 struct driver_data
*driver_data
= packet
->driver_data
;
2571 tasklet_disable(&ctx
->tasklet
);
2573 if (packet
->ack
!= 0)
2576 if (packet
->payload_mapped
)
2577 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2578 packet
->payload_length
, DMA_TO_DEVICE
);
2580 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2581 driver_data
->packet
= NULL
;
2582 packet
->ack
= RCODE_CANCELLED
;
2583 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2586 tasklet_enable(&ctx
->tasklet
);
2591 static int ohci_enable_phys_dma(struct fw_card
*card
,
2592 int node_id
, int generation
)
2594 struct fw_ohci
*ohci
= fw_ohci(card
);
2595 unsigned long flags
;
2598 if (param_remote_dma
)
2602 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2603 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2606 spin_lock_irqsave(&ohci
->lock
, flags
);
2608 if (ohci
->generation
!= generation
) {
2614 * Note, if the node ID contains a non-local bus ID, physical DMA is
2615 * enabled for _all_ nodes on remote buses.
2618 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2620 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2622 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2626 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2631 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2633 struct fw_ohci
*ohci
= fw_ohci(card
);
2634 unsigned long flags
;
2637 switch (csr_offset
) {
2638 case CSR_STATE_CLEAR
:
2640 if (ohci
->is_root
&&
2641 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2642 OHCI1394_LinkControl_cycleMaster
))
2643 value
= CSR_STATE_BIT_CMSTR
;
2646 if (ohci
->csr_state_setclear_abdicate
)
2647 value
|= CSR_STATE_BIT_ABDICATE
;
2652 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2654 case CSR_CYCLE_TIME
:
2655 return get_cycle_time(ohci
);
2659 * We might be called just after the cycle timer has wrapped
2660 * around but just before the cycle64Seconds handler, so we
2661 * better check here, too, if the bus time needs to be updated.
2663 spin_lock_irqsave(&ohci
->lock
, flags
);
2664 value
= update_bus_time(ohci
);
2665 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2668 case CSR_BUSY_TIMEOUT
:
2669 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2670 return (value
>> 4) & 0x0ffff00f;
2672 case CSR_PRIORITY_BUDGET
:
2673 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2674 (ohci
->pri_req_max
<< 8);
2682 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2684 struct fw_ohci
*ohci
= fw_ohci(card
);
2685 unsigned long flags
;
2687 switch (csr_offset
) {
2688 case CSR_STATE_CLEAR
:
2689 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2690 reg_write(ohci
, OHCI1394_LinkControlClear
,
2691 OHCI1394_LinkControl_cycleMaster
);
2694 if (value
& CSR_STATE_BIT_ABDICATE
)
2695 ohci
->csr_state_setclear_abdicate
= false;
2699 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2700 reg_write(ohci
, OHCI1394_LinkControlSet
,
2701 OHCI1394_LinkControl_cycleMaster
);
2704 if (value
& CSR_STATE_BIT_ABDICATE
)
2705 ohci
->csr_state_setclear_abdicate
= true;
2709 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2713 case CSR_CYCLE_TIME
:
2714 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2715 reg_write(ohci
, OHCI1394_IntEventSet
,
2716 OHCI1394_cycleInconsistent
);
2721 spin_lock_irqsave(&ohci
->lock
, flags
);
2722 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) |
2724 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2727 case CSR_BUSY_TIMEOUT
:
2728 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2729 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2730 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2734 case CSR_PRIORITY_BUDGET
:
2735 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2745 static void flush_iso_completions(struct iso_context
*ctx
)
2747 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2748 ctx
->header_length
, ctx
->header
,
2749 ctx
->base
.callback_data
);
2750 ctx
->header_length
= 0;
2753 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2757 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
) {
2758 if (ctx
->base
.drop_overflow_headers
)
2760 flush_iso_completions(ctx
);
2763 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2764 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2767 * The two iso header quadlets are byteswapped to little
2768 * endian by the controller, but we want to present them
2769 * as big endian for consistency with the bus endianness.
