Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / drivers / spi / spi.c
blob23756b0f90363c2f776718925cf7fba84d13c4a3
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device *dev)
47 struct spi_device *spi = to_spi_device(dev);
49 /* spi masters may cleanup for released devices */
50 if (spi->master->cleanup)
51 spi->master->cleanup(spi);
53 spi_master_put(spi->master);
54 kfree(spi);
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
61 int len;
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 if (len != -ENODEV)
65 return len;
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static struct attribute *spi_dev_attrs[] = {
72 &dev_attr_modalias.attr,
73 NULL,
75 ATTRIBUTE_GROUPS(spi_dev);
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78 * and the sysfs version makes coldplug work too.
81 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
82 const struct spi_device *sdev)
84 while (id->name[0]) {
85 if (!strcmp(sdev->modalias, id->name))
86 return id;
87 id++;
89 return NULL;
92 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
94 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
96 return spi_match_id(sdrv->id_table, sdev);
98 EXPORT_SYMBOL_GPL(spi_get_device_id);
100 static int spi_match_device(struct device *dev, struct device_driver *drv)
102 const struct spi_device *spi = to_spi_device(dev);
103 const struct spi_driver *sdrv = to_spi_driver(drv);
105 /* Attempt an OF style match */
106 if (of_driver_match_device(dev, drv))
107 return 1;
109 /* Then try ACPI */
110 if (acpi_driver_match_device(dev, drv))
111 return 1;
113 if (sdrv->id_table)
114 return !!spi_match_id(sdrv->id_table, spi);
116 return strcmp(spi->modalias, drv->name) == 0;
119 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
121 const struct spi_device *spi = to_spi_device(dev);
122 int rc;
124 rc = acpi_device_uevent_modalias(dev, env);
125 if (rc != -ENODEV)
126 return rc;
128 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
129 return 0;
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
138 /* suspend will stop irqs and dma; no more i/o */
139 if (drv) {
140 if (drv->suspend)
141 value = drv->suspend(to_spi_device(dev), message);
142 else
143 dev_dbg(dev, "... can't suspend\n");
145 return value;
148 static int spi_legacy_resume(struct device *dev)
150 int value = 0;
151 struct spi_driver *drv = to_spi_driver(dev->driver);
153 /* resume may restart the i/o queue */
154 if (drv) {
155 if (drv->resume)
156 value = drv->resume(to_spi_device(dev));
157 else
158 dev_dbg(dev, "... can't resume\n");
160 return value;
163 static int spi_pm_suspend(struct device *dev)
165 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
167 if (pm)
168 return pm_generic_suspend(dev);
169 else
170 return spi_legacy_suspend(dev, PMSG_SUSPEND);
173 static int spi_pm_resume(struct device *dev)
175 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
177 if (pm)
178 return pm_generic_resume(dev);
179 else
180 return spi_legacy_resume(dev);
183 static int spi_pm_freeze(struct device *dev)
185 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
187 if (pm)
188 return pm_generic_freeze(dev);
189 else
190 return spi_legacy_suspend(dev, PMSG_FREEZE);
193 static int spi_pm_thaw(struct device *dev)
195 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
197 if (pm)
198 return pm_generic_thaw(dev);
199 else
200 return spi_legacy_resume(dev);
203 static int spi_pm_poweroff(struct device *dev)
205 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
207 if (pm)
208 return pm_generic_poweroff(dev);
209 else
210 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
213 static int spi_pm_restore(struct device *dev)
215 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
217 if (pm)
218 return pm_generic_restore(dev);
219 else
220 return spi_legacy_resume(dev);
222 #else
223 #define spi_pm_suspend NULL
224 #define spi_pm_resume NULL
225 #define spi_pm_freeze NULL
226 #define spi_pm_thaw NULL
227 #define spi_pm_poweroff NULL
228 #define spi_pm_restore NULL
229 #endif
231 static const struct dev_pm_ops spi_pm = {
232 .suspend = spi_pm_suspend,
233 .resume = spi_pm_resume,
234 .freeze = spi_pm_freeze,
235 .thaw = spi_pm_thaw,
236 .poweroff = spi_pm_poweroff,
237 .restore = spi_pm_restore,
238 SET_RUNTIME_PM_OPS(
239 pm_generic_runtime_suspend,
240 pm_generic_runtime_resume,
241 NULL
245 struct bus_type spi_bus_type = {
246 .name = "spi",
247 .dev_groups = spi_dev_groups,
248 .match = spi_match_device,
249 .uevent = spi_uevent,
250 .pm = &spi_pm,
252 EXPORT_SYMBOL_GPL(spi_bus_type);
255 static int spi_drv_probe(struct device *dev)
257 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
258 struct spi_device *spi = to_spi_device(dev);
259 int ret;
261 acpi_dev_pm_attach(&spi->dev, true);
262 ret = sdrv->probe(spi);
263 if (ret)
264 acpi_dev_pm_detach(&spi->dev, true);
266 return ret;
269 static int spi_drv_remove(struct device *dev)
271 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
272 struct spi_device *spi = to_spi_device(dev);
273 int ret;
275 ret = sdrv->remove(spi);
276 acpi_dev_pm_detach(&spi->dev, true);
278 return ret;
281 static void spi_drv_shutdown(struct device *dev)
283 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
285 sdrv->shutdown(to_spi_device(dev));
289 * spi_register_driver - register a SPI driver
290 * @sdrv: the driver to register
291 * Context: can sleep
293 int spi_register_driver(struct spi_driver *sdrv)
295 sdrv->driver.bus = &spi_bus_type;
296 if (sdrv->probe)
297 sdrv->driver.probe = spi_drv_probe;
298 if (sdrv->remove)
299 sdrv->driver.remove = spi_drv_remove;
300 if (sdrv->shutdown)
301 sdrv->driver.shutdown = spi_drv_shutdown;
302 return driver_register(&sdrv->driver);
304 EXPORT_SYMBOL_GPL(spi_register_driver);
306 /*-------------------------------------------------------------------------*/
308 /* SPI devices should normally not be created by SPI device drivers; that
309 * would make them board-specific. Similarly with SPI master drivers.
310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
311 * with other readonly (flashable) information about mainboard devices.
314 struct boardinfo {
315 struct list_head list;
316 struct spi_board_info board_info;
319 static LIST_HEAD(board_list);
320 static LIST_HEAD(spi_master_list);
323 * Used to protect add/del opertion for board_info list and
324 * spi_master list, and their matching process
326 static DEFINE_MUTEX(board_lock);
329 * spi_alloc_device - Allocate a new SPI device
330 * @master: Controller to which device is connected
331 * Context: can sleep
333 * Allows a driver to allocate and initialize a spi_device without
334 * registering it immediately. This allows a driver to directly
335 * fill the spi_device with device parameters before calling
336 * spi_add_device() on it.
338 * Caller is responsible to call spi_add_device() on the returned
339 * spi_device structure to add it to the SPI master. If the caller
340 * needs to discard the spi_device without adding it, then it should
341 * call spi_dev_put() on it.
343 * Returns a pointer to the new device, or NULL.
