Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / drivers / mtd / ubi / fastmap.c
blobead861307b3c57aac13bbb187a958a8910062904
1 /*
2 * Copyright (c) 2012 Linutronix GmbH
3 * Author: Richard Weinberger <richard@nod.at>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
16 #include <linux/crc32.h>
17 #include "ubi.h"
19 /**
20 * ubi_calc_fm_size - calculates the fastmap size in bytes for an UBI device.
21 * @ubi: UBI device description object
23 size_t ubi_calc_fm_size(struct ubi_device *ubi)
25 size_t size;
27 size = sizeof(struct ubi_fm_hdr) + \
28 sizeof(struct ubi_fm_scan_pool) + \
29 sizeof(struct ubi_fm_scan_pool) + \
30 (ubi->peb_count * sizeof(struct ubi_fm_ec)) + \
31 (sizeof(struct ubi_fm_eba) + \
32 (ubi->peb_count * sizeof(__be32))) + \
33 sizeof(struct ubi_fm_volhdr) * UBI_MAX_VOLUMES;
34 return roundup(size, ubi->leb_size);
38 /**
39 * new_fm_vhdr - allocate a new volume header for fastmap usage.
40 * @ubi: UBI device description object
41 * @vol_id: the VID of the new header
43 * Returns a new struct ubi_vid_hdr on success.
44 * NULL indicates out of memory.
46 static struct ubi_vid_hdr *new_fm_vhdr(struct ubi_device *ubi, int vol_id)
48 struct ubi_vid_hdr *new;
50 new = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
51 if (!new)
52 goto out;
54 new->vol_type = UBI_VID_DYNAMIC;
55 new->vol_id = cpu_to_be32(vol_id);
57 /* UBI implementations without fastmap support have to delete the
58 * fastmap.
60 new->compat = UBI_COMPAT_DELETE;
62 out:
63 return new;
66 /**
67 * add_aeb - create and add a attach erase block to a given list.
68 * @ai: UBI attach info object
69 * @list: the target list
70 * @pnum: PEB number of the new attach erase block
71 * @ec: erease counter of the new LEB
72 * @scrub: scrub this PEB after attaching
74 * Returns 0 on success, < 0 indicates an internal error.
76 static int add_aeb(struct ubi_attach_info *ai, struct list_head *list,
77 int pnum, int ec, int scrub)
79 struct ubi_ainf_peb *aeb;
81 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
82 if (!aeb)
83 return -ENOMEM;
85 aeb->pnum = pnum;
86 aeb->ec = ec;
87 aeb->lnum = -1;
88 aeb->scrub = scrub;
89 aeb->copy_flag = aeb->sqnum = 0;
91 ai->ec_sum += aeb->ec;
92 ai->ec_count++;
94 if (ai->max_ec < aeb->ec)
95 ai->max_ec = aeb->ec;
97 if (ai->min_ec > aeb->ec)
98 ai->min_ec = aeb->ec;
100 list_add_tail(&aeb->u.list, list);
102 return 0;
106 * add_vol - create and add a new volume to ubi_attach_info.
107 * @ai: ubi_attach_info object
108 * @vol_id: VID of the new volume
109 * @used_ebs: number of used EBS
110 * @data_pad: data padding value of the new volume
111 * @vol_type: volume type
112 * @last_eb_bytes: number of bytes in the last LEB
114 * Returns the new struct ubi_ainf_volume on success.
115 * NULL indicates an error.
117 static struct ubi_ainf_volume *add_vol(struct ubi_attach_info *ai, int vol_id,
118 int used_ebs, int data_pad, u8 vol_type,
119 int last_eb_bytes)
121 struct ubi_ainf_volume *av;
122 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
124 while (*p) {
125 parent = *p;
126 av = rb_entry(parent, struct ubi_ainf_volume, rb);
128 if (vol_id > av->vol_id)
129 p = &(*p)->rb_left;
130 else if (vol_id > av->vol_id)
131 p = &(*p)->rb_right;
134 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
135 if (!av)
136 goto out;
138 av->highest_lnum = av->leb_count = 0;
139 av->vol_id = vol_id;
140 av->used_ebs = used_ebs;
141 av->data_pad = data_pad;
142 av->last_data_size = last_eb_bytes;
143 av->compat = 0;
144 av->vol_type = vol_type;
145 av->root = RB_ROOT;
147 dbg_bld("found volume (ID %i)", vol_id);
149 rb_link_node(&av->rb, parent, p);
150 rb_insert_color(&av->rb, &ai->volumes);
152 out:
153 return av;
157 * assign_aeb_to_av - assigns a SEB to a given ainf_volume and removes it
158 * from it's original list.
159 * @ai: ubi_attach_info object
160 * @aeb: the to be assigned SEB
161 * @av: target scan volume
163 static void assign_aeb_to_av(struct ubi_attach_info *ai,
164 struct ubi_ainf_peb *aeb,
165 struct ubi_ainf_volume *av)
167 struct ubi_ainf_peb *tmp_aeb;
168 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
170 p = &av->root.rb_node;
171 while (*p) {
172 parent = *p;
174 tmp_aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
175 if (aeb->lnum != tmp_aeb->lnum) {
176 if (aeb->lnum < tmp_aeb->lnum)
177 p = &(*p)->rb_left;
178 else
179 p = &(*p)->rb_right;
181 continue;
182 } else
183 break;
186 list_del(&aeb->u.list);
187 av->leb_count++;
189 rb_link_node(&aeb->u.rb, parent, p);
190 rb_insert_color(&aeb->u.rb, &av->root);
194 * update_vol - inserts or updates a LEB which was found a pool.
195 * @ubi: the UBI device object
196 * @ai: attach info object
197 * @av: the volume this LEB belongs to
198 * @new_vh: the volume header derived from new_aeb
199 * @new_aeb: the AEB to be examined
201 * Returns 0 on success, < 0 indicates an internal error.
203 static int update_vol(struct ubi_device *ubi, struct ubi_attach_info *ai,
204 struct ubi_ainf_volume *av, struct ubi_vid_hdr *new_vh,
205 struct ubi_ainf_peb *new_aeb)
207 struct rb_node **p = &av->root.rb_node, *parent = NULL;
208 struct ubi_ainf_peb *aeb, *victim;
209 int cmp_res;
211 while (*p) {
212 parent = *p;
213 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
215 if (be32_to_cpu(new_vh->lnum) != aeb->lnum) {
216 if (be32_to_cpu(new_vh->lnum) < aeb->lnum)
217 p = &(*p)->rb_left;
218 else
219 p = &(*p)->rb_right;
221 continue;
224 /* This case can happen if the fastmap gets written
225 * because of a volume change (creation, deletion, ..).
226 * Then a PEB can be within the persistent EBA and the pool.