2771 if (ctx
->base
.header_size
> 0)
2772 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2773 if (ctx
->base
.header_size
> 4)
2774 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2775 if (ctx
->base
.header_size
> 8)
2776 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2777 ctx
->header_length
+= ctx
->base
.header_size
;
2780 static int handle_ir_packet_per_buffer(struct context
*context
,
2781 struct descriptor
*d
,
2782 struct descriptor
*last
)
2784 struct iso_context
*ctx
=
2785 container_of(context
, struct iso_context
, context
);
2786 struct descriptor
*pd
;
2789 for (pd
= d
; pd
<= last
; pd
++)
2790 if (pd
->transfer_status
)
2793 /* Descriptor(s) not done yet, stop iteration */
2796 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2798 buffer_dma
= le32_to_cpu(d
->data_address
);
2799 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2800 buffer_dma
& PAGE_MASK
,
2801 buffer_dma
& ~PAGE_MASK
,
2802 le16_to_cpu(d
->req_count
),
2806 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2808 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2809 flush_iso_completions(ctx
);
2814 /* d == last because each descriptor block is only a single descriptor. */
2815 static int handle_ir_buffer_fill(struct context
*context
,
2816 struct descriptor
*d
,
2817 struct descriptor
*last
)
2819 struct iso_context
*ctx
=
2820 container_of(context
, struct iso_context
, context
);
2821 unsigned int req_count
, res_count
, completed
;
2824 req_count
= le16_to_cpu(last
->req_count
);
2825 res_count
= le16_to_cpu(ACCESS_ONCE(last
->res_count
));
2826 completed
= req_count
- res_count
;
2827 buffer_dma
= le32_to_cpu(last
->data_address
);
2829 if (completed
> 0) {
2830 ctx
->mc_buffer_bus
= buffer_dma
;
2831 ctx
->mc_completed
= completed
;
2835 /* Descriptor(s) not done yet, stop iteration */
2838 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2839 buffer_dma
& PAGE_MASK
,
2840 buffer_dma
& ~PAGE_MASK
,
2841 completed
, DMA_FROM_DEVICE
);
2843 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2844 ctx
->base
.callback
.mc(&ctx
->base
,
2845 buffer_dma
+ completed
,
2846 ctx
->base
.callback_data
);
2847 ctx
->mc_completed
= 0;
2853 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2855 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2856 ctx
->mc_buffer_bus
& PAGE_MASK
,
2857 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2858 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2860 ctx
->base
.callback
.mc(&ctx
->base
,
2861 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2862 ctx
->base
.callback_data
);
2863 ctx
->mc_completed
= 0;
2866 static inline void sync_it_packet_for_cpu(struct context
*context
,
2867 struct descriptor
*pd
)
2872 /* only packets beginning with OUTPUT_MORE* have data buffers */
2873 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2876 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2880 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2881 * data buffer is in the context program's coherent page and must not
2884 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2885 (context
->current_bus
& PAGE_MASK
)) {
2886 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2892 buffer_dma
= le32_to_cpu(pd
->data_address
);
2893 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2894 buffer_dma
& PAGE_MASK
,
2895 buffer_dma
& ~PAGE_MASK
,
2896 le16_to_cpu(pd
->req_count
),
2898 control
= pd
->control
;
2900 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2903 static int handle_it_packet(struct context
*context
,
2904 struct descriptor
*d
,
2905 struct descriptor
*last
)
2907 struct iso_context
*ctx
=
2908 container_of(context
, struct iso_context
, context
);
2909 struct descriptor
*pd
;
2912 for (pd
= d
; pd
<= last
; pd
++)
2913 if (pd
->transfer_status
)
2916 /* Descriptor(s) not done yet, stop iteration */
2919 sync_it_packet_for_cpu(context
, d
);
2921 if (ctx
->header_length
+ 4 > PAGE_SIZE
) {
2922 if (ctx
->base
.drop_overflow_headers
)
2924 flush_iso_completions(ctx
);
2927 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2928 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2929 /* Present this value as big-endian to match the receive code */
2930 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2931 le16_to_cpu(pd
->res_count
));
2932 ctx
->header_length
+= 4;
2934 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2935 flush_iso_completions(ctx
);
2940 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2942 u32 hi
= channels
>> 32, lo
= channels
;
2944 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2945 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2946 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2947 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2949 ohci