345 struct spi_device *spi_alloc_device(struct spi_master *master)
347 struct spi_device *spi;
348 struct device *dev = master->dev.parent;
350 if (!spi_master_get(master))
351 return NULL;
353 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
354 if (!spi) {
355 dev_err(dev, "cannot alloc spi_device\n");
356 spi_master_put(master);
357 return NULL;
360 spi->master = master;
361 spi->dev.parent = &master->dev;
362 spi->dev.bus = &spi_bus_type;
363 spi->dev.release = spidev_release;
364 spi->cs_gpio = -ENOENT;
365 device_initialize(&spi->dev);
366 return spi;
368 EXPORT_SYMBOL_GPL(spi_alloc_device);
370 static void spi_dev_set_name(struct spi_device *spi)
372 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
374 if (adev) {
375 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
376 return;
379 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
380 spi->chip_select);
383 static int spi_dev_check(struct device *dev, void *data)
385 struct spi_device *spi = to_spi_device(dev);
386 struct spi_device *new_spi = data;
388 if (spi->master == new_spi->master &&
389 spi->chip_select == new_spi->chip_select)
390 return -EBUSY;
391 return 0;
395 * spi_add_device - Add spi_device allocated with spi_alloc_device
396 * @spi: spi_device to register
398 * Companion function to spi_alloc_device. Devices allocated with
399 * spi_alloc_device can be added onto the spi bus with this function.
401 * Returns 0 on success; negative errno on failure
403 int spi_add_device(struct spi_device *spi)
405 static DEFINE_MUTEX(spi_add_lock);
406 struct spi_master *master = spi->master;
407 struct device *dev = master->dev.parent;
408 int status;
410 /* Chipselects are numbered 0..max; validate. */
411 if (spi->chip_select >= master->num_chipselect) {
412 dev_err(dev, "cs%d >= max %d\n",
413 spi->chip_select,
414 master->num_chipselect);
415 return -EINVAL;
418 /* Set the bus ID string */
419 spi_dev_set_name(spi);
421 /* We need to make sure there's no other device with this
422 * chipselect **BEFORE** we call setup(), else we'll trash
423 * its configuration. Lock against concurrent add() calls.
425 mutex_lock(&spi_add_lock);
427 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
428 if (status) {
429 dev_err(dev, "chipselect %d already in use\n",
430 spi->chip_select);
431 goto done;
434 if (master->cs_gpios)
435 spi->cs_gpio = master->cs_gpios[spi->chip_select];
437 /* Drivers may modify this initial i/o setup, but will
438 * normally rely on the device being setup. Devices
439 * using SPI_CS_HIGH can't coexist well otherwise...
441 status = spi_setup(spi);
442 if (status < 0) {
443 dev_err(dev, "can't setup %s, status %d\n",
444 dev_name(&spi->dev), status);
445 goto done;
448 /* Device may be bound to an active driver when this returns */
449 status = device_add(&spi->dev);
450 if (status < 0)
451 dev_err(dev, "can't add %s, status %d\n",
452 dev_name(&spi->dev), status);
453 else
454 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
456 done:
457 mutex_unlock(&spi_add_lock);
458 return status;
460 EXPORT_SYMBOL_GPL(spi_add_device);
463 * spi_new_device - instantiate one new SPI device
464 * @master: Controller to which device is connected
465 * @chip: Describes the SPI device
466 * Context: can sleep
468 * On typical mainboards, this is purely internal; and it's not needed
469 * after board init creates the hard-wired devices. Some development
470 * platforms may not be able to use spi_register_board_info though, and
471 * this is exported so that for example a USB or parport based adapter
472 * driver could add devices (which it would learn about out-of-band).
474 * Returns the new device, or NULL.
476 struct spi_device *spi_new_device(struct spi_master *master,
477 struct spi_board_info *chip)
479 struct spi_device *proxy;
480 int status;
482 /* NOTE: caller did any chip->bus_num checks necessary.
484 * Also, unless we change the return value convention to use
485 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 * suggests syslogged diagnostics are best here (ugh).
489 proxy = spi_alloc_device(master);
490 if (!proxy)
491 return NULL;
493 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
495 proxy->chip_select = chip->chip_select;
496 proxy->max_speed_hz = chip->max_speed_hz;
497 proxy->mode = chip->mode;
498 proxy->irq = chip->irq;
499 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
500 proxy->dev.platform_data = (void *) chip->platform_data;
501 proxy->controller_data = chip->controller_data;
502 proxy->controller_state = NULL;
504 status = spi_add_device(proxy);
505 if (status < 0) {
506 spi_dev_put(proxy);
507 return NULL;
510 return proxy;
512 EXPORT_SYMBOL_GPL(spi_new_device);
514 static void spi_match_master_to_boardinfo(struct spi_master *master,
515 struct spi_board_info *bi)
517 struct spi_device *dev;
519 if (master->bus_num != bi->bus_num)
520 return;
522 dev = spi_new_device(master, bi);
523 if (!dev)
524 dev_err(master->dev.parent, "can't create new device for %s\n",
525 bi->modalias);
529 * spi_register_board_info - register SPI devices for a given board
530 * @info: array of chip descriptors
531 * @n: how many descriptors are provided
532 * Context: can sleep
534 * Board-specific early init code calls this (probably during arch_initcall)
535 * with segments of the SPI device table. Any device nodes are created later,
536 * after the relevant parent SPI controller (bus_num) is defined. We keep
537 * this table of devices forever, so that reloading a controller driver will
538 * not make Linux forget about these hard-wired devices.
540 * Other code can also call this, e.g. a particular add-on board might provide
541 * SPI devices through its expansion connector, so code initializing that board
542 * would naturally declare its SPI devices.
544 * The board info passed can safely be __initdata ... but be careful of
545 * any embedded pointers (platform_data, etc), they're copied as-is.
547 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
549 struct boardinfo *bi;
550 int i;
552 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
553 if (!bi)
554 return -ENOMEM;
556 for (i = 0; i < n; i++, bi++, info++) {
557 struct spi_master *master;
559 memcpy(&bi->board_info, info, sizeof(*info));
560 mutex_lock(&board_lock);
561 list_add_tail(&bi->list, &board_list);
562 list_for_each_entry(master, &spi_master_list, list)
563 spi_match_master_to_boardinfo(master, &bi->board_info);
564 mutex_unlock(&board_lock);
567 return 0;
570 /*-------------------------------------------------------------------------*/
572 static void spi_set_cs(struct spi_device *spi, bool enable)
574 if (spi->mode & SPI_CS_HIGH)
575 enable = !enable;
577 if (spi->cs_gpio >= 0)
578 gpio_set_value(spi->cs_gpio, !enable);
579 else if (spi->master->set_cs)
580 spi->master->set_cs(spi, !enable);
584 * spi_transfer_one_message - Default implementation of transfer_one_message()
586 * This is a standard implementation of transfer_one_message() for
587 * drivers which impelment a transfer_one() operation. It provides
588 * standard handling of delays and chip select management.
