Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / drivers / misc / carma / carma-fpga.c
blob9e2b985293fc08cf30bef9a9455fcade1eb095cb
1 /*
2 * CARMA DATA-FPGA Access Driver
4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
13 * FPGA Memory Dump Format
15 * FPGA #0 control registers (32 x 32-bit words)
16 * FPGA #1 control registers (32 x 32-bit words)
17 * FPGA #2 control registers (32 x 32-bit words)
18 * FPGA #3 control registers (32 x 32-bit words)
19 * SYSFPGA control registers (32 x 32-bit words)
20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
25 * Each correlation array consists of:
27 * Correlation Data (2 x NUM_LAGSn x 32-bit words)
28 * Pipeline Metadata (2 x NUM_METAn x 32-bit words)
29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
32 * the FPGA configuration registers. They do not change once the FPGA's
33 * have been programmed, they only change on re-programming.
37 * Basic Description:
39 * This driver is used to capture correlation spectra off of the four data
40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
41 * this driver supports dynamic enable/disable of capture while the device
42 * remains open.
44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
45 * capture rate, all buffers are pre-allocated to avoid any potentially long
46 * running memory allocations while capturing.
48 * There are two lists and one pointer which are used to keep track of the
49 * different states of data buffers.
51 * 1) free list
52 * This list holds all empty data buffers which are ready to receive data.
54 * 2) inflight pointer
55 * This pointer holds the currently inflight data buffer. This buffer is having
56 * data copied into it by the DMA engine.
58 * 3) used list
59 * This list holds data buffers which have been filled, and are waiting to be
60 * read by userspace.
62 * All buffers start life on the free list, then move successively to the
63 * inflight pointer, and then to the used list. After they have been read by
64 * userspace, they are moved back to the free list. The cycle repeats as long
65 * as necessary.
67 * It should be noted that all buffers are mapped and ready for DMA when they
68 * are on any of the three lists. They are only unmapped when they are in the
69 * process of being read by userspace.
73 * Notes on the IRQ masking scheme:
75 * The IRQ masking scheme here is different than most other hardware. The only
76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
77 * the data is if the status registers are not cleared before the next
78 * correlation data dump is ready.
80 * The interrupt line is connected to the status registers, such that when they
81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
82 * to schedule a long-running DMA operation and return from the interrupt
83 * handler quickly, but we cannot clear the status registers.
85 * To handle this, the system controller FPGA has the capability to connect the
86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
87 * (unasserted) and left that way. To mask the interrupt, we change the
88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
91 #include <linux/of_address.h>
92 #include <linux/of_irq.h>
93 #include <linux/of_platform.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/miscdevice.h>
96 #include <linux/interrupt.h>
97 #include <linux/dmaengine.h>
98 #include <linux/seq_file.h>
99 #include <linux/highmem.h>
100 #include <linux/debugfs.h>
101 #include <linux/kernel.h>
102 #include <linux/module.h>
103 #include <linux/poll.h>
104 #include <linux/init.h>
105 #include <linux/slab.h>
106 #include <linux/kref.h>
107 #include <linux/io.h>
109 #include <media/videobuf-dma-sg.h>
111 /* system controller registers */
112 #define SYS_IRQ_SOURCE_CTL 0x24
113 #define SYS_IRQ_OUTPUT_EN 0x28
114 #define SYS_IRQ_OUTPUT_DATA 0x2C
115 #define SYS_IRQ_INPUT_DATA 0x30
116 #define SYS_FPGA_CONFIG_STATUS 0x44
118 /* GPIO IRQ line assignment */
119 #define IRQ_CORL_DONE 0x10
121 /* FPGA registers */
122 #define MMAP_REG_VERSION 0x00
123 #define MMAP_REG_CORL_CONF1 0x08
124 #define MMAP_REG_CORL_CONF2 0x0C
125 #define MMAP_REG_STATUS 0x48
127 #define SYS_FPGA_BLOCK 0xF0000000
129 #define DATA_FPGA_START 0x400000
130 #define DATA_FPGA_SIZE 0x80000
132 static const char drv_name[] = "carma-fpga";
134 #define NUM_FPGA 4
136 #define MIN_DATA_BUFS 8
137 #define MAX_DATA_BUFS 64
139 struct fpga_info {
140 unsigned int num_lag_ram;
141 unsigned int blk_size;
144 struct data_buf {
145 struct list_head entry;
146 struct videobuf_dmabuf vb;
147 size_t size;
150 struct fpga_device {
151 /* character device */
152 struct miscdevice miscdev;
153 struct device *dev;
154 struct mutex mutex;
156 /* reference count */
157 struct kref ref;
159 /* FPGA registers and information */
160 struct fpga_info info[NUM_FPGA];
161 void __iomem *regs;
162 int irq;
164 /* FPGA Physical Address/Size Information */
165 resource_size_t phys_addr;
166 size_t phys_size;
168 /* DMA structures */
169 struct sg_table corl_table;
170 unsigned int corl_nents;
171 struct dma_chan *chan;
173 /* Protection for all members below */
174 spinlock_t lock;
176 /* Device enable/disable flag */
177 bool enabled;
179 /* Correlation data buffers */
180 wait_queue_head_t wait;
181 struct list_head free;
182 struct list_head used;
183 struct data_buf *inflight;
185 /* Information about data buffers */
