Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / drivers / input / misc / hp_sdc_rtc.c
blob45e0e3e55de28dfdbdfb347ebdba74ca2e698544
1 /*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
36 #include <linux/hp_sdc.h>
37 #include <linux/errno.h>
38 #include <linux/types.h>
39 #include <linux/init.h>
40 #include <linux/module.h>
41 #include <linux/time.h>
42 #include <linux/miscdevice.h>
43 #include <linux/proc_fs.h>
44 #include <linux/seq_file.h>
45 #include <linux/poll.h>
46 #include <linux/rtc.h>
47 #include <linux/mutex.h>
48 #include <linux/semaphore.h>
50 MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
51 MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
52 MODULE_LICENSE("Dual BSD/GPL");
54 #define RTC_VERSION "1.10d"
56 static DEFINE_MUTEX(hp_sdc_rtc_mutex);
57 static unsigned long epoch = 2000;
59 static struct semaphore i8042tregs;
61 static hp_sdc_irqhook hp_sdc_rtc_isr;
63 static struct fasync_struct *hp_sdc_rtc_async_queue;
65 static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
67 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
68 size_t count, loff_t *ppos);
70 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
71 unsigned int cmd, unsigned long arg);
73 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
75 static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
76 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
78 static void hp_sdc_rtc_isr (int irq, void *dev_id,
79 uint8_t status, uint8_t data)
81 return;
84 static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
86 struct semaphore tsem;
87 hp_sdc_transaction t;
88 uint8_t tseq[91];
89 int i;
91 i = 0;
92 while (i < 91) {
93 tseq[i++] = HP_SDC_ACT_DATAREG |
94 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
95 tseq[i++] = 0x01; /* write i8042[0x70] */
96 tseq[i] = i / 7; /* BBRTC reg address */
97 i++;
98 tseq[i++] = HP_SDC_CMD_DO_RTCR; /* Trigger command */
99 tseq[i++] = 2; /* expect 1 stat/dat pair back. */
100 i++; i++; /* buffer for stat/dat pair */
102 tseq[84] |= HP_SDC_ACT_SEMAPHORE;
103 t.endidx = 91;
104 t.seq = tseq;
105 t.act.semaphore = &tsem;
106 sema_init(&tsem, 0);
108 if (hp_sdc_enqueue_transaction(&t)) return -1;
110 /* Put ourselves to sleep for results. */
111 if (WARN_ON(down_interruptible(&tsem)))
112 return -1;
114 /* Check for nonpresence of BBRTC */
115 if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116 tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117 tseq[20] | tseq[27] | tseq[6] | tseq[13]) & 0x0f))
118 return -1;
120 memset(rtctm, 0, sizeof(struct rtc_time));
121 rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122 rtctm->tm_mon = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123 rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124 rtctm->tm_wday = (tseq[48] & 0x0f);
125 rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126 rtctm->tm_min = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127 rtctm->tm_sec = (tseq[6] & 0x0f) + (tseq[13] & 0x0f) * 10;
129 return 0;
132 static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
134 struct rtc_time tm, tm_last;
135 int i = 0;
137 /* MSM-58321 has no read latch, so must read twice and compare. */
139 if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
142 while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143 if (i++ > 4) return -1;
144 memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145 if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
148 memcpy(rtctm, &tm, sizeof(struct rtc_time));
150 return 0;
154 static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
156 hp_sdc_transaction t;
157 uint8_t tseq[26] = {