->mc_channels
= channels
;
2952 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2953 int type
, int channel
, size_t header_size
)
2955 struct fw_ohci
*ohci
= fw_ohci(card
);
2956 struct iso_context
*uninitialized_var(ctx
);
2957 descriptor_callback_t
uninitialized_var(callback
);
2958 u64
*uninitialized_var(channels
);
2959 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2960 int index
, ret
= -EBUSY
;
2962 spin_lock_irq(&ohci
->lock
);
2965 case FW_ISO_CONTEXT_TRANSMIT
:
2966 mask
= &ohci
->it_context_mask
;
2967 callback
= handle_it_packet
;
2968 index
= ffs(*mask
) - 1;
2970 *mask
&= ~(1 << index
);
2971 regs
= OHCI1394_IsoXmitContextBase(index
);
2972 ctx
= &ohci
->it_context_list
[index
];
2976 case FW_ISO_CONTEXT_RECEIVE
:
2977 channels
= &ohci
->ir_context_channels
;
2978 mask
= &ohci
->ir_context_mask
;
2979 callback
= handle_ir_packet_per_buffer
;
2980 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2982 *channels
&= ~(1ULL << channel
);
2983 *mask
&= ~(1 << index
);
2984 regs
= OHCI1394_IsoRcvContextBase(index
);
2985 ctx
= &ohci
->ir_context_list
[index
];
2989 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2990 mask
= &ohci
->ir_context_mask
;
2991 callback
= handle_ir_buffer_fill
;
2992 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2994 ohci
->mc_allocated
= true;
2995 *mask
&= ~(1 << index
);
2996 regs
= OHCI1394_IsoRcvContextBase(index
);
2997 ctx
= &ohci
->ir_context_list
[index
];
3006 spin_unlock_irq(&ohci
->lock
);
3009 return ERR_PTR(ret
);
3011 memset(ctx
, 0, sizeof(*ctx
));
3012 ctx
->header_length
= 0;
3013 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
3014 if (ctx
->header
== NULL
) {
3018 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
3020 goto out_with_header
;
3022 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
3023 set_multichannel_mask(ohci
, 0);
3024 ctx
->mc_completed
= 0;
3030 free_page((unsigned long)ctx
->header
);
3032 spin_lock_irq(&ohci
->lock
);
3035 case FW_ISO_CONTEXT_RECEIVE
:
3036 *channels
|= 1ULL << channel
;
3039 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3040 ohci
->mc_allocated
= false;
3043 *mask
|= 1 << index
;
3045 spin_unlock_irq(&ohci
->lock
);
3047 return ERR_PTR(ret
);
3050 static int ohci_start_iso(struct fw_iso_context
*base
,
3051 s32 cycle
, u32 sync
, u32 tags
)
3053 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3054 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
3055 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3058 /* the controller cannot start without any queued packets */
3059 if (ctx
->context
.last
->branch_address
== 0)
3062 switch (ctx
->base
.type
) {
3063 case FW_ISO_CONTEXT_TRANSMIT
:
3064 index
= ctx
- ohci
->it_context_list
;
3067 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3068 (cycle
& 0x7fff) << 16;
3070 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3071 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3072 context_run(&ctx
->context
, match
);
3075 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3076 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3078 case FW_ISO_CONTEXT_RECEIVE
:
3079 index
= ctx
- ohci
->ir_context_list
;
3080 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3082 match
|= (cycle
& 0x07fff) << 12;
3083 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3086 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3087 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3088 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3089 context_run(&ctx
->context
, control
);
3100 static int ohci_stop_iso(struct fw_iso_context
*base
)
3102 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3103 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3106 switch (ctx
->base
.type
) {
3107 case FW_ISO_CONTEXT_TRANSMIT
:
3108 index
= ctx
- ohci
->it_context_list
;
3109 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3112 case FW_ISO_CONTEXT_RECEIVE
:
3113 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3114 index
= ctx
- ohci
->ir_context_list
;
3115 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3119 context_stop(&ctx
->context
);
3120 tasklet_kill(&ctx
->context
.tasklet
);
3125 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3127 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3128 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3129 unsigned long flags
;
3132 ohci_stop_iso(base
);
3133 context_release(&ctx
->context
);
3134 free_page((unsigned long)ctx
->header
);
3136 spin_lock_irqsave(&ohci
->lock
, flags
);
3138 switch (base
->type
) {
3139 case FW_ISO_CONTEXT_TRANSMIT
:
3140 index
= ctx
- ohci
->it_context_list
;
3141 ohci
->it_context_mask
|= 1 << index
;
3144 case FW_ISO_CONTEXT_RECEIVE
:
3145 index
= ctx
- ohci
->ir_context_list
;