186 unsigned int num_dropped;
187 unsigned int num_buffers;
188 size_t bufsize;
189 struct dentry *dbg_entry;
192 struct fpga_reader {
193 struct fpga_device *priv;
194 struct data_buf *buf;
195 off_t buf_start;
198 static void fpga_device_release(struct kref *ref)
200 struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
202 /* the last reader has exited, cleanup the last bits */
203 mutex_destroy(&priv->mutex);
204 kfree(priv);
208 * Data Buffer Allocation Helpers
212 * data_free_buffer() - free a single data buffer and all allocated memory
213 * @buf: the buffer to free
215 * This will free all of the pages allocated to the given data buffer, and
216 * then free the structure itself
218 static void data_free_buffer(struct data_buf *buf)
220 /* It is ok to free a NULL buffer */
221 if (!buf)
222 return;
224 /* free all memory */
225 videobuf_dma_free(&buf->vb);
226 kfree(buf);
230 * data_alloc_buffer() - allocate and fill a data buffer with pages
231 * @bytes: the number of bytes required
233 * This allocates all space needed for a data buffer. It must be mapped before
234 * use in a DMA transaction using videobuf_dma_map().
236 * Returns NULL on failure
238 static struct data_buf *data_alloc_buffer(const size_t bytes)
240 unsigned int nr_pages;
241 struct data_buf *buf;
242 int ret;
244 /* calculate the number of pages necessary */
245 nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
247 /* allocate the buffer structure */
248 buf = kzalloc(sizeof(*buf), GFP_KERNEL);
249 if (!buf)
250 goto out_return;
252 /* initialize internal fields */
253 INIT_LIST_HEAD(&buf->entry);
254 buf->size = bytes;
256 /* allocate the videobuf */
257 videobuf_dma_init(&buf->vb);
258 ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
259 if (ret)
260 goto out_free_buf;
262 return buf;
264 out_free_buf:
265 kfree(buf);
266 out_return:
267 return NULL;
271 * data_free_buffers() - free all allocated buffers
272 * @priv: the driver's private data structure
274 * Free all buffers allocated by the driver (except those currently in the
275 * process of being read by userspace).
277 * LOCKING: must hold dev->mutex
278 * CONTEXT: user
280 static void data_free_buffers(struct fpga_device *priv)
282 struct data_buf *buf, *tmp;
284 /* the device should be stopped, no DMA in progress */
285 BUG_ON(priv->inflight != NULL);
287 list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
288 list_del_init(&buf->entry);
289 videobuf_dma_unmap(priv->dev, &buf->vb);
290 data_free_buffer(buf);
293 list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
294 list_del_init(&buf->entry);
295 videobuf_dma_unmap(priv->dev, &buf->vb);
296 data_free_buffer(buf);
299 priv->num_buffers = 0;
300 priv->bufsize = 0;
304 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
305 * @priv: the driver's private data structure
307 * Allocate enough buffers for a whole second worth of data
309 * This routine will attempt to degrade nicely by succeeding even if a full
310 * second worth of data buffers could not be allocated, as long as a minimum
311 * number were allocated. In this case, it will print a message to the kernel
312 * log.
314 * The device must not be modifying any lists when this is called.
316 * CONTEXT: user
317 * LOCKING: must hold dev->mutex
319 * Returns 0 on success, -ERRNO otherwise
321 static int data_alloc_buffers(struct fpga_device *priv)
323 struct data_buf *buf;
324 int i, ret;
326 for (i = 0; i < MAX_DATA_BUFS; i++) {
328 /* allocate a buffer */
329 buf = data_alloc_buffer(priv->bufsize);
330 if (!buf)
331 break;
333 /* map it for DMA */
334 ret = videobuf_dma_map(priv->dev, &buf->vb);
335 if (ret) {
336 data_free_buffer(buf);
337 break;
340 /* add it to the list of free buffers */
341 list_add_tail(&buf->entry, &priv->free);
342 priv->num_buffers++;
345 /* Make sure we allocated the minimum required number of buffers */
346 if (priv->num_buffers < MIN_DATA_BUFS) {
347 dev_err(priv->dev, "Unable to allocate enough data buffers\n");
348 data_free_buffers(priv);
349 return -ENOMEM;
352 /* Warn if we are running in a degraded state, but do not fail */
353 if (priv->num_buffers < MAX_DATA_BUFS) {
354 dev_warn(priv->dev,
355 "Unable to allocate %d buffers, using %d buffers instead\n",
356 MAX_DATA_BUFS, i);
359 return 0;
363 * DMA Operations Helpers
367 * fpga_start_addr() - get the physical address a DATA-FPGA
368 * @priv: the driver's private data structure
369 * @fpga: the DATA-FPGA number (zero based)
371 static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
373 return priv->phys_addr + 0x400000 + (0x80000 * fpga);
377 * fpga_block_addr() - get the physical address of a correlation data block
378 * @priv: the driver's private data structure
379 * @fpga: the DATA-FPGA number (zero based)
380 * @blknum: the correlation block number (zero based)
382 static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
383 unsigned int blknum)
385 return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
388 #define REG_BLOCK_SIZE (32 * 4)
391 * data_setup_corl_table() - create the scatterlist for correlation dumps
392 * @priv: the driver's private data structure
394 * Create the scatterlist for transferring a correlation dump from the
395 * DATA FPGAs. This structure will be reused for each buffer than needs
396 * to be filled with correlation data.