590 static int spi_transfer_one_message(struct spi_master *master,
591 struct spi_message *msg)
593 struct spi_transfer *xfer;
594 bool cur_cs = true;
595 bool keep_cs = false;
596 int ret = 0;
598 spi_set_cs(msg->spi, true);
600 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
601 trace_spi_transfer_start(msg, xfer);
603 reinit_completion(&master->xfer_completion);
605 ret = master->transfer_one(master, msg->spi, xfer);
606 if (ret < 0) {
607 dev_err(&msg->spi->dev,
608 "SPI transfer failed: %d\n", ret);
609 goto out;
612 if (ret > 0) {
613 ret = 0;
614 wait_for_completion(&master->xfer_completion);
617 trace_spi_transfer_stop(msg, xfer);
619 if (msg->status != -EINPROGRESS)
620 goto out;
622 if (xfer->delay_usecs)
623 udelay(xfer->delay_usecs);
625 if (xfer->cs_change) {
626 if (list_is_last(&xfer->transfer_list,
627 &msg->transfers)) {
628 keep_cs = true;
629 } else {
630 cur_cs = !cur_cs;
631 spi_set_cs(msg->spi, cur_cs);
635 msg->actual_length += xfer->len;
638 out:
639 if (ret != 0 || !keep_cs)
640 spi_set_cs(msg->spi, false);
642 if (msg->status == -EINPROGRESS)
643 msg->status = ret;
645 spi_finalize_current_message(master);
647 return ret;
651 * spi_finalize_current_transfer - report completion of a transfer
653 * Called by SPI drivers using the core transfer_one_message()
654 * implementation to notify it that the current interrupt driven
655 * transfer has finished and the next one may be scheduled.
657 void spi_finalize_current_transfer(struct spi_master *master)
659 complete(&master->xfer_completion);
661 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
664 * spi_pump_messages - kthread work function which processes spi message queue
665 * @work: pointer to kthread work struct contained in the master struct
667 * This function checks if there is any spi message in the queue that
668 * needs processing and if so call out to the driver to initialize hardware
669 * and transfer each message.
672 static void spi_pump_messages(struct kthread_work *work)
674 struct spi_master *master =
675 container_of(work, struct spi_master, pump_messages);
676 unsigned long flags;
677 bool was_busy = false;
678 int ret;
680 /* Lock queue and check for queue work */
681 spin_lock_irqsave(&master->queue_lock, flags);
682 if (list_empty(&master->queue) || !master->running) {
683 if (!master->busy) {
684 spin_unlock_irqrestore(&master->queue_lock, flags);
685 return;
687 master->busy = false;
688 spin_unlock_irqrestore(&master->queue_lock, flags);
689 if (master->unprepare_transfer_hardware &&
690 master->unprepare_transfer_hardware(master))
691 dev_err(&master->dev,
692 "failed to unprepare transfer hardware\n");
693 if (master->auto_runtime_pm) {
694 pm_runtime_mark_last_busy(master->dev.parent);
695 pm_runtime_put_autosuspend(master->dev.parent);
697 trace_spi_master_idle(master);
698 return;
701 /* Make sure we are not already running a message */
702 if (master->cur_msg) {
703 spin_unlock_irqrestore(&master->queue_lock, flags);
704 return;
706 /* Extract head of queue */
707 master->cur_msg =
708 list_first_entry(&master->queue, struct spi_message, queue);
710 list_del_init(&master->cur_msg->queue);
711 if (master->busy)
712 was_busy = true;
713 else
714 master->busy = true;
715 spin_unlock_irqrestore(&master->queue_lock, flags);
717 if (!was_busy && master->auto_runtime_pm) {
718 ret = pm_runtime_get_sync(master->dev.parent);
719 if (ret < 0) {
720 dev_err(&master->dev, "Failed to power device: %d\n",
721 ret);
722 return;
726 if (!was_busy)
727 trace_spi_master_busy(master);
729 if (!was_busy && master->prepare_transfer_hardware) {
730 ret = master->prepare_transfer_hardware(master);
731 if (ret) {
732 dev_err(&master->dev,
733 "failed to prepare transfer hardware\n");
735 if (master->auto_runtime_pm)
736 pm_runtime_put(master->dev.parent);
737 return;
741 trace_spi_message_start(master->cur_msg);
743 if (master->prepare_message) {
744 ret = master->prepare_message(master, master->cur_msg);
745 if (ret) {
746 dev_err(&master->dev,
747 "failed to prepare message: %d\n", ret);
748 master->cur_msg->status = ret;
749 spi_finalize_current_message(master);
750 return;
752 master->cur_msg_prepared = true;
755 ret = master->transfer_one_message(master, master->cur_msg);
756 if (ret) {
757 dev_err(&master->dev,
758 "failed to transfer one message from queue: %d\n", ret);
759 master->cur_msg->status = ret;
760 spi_finalize_current_message(master);
761 return;
765 static int spi_init_queue(struct spi_master *master)
767 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
769 INIT_LIST_HEAD(&master->queue);
770 spin_lock_init(&master->queue_lock);
772 master->running = false;
773 master->busy = false;
775 init_kthread_worker(&master->kworker);
776 master->kworker_task = kthread_run(kthread_worker_fn,
777 &master->kworker, "%s",
778 dev_name(&master->dev));
779 if (IS_ERR(master->kworker_task)) {
780 dev_err(&master->dev, "failed to create message pump task\n");
781 return -ENOMEM;
783 init_kthread_work(&master->pump_messages, spi_pump_messages);
786 * Master config will indicate if this controller should run the
787 * message pump with high (realtime) priority to reduce the transfer
788 * latency on the bus by minimising the delay between a transfer
789 * request and the scheduling of the message pump thread. Without this
790 * setting the message pump thread will remain at default priority.
792 if (master->rt) {
793 dev_info(&master->dev,
794 "will run message pump with realtime priority\n");
795 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
798 return 0;
802 * spi_get_next_queued_message() - called by driver to check for queued
803 * messages
804 * @master: the master to check for queued messages
806 * If there are more messages in the queue, the next message is returned from
807 * this call.
809 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
811 struct spi_message *next;
812 unsigned long flags;
814 /* get a pointer to the next message, if any */
815 spin_lock_irqsave(&master->queue_lock, flags);
816 next = list_first_entry_or_null(&master->queue, struct spi_message,
817 queue);
818 spin_unlock_irqrestore(&master->queue_lock, flags);
820 return next;
822 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
825 * spi_finalize_current_message() - the current message is complete
826 * @master: the master to return the message to
828 * Called by the driver to notify the core that the message in the front of the
829 * queue is complete and can be removed from the queue.