158 HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
160 HP_SDC_CMD_READ_T1, 2, 0, 0,
161 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162 HP_SDC_CMD_READ_T2, 2, 0, 0,
163 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164 HP_SDC_CMD_READ_T3, 2, 0, 0,
165 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166 HP_SDC_CMD_READ_T4, 2, 0, 0,
167 HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
168 HP_SDC_CMD_READ_T5, 2, 0, 0
171 t.endidx = numreg * 5;
173 tseq[1] = loadcmd;
174 tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
176 t.seq = tseq;
177 t.act.semaphore = &i8042tregs;
179 /* Sleep if output regs in use. */
180 if (WARN_ON(down_interruptible(&i8042tregs)))
181 return -1;
183 if (hp_sdc_enqueue_transaction(&t)) {
184 up(&i8042tregs);
185 return -1;
188 /* Sleep until results come back. */
189 if (WARN_ON(down_interruptible(&i8042tregs)))
190 return -1;
192 up(&i8042tregs);
194 return (tseq[5] |
195 ((uint64_t)(tseq[10]) << 8) | ((uint64_t)(tseq[15]) << 16) |
196 ((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
200 /* Read the i8042 real-time clock */
201 static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
202 int64_t raw;
203 uint32_t tenms;
204 unsigned int days;
206 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
207 if (raw < 0) return -1;
209 tenms = (uint32_t)raw & 0xffffff;
210 days = (unsigned int)(raw >> 24) & 0xffff;
212 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
213 res->tv_sec = (time_t)(tenms / 100) + days * 86400;
215 return 0;
219 /* Read the i8042 fast handshake timer */
220 static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
221 int64_t raw;
222 unsigned int tenms;
224 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
225 if (raw < 0) return -1;
227 tenms = (unsigned int)raw & 0xffff;
229 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
230 res->tv_sec = (time_t)(tenms / 100);
232 return 0;
236 /* Read the i8042 match timer (a.k.a. alarm) */
237 static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
238 int64_t raw;
239 uint32_t tenms;
241 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
242 if (raw < 0) return -1;
244 tenms = (uint32_t)raw & 0xffffff;
246 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
247 res->tv_sec = (time_t)(tenms / 100);
249 return 0;
253 /* Read the i8042 delay timer */
254 static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
255 int64_t raw;
256 uint32_t tenms;
258 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
259 if (raw < 0) return -1;
261 tenms = (uint32_t)raw & 0xffffff;
263 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
264 res->tv_sec = (time_t)(tenms / 100);
266 return 0;
270 /* Read the i8042 cycle timer (a.k.a. periodic) */
271 static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
272 int64_t raw;
273 uint32_t tenms;
275 raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
276 if (raw < 0) return -1;
278 tenms = (uint32_t)raw & 0xffffff;
280 res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
281 res->tv_sec = (time_t)(tenms / 100);
283 return 0;
287 #if 0 /* not used yet */
288 /* Set the i8042 real-time clock */
289 static int hp_sdc_rtc_set_rt (struct timeval *setto)
291 uint32_t tenms;
292 unsigned int days;
293 hp_sdc_transaction t;
294 uint8_t tseq[11] = {
295 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
296 HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
297 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
298 HP_SDC_CMD_SET_RTD, 2, 0, 0
301 t.endidx = 10;
303 if (0xffff < setto->tv_sec / 86400) return -1;
304 days = setto->tv_sec / 86400;