398 * Returns 0 on success, -ERRNO otherwise
400 static int data_setup_corl_table(struct fpga_device *priv)
402 struct sg_table *table = &priv->corl_table;
403 struct scatterlist *sg;
404 struct fpga_info *info;
405 int i, j, ret;
407 /* Calculate the number of entries needed */
408 priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
409 for (i = 0; i < NUM_FPGA; i++)
410 priv->corl_nents += priv->info[i].num_lag_ram;
412 /* Allocate the scatterlist table */
413 ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
414 if (ret) {
415 dev_err(priv->dev, "unable to allocate DMA table\n");
416 return ret;
419 /* Add the DATA FPGA registers to the scatterlist */
420 sg = table->sgl;
421 for (i = 0; i < NUM_FPGA; i++) {
422 sg_dma_address(sg) = fpga_start_addr(priv, i);
423 sg_dma_len(sg) = REG_BLOCK_SIZE;
424 sg = sg_next(sg);
427 /* Add the SYS-FPGA registers to the scatterlist */
428 sg_dma_address(sg) = SYS_FPGA_BLOCK;
429 sg_dma_len(sg) = REG_BLOCK_SIZE;
430 sg = sg_next(sg);
432 /* Add the FPGA correlation data blocks to the scatterlist */
433 for (i = 0; i < NUM_FPGA; i++) {
434 info = &priv->info[i];
435 for (j = 0; j < info->num_lag_ram; j++) {
436 sg_dma_address(sg) = fpga_block_addr(priv, i, j);
437 sg_dma_len(sg) = info->blk_size;
438 sg = sg_next(sg);
443 * All physical addresses and lengths are present in the structure
444 * now. It can be reused for every FPGA DATA interrupt
446 return 0;
450 * FPGA Register Access Helpers
453 static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
454 unsigned int reg, u32 val)
456 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
457 iowrite32be(val, priv->regs + fpga_start + reg);
460 static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
461 unsigned int reg)
463 const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
464 return ioread32be(priv->regs + fpga_start + reg);
468 * data_calculate_bufsize() - calculate the data buffer size required
469 * @priv: the driver's private data structure
471 * Calculate the total buffer size needed to hold a single block
472 * of correlation data
474 * CONTEXT: user
476 * Returns 0 on success, -ERRNO otherwise
478 static int data_calculate_bufsize(struct fpga_device *priv)
480 u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
481 u32 conf1, conf2, version;
482 u32 num_lag_ram, blk_size;
483 int i;
485 /* Each buffer starts with the 5 FPGA register areas */
486 priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
488 /* Read and store the configuration data for each FPGA */
489 for (i = 0; i < NUM_FPGA; i++) {
490 version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
491 conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
492 conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
494 /* minor version 2 and later */
495 if ((version & 0x000000FF) >= 2) {
496 num_corl = (conf1 & 0x000000F0) >> 4;
497 num_pack = (conf1 & 0x00000F00) >> 8;
498 num_lags = (conf1 & 0x00FFF000) >> 12;
499 num_meta = (conf1 & 0x7F000000) >> 24;
500 num_qcnt = (conf2 & 0x00000FFF) >> 0;
501 } else {
502 num_corl = (conf1 & 0x000000F0) >> 4;
503 num_pack = 1; /* implied */
504 num_lags = (conf1 & 0x000FFF00) >> 8;
505 num_meta = (conf1 & 0x7FF00000) >> 20;
506 num_qcnt = (conf2 & 0x00000FFF) >> 0;
509 num_lag_ram = (num_corl + num_pack - 1) / num_pack;
510 blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
512 priv->info[i].num_lag_ram = num_lag_ram;
513 priv->info[i].blk_size = blk_size;
514 priv->bufsize += num_lag_ram * blk_size;
516 dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
517 dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
518 dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
519 dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
520 dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
521 dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
524 dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
525 return 0;
529 * Interrupt Handling
533 * data_disable_interrupts() - stop the device from generating interrupts
534 * @priv: the driver's private data structure
536 * Hide interrupts by switching to GPIO interrupt source
538 * LOCKING: must hold dev->lock
540 static void data_disable_interrupts(struct fpga_device *priv)
542 /* hide the interrupt by switching the IRQ driver to GPIO */
543 iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
547 * data_enable_interrupts() - allow the device to generate interrupts
548 * @priv: the driver's private data structure
550 * Unhide interrupts by switching to the FPGA interrupt source. At the
551 * same time, clear the DATA-FPGA status registers.