3146 ohci
->ir_context_mask
|= 1 << index
;
3147 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3150 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3151 index
= ctx
- ohci
->ir_context_list
;
3152 ohci
->ir_context_mask
|= 1 << index
;
3153 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3154 ohci
->mc_channels
= 0;
3155 ohci
->mc_allocated
= false;
3159 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3162 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3164 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3165 unsigned long flags
;
3168 switch (base
->type
) {
3169 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3171 spin_lock_irqsave(&ohci
->lock
, flags
);
3173 /* Don't allow multichannel to grab other contexts' channels. */
3174 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3175 *channels
= ohci
->ir_context_channels
;
3178 set_multichannel_mask(ohci
, *channels
);
3182 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3193 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3196 struct iso_context
*ctx
;
3198 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3199 ctx
= &ohci
->ir_context_list
[i
];
3200 if (ctx
->context
.running
)
3201 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3204 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3205 ctx
= &ohci
->it_context_list
[i
];
3206 if (ctx
->context
.running
)
3207 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3212 static int queue_iso_transmit(struct iso_context
*ctx
,
3213 struct fw_iso_packet
*packet
,
3214 struct fw_iso_buffer
*buffer
,
3215 unsigned long payload
)
3217 struct descriptor
*d
, *last
, *pd
;
3218 struct fw_iso_packet
*p
;
3220 dma_addr_t d_bus
, page_bus
;
3221 u32 z
, header_z
, payload_z
, irq
;
3222 u32 payload_index
, payload_end_index
, next_page_index
;
3223 int page
, end_page
, i
, length
, offset
;
3226 payload_index
= payload
;
3232 if (p
->header_length
> 0)
3235 /* Determine the first page the payload isn't contained in. */
3236 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3237 if (p
->payload_length
> 0)
3238 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3244 /* Get header size in number of descriptors. */
3245 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3247 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3252 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3253 d
[0].req_count
= cpu_to_le16(8);
3255 * Link the skip address to this descriptor itself. This causes
3256 * a context to skip a cycle whenever lost cycles or FIFO
3257 * overruns occur, without dropping the data. The application
3258 * should then decide whether this is an error condition or not.
3259 * FIXME: Make the context's cycle-lost behaviour configurable?
3261 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3263 header
= (__le32
*) &d
[1];
3264 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3265 IT_HEADER_TAG(p
->tag
) |
3266 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3267 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3268 IT_HEADER_SPEED(ctx
->base
.speed
));
3270 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3271 p
->payload_length
));
3274 if (p
->header_length
> 0) {
3275 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3276 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3277 memcpy(&d
[z
], p
->header
, p
->header_length
);
3280 pd
= d
+ z
- payload_z
;
3281 payload_end_index
= payload_index
+ p
->payload_length
;
3282 for (i
= 0; i
< payload_z
; i
++) {
3283 page
= payload_index
>> PAGE_SHIFT
;
3284 offset
= payload_index
& ~PAGE_MASK
;
3285 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3287 min(next_page_index
, payload_end_index
) - payload_index
;
3288 pd
[i
].req_count
= cpu_to_le16(length
);
3290 page_bus
= page_private(buffer
->pages
[page
]);
3291 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3293 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3294 page_bus
, offset
, length
,
3297 payload_index
+= length
;
3301 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3303 irq
= DESCRIPTOR_NO_IRQ
;
3305 last
= z
== 2 ? d
: d
+ z
- 1;
3306 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3308 DESCRIPTOR_BRANCH_ALWAYS
|
3311 context_append(&ctx
->context
, d
, z
, header_z
);
3316 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3317 struct fw_iso_packet
*packet
,
3318 struct fw_iso_buffer
*buffer
,
3319 unsigned long payload
)
3321 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3322 struct descriptor
*d
, *pd
;
3323 dma_addr_t d_bus
, page_bus
;
3324 u32 z
, header_z
, rest
;
3326 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3329 * The OHCI controller puts the isochronous header and trailer in the
3330 * buffer, so we need at least 8 bytes.