305 if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
306 days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
307 if (days > 0xffff) return -1;
309 if (0xffffff < setto->tv_sec) return -1;
310 tenms = setto->tv_sec * 100;
311 if (0xffffff < setto->tv_usec / 10000) return -1;
312 tenms += setto->tv_usec / 10000;
313 if (tenms > 0xffffff) return -1;
315 tseq[3] = (uint8_t)(tenms & 0xff);
316 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
317 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
319 tseq[9] = (uint8_t)(days & 0xff);
320 tseq[10] = (uint8_t)((days >> 8) & 0xff);
322 t.seq = tseq;
324 if (hp_sdc_enqueue_transaction(&t)) return -1;
325 return 0;
328 /* Set the i8042 fast handshake timer */
329 static int hp_sdc_rtc_set_fhs (struct timeval *setto)
331 uint32_t tenms;
332 hp_sdc_transaction t;
333 uint8_t tseq[5] = {
334 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
335 HP_SDC_CMD_SET_FHS, 2, 0, 0
338 t.endidx = 4;
340 if (0xffff < setto->tv_sec) return -1;
341 tenms = setto->tv_sec * 100;
342 if (0xffff < setto->tv_usec / 10000) return -1;
343 tenms += setto->tv_usec / 10000;
344 if (tenms > 0xffff) return -1;
346 tseq[3] = (uint8_t)(tenms & 0xff);
347 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
349 t.seq = tseq;
351 if (hp_sdc_enqueue_transaction(&t)) return -1;
352 return 0;
356 /* Set the i8042 match timer (a.k.a. alarm) */
357 #define hp_sdc_rtc_set_mt (setto) \
358 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
360 /* Set the i8042 delay timer */
361 #define hp_sdc_rtc_set_dt (setto) \
362 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
364 /* Set the i8042 cycle timer (a.k.a. periodic) */
365 #define hp_sdc_rtc_set_ct (setto) \
366 hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
368 /* Set one of the i8042 3-byte wide timers */
369 static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
371 uint32_t tenms;
372 hp_sdc_transaction t;
373 uint8_t tseq[6] = {
374 HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
375 0, 3, 0, 0, 0
378 t.endidx = 6;
380 if (0xffffff < setto->tv_sec) return -1;
381 tenms = setto->tv_sec * 100;
382 if (0xffffff < setto->tv_usec / 10000) return -1;
383 tenms += setto->tv_usec / 10000;
384 if (tenms > 0xffffff) return -1;
386 tseq[1] = setcmd;
387 tseq[3] = (uint8_t)(tenms & 0xff);
388 tseq[4] = (uint8_t)((tenms >> 8) & 0xff);
389 tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
391 t.seq = tseq;
393 if (hp_sdc_enqueue_transaction(&t)) {
394 return -1;
396 return 0;
398 #endif
400 static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
401 size_t count, loff_t *ppos) {
402 ssize_t retval;
404 if (count < sizeof(unsigned long))
405 return -EINVAL;
407 retval = put_user(68, (unsigned long __user *)buf);
408 return retval;
411 static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
413 unsigned long l;
415 l = 0;
416 if (l != 0)
417 return POLLIN | POLLRDNORM;
418 return 0;
421 static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
423 return 0;
426 static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
428 return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
431 static int hp_sdc_rtc_proc_show(struct seq_file *m, void *v)
433 #define YN(bit) ("no")
434 #define NY(bit) ("yes")
435 struct rtc_time tm;
436 struct timeval tv;
438 memset(&tm, 0, sizeof(struct rtc_time));
440 if (hp_sdc_rtc_read_bbrtc(&tm)) {
441 seq_puts(m, "BBRTC\t\t: READ FAILED!\n");
442 } else {
443 seq_printf(m,
444 "rtc_time\t: %02d:%02d:%02d\n"
445 "rtc_date\t: %04d-%02d-%02d\n"
446 "rtc_epoch\t: %04lu\n",
447 tm.tm_hour, tm.tm_min, tm.tm_sec,
448 tm.tm_year + 1900, tm.tm_mon + 1,