831 void spi_finalize_current_message(struct spi_master *master)
833 struct spi_message *mesg;
834 unsigned long flags;
835 int ret;
837 spin_lock_irqsave(&master->queue_lock, flags);
838 mesg = master->cur_msg;
839 master->cur_msg = NULL;
841 queue_kthread_work(&master->kworker, &master->pump_messages);
842 spin_unlock_irqrestore(&master->queue_lock, flags);
844 if (master->cur_msg_prepared && master->unprepare_message) {
845 ret = master->unprepare_message(master, mesg);
846 if (ret) {
847 dev_err(&master->dev,
848 "failed to unprepare message: %d\n", ret);
851 master->cur_msg_prepared = false;
853 mesg->state = NULL;
854 if (mesg->complete)
855 mesg->complete(mesg->context);
857 trace_spi_message_done(mesg);
859 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
861 static int spi_start_queue(struct spi_master *master)
863 unsigned long flags;
865 spin_lock_irqsave(&master->queue_lock, flags);
867 if (master->running || master->busy) {
868 spin_unlock_irqrestore(&master->queue_lock, flags);
869 return -EBUSY;
872 master->running = true;
873 master->cur_msg = NULL;
874 spin_unlock_irqrestore(&master->queue_lock, flags);
876 queue_kthread_work(&master->kworker, &master->pump_messages);
878 return 0;
881 static int spi_stop_queue(struct spi_master *master)
883 unsigned long flags;
884 unsigned limit = 500;
885 int ret = 0;
887 spin_lock_irqsave(&master->queue_lock, flags);
890 * This is a bit lame, but is optimized for the common execution path.
891 * A wait_queue on the master->busy could be used, but then the common
892 * execution path (pump_messages) would be required to call wake_up or
893 * friends on every SPI message. Do this instead.
895 while ((!list_empty(&master->queue) || master->busy) && limit--) {
896 spin_unlock_irqrestore(&master->queue_lock, flags);
897 msleep(10);
898 spin_lock_irqsave(&master->queue_lock, flags);
901 if (!list_empty(&master->queue) || master->busy)
902 ret = -EBUSY;
903 else
904 master->running = false;
906 spin_unlock_irqrestore(&master->queue_lock, flags);
908 if (ret) {
909 dev_warn(&master->dev,
910 "could not stop message queue\n");
911 return ret;
913 return ret;
916 static int spi_destroy_queue(struct spi_master *master)
918 int ret;
920 ret = spi_stop_queue(master);
923 * flush_kthread_worker will block until all work is done.
924 * If the reason that stop_queue timed out is that the work will never
925 * finish, then it does no good to call flush/stop thread, so
926 * return anyway.
928 if (ret) {
929 dev_err(&master->dev, "problem destroying queue\n");
930 return ret;
933 flush_kthread_worker(&master->kworker);
934 kthread_stop(master->kworker_task);
936 return 0;
940 * spi_queued_transfer - transfer function for queued transfers
941 * @spi: spi device which is requesting transfer
942 * @msg: spi message which is to handled is queued to driver queue
944 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
946 struct spi_master *master = spi->master;
947 unsigned long flags;
949 spin_lock_irqsave(&master->queue_lock, flags);
951 if (!master->running) {
952 spin_unlock_irqrestore(&master->queue_lock, flags);
953 return -ESHUTDOWN;
955 msg->actual_length = 0;
956 msg->status = -EINPROGRESS;
958 list_add_tail(&msg->queue, &master->queue);
959 if (!master->busy)
960 queue_kthread_work(&master->kworker, &master->pump_messages);
962 spin_unlock_irqrestore(&master->queue_lock, flags);
963 return 0;
966 static int spi_master_initialize_queue(struct spi_master *master)
968 int ret;
970 master->queued = true;
971 master->transfer = spi_queued_transfer;
972 if (!master->transfer_one_message)
973 master->transfer_one_message = spi_transfer_one_message;
975 /* Initialize and start queue */
976 ret = spi_init_queue(master);
977 if (ret) {
978 dev_err(&master->dev, "problem initializing queue\n");
979 goto err_init_queue;
981 ret = spi_start_queue(master);
982 if (ret) {
983 dev_err(&master->dev, "problem starting queue\n");
984 goto err_start_queue;
987 return 0;
989 err_start_queue:
990 err_init_queue:
991 spi_destroy_queue(master);
992 return ret;
995 /*-------------------------------------------------------------------------*/
997 #if defined(CONFIG_OF)
999 * of_register_spi_devices() - Register child devices onto the SPI bus
1000 * @master: Pointer to spi_master device
1002 * Registers an spi_device for each child node of master node which has a 'reg'
1003 * property.
1005 static void of_register_spi_devices(struct spi_master *master)
1007 struct spi_device *spi;
1008 struct device_node *nc;
1009 int rc;
1010 u32 value;
1012 if (!master->dev.of_node)
1013 return;
1015 for_each_available_child_of_node(master->dev.of_node, nc) {
1016 /* Alloc an spi_device */
1017 spi = spi_alloc_device(master);
1018 if (!spi) {
1019 dev_err(&master->dev, "spi_device alloc error for %s\n",
1020 nc->full_name);
1021 spi_dev_put(spi);
1022 continue;
1025 /* Select device driver */
1026 if (of_modalias_node(nc, spi->modalias,
1027 sizeof(spi->modalias)) < 0) {
1028 dev_err(&master->dev, "cannot find modalias for %s\n",
1029 nc->full_name);
1030 spi_dev_put(spi);
1031 continue;
1034 /* Device address */
1035 rc = of_property_read_u32(nc, "reg", &value);
1036 if (rc) {
1037 dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1038 nc->full_name, rc);
1039 spi_dev_put(spi);
1040 continue;
1042 spi->chip_select = value;
1044 /* Mode (clock phase/polarity/etc.) */
1045 if (of_find_property(nc, "spi-cpha", NULL))
1046 spi->mode |= SPI_CPHA;
1047 if (of_find_property(nc, "spi-cpol", NULL))
1048 spi->mode |= SPI_CPOL;
1049 if (of_find_property(nc, "spi-cs-high", NULL))
1050 spi->mode |= SPI_CS_HIGH;
1051 if (of_find_property(nc, "spi-3wire", NULL))
1052 spi->mode |= SPI_3WIRE;
1054 /* Device DUAL/QUAD mode */
1055 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1056 switch (value) {
1057 case 1:
1058 break;
1059 case 2:
1060 spi->mode |= SPI_TX_DUAL;
1061 break;
1062 case 4:
1063 spi->mode |= SPI_TX_QUAD;
1064 break;
1065 default:
1066 dev_err(&master->dev,
1067 "spi-tx-bus-width %d not supported\n",
1068 value);
1069 spi_dev_put(spi);
1070 continue;
1074 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1075 switch (value) {
1076 case 1:
1077 break;
1078 case 2:
1079 spi->mode |= SPI_RX_DUAL;
1080 break;
1081 case 4:
1082 spi->mode |= SPI_RX_QUAD;
1083 break;
1084 default:
1085 dev_err(&master->dev,
1086 "spi-rx-bus-width %d not supported\n",
1087 value);
1088 spi_dev_put(spi);
1089 continue;
1093 /* Device speed */
1094 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1095 if (rc) {
1096 dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1097 nc->full_name, rc);
1098 spi_dev_put(spi);
1099 continue;
1101 spi->max_speed_hz = value;
1103 /* IRQ */