228 if (aeb->pnum == new_aeb->pnum) {
229 ubi_assert(aeb->lnum == new_aeb->lnum);
230 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
232 return 0;
235 cmp_res = ubi_compare_lebs(ubi, aeb, new_aeb->pnum, new_vh);
236 if (cmp_res < 0)
237 return cmp_res;
239 /* new_aeb is newer */
240 if (cmp_res & 1) {
241 victim = kmem_cache_alloc(ai->aeb_slab_cache,
242 GFP_KERNEL);
243 if (!victim)
244 return -ENOMEM;
246 victim->ec = aeb->ec;
247 victim->pnum = aeb->pnum;
248 list_add_tail(&victim->u.list, &ai->erase);
250 if (av->highest_lnum == be32_to_cpu(new_vh->lnum))
251 av->last_data_size = \
252 be32_to_cpu(new_vh->data_size);
254 dbg_bld("vol %i: AEB %i's PEB %i is the newer",
255 av->vol_id, aeb->lnum, new_aeb->pnum);
257 aeb->ec = new_aeb->ec;
258 aeb->pnum = new_aeb->pnum;
259 aeb->copy_flag = new_vh->copy_flag;
260 aeb->scrub = new_aeb->scrub;
261 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
263 /* new_aeb is older */
264 } else {
265 dbg_bld("vol %i: AEB %i's PEB %i is old, dropping it",
266 av->vol_id, aeb->lnum, new_aeb->pnum);
267 list_add_tail(&new_aeb->u.list, &ai->erase);
270 return 0;
272 /* This LEB is new, let's add it to the volume */
274 if (av->highest_lnum <= be32_to_cpu(new_vh->lnum)) {
275 av->highest_lnum = be32_to_cpu(new_vh->lnum);
276 av->last_data_size = be32_to_cpu(new_vh->data_size);
279 if (av->vol_type == UBI_STATIC_VOLUME)
280 av->used_ebs = be32_to_cpu(new_vh->used_ebs);
282 av->leb_count++;
284 rb_link_node(&new_aeb->u.rb, parent, p);
285 rb_insert_color(&new_aeb->u.rb, &av->root);
287 return 0;
291 * process_pool_aeb - we found a non-empty PEB in a pool.
292 * @ubi: UBI device object
293 * @ai: attach info object
294 * @new_vh: the volume header derived from new_aeb
295 * @new_aeb: the AEB to be examined
297 * Returns 0 on success, < 0 indicates an internal error.
299 static int process_pool_aeb(struct ubi_device *ubi, struct ubi_attach_info *ai,
300 struct ubi_vid_hdr *new_vh,
301 struct ubi_ainf_peb *new_aeb)
303 struct ubi_ainf_volume *av, *tmp_av = NULL;
304 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
305 int found = 0;
307 if (be32_to_cpu(new_vh->vol_id) == UBI_FM_SB_VOLUME_ID ||
308 be32_to_cpu(new_vh->vol_id) == UBI_FM_DATA_VOLUME_ID) {
309 kmem_cache_free(ai->aeb_slab_cache, new_aeb);
311 return 0;
314 /* Find the volume this SEB belongs to */
315 while (*p) {
316 parent = *p;
317 tmp_av = rb_entry(parent, struct ubi_ainf_volume, rb);
319 if (be32_to_cpu(new_vh->vol_id) > tmp_av->vol_id)
320 p = &(*p)->rb_left;
321 else if (be32_to_cpu(new_vh->vol_id) < tmp_av->vol_id)
322 p = &(*p)->rb_right;
323 else {
324 found = 1;
325 break;
329 if (found)
330 av = tmp_av;
331 else {
332 ubi_err("orphaned volume in fastmap pool!");
333 return UBI_BAD_FASTMAP;
336 ubi_assert(be32_to_cpu(new_vh->vol_id) == av->vol_id);
338 return update_vol(ubi, ai, av, new_vh, new_aeb);
342 * unmap_peb - unmap a PEB.
343 * If fastmap detects a free PEB in the pool it has to check whether
344 * this PEB has been unmapped after writing the fastmap.
346 * @ai: UBI attach info object
347 * @pnum: The PEB to be unmapped
349 static void unmap_peb(struct ubi_attach_info *ai, int pnum)
351 struct ubi_ainf_volume *av;
352 struct rb_node *node, *node2;
353 struct ubi_ainf_peb *aeb;
355 for (node = rb_first(&ai->volumes); node; node = rb_next(node)) {
356 av = rb_entry(node, struct ubi_ainf_volume, rb);
358 for (node2 = rb_first(&av->root); node2;
359 node2 = rb_next(node2)) {
360 aeb = rb_entry(node2, struct ubi_ainf_peb, u.rb);
361 if (aeb->pnum == pnum) {
362 rb_erase(&aeb->u.rb, &av->root);
363 kmem_cache_free(ai->aeb_slab_cache, aeb);
364 return;
371 * scan_pool - scans a pool for changed (no longer empty PEBs).
372 * @ubi: UBI device object
373 * @ai: attach info object
374 * @pebs: an array of all PEB numbers in the to be scanned pool
375 * @pool_size: size of the pool (number of entries in @pebs)
376 * @max_sqnum: pointer to the maximal sequence number
377 * @eba_orphans: list of PEBs which need to be scanned
378 * @free: list of PEBs which are most likely free (and go into @ai->free)
380 * Returns 0 on success, if the pool is unusable UBI_BAD_FASTMAP is returned.
381 * < 0 indicates an internal error.
383 static int scan_pool(struct ubi_device *ubi, struct ubi_attach_info *ai,
384 int *pebs, int pool_size, unsigned long long *max_sqnum,
385 struct list_head *eba_orphans, struct list_head *free)
387 struct ubi_vid_hdr *vh;
388 struct ubi_ec_hdr *ech;
389 struct ubi_ainf_peb *new_aeb, *tmp_aeb;
390 int i, pnum, err, found_orphan, ret = 0;
392 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
393 if (!ech)
394 return -ENOMEM;
396 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
397 if (!vh) {
398 kfree(ech);
399 return -ENOMEM;
402 dbg_bld("scanning fastmap pool: size = %i", pool_size);
405 * Now scan all PEBs in the pool to find changes which have been made
406 * after the creation of the fastmap
408 for (i = 0; i < pool_size; i++) {
409 int scrub = 0;
410 int image_seq;
412 pnum = be32_to_cpu(pebs[i]);
414 if (ubi_io_is_bad(ubi, pnum)) {
415 ubi_err("bad PEB in fastmap pool!");
416 ret = UBI_BAD_FASTMAP;
417 goto out;
420 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
421 if (err && err != UBI_IO_BITFLIPS) {
422 ubi_err("unable to read EC header! PEB:%i err:%i",
423 pnum, err);
424 ret = err > 0 ? UBI_BAD_FASTMAP : err;
425 goto out;
426 } else if (ret == UBI_IO_BITFLIPS)
427 scrub = 1;
430 * Older UBI implementations have image_seq set to zero, so
431 * we shouldn't fail if image_seq == 0.
