Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / drivers / misc / mei / hw-me.c
blob6f656c053b144a44b20b798e75e16f3efab49f7f
1 /*
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
22 #include "mei_dev.h"
23 #include "hw-me.h"
25 #include "hbm.h"
28 /**
29 * mei_me_reg_read - Reads 32bit data from the mei device
31 * @dev: the device structure
32 * @offset: offset from which to read the data
34 * returns register value (u32)
36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 unsigned long offset)
39 return ioread32(hw->mem_addr + offset);
43 /**
44 * mei_me_reg_write - Writes 32bit data to the mei device
46 * @dev: the device structure
47 * @offset: offset from which to write the data
48 * @value: register value to write (u32)
50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 unsigned long offset, u32 value)
53 iowrite32(value, hw->mem_addr + offset);
56 /**
57 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58 * read window register
60 * @dev: the device structure
62 * returns ME_CB_RW register value (u32)
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
66 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
68 /**
69 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
71 * @dev: the device structure
73 * returns ME_CSR_HA register value (u32)
75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
77 return mei_me_reg_read(hw, ME_CSR_HA);
80 /**
81 * mei_hcsr_read - Reads 32bit data from the host CSR
83 * @dev: the device structure
85 * returns H_CSR register value (u32)
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
89 return mei_me_reg_read(hw, H_CSR);
92 /**
93 * mei_hcsr_set - writes H_CSR register to the mei device,
94 * and ignores the H_IS bit for it is write-one-to-zero.
96 * @dev: the device structure
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
100 hcsr &= ~H_IS;
101 mei_me_reg_write(hw, H_CSR, hcsr);
106 * mei_me_hw_config - configure hw dependent settings
108 * @dev: mei device
110 static void mei_me_hw_config(struct mei_device *dev)
112 u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 /* Doesn't change in runtime */
114 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
117 * mei_clear_interrupts - clear and stop interrupts
119 * @dev: the device structure
121 static void mei_me_intr_clear(struct mei_device *dev)
123 struct mei_me_hw *hw = to_me_hw(dev);
124 u32 hcsr = mei_hcsr_read(hw);
125 if ((hcsr & H_IS) == H_IS)
126 mei_me_reg_write(hw, H_CSR, hcsr);
129 * mei_me_intr_enable - enables mei device interrupts
131 * @dev: the device structure
133 static void mei_me_intr_enable(struct mei_device *dev)
135 struct mei_me_hw *hw = to_me_hw(dev);
136 u32 hcsr = mei_hcsr_read(hw);
137 hcsr |= H_IE;
138 mei_hcsr_set(hw, hcsr);
142 * mei_disable_interrupts - disables mei device interrupts
144 * @dev: the device structure
146 static void mei_me_intr_disable(struct mei_device *dev)
148 struct mei_me_hw *hw = to_me_hw(dev);
149 u32 hcsr = mei_hcsr_read(hw);
150 hcsr &= ~H_IE;
151 mei_hcsr_set(hw, hcsr);
155 * mei_me_hw_reset_release - release device from the reset
157 * @dev: the device structure
159 static void mei_me_hw_reset_release(struct mei_device *dev)
161 struct mei_me_hw *hw = to_me_hw(dev);
162 u32 hcsr = mei_hcsr_read(hw);
164 hcsr |= H_IG;
165 hcsr &= ~H_RST;
166 mei_hcsr_set(hw, hcsr);
169 * mei_me_hw_reset - resets fw via mei csr register.
171 * @dev: the device structure
172 * @intr_enable: if interrupt should be enabled after reset.