449 tm.tm_mday, epoch);
452 if (hp_sdc_rtc_read_rt(&tv)) {
453 seq_puts(m, "i8042 rtc\t: READ FAILED!\n");
454 } else {
455 seq_printf(m, "i8042 rtc\t: %ld.%02d seconds\n",
456 tv.tv_sec, (int)tv.tv_usec/1000);
459 if (hp_sdc_rtc_read_fhs(&tv)) {
460 seq_puts(m, "handshake\t: READ FAILED!\n");
461 } else {
462 seq_printf(m, "handshake\t: %ld.%02d seconds\n",
463 tv.tv_sec, (int)tv.tv_usec/1000);
466 if (hp_sdc_rtc_read_mt(&tv)) {
467 seq_puts(m, "alarm\t\t: READ FAILED!\n");
468 } else {
469 seq_printf(m, "alarm\t\t: %ld.%02d seconds\n",
470 tv.tv_sec, (int)tv.tv_usec/1000);
473 if (hp_sdc_rtc_read_dt(&tv)) {
474 seq_puts(m, "delay\t\t: READ FAILED!\n");
475 } else {
476 seq_printf(m, "delay\t\t: %ld.%02d seconds\n",
477 tv.tv_sec, (int)tv.tv_usec/1000);
480 if (hp_sdc_rtc_read_ct(&tv)) {
481 seq_puts(m, "periodic\t: READ FAILED!\n");
482 } else {
483 seq_printf(m, "periodic\t: %ld.%02d seconds\n",
484 tv.tv_sec, (int)tv.tv_usec/1000);
487 seq_printf(m,
488 "DST_enable\t: %s\n"
489 "BCD\t\t: %s\n"
490 "24hr\t\t: %s\n"
491 "square_wave\t: %s\n"
492 "alarm_IRQ\t: %s\n"
493 "update_IRQ\t: %s\n"
494 "periodic_IRQ\t: %s\n"
495 "periodic_freq\t: %ld\n"
496 "batt_status\t: %s\n",
497 YN(RTC_DST_EN),
498 NY(RTC_DM_BINARY),
499 YN(RTC_24H),
500 YN(RTC_SQWE),
501 YN(RTC_AIE),
502 YN(RTC_UIE),
503 YN(RTC_PIE),
504 1UL,
505 1 ? "okay" : "dead");
507 return 0;
508 #undef YN
509 #undef NY
512 static int hp_sdc_rtc_proc_open(struct inode *inode, struct file *file)
514 return single_open(file, hp_sdc_rtc_proc_show, NULL);
517 static const struct file_operations hp_sdc_rtc_proc_fops = {
518 .open = hp_sdc_rtc_proc_open,
519 .read = seq_read,
520 .llseek = seq_lseek,
521 .release = single_release,
524 static int hp_sdc_rtc_ioctl(struct file *file,
525 unsigned int cmd, unsigned long arg)
527 #if 1
528 return -EINVAL;
529 #else
531 struct rtc_time wtime;
532 struct timeval ttime;
533 int use_wtime = 0;
535 /* This needs major work. */
537 switch (cmd) {
539 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
540 case RTC_AIE_ON: /* Allow alarm interrupts. */
541 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
542 case RTC_PIE_ON: /* Allow periodic ints */
543 case RTC_UIE_ON: /* Allow ints for RTC updates. */
544 case RTC_UIE_OFF: /* Allow ints for RTC updates. */
546 /* We cannot mask individual user timers and we
547 cannot tell them apart when they occur, so it
548 would be disingenuous to succeed these IOCTLs */
549 return -EINVAL;
551 case RTC_ALM_READ: /* Read the present alarm time */
553 if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
554 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
556 wtime.tm_hour = ttime.tv_sec / 3600; ttime.tv_sec %= 3600;
557 wtime.tm_min = ttime.tv_sec / 60; ttime.tv_sec %= 60;
558 wtime.tm_sec = ttime.tv_sec;
560 break;
562 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
564 return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
566 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
569 * The max we can do is 100Hz.
572 if ((arg < 1) || (arg > 100)) return -EINVAL;
573 ttime.tv_sec = 0;
574 ttime.tv_usec = 1000000 / arg;
575 if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
576 hp_sdc_rtc_freq = arg;
577 return 0;
579 case RTC_ALM_SET: /* Store a time into the alarm */
582 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
583 * "don't care" or "match all" for PC timers. The HP SDC
584 * does not support that perk, but it could be emulated fairly
585 * easily. Only the tm_hour, tm_min and tm_sec are used.
586 * We could do it with 10ms accuracy with the HP SDC, if the
587 * rtc interface left us a way to do that.