433 image_seq = be32_to_cpu(ech->image_seq);
435 if (image_seq && (image_seq != ubi->image_seq)) {
436 ubi_err("bad image seq: 0x%x, expected: 0x%x",
437 be32_to_cpu(ech->image_seq), ubi->image_seq);
438 ret = UBI_BAD_FASTMAP;
439 goto out;
442 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
443 if (err == UBI_IO_FF || err == UBI_IO_FF_BITFLIPS) {
444 unsigned long long ec = be64_to_cpu(ech->ec);
445 unmap_peb(ai, pnum);
446 dbg_bld("Adding PEB to free: %i", pnum);
447 if (err == UBI_IO_FF_BITFLIPS)
448 add_aeb(ai, free, pnum, ec, 1);
449 else
450 add_aeb(ai, free, pnum, ec, 0);
451 continue;
452 } else if (err == 0 || err == UBI_IO_BITFLIPS) {
453 dbg_bld("Found non empty PEB:%i in pool", pnum);
455 if (err == UBI_IO_BITFLIPS)
456 scrub = 1;
458 found_orphan = 0;
459 list_for_each_entry(tmp_aeb, eba_orphans, u.list) {
460 if (tmp_aeb->pnum == pnum) {
461 found_orphan = 1;
462 break;
465 if (found_orphan) {
466 kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
467 list_del(&tmp_aeb->u.list);
470 new_aeb = kmem_cache_alloc(ai->aeb_slab_cache,
471 GFP_KERNEL);
472 if (!new_aeb) {
473 ret = -ENOMEM;
474 goto out;
477 new_aeb->ec = be64_to_cpu(ech->ec);
478 new_aeb->pnum = pnum;
479 new_aeb->lnum = be32_to_cpu(vh->lnum);
480 new_aeb->sqnum = be64_to_cpu(vh->sqnum);
481 new_aeb->copy_flag = vh->copy_flag;
482 new_aeb->scrub = scrub;
484 if (*max_sqnum < new_aeb->sqnum)
485 *max_sqnum = new_aeb->sqnum;
487 err = process_pool_aeb(ubi, ai, vh, new_aeb);
488 if (err) {
489 ret = err > 0 ? UBI_BAD_FASTMAP : err;
490 goto out;
492 } else {
493 /* We are paranoid and fall back to scanning mode */
494 ubi_err("fastmap pool PEBs contains damaged PEBs!");
495 ret = err > 0 ? UBI_BAD_FASTMAP : err;
496 goto out;
501 out:
502 ubi_free_vid_hdr(ubi, vh);
503 kfree(ech);
504 return ret;
508 * count_fastmap_pebs - Counts the PEBs found by fastmap.
509 * @ai: The UBI attach info object
511 static int count_fastmap_pebs(struct ubi_attach_info *ai)
513 struct ubi_ainf_peb *aeb;
514 struct ubi_ainf_volume *av;
515 struct rb_node *rb1, *rb2;
516 int n = 0;
518 list_for_each_entry(aeb, &ai->erase, u.list)
519 n++;
521 list_for_each_entry(aeb, &ai->free, u.list)
522 n++;
524 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
525 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
526 n++;
528 return n;
532 * ubi_attach_fastmap - creates ubi_attach_info from a fastmap.
533 * @ubi: UBI device object
534 * @ai: UBI attach info object
535 * @fm: the fastmap to be attached
537 * Returns 0 on success, UBI_BAD_FASTMAP if the found fastmap was unusable.
538 * < 0 indicates an internal error.
540 static int ubi_attach_fastmap(struct ubi_device *ubi,
541 struct ubi_attach_info *ai,
542 struct ubi_fastmap_layout *fm)
544 struct list_head used, eba_orphans, free;
545 struct ubi_ainf_volume *av;
546 struct ubi_ainf_peb *aeb, *tmp_aeb, *_tmp_aeb;
547 struct ubi_ec_hdr *ech;
548 struct ubi_fm_sb *fmsb;
549 struct ubi_fm_hdr *fmhdr;
550 struct ubi_fm_scan_pool *fmpl1, *fmpl2;
551 struct ubi_fm_ec *fmec;
552 struct ubi_fm_volhdr *fmvhdr;
553 struct ubi_fm_eba *fm_eba;
554 int ret, i, j, pool_size, wl_pool_size;
555 size_t fm_pos = 0, fm_size = ubi->fm_size;
556 unsigned long long max_sqnum = 0;
557 void *fm_raw = ubi->fm_buf;
559 INIT_LIST_HEAD(&used);
560 INIT_LIST_HEAD(&free);
561 INIT_LIST_HEAD(&eba_orphans);
562 INIT_LIST_HEAD(&ai->corr);
563 INIT_LIST_HEAD(&ai->free);
564 INIT_LIST_HEAD(&ai->erase);
565 INIT_LIST_HEAD(&ai->alien);
566 ai->volumes = RB_ROOT;
567 ai->min_ec = UBI_MAX_ERASECOUNTER;
569 ai->aeb_slab_cache = kmem_cache_create("ubi_ainf_peb_slab",
570 sizeof(struct ubi_ainf_peb),
571 0, 0, NULL);
572 if (!ai->aeb_slab_cache) {
573 ret = -ENOMEM;
574 goto fail;
577 fmsb = (struct ubi_fm_sb *)(fm_raw);
578 ai->max_sqnum = fmsb->sqnum;
579 fm_pos += sizeof(struct ubi_fm_sb);
580 if (fm_pos >= fm_size)
581 goto fail_bad;
583 fmhdr = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
584 fm_pos += sizeof(*fmhdr);
585 if (fm_pos >= fm_size)
586 goto fail_bad;
588 if (be32_to_cpu(fmhdr->magic) != UBI_FM_HDR_MAGIC) {
589 ubi_err("bad fastmap header magic: 0x%x, expected: 0x%x",
590 be32_to_cpu(fmhdr->magic), UBI_FM_HDR_MAGIC);
591 goto fail_bad;
594 fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
595 fm_pos += sizeof(*fmpl1);
596 if (fm_pos >= fm_size)
597 goto fail_bad;
598 if (be32_to_cpu(fmpl1->magic) != UBI_FM_POOL_MAGIC) {
599 ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
600 be32_to_cpu(fmpl1->magic), UBI_FM_POOL_MAGIC);
601 goto fail_bad;
604 fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
605 fm_pos += sizeof(*fmpl2);
606 if (fm_pos >= fm_size)
607 goto fail_bad;
608 if (be32_to_cpu(fmpl2->magic) != UBI_FM_POOL_MAGIC) {
609 ubi_err("bad fastmap pool magic: 0x%x, expected: 0x%x",
610 be32_to_cpu(fmpl2->magic), UBI_FM_POOL_MAGIC);
611 goto fail_bad;
614 pool_size = be16_to_cpu(fmpl1->size);
615 wl_pool_size = be16_to_cpu(fmpl2->size);
616 fm->max_pool_size = be16_to_cpu(fmpl1->max_size);
617 fm->max_wl_pool_size = be16_to_cpu(fmpl2->max_size);
619 if (pool_size > UBI_FM_MAX_POOL_SIZE || pool_size < 0) {
620 ubi_err("bad pool size: %i", pool_size);
621 goto fail_bad;
624 if (wl_pool_size > UBI_FM_MAX_POOL_SIZE || wl_pool_size < 0) {
625 ubi_err("bad WL pool size: %i", wl_pool_size);
626 goto fail_bad;
630 if (fm->max_pool_size > UBI_FM_MAX_POOL_SIZE ||
631 fm->max_pool_size < 0) {