174 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
176 struct mei_me_hw *hw = to_me_hw(dev);
177 u32 hcsr = mei_hcsr_read(hw);
179 hcsr |= H_RST | H_IG | H_IS;
181 if (intr_enable)
182 hcsr |= H_IE;
183 else
184 hcsr &= ~H_IE;
186 mei_me_reg_write(hw, H_CSR, hcsr);
188 if (intr_enable == false)
189 mei_me_hw_reset_release(dev);
191 return 0;
195 * mei_me_host_set_ready - enable device
197 * @dev - mei device
198 * returns bool
201 static void mei_me_host_set_ready(struct mei_device *dev)
203 struct mei_me_hw *hw = to_me_hw(dev);
204 hw->host_hw_state |= H_IE | H_IG | H_RDY;
205 mei_hcsr_set(hw, hw->host_hw_state);
208 * mei_me_host_is_ready - check whether the host has turned ready
210 * @dev - mei device
211 * returns bool
213 static bool mei_me_host_is_ready(struct mei_device *dev)
215 struct mei_me_hw *hw = to_me_hw(dev);
216 hw->host_hw_state = mei_hcsr_read(hw);
217 return (hw->host_hw_state & H_RDY) == H_RDY;
221 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
223 * @dev - mei device
224 * returns bool
226 static bool mei_me_hw_is_ready(struct mei_device *dev)
228 struct mei_me_hw *hw = to_me_hw(dev);
229 hw->me_hw_state = mei_me_mecsr_read(hw);
230 return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
233 static int mei_me_hw_ready_wait(struct mei_device *dev)
235 int err;
236 if (mei_me_hw_is_ready(dev))
237 return 0;
239 dev->recvd_hw_ready = false;
240 mutex_unlock(&dev->device_lock);
241 err = wait_event_interruptible_timeout(dev->wait_hw_ready,
242 dev->recvd_hw_ready,
243 mei_secs_to_jiffies(MEI_INTEROP_TIMEOUT));
244 mutex_lock(&dev->device_lock);
245 if (!err && !dev->recvd_hw_ready) {
246 if (!err)
247 err = -ETIMEDOUT;
248 dev_err(&dev->pdev->dev,
249 "wait hw ready failed. status = %d\n", err);
250 return err;
253 dev->recvd_hw_ready = false;
254 return 0;
257 static int mei_me_hw_start(struct mei_device *dev)
259 int ret = mei_me_hw_ready_wait(dev);
260 if (ret)
261 return ret;
262 dev_dbg(&dev->pdev->dev, "hw is ready\n");
264 mei_me_host_set_ready(dev);
265 return ret;
270 * mei_hbuf_filled_slots - gets number of device filled buffer slots
272 * @dev: the device structure
274 * returns number of filled slots
276 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
278 struct mei_me_hw *hw = to_me_hw(dev);
279 char read_ptr, write_ptr;
281 hw->host_hw_state = mei_hcsr_read(hw);
283 read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
284 write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
286 return (unsigned char) (write_ptr - read_ptr);
290 * mei_me_hbuf_is_empty - checks if host buffer is empty.
292 * @dev: the device structure
294 * returns true if empty, false - otherwise.
296 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
298 return mei_hbuf_filled_slots(dev) == 0;
302 * mei_me_hbuf_empty_slots - counts write empty slots.
304 * @dev: the device structure
306 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
308 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
310 unsigned char filled_slots, empty_slots;
312 filled_slots = mei_hbuf_filled_slots(dev);
313 empty_slots = dev->hbuf_depth - filled_slots;
315 /* check for overflow */
316 if (filled_slots > dev->hbuf_depth)
317 return -EOVERFLOW;
319 return empty_slots;
322 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
324 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
329 * mei_write_message - writes a message to mei device.
331 * @dev: the device structure
332 * @header: mei HECI header of message
333 * @buf: message payload will be written
335 * This function returns -EIO if write has failed
337 static int mei_me_write_message(struct mei_device *dev,
338 struct mei_msg_hdr *header,
339 unsigned char *buf)
341 struct mei_me_hw *hw = to_me_hw(dev);
342 unsigned long rem;
343 unsigned long length = header->length;
344 u32 *reg_buf = (u32 *)buf;
345 u32 hcsr;
346 u32 dw_cnt;
347 int i;
348 int empty_slots;
350 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
352 empty_slots = mei_hbuf_empty_slots(dev);
353 dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
355 dw_cnt = mei_data2slots(length);
356 if (empty_slots < 0 || dw_cnt > empty_slots)
357 return -EIO;
359 mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
361 for (i = 0; i < length / 4; i++)
362 mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
364 rem = length & 0x3;
365 if (rem > 0) {
366 u32 reg = 0;
367 memcpy(&reg, &buf[length - rem], rem);
368 mei_me_reg_write(hw, H_CB_WW, reg);
371 hcsr = mei_hcsr_read(hw) | H_IG;
372 mei_hcsr_set(hw, hcsr);
373 if (!mei_me_hw_is_ready(dev))
374 return -EIO;
376 return 0;
380 * mei_me_count_full_read_slots - counts read full slots.
382 * @dev: the device structure
384 * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
386 static int mei_me_count_full_read_slots(struct mei_device *dev)
388 struct mei_me_hw *hw = to_me_hw(dev);
389 char read_ptr, write_ptr;
390 unsigned char buffer_depth, filled_slots;
392 hw->me_hw_state = mei_me_mecsr_read(hw);
393 buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
394 read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
395 write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
396 filled_slots = (unsigned char) (write_ptr - read_ptr);
398 /* check for overflow */
399 if (filled_slots > buffer_depth)
400 return -EOVERFLOW;
402 dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
403 return (int)filled_slots;
407 * mei_me_read_slots - reads a message from mei device.