3332 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3333 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3335 /* Get header size in number of descriptors. */
3336 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3337 page
= payload
>> PAGE_SHIFT
;
3338 offset
= payload
& ~PAGE_MASK
;
3339 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3341 for (i
= 0; i
< packet_count
; i
++) {
3342 /* d points to the header descriptor */
3343 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3344 d
= context_get_descriptors(&ctx
->context
,
3345 z
+ header_z
, &d_bus
);
3349 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3350 DESCRIPTOR_INPUT_MORE
);
3351 if (packet
->skip
&& i
== 0)
3352 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3353 d
->req_count
= cpu_to_le16(header_size
);
3354 d
->res_count
= d
->req_count
;
3355 d
->transfer_status
= 0;
3356 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3358 rest
= payload_per_buffer
;
3360 for (j
= 1; j
< z
; j
++) {
3362 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3363 DESCRIPTOR_INPUT_MORE
);
3365 if (offset
+ rest
< PAGE_SIZE
)
3368 length
= PAGE_SIZE
- offset
;
3369 pd
->req_count
= cpu_to_le16(length
);
3370 pd
->res_count
= pd
->req_count
;
3371 pd
->transfer_status
= 0;
3373 page_bus
= page_private(buffer
->pages
[page
]);
3374 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3376 dma_sync_single_range_for_device(device
, page_bus
,
3380 offset
= (offset
+ length
) & ~PAGE_MASK
;
3385 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3386 DESCRIPTOR_INPUT_LAST
|
3387 DESCRIPTOR_BRANCH_ALWAYS
);
3388 if (packet
->interrupt
&& i
== packet_count
- 1)
3389 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3391 context_append(&ctx
->context
, d
, z
, header_z
);
3397 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3398 struct fw_iso_packet
*packet
,
3399 struct fw_iso_buffer
*buffer
,
3400 unsigned long payload
)
3402 struct descriptor
*d
;
3403 dma_addr_t d_bus
, page_bus
;
3404 int page
, offset
, rest
, z
, i
, length
;
3406 page
= payload
>> PAGE_SHIFT
;
3407 offset
= payload
& ~PAGE_MASK
;
3408 rest
= packet
->payload_length
;
3410 /* We need one descriptor for each page in the buffer. */
3411 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3413 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3416 for (i
= 0; i
< z
; i
++) {
3417 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3421 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3422 DESCRIPTOR_BRANCH_ALWAYS
);
3423 if (packet
->skip
&& i
== 0)
3424 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3425 if (packet
->interrupt
&& i
== z
- 1)
3426 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3428 if (offset
+ rest
< PAGE_SIZE
)
3431 length
= PAGE_SIZE
- offset
;
3432 d
->req_count
= cpu_to_le16(length
);
3433 d
->res_count
= d
->req_count
;
3434 d
->transfer_status
= 0;
3436 page_bus
= page_private(buffer
->pages
[page
]);
3437 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3439 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3440 page_bus
, offset
, length
,
3447 context_append(&ctx
->context
, d
, 1, 0);
3453 static int ohci_queue_iso(struct fw_iso_context
*base
,
3454 struct fw_iso_packet
*packet
,
3455 struct fw_iso_buffer
*buffer
,
3456 unsigned long payload
)
3458 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3459 unsigned long flags
;
3462 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3463 switch (base
->type
) {
3464 case FW_ISO_CONTEXT_TRANSMIT
:
3465 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3467 case FW_ISO_CONTEXT_RECEIVE
:
3468 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3470 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3471 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3474 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3479 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3481 struct context
*ctx
=
3482 &container_of(base
, struct iso_context
, base
)->context
;
3484 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3487 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3489 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3492 tasklet_disable(&ctx
->context
.tasklet
);
3494 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3495 context_tasklet((unsigned long)&ctx
->context
);
3497 switch (base
->type
) {
3498 case FW_ISO_CONTEXT_TRANSMIT
:
3499 case FW_ISO_CONTEXT_RECEIVE
:
3500 if (ctx
->header_length
!= 0)
3501 flush_iso_completions(ctx
);
3503 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3504 if (ctx
->mc_completed
!= 0)
3505 flush_ir_buffer_fill(ctx
);
3511 clear_bit_unlock(0, &ctx
->flushing_completions
);
3512 smp_mb__after_clear_bit();
3515 tasklet_enable(&ctx
->context
.tasklet
);
3520 static const struct fw_card_driver ohci_driver
= {
3521 .enable
= ohci_enable
,
3522 .read_phy_reg
= ohci_read_phy_reg
,
3523 .update_phy_reg
= ohci_update_phy_reg
,
3524 .set_config_rom
= ohci_set_config_rom
,
3525 .send_request
= ohci_send_request
,
3526 .send_response
= ohci_send_response
,
3527 .cancel_packet
= ohci_cancel_packet
,
3528 .enable_phys_dma
= ohci_enable_phys_dma
,
3529 .read_csr
= ohci_read_csr
,
3530 .write_csr
= ohci_write_csr
,
3532 .allocate_iso_context
= ohci_allocate_iso_context
,
3533 .free_iso_context
= ohci_free_iso_context
,
3534 .set_iso_channels
= ohci_set_iso_channels
,
3535 .queue_iso