632 ubi_err("bad maximal pool size: %i", fm->max_pool_size);
633 goto fail_bad;
636 if (fm->max_wl_pool_size > UBI_FM_MAX_POOL_SIZE ||
637 fm->max_wl_pool_size < 0) {
638 ubi_err("bad maximal WL pool size: %i", fm->max_wl_pool_size);
639 goto fail_bad;
642 /* read EC values from free list */
643 for (i = 0; i < be32_to_cpu(fmhdr->free_peb_count); i++) {
644 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
645 fm_pos += sizeof(*fmec);
646 if (fm_pos >= fm_size)
647 goto fail_bad;
649 add_aeb(ai, &ai->free, be32_to_cpu(fmec->pnum),
650 be32_to_cpu(fmec->ec), 0);
653 /* read EC values from used list */
654 for (i = 0; i < be32_to_cpu(fmhdr->used_peb_count); i++) {
655 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
656 fm_pos += sizeof(*fmec);
657 if (fm_pos >= fm_size)
658 goto fail_bad;
660 add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
661 be32_to_cpu(fmec->ec), 0);
664 /* read EC values from scrub list */
665 for (i = 0; i < be32_to_cpu(fmhdr->scrub_peb_count); i++) {
666 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
667 fm_pos += sizeof(*fmec);
668 if (fm_pos >= fm_size)
669 goto fail_bad;
671 add_aeb(ai, &used, be32_to_cpu(fmec->pnum),
672 be32_to_cpu(fmec->ec), 1);
675 /* read EC values from erase list */
676 for (i = 0; i < be32_to_cpu(fmhdr->erase_peb_count); i++) {
677 fmec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
678 fm_pos += sizeof(*fmec);
679 if (fm_pos >= fm_size)
680 goto fail_bad;
682 add_aeb(ai, &ai->erase, be32_to_cpu(fmec->pnum),
683 be32_to_cpu(fmec->ec), 1);
686 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
687 ai->bad_peb_count = be32_to_cpu(fmhdr->bad_peb_count);
689 /* Iterate over all volumes and read their EBA table */
690 for (i = 0; i < be32_to_cpu(fmhdr->vol_count); i++) {
691 fmvhdr = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
692 fm_pos += sizeof(*fmvhdr);
693 if (fm_pos >= fm_size)
694 goto fail_bad;
696 if (be32_to_cpu(fmvhdr->magic) != UBI_FM_VHDR_MAGIC) {
697 ubi_err("bad fastmap vol header magic: 0x%x, " \
698 "expected: 0x%x",
699 be32_to_cpu(fmvhdr->magic), UBI_FM_VHDR_MAGIC);
700 goto fail_bad;
703 av = add_vol(ai, be32_to_cpu(fmvhdr->vol_id),
704 be32_to_cpu(fmvhdr->used_ebs),
705 be32_to_cpu(fmvhdr->data_pad),
706 fmvhdr->vol_type,
707 be32_to_cpu(fmvhdr->last_eb_bytes));
709 if (!av)
710 goto fail_bad;
712 ai->vols_found++;
713 if (ai->highest_vol_id < be32_to_cpu(fmvhdr->vol_id))
714 ai->highest_vol_id = be32_to_cpu(fmvhdr->vol_id);
716 fm_eba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
717 fm_pos += sizeof(*fm_eba);
718 fm_pos += (sizeof(__be32) * be32_to_cpu(fm_eba->reserved_pebs));
719 if (fm_pos >= fm_size)
720 goto fail_bad;
722 if (be32_to_cpu(fm_eba->magic) != UBI_FM_EBA_MAGIC) {
723 ubi_err("bad fastmap EBA header magic: 0x%x, " \
724 "expected: 0x%x",
725 be32_to_cpu(fm_eba->magic), UBI_FM_EBA_MAGIC);
726 goto fail_bad;
729 for (j = 0; j < be32_to_cpu(fm_eba->reserved_pebs); j++) {
730 int pnum = be32_to_cpu(fm_eba->pnum[j]);
732 if ((int)be32_to_cpu(fm_eba->pnum[j]) < 0)
733 continue;
735 aeb = NULL;
736 list_for_each_entry(tmp_aeb, &used, u.list) {
737 if (tmp_aeb->pnum == pnum) {
738 aeb = tmp_aeb;
739 break;
743 /* This can happen if a PEB is already in an EBA known
744 * by this fastmap but the PEB itself is not in the used
745 * list.
746 * In this case the PEB can be within the fastmap pool
747 * or while writing the fastmap it was in the protection
748 * queue.
750 if (!aeb) {
751 aeb = kmem_cache_alloc(ai->aeb_slab_cache,
752 GFP_KERNEL);
753 if (!aeb) {
754 ret = -ENOMEM;
756 goto fail;
759 aeb->lnum = j;
760 aeb->pnum = be32_to_cpu(fm_eba->pnum[j]);
761 aeb->ec = -1;
762 aeb->scrub = aeb->copy_flag = aeb->sqnum = 0;
763 list_add_tail(&aeb->u.list, &eba_orphans);
764 continue;
767 aeb->lnum = j;
769 if (av->highest_lnum <= aeb->lnum)
770 av->highest_lnum = aeb->lnum;
772 assign_aeb_to_av(ai, aeb, av);
774 dbg_bld("inserting PEB:%i (LEB %i) to vol %i",
775 aeb->pnum, aeb->lnum, av->vol_id);
778 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
779 if (!ech) {
780 ret = -ENOMEM;
781 goto fail;
784 list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans,
785 u.list) {
786 int err;
788 if (ubi_io_is_bad(ubi, tmp_aeb->pnum)) {
789 ubi_err("bad PEB in fastmap EBA orphan list");
790 ret = UBI_BAD_FASTMAP;
791 kfree(ech);
792 goto fail;
795 err = ubi_io_read_ec_hdr(ubi, tmp_aeb->pnum, ech, 0);
796 if (err && err != UBI_IO_BITFLIPS) {
797 ubi_err("unable to read EC header! PEB:%i " \
798 "err:%i", tmp_aeb->pnum, err);
799 ret = err > 0 ? UBI_BAD_FASTMAP : err;
800 kfree(ech);
802 goto fail;
803 } else if (err == UBI_IO_BITFLIPS)
804 tmp_aeb->scrub = 1;
806 tmp_aeb->ec = be64_to_cpu(ech->ec);
807 assign_aeb_to_av(ai, tmp_aeb, av);
810 kfree(ech);
813 ret = scan_pool(ubi, ai, fmpl1->pebs, pool_size, &max_sqnum,
814 &eba_orphans, &free);
815 if (ret)
816 goto fail;
818 ret = scan_pool(ubi, ai, fmpl2->pebs, wl_pool_size, &max_sqnum,
819 &eba_orphans, &free);
820 if (ret)
821 goto fail;
823 if (max_sqnum > ai->max_sqnum)
824 ai->max_sqnum = max_sqnum;
826 list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list)
827 list_move_tail(&tmp_aeb->u.list, &ai->free);
829 ubi_assert(list_empty(&used));
830 ubi_assert(list_empty(&eba_orphans));
831 ubi_assert(list_empty(&free));
834 * If fastmap is leaking PEBs (must not happen), raise a
835 * fat warning and fall back to scanning mode.