553 * LOCKING: must hold dev->lock
555 static void data_enable_interrupts(struct fpga_device *priv)
557 /* clear the actual FPGA corl_done interrupt */
558 fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
559 fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
560 fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
561 fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
563 /* flush the writes */
564 fpga_read_reg(priv, 0, MMAP_REG_STATUS);
565 fpga_read_reg(priv, 1, MMAP_REG_STATUS);
566 fpga_read_reg(priv, 2, MMAP_REG_STATUS);
567 fpga_read_reg(priv, 3, MMAP_REG_STATUS);
569 /* switch back to the external interrupt source */
570 iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
574 * data_dma_cb() - DMAEngine callback for DMA completion
575 * @data: the driver's private data structure
577 * Complete a DMA transfer from the DATA-FPGA's
579 * This is called via the DMA callback mechanism, and will handle moving the
580 * completed DMA transaction to the used list, and then wake any processes
581 * waiting for new data
583 * CONTEXT: any, softirq expected
585 static void data_dma_cb(void *data)
587 struct fpga_device *priv = data;
588 unsigned long flags;
590 spin_lock_irqsave(&priv->lock, flags);
592 /* If there is no inflight buffer, we've got a bug */
593 BUG_ON(priv->inflight == NULL);
595 /* Move the inflight buffer onto the used list */
596 list_move_tail(&priv->inflight->entry, &priv->used);
597 priv->inflight = NULL;
600 * If data dumping is still enabled, then clear the FPGA
601 * status registers and re-enable FPGA interrupts
603 if (priv->enabled)
604 data_enable_interrupts(priv);
606 spin_unlock_irqrestore(&priv->lock, flags);
609 * We've changed both the inflight and used lists, so we need
610 * to wake up any processes that are blocking for those events
612 wake_up(&priv->wait);
616 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
617 * @priv: the driver's private data structure
618 * @buf: the data buffer
620 * Prepare and submit the necessary DMA transactions to fill a correlation
621 * data buffer.
623 * LOCKING: must hold dev->lock
624 * CONTEXT: hardirq only
626 * Returns 0 on success, -ERRNO otherwise
628 static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
630 struct scatterlist *dst_sg, *src_sg;
631 unsigned int dst_nents, src_nents;
632 struct dma_chan *chan = priv->chan;
633 struct dma_async_tx_descriptor *tx;
634 dma_cookie_t cookie;
635 dma_addr_t dst, src;
636 unsigned long dma_flags = 0;
638 dst_sg = buf->vb.sglist;
639 dst_nents = buf->vb.sglen;
641 src_sg = priv->corl_table.sgl;
642 src_nents = priv->corl_nents;
645 * All buffers passed to this function should be ready and mapped
646 * for DMA already. Therefore, we don't need to do anything except
647 * submit it to the Freescale DMA Engine for processing
650 /* setup the scatterlist to scatterlist transfer */
651 tx = chan->device->device_prep_dma_sg(chan,
652 dst_sg, dst_nents,
653 src_sg, src_nents,
655 if (!tx) {
656 dev_err(priv->dev, "unable to prep scatterlist DMA\n");
657 return -ENOMEM;
660 /* submit the transaction to the DMA controller */
661 cookie = tx->tx_submit(tx);
662 if (dma_submit_error(cookie)) {
663 dev_err(priv->dev, "unable to submit scatterlist DMA\n");
664 return -ENOMEM;
667 /* Prepare the re-read of the SYS-FPGA block */
668 dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
669 src = SYS_FPGA_BLOCK;
670 tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
671 REG_BLOCK_SIZE,
672 dma_flags);
673 if (!tx) {
674 dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
675 return -ENOMEM;
678 /* Setup the callback */
679 tx->callback = data_dma_cb;
680 tx->callback_param = priv;
682 /* submit the transaction to the DMA controller */
683 cookie = tx->tx_submit(tx);
684 if (dma_submit_error(cookie)) {
685 dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
686 return -ENOMEM;
689 return 0;
692 #define CORL_DONE 0x1
693 #define CORL_ERR 0x2
695 static irqreturn_t data_irq(int irq, void *dev_id)
697 struct fpga_device *priv = dev_id;
698 bool submitted = false;
699 struct data_buf *buf;
700 u32 status;
701 int i;
703 /* detect spurious interrupts via FPGA status */
704 for (i = 0; i < 4; i++) {
705 status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
706 if (!(status & (CORL_DONE | CORL_ERR))) {
707 dev_err(priv->dev, "spurious irq detected (FPGA)\n");
708 return IRQ_NONE;
712 /* detect spurious interrupts via raw IRQ pin readback */
713 status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
714 if (status & IRQ_CORL_DONE) {
715 dev_err(priv->dev, "spurious irq detected (IRQ)\n");
716 return IRQ_NONE;
719 spin_lock(&priv->lock);
722 * This is an error case that should never happen.