= ohci_queue_iso
,
3536 .flush_queue_iso
= ohci_flush_queue_iso
,
3537 .flush_iso_completions
= ohci_flush_iso_completions
,
3538 .start_iso
= ohci_start_iso
,
3539 .stop_iso
= ohci_stop_iso
,
3542 #ifdef CONFIG_PPC_PMAC
3543 static void pmac_ohci_on(struct pci_dev
*dev
)
3545 if (machine_is(powermac
)) {
3546 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3549 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3550 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3555 static void pmac_ohci_off(struct pci_dev
*dev
)
3557 if (machine_is(powermac
)) {
3558 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3561 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3562 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3567 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3568 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3569 #endif /* CONFIG_PPC_PMAC */
3571 static int pci_probe(struct pci_dev
*dev
,
3572 const struct pci_device_id
*ent
)
3574 struct fw_ohci
*ohci
;
3575 u32 bus_options
, max_receive
, link_speed
, version
;
3580 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3581 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3585 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3591 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3595 err
= pci_enable_device(dev
);
3597 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3601 pci_set_master(dev
);
3602 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3603 pci_set_drvdata(dev
, ohci
);
3605 spin_lock_init(&ohci
->lock
);
3606 mutex_init(&ohci
->phy_reg_mutex
);
3608 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3610 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3611 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3612 ohci_err(ohci
, "invalid MMIO resource\n");
3617 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3619 ohci_err(ohci
, "MMIO resource unavailable\n");
3623 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3624 if (ohci
->registers
== NULL
) {
3625 ohci_err(ohci
, "failed to remap registers\n");
3630 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3631 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3632 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3633 ohci_quirks
[i
].device
== dev
->device
) &&
3634 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3635 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3636 ohci
->quirks
= ohci_quirks
[i
].flags
;
3640 ohci
->quirks
= param_quirks
;
3643 * Because dma_alloc_coherent() allocates at least one page,
3644 * we save space by using a common buffer for the AR request/
3645 * response descriptors and the self IDs buffer.
3647 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3648 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3649 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3651 &ohci
->misc_buffer_bus
,
3653 if (!ohci
->misc_buffer
) {
3658 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3659 OHCI1394_AsReqRcvContextControlSet
);
3663 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3664 OHCI1394_AsRspRcvContextControlSet
);
3666 goto fail_arreq_ctx
;
3668 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3669 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3671 goto fail_arrsp_ctx
;
3673 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3674 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3676 goto fail_atreq_ctx
;
3678 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3679 ohci
->ir_context_channels
= ~0ULL;
3680 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3681 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3682 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3683 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3684 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3685 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3687 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3688 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3689 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3690 ohci
->it_context_mask
= ohci
->it_context_support
;
3691 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3692 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3693 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3695 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3700 ohci
->self_id
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3701 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3703 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3704 max_receive
= (bus_options
>> 12) & 0xf;
3705 link_speed
= bus_options
& 0x7;
3706 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3707 reg_read(ohci
, OHCI1394_GUIDLo
);
3709 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
3710 pci_enable_msi(dev
);
3711 if (request_irq(dev
->irq
, irq_handler
,
3712 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
3713 ohci_driver_name
, ohci
)) {
3714 ohci_err(ohci
, "failed to allocate interrupt %d\n", dev
->irq
);
3719 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3723 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3725 "added OHCI v%x.%x device as card %d, "
3726 "%d IR + %d IT contexts, quirks 0x%x%s\n",
3727 version
>> 16, version
& 0xff, ohci
->card
.index
,
3728 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
,
3729 reg_read(ohci
, OHCI1394_PhyUpperBound
) ?