836 * We do this here because in ubi_wl_init() it's too late
837 * and we cannot fall back to scanning.
839 if (WARN_ON(count_fastmap_pebs(ai) != ubi->peb_count -
840 ai->bad_peb_count - fm->used_blocks))
841 goto fail_bad;
843 return 0;
845 fail_bad:
846 ret = UBI_BAD_FASTMAP;
847 fail:
848 list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &used, u.list) {
849 kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
850 list_del(&tmp_aeb->u.list);
852 list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &eba_orphans, u.list) {
853 kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
854 list_del(&tmp_aeb->u.list);
856 list_for_each_entry_safe(tmp_aeb, _tmp_aeb, &free, u.list) {
857 kmem_cache_free(ai->aeb_slab_cache, tmp_aeb);
858 list_del(&tmp_aeb->u.list);
861 return ret;
865 * ubi_scan_fastmap - scan the fastmap.
866 * @ubi: UBI device object
867 * @ai: UBI attach info to be filled
868 * @fm_anchor: The fastmap starts at this PEB
870 * Returns 0 on success, UBI_NO_FASTMAP if no fastmap was found,
871 * UBI_BAD_FASTMAP if one was found but is not usable.
872 * < 0 indicates an internal error.
874 int ubi_scan_fastmap(struct ubi_device *ubi, struct ubi_attach_info *ai,
875 int fm_anchor)
877 struct ubi_fm_sb *fmsb, *fmsb2;
878 struct ubi_vid_hdr *vh;
879 struct ubi_ec_hdr *ech;
880 struct ubi_fastmap_layout *fm;
881 int i, used_blocks, pnum, ret = 0;
882 size_t fm_size;
883 __be32 crc, tmp_crc;
884 unsigned long long sqnum = 0;
886 mutex_lock(&ubi->fm_mutex);
887 memset(ubi->fm_buf, 0, ubi->fm_size);
889 fmsb = kmalloc(sizeof(*fmsb), GFP_KERNEL);
890 if (!fmsb) {
891 ret = -ENOMEM;
892 goto out;
895 fm = kzalloc(sizeof(*fm), GFP_KERNEL);
896 if (!fm) {
897 ret = -ENOMEM;
898 kfree(fmsb);
899 goto out;
902 ret = ubi_io_read(ubi, fmsb, fm_anchor, ubi->leb_start, sizeof(*fmsb));
903 if (ret && ret != UBI_IO_BITFLIPS)
904 goto free_fm_sb;
905 else if (ret == UBI_IO_BITFLIPS)
906 fm->to_be_tortured[0] = 1;
908 if (be32_to_cpu(fmsb->magic) != UBI_FM_SB_MAGIC) {
909 ubi_err("bad super block magic: 0x%x, expected: 0x%x",
910 be32_to_cpu(fmsb->magic), UBI_FM_SB_MAGIC);
911 ret = UBI_BAD_FASTMAP;
912 goto free_fm_sb;
915 if (fmsb->version != UBI_FM_FMT_VERSION) {
916 ubi_err("bad fastmap version: %i, expected: %i",
917 fmsb->version, UBI_FM_FMT_VERSION);
918 ret = UBI_BAD_FASTMAP;
919 goto free_fm_sb;
922 used_blocks = be32_to_cpu(fmsb->used_blocks);
923 if (used_blocks > UBI_FM_MAX_BLOCKS || used_blocks < 1) {
924 ubi_err("number of fastmap blocks is invalid: %i", used_blocks);
925 ret = UBI_BAD_FASTMAP;
926 goto free_fm_sb;
929 fm_size = ubi->leb_size * used_blocks;
930 if (fm_size != ubi->fm_size) {
931 ubi_err("bad fastmap size: %zi, expected: %zi", fm_size,
932 ubi->fm_size);
933 ret = UBI_BAD_FASTMAP;
934 goto free_fm_sb;
937 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
938 if (!ech) {
939 ret = -ENOMEM;
940 goto free_fm_sb;
943 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
944 if (!vh) {
945 ret = -ENOMEM;
946 goto free_hdr;
949 for (i = 0; i < used_blocks; i++) {
950 int image_seq;
952 pnum = be32_to_cpu(fmsb->block_loc[i]);
954 if (ubi_io_is_bad(ubi, pnum)) {
955 ret = UBI_BAD_FASTMAP;
956 goto free_hdr;
959 ret = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
960 if (ret && ret != UBI_IO_BITFLIPS) {
961 ubi_err("unable to read fastmap block# %i EC (PEB: %i)",
962 i, pnum);
963 if (ret > 0)
964 ret = UBI_BAD_FASTMAP;
965 goto free_hdr;
966 } else if (ret == UBI_IO_BITFLIPS)
967 fm->to_be_tortured[i] = 1;
969 image_seq = be32_to_cpu(ech->image_seq);
970 if (!ubi->image_seq)
971 ubi->image_seq = image_seq;
974 * Older UBI implementations have image_seq set to zero, so
975 * we shouldn't fail if image_seq == 0.