724 * If this driver has a bug and manages to re-enable interrupts while
725 * a DMA is in progress, then we will hit this statement and should
726 * start paying attention immediately.
728 BUG_ON(priv->inflight != NULL);
730 /* hide the interrupt by switching the IRQ driver to GPIO */
731 data_disable_interrupts(priv);
733 /* If there are no free buffers, drop this data */
734 if (list_empty(&priv->free)) {
735 priv->num_dropped++;
736 goto out;
739 buf = list_first_entry(&priv->free, struct data_buf, entry);
740 list_del_init(&buf->entry);
741 BUG_ON(buf->size != priv->bufsize);
743 /* Submit a DMA transfer to get the correlation data */
744 if (data_submit_dma(priv, buf)) {
745 dev_err(priv->dev, "Unable to setup DMA transfer\n");
746 list_move_tail(&buf->entry, &priv->free);
747 goto out;
750 /* Save the buffer for the DMA callback */
751 priv->inflight = buf;
752 submitted = true;
754 /* Start the DMA Engine */
755 dma_async_issue_pending(priv->chan);
757 out:
758 /* If no DMA was submitted, re-enable interrupts */
759 if (!submitted)
760 data_enable_interrupts(priv);
762 spin_unlock(&priv->lock);
763 return IRQ_HANDLED;
767 * Realtime Device Enable Helpers
771 * data_device_enable() - enable the device for buffered dumping
772 * @priv: the driver's private data structure
774 * Enable the device for buffered dumping. Allocates buffers and hooks up
775 * the interrupt handler. When this finishes, data will come pouring in.
777 * LOCKING: must hold dev->mutex
778 * CONTEXT: user context only
780 * Returns 0 on success, -ERRNO otherwise
782 static int data_device_enable(struct fpga_device *priv)
784 bool enabled;
785 u32 val;
786 int ret;
788 /* multiple enables are safe: they do nothing */
789 spin_lock_irq(&priv->lock);
790 enabled = priv->enabled;
791 spin_unlock_irq(&priv->lock);
792 if (enabled)
793 return 0;
795 /* check that the FPGAs are programmed */
796 val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
797 if (!(val & (1 << 18))) {
798 dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
799 return -ENODATA;
802 /* read the FPGAs to calculate the buffer size */
803 ret = data_calculate_bufsize(priv);
804 if (ret) {
805 dev_err(priv->dev, "unable to calculate buffer size\n");
806 goto out_error;
809 /* allocate the correlation data buffers */
810 ret = data_alloc_buffers(priv);
811 if (ret) {
812 dev_err(priv->dev, "unable to allocate buffers\n");
813 goto out_error;
816 /* setup the source scatterlist for dumping correlation data */
817 ret = data_setup_corl_table(priv);
818 if (ret) {
819 dev_err(priv->dev, "unable to setup correlation DMA table\n");
820 goto out_error;
823 /* prevent the FPGAs from generating interrupts */
824 data_disable_interrupts(priv);
826 /* hookup the irq handler */
827 ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
828 if (ret) {
829 dev_err(priv->dev, "unable to request IRQ handler\n");
830 goto out_error;
833 /* allow the DMA callback to re-enable FPGA interrupts */
834 spin_lock_irq(&priv->lock);
835 priv->enabled = true;
836 spin_unlock_irq(&priv->lock);
838 /* allow the FPGAs to generate interrupts */
839 data_enable_interrupts(priv);
840 return 0;
842 out_error:
843 sg_free_table(&priv->corl_table);
844 priv->corl_nents = 0;
846 data_free_buffers(priv);
847 return ret;
851 * data_device_disable() - disable the device for buffered dumping
852 * @priv: the driver's private data structure
854 * Disable the device for buffered dumping. Stops new DMA transactions from
855 * being generated, waits for all outstanding DMA to complete, and then frees
856 * all buffers.