3730 ", >4 GB phys DMA" : "");
3735 free_irq(dev
->irq
, ohci
);
3737 pci_disable_msi(dev
);
3739 kfree(ohci
->ir_context_list
);
3740 kfree(ohci
->it_context_list
);
3741 context_release(&ohci
->at_response_ctx
);
3743 context_release(&ohci
->at_request_ctx
);
3745 ar_context_release(&ohci
->ar_response_ctx
);
3747 ar_context_release(&ohci
->ar_request_ctx
);
3749 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3750 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3752 pci_iounmap(dev
, ohci
->registers
);
3754 pci_release_region(dev
, 0);
3756 pci_disable_device(dev
);
3764 static void pci_remove(struct pci_dev
*dev
)
3766 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3769 * If the removal is happening from the suspend state, LPS won't be
3770 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3772 if (reg_read(ohci
, OHCI1394_HCControlSet
) & OHCI1394_HCControl_LPS
) {
3773 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3776 cancel_work_sync(&ohci
->bus_reset_work
);
3777 fw_core_remove_card(&ohci
->card
);
3780 * FIXME: Fail all pending packets here, now that the upper
3781 * layers can't queue any more.
3784 software_reset(ohci
);
3785 free_irq(dev
->irq
, ohci
);
3787 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3788 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3789 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3790 if (ohci
->config_rom
)
3791 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3792 ohci
->config_rom
, ohci
->config_rom_bus
);
3793 ar_context_release(&ohci
->ar_request_ctx
);
3794 ar_context_release(&ohci
->ar_response_ctx
);
3795 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3796 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3797 context_release(&ohci
->at_request_ctx
);
3798 context_release(&ohci
->at_response_ctx
);
3799 kfree(ohci
->it_context_list
);
3800 kfree(ohci
->ir_context_list
);
3801 pci_disable_msi(dev
);
3802 pci_iounmap(dev
, ohci
->registers
);
3803 pci_release_region(dev
, 0);
3804 pci_disable_device(dev
);
3808 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3812 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3814 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3817 software_reset(ohci
);
3818 err
= pci_save_state(dev
);
3820 ohci_err(ohci
, "pci_save_state failed\n");
3823 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3825 ohci_err(ohci
, "pci_set_power_state failed with %d\n", err
);
3831 static int pci_resume(struct pci_dev
*dev
)
3833 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3837 pci_set_power_state(dev
, PCI_D0
);
3838 pci_restore_state(dev
);
3839 err
= pci_enable_device(dev
);
3841 ohci_err(ohci
, "pci_enable_device failed\n");
3845 /* Some systems don't setup GUID register on resume from ram */
3846 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3847 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3848 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3849 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3852 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3856 ohci_resume_iso_dma(ohci
);
3862 static const struct pci_device_id pci_table
[] = {
3863 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3867 MODULE_DEVICE_TABLE(pci
, pci_table
);
3869 static struct pci_driver fw_ohci_pci_driver
= {
3870 .name
= ohci_driver_name
,
3871 .id_table
= pci_table
,
3873 .remove
= pci_remove
,
3875 .resume
= pci_resume
,
3876 .suspend
= pci_suspend
,
3880 static int __init
fw_ohci_init(void)
3882 selfid_workqueue
= alloc_workqueue(KBUILD_MODNAME
, WQ_MEM_RECLAIM
, 0);
3883 if (!selfid_workqueue
)
3886 return pci_register_driver(&fw_ohci_pci_driver
);
3889 static void __exit
fw_ohci_cleanup(void)
3891 pci_unregister_driver(&fw_ohci_pci_driver
);
3892 destroy_workqueue(selfid_workqueue
);
3895 module_init(fw_ohci_init
);
3896 module_exit(fw_ohci_cleanup
);
3898 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3899 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3900 MODULE_LICENSE("GPL");
3902 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3903 MODULE_ALIAS("ohci1394");