977 if (image_seq && (image_seq != ubi->image_seq)) {
978 ubi_err("wrong image seq:%d instead of %d",
979 be32_to_cpu(ech->image_seq), ubi->image_seq);
980 ret = UBI_BAD_FASTMAP;
981 goto free_hdr;
984 ret = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
985 if (ret && ret != UBI_IO_BITFLIPS) {
986 ubi_err("unable to read fastmap block# %i (PEB: %i)",
987 i, pnum);
988 goto free_hdr;
991 if (i == 0) {
992 if (be32_to_cpu(vh->vol_id) != UBI_FM_SB_VOLUME_ID) {
993 ubi_err("bad fastmap anchor vol_id: 0x%x," \
994 " expected: 0x%x",
995 be32_to_cpu(vh->vol_id),
996 UBI_FM_SB_VOLUME_ID);
997 ret = UBI_BAD_FASTMAP;
998 goto free_hdr;
1000 } else {
1001 if (be32_to_cpu(vh->vol_id) != UBI_FM_DATA_VOLUME_ID) {
1002 ubi_err("bad fastmap data vol_id: 0x%x," \
1003 " expected: 0x%x",
1004 be32_to_cpu(vh->vol_id),
1005 UBI_FM_DATA_VOLUME_ID);
1006 ret = UBI_BAD_FASTMAP;
1007 goto free_hdr;
1011 if (sqnum < be64_to_cpu(vh->sqnum))
1012 sqnum = be64_to_cpu(vh->sqnum);
1014 ret = ubi_io_read(ubi, ubi->fm_buf + (ubi->leb_size * i), pnum,
1015 ubi->leb_start, ubi->leb_size);
1016 if (ret && ret != UBI_IO_BITFLIPS) {
1017 ubi_err("unable to read fastmap block# %i (PEB: %i, " \
1018 "err: %i)", i, pnum, ret);
1019 goto free_hdr;
1023 kfree(fmsb);
1024 fmsb = NULL;
1026 fmsb2 = (struct ubi_fm_sb *)(ubi->fm_buf);
1027 tmp_crc = be32_to_cpu(fmsb2->data_crc);
1028 fmsb2->data_crc = 0;
1029 crc = crc32(UBI_CRC32_INIT, ubi->fm_buf, fm_size);
1030 if (crc != tmp_crc) {
1031 ubi_err("fastmap data CRC is invalid");
1032 ubi_err("CRC should be: 0x%x, calc: 0x%x", tmp_crc, crc);
1033 ret = UBI_BAD_FASTMAP;
1034 goto free_hdr;
1037 fmsb2->sqnum = sqnum;
1039 fm->used_blocks = used_blocks;
1041 ret = ubi_attach_fastmap(ubi, ai, fm);
1042 if (ret) {
1043 if (ret > 0)
1044 ret = UBI_BAD_FASTMAP;
1045 goto free_hdr;
1048 for (i = 0; i < used_blocks; i++) {
1049 struct ubi_wl_entry *e;
1051 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1052 if (!e) {
1053 while (i--)
1054 kfree(fm->e[i]);
1056 ret = -ENOMEM;
1057 goto free_hdr;
1060 e->pnum = be32_to_cpu(fmsb2->block_loc[i]);
1061 e->ec = be32_to_cpu(fmsb2->block_ec[i]);
1062 fm->e[i] = e;
1065 ubi->fm = fm;
1066 ubi->fm_pool.max_size = ubi->fm->max_pool_size;
1067 ubi->fm_wl_pool.max_size = ubi->fm->max_wl_pool_size;
1068 ubi_msg("attached by fastmap");
1069 ubi_msg("fastmap pool size: %d", ubi->fm_pool.max_size);
1070 ubi_msg("fastmap WL pool size: %d", ubi->fm_wl_pool.max_size);
1071 ubi->fm_disabled = 0;
1073 ubi_free_vid_hdr(ubi, vh);
1074 kfree(ech);
1075 out:
1076 mutex_unlock(&ubi->fm_mutex);
1077 if (ret == UBI_BAD_FASTMAP)
1078 ubi_err("Attach by fastmap failed, doing a full scan!");
1079 return ret;
1081 free_hdr:
1082 ubi_free_vid_hdr(ubi, vh);
1083 kfree(ech);
1084 free_fm_sb:
1085 kfree(fmsb);
1086 kfree(fm);
1087 goto out;
1091 * ubi_write_fastmap - writes a fastmap.
1092 * @ubi: UBI device object
1093 * @new_fm: the to be written fastmap
1095 * Returns 0 on success, < 0 indicates an internal error.
1097 static int ubi_write_fastmap(struct ubi_device *ubi,
1098 struct ubi_fastmap_layout *new_fm)
1100 size_t fm_pos = 0;
1101 void *fm_raw;
1102 struct ubi_fm_sb *fmsb;
1103 struct ubi_fm_hdr *fmh;
1104 struct ubi_fm_scan_pool *fmpl1, *fmpl2;
1105 struct ubi_fm_ec *fec;
1106 struct ubi_fm_volhdr *fvh;
1107 struct ubi_fm_eba *feba;
1108 struct rb_node *node;
1109 struct ubi_wl_entry *wl_e;
1110 struct ubi_volume *vol;
1111 struct ubi_vid_hdr *avhdr, *dvhdr;
1112 struct ubi_work *ubi_wrk;
1113 int ret, i, j, free_peb_count, used_peb_count, vol_count;
1114 int scrub_peb_count, erase_peb_count;
1116 fm_raw = ubi->fm_buf;
1117 memset(ubi->fm_buf, 0, ubi->fm_size);
1119 avhdr = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
1120 if (!avhdr) {
1121 ret = -ENOMEM;
1122 goto out;
1125 dvhdr = new_fm_vhdr(ubi, UBI_FM_DATA_VOLUME_ID);
1126 if (!dvhdr) {
1127 ret = -ENOMEM;
1128 goto out_kfree;
1131 spin_lock(&ubi->volumes_lock);
1132 spin_lock(&ubi->wl_lock);
1134 fmsb = (struct ubi_fm_sb *)fm_raw;
1135 fm_pos += sizeof(*fmsb);
1136 ubi_assert(fm_pos <= ubi->fm_size);
1138 fmh = (struct ubi_fm_hdr *)(fm_raw + fm_pos);
1139 fm_pos += sizeof(*fmh);
1140 ubi_assert(fm_pos <= ubi->fm_size);
1142 fmsb->magic = cpu_to_be32(UBI_FM_SB_MAGIC);
1143 fmsb->version = UBI_FM_FMT_VERSION;
1144 fmsb->used_blocks = cpu_to_be32(new_fm->used_blocks);
1145 /* the max sqnum will be filled in while *reading* the fastmap */
1146 fmsb->sqnum = 0;
1148 fmh->magic = cpu_to_be32(UBI_FM_HDR_MAGIC);
1149 free_peb_count = 0;
1150 used_peb_count = 0;
1151 scrub_peb_count = 0;
1152 erase_peb_count = 0;
1153 vol_count = 0;
1155 fmpl1 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
1156 fm_pos += sizeof(*fmpl1);
1157 fmpl1->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
1158 fmpl1->size = cpu_to_be16(ubi->fm_pool.size);
1159 fmpl1->max_size = cpu_to_be16(ubi->fm_pool.max_size);
1161 for (i = 0; i < ubi->fm_pool.size; i++)
1162 fmpl1->pebs[i] = cpu_to_be32(ubi->fm_pool.pebs[i]);
1164 fmpl2 = (struct ubi_fm_scan_pool *)(fm_raw + fm_pos);
1165 fm_pos += sizeof(*fmpl2);
1166 fmpl2->magic = cpu_to_be32(UBI_FM_POOL_MAGIC);
1167 fmpl2->size = cpu_to_be16(ubi->fm_wl_pool.size);
1168 fmpl2->max_size = cpu_to_be16(ubi->fm_wl_pool.max_size);
1170 for (i = 0; i < ubi->fm_wl_pool.size; i++)
1171 fmpl2->pebs[i] = cpu_to_be32(ubi->fm_wl_pool.pebs[i]);