409 * @dev: the device structure
410 * @buffer: message buffer will be written
411 * @buffer_length: message size will be read
413 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
414 unsigned long buffer_length)
416 struct mei_me_hw *hw = to_me_hw(dev);
417 u32 *reg_buf = (u32 *)buffer;
418 u32 hcsr;
420 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
421 *reg_buf++ = mei_me_mecbrw_read(dev);
423 if (buffer_length > 0) {
424 u32 reg = mei_me_mecbrw_read(dev);
425 memcpy(reg_buf, &reg, buffer_length);
428 hcsr = mei_hcsr_read(hw) | H_IG;
429 mei_hcsr_set(hw, hcsr);
430 return 0;
434 * mei_me_irq_quick_handler - The ISR of the MEI device
436 * @irq: The irq number
437 * @dev_id: pointer to the device structure
439 * returns irqreturn_t
442 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
444 struct mei_device *dev = (struct mei_device *) dev_id;
445 struct mei_me_hw *hw = to_me_hw(dev);
446 u32 csr_reg = mei_hcsr_read(hw);
448 if ((csr_reg & H_IS) != H_IS)
449 return IRQ_NONE;
451 /* clear H_IS bit in H_CSR */
452 mei_me_reg_write(hw, H_CSR, csr_reg);
454 return IRQ_WAKE_THREAD;
458 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
459 * processing.
461 * @irq: The irq number
462 * @dev_id: pointer to the device structure
464 * returns irqreturn_t
467 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
469 struct mei_device *dev = (struct mei_device *) dev_id;
470 struct mei_cl_cb complete_list;
471 s32 slots;
472 int rets = 0;
474 dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
475 /* initialize our complete list */
476 mutex_lock(&dev->device_lock);
477 mei_io_list_init(&complete_list);
479 /* Ack the interrupt here
480 * In case of MSI we don't go through the quick handler */
481 if (pci_dev_msi_enabled(dev->pdev))
482 mei_clear_interrupts(dev);
484 /* check if ME wants a reset */
485 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
486 dev_warn(&dev->pdev->dev, "FW not ready: resetting.\n");
487 schedule_work(&dev->reset_work);
488 goto end;
491 /* check if we need to start the dev */
492 if (!mei_host_is_ready(dev)) {
493 if (mei_hw_is_ready(dev)) {
494 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
496 dev->recvd_hw_ready = true;
497 wake_up_interruptible(&dev->wait_hw_ready);
498 } else {
500 dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
501 mei_me_hw_reset_release(dev);
503 goto end;
505 /* check slots available for reading */
506 slots = mei_count_full_read_slots(dev);
507 while (slots > 0) {
508 /* we have urgent data to send so break the read */
509 if (dev->wr_ext_msg.hdr.length)
510 break;
511 dev_dbg(&dev->pdev->dev, "slots to read = %08x\n", slots);
512 rets = mei_irq_read_handler(dev, &complete_list, &slots);
513 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
514 schedule_work(&dev->reset_work);
515 goto end;
519 rets = mei_irq_write_handler(dev, &complete_list);
521 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
523 mei_irq_compl_handler(dev, &complete_list);
525 end:
526 dev_dbg(&dev->pdev->dev, "interrupt thread end ret = %d\n", rets);
527 mutex_unlock(&dev->device_lock);
528 return IRQ_HANDLED;
530 static const struct mei_hw_ops mei_me_hw_ops = {
532 .host_is_ready = mei_me_host_is_ready,
534 .hw_is_ready = mei_me_hw_is_ready,
535 .hw_reset = mei_me_hw_reset,
536 .hw_config = mei_me_hw_config,
537 .hw_start = mei_me_hw_start,
539 .intr_clear = mei_me_intr_clear,
540 .intr_enable = mei_me_intr_enable,
541 .intr_disable = mei_me_intr_disable,
543 .hbuf_free_slots = mei_me_hbuf_empty_slots,
544 .hbuf_is_ready = mei_me_hbuf_is_empty,
545 .hbuf_max_len = mei_me_hbuf_max_len,
547 .write = mei_me_write_message,
549 .rdbuf_full_slots = mei_me_count_full_read_slots,
550 .read_hdr = mei_me_mecbrw_read,
551 .read = mei_me_read_slots
555 * mei_me_dev_init - allocates and initializes the mei device structure
557 * @pdev: The pci device structure
559 * returns The mei_device_device pointer on success, NULL on failure.
561 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
563 struct mei_device *dev;
565 dev = kzalloc(sizeof(struct mei_device) +
566 sizeof(struct mei_me_hw), GFP_KERNEL);
567 if (!dev)
568 return NULL;
570 mei_device_init(dev);
572 dev->ops = &mei_me_hw_ops;
574 dev->pdev = pdev;
575 return dev;