1104 spi->irq = irq_of_parse_and_map(nc, 0);
1106 /* Store a pointer to the node in the device structure */
1107 of_node_get(nc);
1108 spi->dev.of_node = nc;
1110 /* Register the new device */
1111 request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1112 rc = spi_add_device(spi);
1113 if (rc) {
1114 dev_err(&master->dev, "spi_device register error %s\n",
1115 nc->full_name);
1116 spi_dev_put(spi);
1121 #else
1122 static void of_register_spi_devices(struct spi_master *master) { }
1123 #endif
1125 #ifdef CONFIG_ACPI
1126 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1128 struct spi_device *spi = data;
1130 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1131 struct acpi_resource_spi_serialbus *sb;
1133 sb = &ares->data.spi_serial_bus;
1134 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1135 spi->chip_select = sb->device_selection;
1136 spi->max_speed_hz = sb->connection_speed;
1138 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1139 spi->mode |= SPI_CPHA;
1140 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1141 spi->mode |= SPI_CPOL;
1142 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1143 spi->mode |= SPI_CS_HIGH;
1145 } else if (spi->irq < 0) {
1146 struct resource r;
1148 if (acpi_dev_resource_interrupt(ares, 0, &r))
1149 spi->irq = r.start;
1152 /* Always tell the ACPI core to skip this resource */
1153 return 1;
1156 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1157 void *data, void **return_value)
1159 struct spi_master *master = data;
1160 struct list_head resource_list;
1161 struct acpi_device *adev;
1162 struct spi_device *spi;
1163 int ret;
1165 if (acpi_bus_get_device(handle, &adev))
1166 return AE_OK;
1167 if (acpi_bus_get_status(adev) || !adev->status.present)
1168 return AE_OK;
1170 spi = spi_alloc_device(master);
1171 if (!spi) {
1172 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1173 dev_name(&adev->dev));
1174 return AE_NO_MEMORY;
1177 ACPI_COMPANION_SET(&spi->dev, adev);
1178 spi->irq = -1;
1180 INIT_LIST_HEAD(&resource_list);
1181 ret = acpi_dev_get_resources(adev, &resource_list,
1182 acpi_spi_add_resource, spi);
1183 acpi_dev_free_resource_list(&resource_list);
1185 if (ret < 0 || !spi->max_speed_hz) {
1186 spi_dev_put(spi);
1187 return AE_OK;
1190 adev->power.flags.ignore_parent = true;
1191 strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1192 if (spi_add_device(spi)) {
1193 adev->power.flags.ignore_parent = false;
1194 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1195 dev_name(&adev->dev));
1196 spi_dev_put(spi);
1199 return AE_OK;
1202 static void acpi_register_spi_devices(struct spi_master *master)
1204 acpi_status status;
1205 acpi_handle handle;
1207 handle = ACPI_HANDLE(master->dev.parent);
1208 if (!handle)
1209 return;
1211 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1212 acpi_spi_add_device, NULL,
1213 master, NULL);
1214 if (ACPI_FAILURE(status))
1215 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1217 #else
1218 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1219 #endif /* CONFIG_ACPI */
1221 static void spi_master_release(struct device *dev)
1223 struct spi_master *master;
1225 master = container_of(dev, struct spi_master, dev);
1226 kfree(master);
1229 static struct class spi_master_class = {
1230 .name = "spi_master",
1231 .owner = THIS_MODULE,
1232 .dev_release = spi_master_release,
1238 * spi_alloc_master - allocate SPI master controller
1239 * @dev: the controller, possibly using the platform_bus
1240 * @size: how much zeroed driver-private data to allocate; the pointer to this
1241 * memory is in the driver_data field of the returned device,
1242 * accessible with spi_master_get_devdata().
1243 * Context: can sleep
1245 * This call is used only by SPI master controller drivers, which are the
1246 * only ones directly touching chip registers. It's how they allocate
1247 * an spi_master structure, prior to calling spi_register_master().
1249 * This must be called from context that can sleep. It returns the SPI
1250 * master structure on success, else NULL.
1252 * The caller is responsible for assigning the bus number and initializing
1253 * the master's methods before calling spi_register_master(); and (after errors
1254 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1255 * leak.
1257 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1259 struct spi_master *master;
1261 if (!dev)
1262 return NULL;
1264 master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1265 if (!master)
1266 return NULL;
1268 device_initialize(&master->dev);
1269 master->bus_num = -1;
1270 master->num_chipselect = 1;
1271 master->dev.class = &spi_master_class;
1272 master->dev.parent = get_device(dev);
1273 spi_master_set_devdata(master, &master[1]);
1275 return master;
1277 EXPORT_SYMBOL_GPL(spi_alloc_master);
1279 #ifdef CONFIG_OF
1280 static int of_spi_register_master(struct spi_master *master)
1282 int nb, i, *cs;
1283 struct device_node *np = master->dev.of_node;
1285 if (!np)
1286 return 0;
1288 nb = of_gpio_named_count(np, "cs-gpios");
1289 master->num_chipselect = max_t(int, nb, master->num_chipselect);
1291 /* Return error only for an incorrectly formed cs-gpios property */
1292 if (nb == 0 || nb == -ENOENT)
1293 return 0;
1294 else if (nb < 0)
1295 return nb;
1297 cs = devm_kzalloc(&master->dev,
1298 sizeof(int) * master->num_chipselect,
1299 GFP_KERNEL);
1300 master->cs_gpios = cs;
1302 if (!master->cs_gpios)
1303 return -ENOMEM;
1305 for (i = 0; i < master->num_chipselect; i++)
1306 cs[i] = -ENOENT;
1308 for (i = 0; i < nb; i++)
1309 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1311 return 0;
1313 #else
1314 static int of_spi_register_master(struct spi_master *master)
1316 return 0;
1318 #endif
1321 * spi_register_master - register SPI master controller
1322 * @master: initialized master, originally from spi_alloc_master()
1323 * Context: can sleep
1325 * SPI master controllers connect to their drivers using some non-SPI bus,
1326 * such as the platform bus. The final stage of probe() in that code
1327 * includes calling spi_register_master() to hook up to this SPI bus glue.
1329 * SPI controllers use board specific (often SOC specific) bus numbers,
1330 * and board-specific addressing for SPI devices combines those numbers
1331 * with chip select numbers. Since SPI does not directly support dynamic
1332 * device identification, boards need configuration tables telling which
1333 * chip is at which address.
1335 * This must be called from context that can sleep. It returns zero on
1336 * success, else a negative error code (dropping the master's refcount).
1337 * After a successful return, the caller is responsible for calling
1338 * spi_unregister_master().