1173 for (node = rb_first(&ubi->free); node; node = rb_next(node)) {
1174 wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1175 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1177 fec->pnum = cpu_to_be32(wl_e->pnum);
1178 fec->ec = cpu_to_be32(wl_e->ec);
1180 free_peb_count++;
1181 fm_pos += sizeof(*fec);
1182 ubi_assert(fm_pos <= ubi->fm_size);
1184 fmh->free_peb_count = cpu_to_be32(free_peb_count);
1186 for (node = rb_first(&ubi->used); node; node = rb_next(node)) {
1187 wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1188 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1190 fec->pnum = cpu_to_be32(wl_e->pnum);
1191 fec->ec = cpu_to_be32(wl_e->ec);
1193 used_peb_count++;
1194 fm_pos += sizeof(*fec);
1195 ubi_assert(fm_pos <= ubi->fm_size);
1197 fmh->used_peb_count = cpu_to_be32(used_peb_count);
1199 for (node = rb_first(&ubi->scrub); node; node = rb_next(node)) {
1200 wl_e = rb_entry(node, struct ubi_wl_entry, u.rb);
1201 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1203 fec->pnum = cpu_to_be32(wl_e->pnum);
1204 fec->ec = cpu_to_be32(wl_e->ec);
1206 scrub_peb_count++;
1207 fm_pos += sizeof(*fec);
1208 ubi_assert(fm_pos <= ubi->fm_size);
1210 fmh->scrub_peb_count = cpu_to_be32(scrub_peb_count);
1213 list_for_each_entry(ubi_wrk, &ubi->works, list) {
1214 if (ubi_is_erase_work(ubi_wrk)) {
1215 wl_e = ubi_wrk->e;
1216 ubi_assert(wl_e);
1218 fec = (struct ubi_fm_ec *)(fm_raw + fm_pos);
1220 fec->pnum = cpu_to_be32(wl_e->pnum);
1221 fec->ec = cpu_to_be32(wl_e->ec);
1223 erase_peb_count++;
1224 fm_pos += sizeof(*fec);
1225 ubi_assert(fm_pos <= ubi->fm_size);
1228 fmh->erase_peb_count = cpu_to_be32(erase_peb_count);
1230 for (i = 0; i < UBI_MAX_VOLUMES + UBI_INT_VOL_COUNT; i++) {
1231 vol = ubi->volumes[i];
1233 if (!vol)
1234 continue;
1236 vol_count++;
1238 fvh = (struct ubi_fm_volhdr *)(fm_raw + fm_pos);
1239 fm_pos += sizeof(*fvh);
1240 ubi_assert(fm_pos <= ubi->fm_size);
1242 fvh->magic = cpu_to_be32(UBI_FM_VHDR_MAGIC);
1243 fvh->vol_id = cpu_to_be32(vol->vol_id);
1244 fvh->vol_type = vol->vol_type;
1245 fvh->used_ebs = cpu_to_be32(vol->used_ebs);
1246 fvh->data_pad = cpu_to_be32(vol->data_pad);
1247 fvh->last_eb_bytes = cpu_to_be32(vol->last_eb_bytes);
1249 ubi_assert(vol->vol_type == UBI_DYNAMIC_VOLUME ||
1250 vol->vol_type == UBI_STATIC_VOLUME);
1252 feba = (struct ubi_fm_eba *)(fm_raw + fm_pos);
1253 fm_pos += sizeof(*feba) + (sizeof(__be32) * vol->reserved_pebs);
1254 ubi_assert(fm_pos <= ubi->fm_size);
1256 for (j = 0; j < vol->reserved_pebs; j++)
1257 feba->pnum[j] = cpu_to_be32(vol->eba_tbl[j]);
1259 feba->reserved_pebs = cpu_to_be32(j);
1260 feba->magic = cpu_to_be32(UBI_FM_EBA_MAGIC);
1262 fmh->vol_count = cpu_to_be32(vol_count);
1263 fmh->bad_peb_count = cpu_to_be32(ubi->bad_peb_count);
1265 avhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1266 avhdr->lnum = 0;
1268 spin_unlock(&ubi->wl_lock);
1269 spin_unlock(&ubi->volumes_lock);
1271 dbg_bld("writing fastmap SB to PEB %i", new_fm->e[0]->pnum);
1272 ret = ubi_io_write_vid_hdr(ubi, new_fm->e[0]->pnum, avhdr);
1273 if (ret) {
1274 ubi_err("unable to write vid_hdr to fastmap SB!");
1275 goto out_kfree;
1278 for (i = 0; i < new_fm->used_blocks; i++) {
1279 fmsb->block_loc[i] = cpu_to_be32(new_fm->e[i]->pnum);
1280 fmsb->block_ec[i] = cpu_to_be32(new_fm->e[i]->ec);
1283 fmsb->data_crc = 0;
1284 fmsb->data_crc = cpu_to_be32(crc32(UBI_CRC32_INIT, fm_raw,
1285 ubi->fm_size));
1287 for (i = 1; i < new_fm->used_blocks; i++) {
1288 dvhdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1289 dvhdr->lnum = cpu_to_be32(i);
1290 dbg_bld("writing fastmap data to PEB %i sqnum %llu",
1291 new_fm->e[i]->pnum, be64_to_cpu(dvhdr->sqnum));
1292 ret = ubi_io_write_vid_hdr(ubi, new_fm->e[i]->pnum, dvhdr);
1293 if (ret) {
1294 ubi_err("unable to write vid_hdr to PEB %i!",
1295 new_fm->e[i]->pnum);
1296 goto out_kfree;
1300 for (i = 0; i < new_fm->used_blocks; i++) {
1301 ret = ubi_io_write(ubi, fm_raw + (i * ubi->leb_size),
1302 new_fm->e[i]->pnum, ubi->leb_start, ubi->leb_size);
1303 if (ret) {
1304 ubi_err("unable to write fastmap to PEB %i!",
1305 new_fm->e[i]->pnum);
1306 goto out_kfree;
1310 ubi_assert(new_fm);
1311 ubi->fm = new_fm;
1313 dbg_bld("fastmap written!");
1315 out_kfree:
1316 ubi_free_vid_hdr(ubi, avhdr);
1317 ubi_free_vid_hdr(ubi, dvhdr);
1318 out:
1319 return ret;
1323 * erase_block - Manually erase a PEB.
1324 * @ubi: UBI device object
1325 * @pnum: PEB to be erased
1327 * Returns the new EC value on success, < 0 indicates an internal error.
1329 static int erase_block(struct ubi_device *ubi, int pnum)
1331 int ret;
1332 struct ubi_ec_hdr *ec_hdr;
1333 long long ec;
1335 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1336 if (!ec_hdr)
1337 return -ENOMEM;
1339 ret = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1340 if (ret < 0)
1341 goto out;
1342 else if (ret && ret != UBI_IO_BITFLIPS) {
1343 ret = -EINVAL;
1344 goto out;
1347 ret = ubi_io_sync_erase(ubi, pnum, 0);
1348 if (ret < 0)
1349 goto out;
1351 ec = be64_to_cpu(ec_hdr->ec);
1352 ec += ret;
1353 if (ec > UBI_MAX_ERASECOUNTER) {
1354 ret = -EINVAL;
1355 goto out;
1358 ec_hdr->ec = cpu_to_be64(ec);
1359 ret = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
1360 if (ret < 0)
1361 goto out;
1363 ret = ec;
1364 out:
1365 kfree(ec_hdr);
1366 return ret;
1370 * invalidate_fastmap - destroys a fastmap.