858 * LOCKING: must hold dev->mutex
859 * CONTEXT: user only
861 * Returns 0 on success, -ERRNO otherwise
863 static int data_device_disable(struct fpga_device *priv)
865 spin_lock_irq(&priv->lock);
867 /* allow multiple disable */
868 if (!priv->enabled) {
869 spin_unlock_irq(&priv->lock);
870 return 0;
874 * Mark the device disabled
876 * This stops DMA callbacks from re-enabling interrupts
878 priv->enabled = false;
880 /* prevent the FPGAs from generating interrupts */
881 data_disable_interrupts(priv);
883 /* wait until all ongoing DMA has finished */
884 while (priv->inflight != NULL) {
885 spin_unlock_irq(&priv->lock);
886 wait_event(priv->wait, priv->inflight == NULL);
887 spin_lock_irq(&priv->lock);
890 spin_unlock_irq(&priv->lock);
892 /* unhook the irq handler */
893 free_irq(priv->irq, priv);
895 /* free the correlation table */
896 sg_free_table(&priv->corl_table);
897 priv->corl_nents = 0;
899 /* free all buffers: the free and used lists are not being changed */
900 data_free_buffers(priv);
901 return 0;
905 * DEBUGFS Interface
907 #ifdef CONFIG_DEBUG_FS
910 * Count the number of entries in the given list
912 static unsigned int list_num_entries(struct list_head *list)
914 struct list_head *entry;
915 unsigned int ret = 0;
917 list_for_each(entry, list)
918 ret++;
920 return ret;
923 static int data_debug_show(struct seq_file *f, void *offset)
925 struct fpga_device *priv = f->private;
927 spin_lock_irq(&priv->lock);
929 seq_printf(f, "enabled: %d\n", priv->enabled);
930 seq_printf(f, "bufsize: %d\n", priv->bufsize);
931 seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
932 seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
933 seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
934 seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
935 seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
937 spin_unlock_irq(&priv->lock);
938 return 0;
941 static int data_debug_open(struct inode *inode, struct file *file)
943 return single_open(file, data_debug_show, inode->i_private);
946 static const struct file_operations data_debug_fops = {
947 .owner = THIS_MODULE,
948 .open = data_debug_open,
949 .read = seq_read,
950 .llseek = seq_lseek,
951 .release = single_release,
954 static int data_debugfs_init(struct fpga_device *priv)
956 priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
957 &data_debug_fops);
958 if (IS_ERR(priv->dbg_entry))
959 return PTR_ERR(priv->dbg_entry);
961 return 0;
964 static void data_debugfs_exit(struct fpga_device *priv)
966 debugfs_remove(priv->dbg_entry);
969 #else
971 static inline int data_debugfs_init(struct fpga_device *priv)
973 return 0;
976 static inline void data_debugfs_exit(struct fpga_device *priv)
980 #endif /* CONFIG_DEBUG_FS */
983 * SYSFS Attributes
986 static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
987 char *buf)
989 struct fpga_device *priv = dev_get_drvdata(dev);
990 int ret;
992 spin_lock_irq(&priv->lock);
993 ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
994 spin_unlock_irq(&priv->lock);
996 return ret;
999 static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
1000 const char *buf, size_t count)
1002 struct fpga_device *priv = dev_get_drvdata(dev);
1003 unsigned long enable;
1004 int ret;
1006 ret = kstrtoul(buf, 0, &enable);
1007 if (ret) {
1008 dev_err(priv->dev, "unable to parse enable input\n");
1009 return ret;
1012 /* protect against concurrent enable/disable */
1013 ret = mutex_lock_interruptible(&priv->mutex);
1014 if (ret)
1015 return ret;
1017 if (enable)
1018 ret = data_device_enable(priv);
1019 else
1020 ret = data_device_disable(priv);
1022 if (ret) {
1023 dev_err(priv->dev, "device %s failed\n",
1024 enable ? "enable" : "disable");
1025 count = ret;
1026 goto out_unlock;
1029 out_unlock:
1030 mutex_unlock(&priv->mutex);
1031 return count;
1034 static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1036 static struct attribute *data_sysfs_attrs[] = {
1037 &dev_attr_enable.attr,
1038 NULL,
1041 static const struct attribute_group rt_sysfs_attr_group = {
1042 .attrs = data_sysfs_attrs,
1046 * FPGA Realtime Data Character Device
1049 static int data_open(struct inode *inode, struct file *filp)
1052 * The miscdevice layer puts our struct miscdevice into the
1053 * filp->private_data field. We use this to find our private
1054 * data and then overwrite it with our own private structure.