1340 int spi_register_master(struct spi_master *master)
1342 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1343 struct device *dev = master->dev.parent;
1344 struct boardinfo *bi;
1345 int status = -ENODEV;
1346 int dynamic = 0;
1348 if (!dev)
1349 return -ENODEV;
1351 status = of_spi_register_master(master);
1352 if (status)
1353 return status;
1355 /* even if it's just one always-selected device, there must
1356 * be at least one chipselect
1358 if (master->num_chipselect == 0)
1359 return -EINVAL;
1361 if ((master->bus_num < 0) && master->dev.of_node)
1362 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1364 /* convention: dynamically assigned bus IDs count down from the max */
1365 if (master->bus_num < 0) {
1366 /* FIXME switch to an IDR based scheme, something like
1367 * I2C now uses, so we can't run out of "dynamic" IDs
1369 master->bus_num = atomic_dec_return(&dyn_bus_id);
1370 dynamic = 1;
1373 spin_lock_init(&master->bus_lock_spinlock);
1374 mutex_init(&master->bus_lock_mutex);
1375 master->bus_lock_flag = 0;
1376 init_completion(&master->xfer_completion);
1378 /* register the device, then userspace will see it.
1379 * registration fails if the bus ID is in use.
1381 dev_set_name(&master->dev, "spi%u", master->bus_num);
1382 status = device_add(&master->dev);
1383 if (status < 0)
1384 goto done;
1385 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1386 dynamic ? " (dynamic)" : "");
1388 /* If we're using a queued driver, start the queue */
1389 if (master->transfer)
1390 dev_info(dev, "master is unqueued, this is deprecated\n");
1391 else {
1392 status = spi_master_initialize_queue(master);
1393 if (status) {
1394 device_del(&master->dev);
1395 goto done;
1399 mutex_lock(&board_lock);
1400 list_add_tail(&master->list, &spi_master_list);
1401 list_for_each_entry(bi, &board_list, list)
1402 spi_match_master_to_boardinfo(master, &bi->board_info);
1403 mutex_unlock(&board_lock);
1405 /* Register devices from the device tree and ACPI */
1406 of_register_spi_devices(master);
1407 acpi_register_spi_devices(master);
1408 done:
1409 return status;
1411 EXPORT_SYMBOL_GPL(spi_register_master);
1413 static void devm_spi_unregister(struct device *dev, void *res)
1415 spi_unregister_master(*(struct spi_master **)res);
1419 * dev_spi_register_master - register managed SPI master controller
1420 * @dev: device managing SPI master
1421 * @master: initialized master, originally from spi_alloc_master()
1422 * Context: can sleep
1424 * Register a SPI device as with spi_register_master() which will
1425 * automatically be unregister
1427 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1429 struct spi_master **ptr;
1430 int ret;
1432 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1433 if (!ptr)
1434 return -ENOMEM;
1436 ret = spi_register_master(master);
1437 if (!ret) {
1438 *ptr = master;
1439 devres_add(dev, ptr);
1440 } else {
1441 devres_free(ptr);
1444 return ret;
1446 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1448 static int __unregister(struct device *dev, void *null)
1450 spi_unregister_device(to_spi_device(dev));
1451 return 0;
1455 * spi_unregister_master - unregister SPI master controller
1456 * @master: the master being unregistered
1457 * Context: can sleep
1459 * This call is used only by SPI master controller drivers, which are the
1460 * only ones directly touching chip registers.
1462 * This must be called from context that can sleep.
1464 void spi_unregister_master(struct spi_master *master)
1466 int dummy;
1468 if (master->queued) {
1469 if (spi_destroy_queue(master))
1470 dev_err(&master->dev, "queue remove failed\n");
1473 mutex_lock(&board_lock);
1474 list_del(&master->list);
1475 mutex_unlock(&board_lock);
1477 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1478 device_unregister(&master->dev);
1480 EXPORT_SYMBOL_GPL(spi_unregister_master);
1482 int spi_master_suspend(struct spi_master *master)
1484 int ret;
1486 /* Basically no-ops for non-queued masters */
1487 if (!master->queued)
1488 return 0;
1490 ret = spi_stop_queue(master);
1491 if (ret)
1492 dev_err(&master->dev, "queue stop failed\n");
1494 return ret;
1496 EXPORT_SYMBOL_GPL(spi_master_suspend);
1498 int spi_master_resume(struct spi_master *master)
1500 int ret;
1502 if (!master->queued)
1503 return 0;
1505 ret = spi_start_queue(master);
1506 if (ret)
1507 dev_err(&master->dev, "queue restart failed\n");
1509 return ret;
1511 EXPORT_SYMBOL_GPL(spi_master_resume);
1513 static int __spi_master_match(struct device *dev, const void *data)
1515 struct spi_master *m;
1516 const u16 *bus_num = data;
1518 m = container_of(dev, struct spi_master, dev);
1519 return m->bus_num == *bus_num;
1523 * spi_busnum_to_master - look up master associated with bus_num
1524 * @bus_num: the master's bus number
1525 * Context: can sleep
1527 * This call may be used with devices that are registered after
1528 * arch init time. It returns a refcounted pointer to the relevant
1529 * spi_master (which the caller must release), or NULL if there is
1530 * no such master registered.
1532 struct spi_master *spi_busnum_to_master(u16 bus_num)
1534 struct device *dev;
1535 struct spi_master *master = NULL;
1537 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1538 __spi_master_match);
1539 if (dev)
1540 master = container_of(dev, struct spi_master, dev);
1541 /* reference got in class_find_device */
1542 return master;
1544 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1547 /*-------------------------------------------------------------------------*/
1549 /* Core methods for SPI master protocol drivers. Some of the
1550 * other core methods are currently defined as inline functions.
1554 * spi_setup - setup SPI mode and clock rate
1555 * @spi: the device whose settings are being modified
1556 * Context: can sleep, and no requests are queued to the device
1558 * SPI protocol drivers may need to update the transfer mode if the
1559 * device doesn't work with its default. They may likewise need
1560 * to update clock rates or word sizes from initial values. This function
1561 * changes those settings, and must be called from a context that can sleep.
1562 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1563 * effect the next time the device is selected and data is transferred to
1564 * or from it. When this function returns, the spi device is deselected.
1566 * Note that this call will fail if the protocol driver specifies an option
1567 * that the underlying controller or its driver does not support. For
1568 * example, not all hardware supports wire transfers using nine bit words,
1569 * LSB-first wire encoding, or active-high chipselects.
1571 int spi_setup(struct spi_device *spi)
1573 unsigned bad_bits;
1574 int status = 0;
1576 /* check mode to prevent that DUAL and QUAD set at the same time
1578 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1579 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1580 dev_err(&spi->dev,
1581 "setup: can not select dual and quad at the same time\n");
1582 return -EINVAL;
1584 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1586 if ((spi->mode & SPI_3WIRE) && (spi->mode &
1587 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1588 return -EINVAL;
1589 /* help drivers fail *cleanly* when they need options
1590 * that aren't supported with their current master
1592 bad_bits = spi->mode & ~spi->master->mode_bits;
1593 if (bad_bits) {
1594 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1595 bad_bits);
1596 return -EINVAL;
1599 if (!spi->bits_per_word)
1600 spi->bits_per_word = 8;
1602 if (spi->master->setup)
1603 status = spi->master->setup(spi);
1605 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1606 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1607 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1608 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1609 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1610 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1611 spi->bits_per_word, spi->max_speed_hz,
1612 status);
1614 return status;
1616 EXPORT_SYMBOL_GPL(spi_setup);
1618 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1620 struct spi_master *master = spi->master;
1621 struct spi_transfer *xfer;
1623 if (list_empty(&message->transfers))
1624 return -EINVAL;
1625 if (!message->complete)
1626 return -EINVAL;
1628 /* Half-duplex links include original MicroWire, and ones with
1629 * only one data pin like SPI_3WIRE (switches direction) or where
1630 * either MOSI or MISO is missing. They can also be caused by
1631 * software limitations.