589 struct hp_sdc_rtc_time alm_tm;
591 if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
592 sizeof(struct hp_sdc_rtc_time)))
593 return -EFAULT;
595 if (alm_tm.tm_hour > 23) return -EINVAL;
596 if (alm_tm.tm_min > 59) return -EINVAL;
597 if (alm_tm.tm_sec > 59) return -EINVAL;
599 ttime.sec = alm_tm.tm_hour * 3600 +
600 alm_tm.tm_min * 60 + alm_tm.tm_sec;
601 ttime.usec = 0;
602 if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
603 return 0;
605 case RTC_RD_TIME: /* Read the time/date from RTC */
607 if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
608 break;
610 case RTC_SET_TIME: /* Set the RTC */
612 struct rtc_time hp_sdc_rtc_tm;
613 unsigned char mon, day, hrs, min, sec, leap_yr;
614 unsigned int yrs;
616 if (!capable(CAP_SYS_TIME))
617 return -EACCES;
618 if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
619 sizeof(struct rtc_time)))
620 return -EFAULT;
622 yrs = hp_sdc_rtc_tm.tm_year + 1900;
623 mon = hp_sdc_rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
624 day = hp_sdc_rtc_tm.tm_mday;
625 hrs = hp_sdc_rtc_tm.tm_hour;
626 min = hp_sdc_rtc_tm.tm_min;
627 sec = hp_sdc_rtc_tm.tm_sec;
629 if (yrs < 1970)
630 return -EINVAL;
632 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
634 if ((mon > 12) || (day == 0))
635 return -EINVAL;
636 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
637 return -EINVAL;
638 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
639 return -EINVAL;
641 if ((yrs -= eH) > 255) /* They are unsigned */
642 return -EINVAL;
645 return 0;
647 case RTC_EPOCH_READ: /* Read the epoch. */
649 return put_user (epoch, (unsigned long *)arg);
651 case RTC_EPOCH_SET: /* Set the epoch. */
654 * There were no RTC clocks before 1900.
656 if (arg < 1900)
657 return -EINVAL;
658 if (!capable(CAP_SYS_TIME))
659 return -EACCES;
661 epoch = arg;
662 return 0;
664 default:
665 return -EINVAL;
667 return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
668 #endif
671 static long hp_sdc_rtc_unlocked_ioctl(struct file *file,
672 unsigned int cmd, unsigned long arg)
674 int ret;
676 mutex_lock(&hp_sdc_rtc_mutex);
677 ret = hp_sdc_rtc_ioctl(file, cmd, arg);
678 mutex_unlock(&hp_sdc_rtc_mutex);
680 return ret;
684 static const struct file_operations hp_sdc_rtc_fops = {
685 .owner = THIS_MODULE,
686 .llseek = no_llseek,
687 .read = hp_sdc_rtc_read,
688 .poll = hp_sdc_rtc_poll,
689 .unlocked_ioctl = hp_sdc_rtc_unlocked_ioctl,
690 .open = hp_sdc_rtc_open,
691 .fasync = hp_sdc_rtc_fasync,
694 static struct miscdevice hp_sdc_rtc_dev = {
695 .minor = RTC_MINOR,
696 .name = "rtc_HIL",
697 .fops = &hp_sdc_rtc_fops
700 static int __init hp_sdc_rtc_init(void)
702 int ret;
704 #ifdef __mc68000__
705 if (!MACH_IS_HP300)
706 return -ENODEV;
707 #endif
709 sema_init(&i8042tregs, 1);
711 if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
712 return ret;
713 if (misc_register(&hp_sdc_rtc_dev) != 0)
714 printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
716 proc_create("driver/rtc", 0, NULL, &hp_sdc_rtc_proc_fops);
718 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
719 "(RTC v " RTC_VERSION ")\n");
721 return 0;
724 static void __exit hp_sdc_rtc_exit(void)
726 remove_proc_entry ("driver/rtc", NULL);
727 misc_deregister(&hp_sdc_rtc_dev);
728 hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
729 printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
732 module_init(hp_sdc_rtc_init);
733 module_exit(hp_sdc_rtc_exit);