1056 struct fpga_device *priv = container_of(filp->private_data,
1057 struct fpga_device, miscdev);
1058 struct fpga_reader *reader;
1059 int ret;
1061 /* allocate private data */
1062 reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1063 if (!reader)
1064 return -ENOMEM;
1066 reader->priv = priv;
1067 reader->buf = NULL;
1069 filp->private_data = reader;
1070 ret = nonseekable_open(inode, filp);
1071 if (ret) {
1072 dev_err(priv->dev, "nonseekable-open failed\n");
1073 kfree(reader);
1074 return ret;
1078 * success, increase the reference count of the private data structure
1079 * so that it doesn't disappear if the device is unbound
1081 kref_get(&priv->ref);
1082 return 0;
1085 static int data_release(struct inode *inode, struct file *filp)
1087 struct fpga_reader *reader = filp->private_data;
1088 struct fpga_device *priv = reader->priv;
1090 /* free the per-reader structure */
1091 data_free_buffer(reader->buf);
1092 kfree(reader);
1093 filp->private_data = NULL;
1095 /* decrement our reference count to the private data */
1096 kref_put(&priv->ref, fpga_device_release);
1097 return 0;
1100 static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1101 loff_t *f_pos)
1103 struct fpga_reader *reader = filp->private_data;
1104 struct fpga_device *priv = reader->priv;
1105 struct list_head *used = &priv->used;
1106 bool drop_buffer = false;
1107 struct data_buf *dbuf;
1108 size_t avail;
1109 void *data;
1110 int ret;
1112 /* check if we already have a partial buffer */
1113 if (reader->buf) {
1114 dbuf = reader->buf;
1115 goto have_buffer;
1118 spin_lock_irq(&priv->lock);
1120 /* Block until there is at least one buffer on the used list */
1121 while (list_empty(used)) {
1122 spin_unlock_irq(&priv->lock);
1124 if (filp->f_flags & O_NONBLOCK)
1125 return -EAGAIN;
1127 ret = wait_event_interruptible(priv->wait, !list_empty(used));
1128 if (ret)
1129 return ret;
1131 spin_lock_irq(&priv->lock);
1134 /* Grab the first buffer off of the used list */
1135 dbuf = list_first_entry(used, struct data_buf, entry);
1136 list_del_init(&dbuf->entry);
1138 spin_unlock_irq(&priv->lock);
1140 /* Buffers are always mapped: unmap it */
1141 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1143 /* save the buffer for later */
1144 reader->buf = dbuf;
1145 reader->buf_start = 0;
1147 have_buffer:
1148 /* Get the number of bytes available */
1149 avail = dbuf->size - reader->buf_start;
1150 data = dbuf->vb.vaddr + reader->buf_start;
1152 /* Get the number of bytes we can transfer */
1153 count = min(count, avail);
1155 /* Copy the data to the userspace buffer */
1156 if (copy_to_user(ubuf, data, count))
1157 return -EFAULT;
1159 /* Update the amount of available space */
1160 avail -= count;
1163 * If there is still some data available, save the buffer for the
1164 * next userspace call to read() and return
1166 if (avail > 0) {
1167 reader->buf_start += count;
1168 reader->buf = dbuf;
1169 return count;
1173 * Get the buffer ready to be reused for DMA
1175 * If it fails, we pretend that the read never happed and return
1176 * -EFAULT to userspace. The read will be retried.
1178 ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1179 if (ret) {
1180 dev_err(priv->dev, "unable to remap buffer for DMA\n");
1181 return -EFAULT;
1184 /* Lock against concurrent enable/disable */
1185 spin_lock_irq(&priv->lock);
1187 /* the reader is finished with this buffer */
1188 reader->buf = NULL;
1191 * One of two things has happened, the device is disabled, or the
1192 * device has been reconfigured underneath us. In either case, we
1193 * should just throw away the buffer.
1195 * Lockdep complains if this is done under the spinlock, so we
1196 * handle it during the unlock path.
1198 if (!priv->enabled || dbuf->size != priv->bufsize) {
1199 drop_buffer = true;
1200 goto out_unlock;
1203 /* The buffer is safe to reuse, so add it back to the free list */
1204 list_add_tail(&dbuf->entry, &priv->free);
1206 out_unlock:
1207 spin_unlock_irq(&priv->lock);
1209 if (drop_buffer) {
1210 videobuf_dma_unmap(priv->dev, &dbuf->vb);
1211 data_free_buffer(dbuf);
1214 return count;
1217 static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1219 struct fpga_reader *reader = filp->private_data;
1220 struct fpga_device *priv = reader->priv;
1221 unsigned int mask = 0;
1223 poll_wait(filp, &priv->wait, tbl);
1225 if (!list_empty(&priv->used))
1226 mask |= POLLIN | POLLRDNORM;
1228 return mask;
1231 static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1233 struct fpga_reader *reader = filp->private_data;
1234 struct fpga_device *priv = reader->priv;
1235 unsigned long offset, vsize, psize, addr;
1237 /* VMA properties */
1238 offset = vma->vm_pgoff << PAGE_SHIFT;
1239 vsize = vma->vm_end - vma->vm_start;
1240 psize = priv->phys_size - offset;
1241 addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1243 /* Check against the FPGA region's physical memory size */
1244 if (vsize > psize) {
1245 dev_err(priv->dev, "requested mmap mapping too large\n");
1246 return -EINVAL;
1249 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1251 return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1252 vma->vm_page_prot);
1255 static const struct file_operations data_fops = {