1633 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1634 || (spi->mode & SPI_3WIRE)) {
1635 unsigned flags = master->flags;
1637 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1638 if (xfer->rx_buf && xfer->tx_buf)
1639 return -EINVAL;
1640 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1641 return -EINVAL;
1642 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1643 return -EINVAL;
1648 * Set transfer bits_per_word and max speed as spi device default if
1649 * it is not set for this transfer.
1650 * Set transfer tx_nbits and rx_nbits as single transfer default
1651 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1653 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1654 message->frame_length += xfer->len;
1655 if (!xfer->bits_per_word)
1656 xfer->bits_per_word = spi->bits_per_word;
1657 if (!xfer->speed_hz) {
1658 xfer->speed_hz = spi->max_speed_hz;
1659 if (master->max_speed_hz &&
1660 xfer->speed_hz > master->max_speed_hz)
1661 xfer->speed_hz = master->max_speed_hz;
1664 if (master->bits_per_word_mask) {
1665 /* Only 32 bits fit in the mask */
1666 if (xfer->bits_per_word > 32)
1667 return -EINVAL;
1668 if (!(master->bits_per_word_mask &
1669 BIT(xfer->bits_per_word - 1)))
1670 return -EINVAL;
1673 if (xfer->speed_hz && master->min_speed_hz &&
1674 xfer->speed_hz < master->min_speed_hz)
1675 return -EINVAL;
1676 if (xfer->speed_hz && master->max_speed_hz &&
1677 xfer->speed_hz > master->max_speed_hz)
1678 return -EINVAL;
1680 if (xfer->tx_buf && !xfer->tx_nbits)
1681 xfer->tx_nbits = SPI_NBITS_SINGLE;
1682 if (xfer->rx_buf && !xfer->rx_nbits)
1683 xfer->rx_nbits = SPI_NBITS_SINGLE;
1684 /* check transfer tx/rx_nbits:
1685 * 1. check the value matches one of single, dual and quad
1686 * 2. check tx/rx_nbits match the mode in spi_device
1688 if (xfer->tx_buf) {
1689 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1690 xfer->tx_nbits != SPI_NBITS_DUAL &&
1691 xfer->tx_nbits != SPI_NBITS_QUAD)
1692 return -EINVAL;
1693 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1694 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1695 return -EINVAL;
1696 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1697 !(spi->mode & SPI_TX_QUAD))
1698 return -EINVAL;
1700 /* check transfer rx_nbits */
1701 if (xfer->rx_buf) {
1702 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1703 xfer->rx_nbits != SPI_NBITS_DUAL &&
1704 xfer->rx_nbits != SPI_NBITS_QUAD)
1705 return -EINVAL;
1706 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1707 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1708 return -EINVAL;
1709 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1710 !(spi->mode & SPI_RX_QUAD))
1711 return -EINVAL;
1715 message->status = -EINPROGRESS;
1717 return 0;
1720 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1722 struct spi_master *master = spi->master;
1724 message->spi = spi;
1726 trace_spi_message_submit(message);
1728 return master->transfer(spi, message);
1732 * spi_async - asynchronous SPI transfer
1733 * @spi: device with which data will be exchanged
1734 * @message: describes the data transfers, including completion callback
1735 * Context: any (irqs may be blocked, etc)
1737 * This call may be used in_irq and other contexts which can't sleep,
1738 * as well as from task contexts which can sleep.
1740 * The completion callback is invoked in a context which can't sleep.
1741 * Before that invocation, the value of message->status is undefined.
1742 * When the callback is issued, message->status holds either zero (to
1743 * indicate complete success) or a negative error code. After that
1744 * callback returns, the driver which issued the transfer request may
1745 * deallocate the associated memory; it's no longer in use by any SPI
1746 * core or controller driver code.
1748 * Note that although all messages to a spi_device are handled in
1749 * FIFO order, messages may go to different devices in other orders.
1750 * Some device might be higher priority, or have various "hard" access
1751 * time requirements, for example.
1753 * On detection of any fault during the transfer, processing of
1754 * the entire message is aborted, and the device is deselected.
1755 * Until returning from the associated message completion callback,
1756 * no other spi_message queued to that device will be processed.
1757 * (This rule applies equally to all the synchronous transfer calls,
1758 * which are wrappers around this core asynchronous primitive.)
1760 int spi_async(struct spi_device *spi, struct spi_message *message)
1762 struct spi_master *master = spi->master;
1763 int ret;
1764 unsigned long flags;
1766 ret = __spi_validate(spi, message);
1767 if (ret != 0)
1768 return ret;
1770 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1772 if (master->bus_lock_flag)
1773 ret = -EBUSY;
1774 else
1775 ret = __spi_async(spi, message);
1777 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1779 return ret;
1781 EXPORT_SYMBOL_GPL(spi_async);
1784 * spi_async_locked - version of spi_async with exclusive bus usage
1785 * @spi: device with which data will be exchanged
1786 * @message: describes the data transfers, including completion callback
1787 * Context: any (irqs may be blocked, etc)
1789 * This call may be used in_irq and other contexts which can't sleep,
1790 * as well as from task contexts which can sleep.
1792 * The completion callback is invoked in a context which can't sleep.
1793 * Before that invocation, the value of message->status is undefined.
1794 * When the callback is issued, message->status holds either zero (to
1795 * indicate complete success) or a negative error code. After that
1796 * callback returns, the driver which issued the transfer request may
1797 * deallocate the associated memory; it's no longer in use by any SPI
1798 * core or controller driver code.
1800 * Note that although all messages to a spi_device are handled in
1801 * FIFO order, messages may go to different devices in other orders.
1802 * Some device might be higher priority, or have various "hard" access
1803 * time requirements, for example.
1805 * On detection of any fault during the transfer, processing of
1806 * the entire message is aborted, and the device is deselected.
1807 * Until returning from the associated message completion callback,
1808 * no other spi_message queued to that device will be processed.
1809 * (This rule applies equally to all the synchronous transfer calls,
1810 * which are wrappers around this core asynchronous primitive.)
1812 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1814 struct spi_master *master = spi->master;
1815 int ret;
1816 unsigned long flags;
1818 ret = __spi_validate(spi, message);
1819 if (ret != 0)
1820 return ret;
1822 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1824 ret = __spi_async(spi, message);
1826 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1828 return ret;
1831 EXPORT_SYMBOL_GPL(spi_async_locked);
1834 /*-------------------------------------------------------------------------*/
1836 /* Utility methods for SPI master protocol drivers, layered on
1837 * top of the core. Some other utility methods are defined as
1838 * inline functions.