1371 * @ubi: UBI device object
1372 * @fm: the fastmap to be destroyed
1374 * Returns 0 on success, < 0 indicates an internal error.
1376 static int invalidate_fastmap(struct ubi_device *ubi,
1377 struct ubi_fastmap_layout *fm)
1379 int ret;
1380 struct ubi_vid_hdr *vh;
1382 ret = erase_block(ubi, fm->e[0]->pnum);
1383 if (ret < 0)
1384 return ret;
1386 vh = new_fm_vhdr(ubi, UBI_FM_SB_VOLUME_ID);
1387 if (!vh)
1388 return -ENOMEM;
1390 /* deleting the current fastmap SB is not enough, an old SB may exist,
1391 * so create a (corrupted) SB such that fastmap will find it and fall
1392 * back to scanning mode in any case */
1393 vh->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1394 ret = ubi_io_write_vid_hdr(ubi, fm->e[0]->pnum, vh);
1396 return ret;
1400 * ubi_update_fastmap - will be called by UBI if a volume changes or
1401 * a fastmap pool becomes full.
1402 * @ubi: UBI device object
1404 * Returns 0 on success, < 0 indicates an internal error.
1406 int ubi_update_fastmap(struct ubi_device *ubi)
1408 int ret, i;
1409 struct ubi_fastmap_layout *new_fm, *old_fm;
1410 struct ubi_wl_entry *tmp_e;
1412 mutex_lock(&ubi->fm_mutex);
1414 ubi_refill_pools(ubi);
1416 if (ubi->ro_mode || ubi->fm_disabled) {
1417 mutex_unlock(&ubi->fm_mutex);
1418 return 0;
1421 ret = ubi_ensure_anchor_pebs(ubi);
1422 if (ret) {
1423 mutex_unlock(&ubi->fm_mutex);
1424 return ret;
1427 new_fm = kzalloc(sizeof(*new_fm), GFP_KERNEL);
1428 if (!new_fm) {
1429 mutex_unlock(&ubi->fm_mutex);
1430 return -ENOMEM;
1433 new_fm->used_blocks = ubi->fm_size / ubi->leb_size;
1435 for (i = 0; i < new_fm->used_blocks; i++) {
1436 new_fm->e[i] = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1437 if (!new_fm->e[i]) {
1438 while (i--)
1439 kfree(new_fm->e[i]);
1441 kfree(new_fm);
1442 mutex_unlock(&ubi->fm_mutex);
1443 return -ENOMEM;
1447 old_fm = ubi->fm;
1448 ubi->fm = NULL;
1450 if (new_fm->used_blocks > UBI_FM_MAX_BLOCKS) {
1451 ubi_err("fastmap too large");
1452 ret = -ENOSPC;
1453 goto err;
1456 for (i = 1; i < new_fm->used_blocks; i++) {
1457 spin_lock(&ubi->wl_lock);
1458 tmp_e = ubi_wl_get_fm_peb(ubi, 0);
1459 spin_unlock(&ubi->wl_lock);
1461 if (!tmp_e && !old_fm) {
1462 int j;
1463 ubi_err("could not get any free erase block");
1465 for (j = 1; j < i; j++)
1466 ubi_wl_put_fm_peb(ubi, new_fm->e[j], j, 0);
1468 ret = -ENOSPC;
1469 goto err;
1470 } else if (!tmp_e && old_fm) {
1471 ret = erase_block(ubi, old_fm->e[i]->pnum);
1472 if (ret < 0) {
1473 int j;
1475 for (j = 1; j < i; j++)
1476 ubi_wl_put_fm_peb(ubi, new_fm->e[j],
1477 j, 0);
1479 ubi_err("could not erase old fastmap PEB");
1480 goto err;
1483 new_fm->e[i]->pnum = old_fm->e[i]->pnum;
1484 new_fm->e[i]->ec = old_fm->e[i]->ec;
1485 } else {
1486 new_fm->e[i]->pnum = tmp_e->pnum;
1487 new_fm->e[i]->ec = tmp_e->ec;
1489 if (old_fm)
1490 ubi_wl_put_fm_peb(ubi, old_fm->e[i], i,
1491 old_fm->to_be_tortured[i]);
1495 spin_lock(&ubi->wl_lock);
1496 tmp_e = ubi_wl_get_fm_peb(ubi, 1);
1497 spin_unlock(&ubi->wl_lock);
1499 if (old_fm) {
1500 /* no fresh anchor PEB was found, reuse the old one */
1501 if (!tmp_e) {
1502 ret = erase_block(ubi, old_fm->e[0]->pnum);
1503 if (ret < 0) {
1504 int i;
1505 ubi_err("could not erase old anchor PEB");
1507 for (i = 1; i < new_fm->used_blocks; i++)
1508 ubi_wl_put_fm_peb(ubi, new_fm->e[i],
1509 i, 0);
1510 goto err;
1513 new_fm->e[0]->pnum = old_fm->e[0]->pnum;
1514 new_fm->e[0]->ec = ret;
1515 } else {
1516 /* we've got a new anchor PEB, return the old one */
1517 ubi_wl_put_fm_peb(ubi, old_fm->e[0], 0,
1518 old_fm->to_be_tortured[0]);
1520 new_fm->e[0]->pnum = tmp_e->pnum;
1521 new_fm->e[0]->ec = tmp_e->ec;
1523 } else {
1524 if (!tmp_e) {
1525 int i;
1526 ubi_err("could not find any anchor PEB");
1528 for (i = 1; i < new_fm->used_blocks; i++)
1529 ubi_wl_put_fm_peb(ubi, new_fm->e[i], i, 0);
1531 ret = -ENOSPC;
1532 goto err;
1535 new_fm->e[0]->pnum = tmp_e->pnum;
1536 new_fm->e[0]->ec = tmp_e->ec;
1539 down_write(&ubi->work_sem);
1540 down_write(&ubi->fm_sem);
1541 ret = ubi_write_fastmap(ubi, new_fm);
1542 up_write(&ubi->fm_sem);
1543 up_write(&ubi->work_sem);
1545 if (ret)
1546 goto err;
1548 out_unlock:
1549 mutex_unlock(&ubi->fm_mutex);
1550 kfree(old_fm);
1551 return ret;
1553 err:
1554 kfree(new_fm);
1556 ubi_warn("Unable to write new fastmap, err=%i", ret);
1558 ret = 0;
1559 if (old_fm) {
1560 ret = invalidate_fastmap(ubi, old_fm);
1561 if (ret < 0)
1562 ubi_err("Unable to invalidiate current fastmap!");
1563 else if (ret)
1564 ret = 0;
1566 goto out_unlock;