1256 .owner = THIS_MODULE,
1257 .open = data_open,
1258 .release = data_release,
1259 .read = data_read,
1260 .poll = data_poll,
1261 .mmap = data_mmap,
1262 .llseek = no_llseek,
1266 * OpenFirmware Device Subsystem
1269 static bool dma_filter(struct dma_chan *chan, void *data)
1272 * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1274 * This probably won't survive an unload/load cycle of the Freescale
1275 * DMAEngine driver, but that won't be a problem
1277 if (chan->chan_id == 0 && chan->device->dev_id == 0)
1278 return false;
1280 return true;
1283 static int data_of_probe(struct platform_device *op)
1285 struct device_node *of_node = op->dev.of_node;
1286 struct device *this_device;
1287 struct fpga_device *priv;
1288 struct resource res;
1289 dma_cap_mask_t mask;
1290 int ret;
1292 /* Allocate private data */
1293 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1294 if (!priv) {
1295 dev_err(&op->dev, "Unable to allocate device private data\n");
1296 ret = -ENOMEM;
1297 goto out_return;
1300 platform_set_drvdata(op, priv);
1301 priv->dev = &op->dev;
1302 kref_init(&priv->ref);
1303 mutex_init(&priv->mutex);
1305 dev_set_drvdata(priv->dev, priv);
1306 spin_lock_init(&priv->lock);
1307 INIT_LIST_HEAD(&priv->free);
1308 INIT_LIST_HEAD(&priv->used);
1309 init_waitqueue_head(&priv->wait);
1311 /* Setup the misc device */
1312 priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1313 priv->miscdev.name = drv_name;
1314 priv->miscdev.fops = &data_fops;
1316 /* Get the physical address of the FPGA registers */
1317 ret = of_address_to_resource(of_node, 0, &res);
1318 if (ret) {
1319 dev_err(&op->dev, "Unable to find FPGA physical address\n");
1320 ret = -ENODEV;
1321 goto out_free_priv;
1324 priv->phys_addr = res.start;
1325 priv->phys_size = resource_size(&res);
1327 /* ioremap the registers for use */
1328 priv->regs = of_iomap(of_node, 0);
1329 if (!priv->regs) {
1330 dev_err(&op->dev, "Unable to ioremap registers\n");
1331 ret = -ENOMEM;
1332 goto out_free_priv;
1335 dma_cap_zero(mask);
1336 dma_cap_set(DMA_MEMCPY, mask);
1337 dma_cap_set(DMA_INTERRUPT, mask);
1338 dma_cap_set(DMA_SLAVE, mask);
1339 dma_cap_set(DMA_SG, mask);
1341 /* Request a DMA channel */
1342 priv->chan = dma_request_channel(mask, dma_filter, NULL);
1343 if (!priv->chan) {
1344 dev_err(&op->dev, "Unable to request DMA channel\n");
1345 ret = -ENODEV;
1346 goto out_unmap_regs;
1349 /* Find the correct IRQ number */
1350 priv->irq = irq_of_parse_and_map(of_node, 0);
1351 if (priv->irq == NO_IRQ) {
1352 dev_err(&op->dev, "Unable to find IRQ line\n");
1353 ret = -ENODEV;
1354 goto out_release_dma;
1357 /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1358 iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1360 /* Register the miscdevice */
1361 ret = misc_register(&priv->miscdev);
1362 if (ret) {
1363 dev_err(&op->dev, "Unable to register miscdevice\n");
1364 goto out_irq_dispose_mapping;
1367 /* Create the debugfs files */
1368 ret = data_debugfs_init(priv);
1369 if (ret) {
1370 dev_err(&op->dev, "Unable to create debugfs files\n");
1371 goto out_misc_deregister;
1374 /* Create the sysfs files */
1375 this_device = priv->miscdev.this_device;
1376 dev_set_drvdata(this_device, priv);
1377 ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1378 if (ret) {
1379 dev_err(&op->dev, "Unable to create sysfs files\n");
1380 goto out_data_debugfs_exit;
1383 dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1384 return 0;
1386 out_data_debugfs_exit:
1387 data_debugfs_exit(priv);
1388 out_misc_deregister:
1389 misc_deregister(&priv->miscdev);
1390 out_irq_dispose_mapping:
1391 irq_dispose_mapping(priv->irq);
1392 out_release_dma:
1393 dma_release_channel(priv->chan);
1394 out_unmap_regs:
1395 iounmap(priv->regs);
1396 out_free_priv:
1397 kref_put(&priv->ref, fpga_device_release);
1398 out_return:
1399 return ret;
1402 static int data_of_remove(struct platform_device *op)
1404 struct fpga_device *priv = platform_get_drvdata(op);
1405 struct device *this_device = priv->miscdev.this_device;
1407 /* remove all sysfs files, now the device cannot be re-enabled */
1408 sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1410 /* remove all debugfs files */
1411 data_debugfs_exit(priv);
1413 /* disable the device from generating data */
1414 data_device_disable(priv);
1416 /* remove the character device to stop new readers from appearing */
1417 misc_deregister(&priv->miscdev);
1419 /* cleanup everything not needed by readers */
1420 irq_dispose_mapping(priv->irq);
1421 dma_release_channel(priv->chan);
1422 iounmap(priv->regs);
1424 /* release our reference */
1425 kref_put(&priv->ref, fpga_device_release);
1426 return 0;
1429 static struct of_device_id data_of_match[] = {
1430 { .compatible = "carma,carma-fpga", },
1434 static struct platform_driver data_of_driver = {
1435 .probe = data_of_probe,
1436 .remove = data_of_remove,
1437 .driver = {
1438 .name = drv_name,
1439 .of_match_table = data_of_match,
1440 .owner = THIS_MODULE,
1444 module_platform_driver(data_of_driver);
1446 MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1447 MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1448 MODULE_LICENSE("GPL");