1841 static void spi_complete(void *arg)
1843 complete(arg);
1846 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1847 int bus_locked)
1849 DECLARE_COMPLETION_ONSTACK(done);
1850 int status;
1851 struct spi_master *master = spi->master;
1853 message->complete = spi_complete;
1854 message->context = &done;
1856 if (!bus_locked)
1857 mutex_lock(&master->bus_lock_mutex);
1859 status = spi_async_locked(spi, message);
1861 if (!bus_locked)
1862 mutex_unlock(&master->bus_lock_mutex);
1864 if (status == 0) {
1865 wait_for_completion(&done);
1866 status = message->status;
1868 message->context = NULL;
1869 return status;
1873 * spi_sync - blocking/synchronous SPI data transfers
1874 * @spi: device with which data will be exchanged
1875 * @message: describes the data transfers
1876 * Context: can sleep
1878 * This call may only be used from a context that may sleep. The sleep
1879 * is non-interruptible, and has no timeout. Low-overhead controller
1880 * drivers may DMA directly into and out of the message buffers.
1882 * Note that the SPI device's chip select is active during the message,
1883 * and then is normally disabled between messages. Drivers for some
1884 * frequently-used devices may want to minimize costs of selecting a chip,
1885 * by leaving it selected in anticipation that the next message will go
1886 * to the same chip. (That may increase power usage.)
1888 * Also, the caller is guaranteeing that the memory associated with the
1889 * message will not be freed before this call returns.
1891 * It returns zero on success, else a negative error code.
1893 int spi_sync(struct spi_device *spi, struct spi_message *message)
1895 return __spi_sync(spi, message, 0);
1897 EXPORT_SYMBOL_GPL(spi_sync);
1900 * spi_sync_locked - version of spi_sync with exclusive bus usage
1901 * @spi: device with which data will be exchanged
1902 * @message: describes the data transfers
1903 * Context: can sleep
1905 * This call may only be used from a context that may sleep. The sleep
1906 * is non-interruptible, and has no timeout. Low-overhead controller
1907 * drivers may DMA directly into and out of the message buffers.
1909 * This call should be used by drivers that require exclusive access to the
1910 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1911 * be released by a spi_bus_unlock call when the exclusive access is over.
1913 * It returns zero on success, else a negative error code.
1915 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1917 return __spi_sync(spi, message, 1);
1919 EXPORT_SYMBOL_GPL(spi_sync_locked);
1922 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1923 * @master: SPI bus master that should be locked for exclusive bus access
1924 * Context: can sleep
1926 * This call may only be used from a context that may sleep. The sleep
1927 * is non-interruptible, and has no timeout.
1929 * This call should be used by drivers that require exclusive access to the
1930 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1931 * exclusive access is over. Data transfer must be done by spi_sync_locked
1932 * and spi_async_locked calls when the SPI bus lock is held.
1934 * It returns zero on success, else a negative error code.
1936 int spi_bus_lock(struct spi_master *master)
1938 unsigned long flags;
1940 mutex_lock(&master->bus_lock_mutex);
1942 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1943 master->bus_lock_flag = 1;
1944 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1946 /* mutex remains locked until spi_bus_unlock is called */
1948 return 0;
1950 EXPORT_SYMBOL_GPL(spi_bus_lock);
1953 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1954 * @master: SPI bus master that was locked for exclusive bus access
1955 * Context: can sleep
1957 * This call may only be used from a context that may sleep. The sleep
1958 * is non-interruptible, and has no timeout.
1960 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1961 * call.
1963 * It returns zero on success, else a negative error code.
1965 int spi_bus_unlock(struct spi_master *master)
1967 master->bus_lock_flag = 0;
1969 mutex_unlock(&master->bus_lock_mutex);
1971 return 0;
1973 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1975 /* portable code must never pass more than 32 bytes */
1976 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
1978 static u8 *buf;
1981 * spi_write_then_read - SPI synchronous write followed by read
1982 * @spi: device with which data will be exchanged
1983 * @txbuf: data to be written (need not be dma-safe)
1984 * @n_tx: size of txbuf, in bytes
1985 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1986 * @n_rx: size of rxbuf, in bytes
1987 * Context: can sleep
1989 * This performs a half duplex MicroWire style transaction with the
1990 * device, sending txbuf and then reading rxbuf. The return value
1991 * is zero for success, else a negative errno status code.
1992 * This call may only be used from a context that may sleep.
1994 * Parameters to this routine are always copied using a small buffer;
1995 * portable code should never use this for more than 32 bytes.
1996 * Performance-sensitive or bulk transfer code should instead use
1997 * spi_{async,sync}() calls with dma-safe buffers.
1999 int spi_write_then_read(struct spi_device *spi,
2000 const void *txbuf, unsigned n_tx,
2001 void *rxbuf, unsigned n_rx)
2003 static DEFINE_MUTEX(lock);
2005 int status;
2006 struct spi_message message;
2007 struct spi_transfer x[2];
2008 u8 *local_buf;
2010 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2011 * copying here, (as a pure convenience thing), but we can
2012 * keep heap costs out of the hot path unless someone else is
2013 * using the pre-allocated buffer or the transfer is too large.
2015 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2016 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2017 GFP_KERNEL | GFP_DMA);
2018 if (!local_buf)
2019 return -ENOMEM;
2020 } else {
2021 local_buf = buf;
2024 spi_message_init(&message);
2025 memset(x, 0, sizeof(x));
2026 if (n_tx) {
2027 x[0].len = n_tx;
2028 spi_message_add_tail(&x[0], &message);
2030 if (n_rx) {
2031 x[1].len = n_rx;
2032 spi_message_add_tail(&x[1], &message);
2035 memcpy(local_buf, txbuf, n_tx);
2036 x[0].tx_buf = local_buf;
2037 x[1].rx_buf = local_buf + n_tx;
2039 /* do the i/o */
2040 status = spi_sync(spi, &message);
2041 if (status == 0)
2042 memcpy(rxbuf, x[1].rx_buf, n_rx);
2044 if (x[0].tx_buf == buf)
2045 mutex_unlock(&lock);
2046 else
2047 kfree(local_buf);
2049 return status;
2051 EXPORT_SYMBOL_GPL(spi_write_then_read);
2053 /*-------------------------------------------------------------------------*/
2055 static int __init spi_init(void)
2057 int status;
2059 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2060 if (!buf) {
2061 status = -ENOMEM;
2062 goto err0;
2065 status = bus_register(&spi_bus_type);
2066 if (status < 0)
2067 goto err1;
2069 status = class_register(&spi_master_class);
2070 if (status < 0)
2071 goto err2;
2072 return 0;
2074 err2:
2075 bus_unregister(&spi_bus_type);
2076 err1:
2077 kfree(buf);
2078 buf = NULL;
2079 err0:
2080 return status;
2083 /* board_info is normally registered in arch_initcall(),
2084 * but even essential drivers wait till later
2086 * REVISIT only boardinfo really needs static linking. the rest (device and
2087 * driver registration) _could_ be dynamically linked (modular) ... costs
2088 * include needing to have boardinfo data structures be much more public.
2090 postcore_initcall(spi_init);