4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
45 static void spidev_release(struct device
*dev
)
47 struct spi_device
*spi
= to_spi_device(dev
);
49 /* spi masters may cleanup for released devices */
50 if (spi
->master
->cleanup
)
51 spi
->master
->cleanup(spi
);
53 spi_master_put(spi
->master
);
58 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
60 const struct spi_device
*spi
= to_spi_device(dev
);
63 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
67 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
69 static DEVICE_ATTR_RO(modalias
);
71 static struct attribute
*spi_dev_attrs
[] = {
72 &dev_attr_modalias
.attr
,
75 ATTRIBUTE_GROUPS(spi_dev
);
77 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
78 * and the sysfs version makes coldplug work too.
81 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
82 const struct spi_device
*sdev
)
85 if (!strcmp(sdev
->modalias
, id
->name
))
92 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
94 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
96 return spi_match_id(sdrv
->id_table
, sdev
);
98 EXPORT_SYMBOL_GPL(spi_get_device_id
);
100 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
102 const struct spi_device
*spi
= to_spi_device(dev
);
103 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
105 /* Attempt an OF style match */
106 if (of_driver_match_device(dev
, drv
))
110 if (acpi_driver_match_device(dev
, drv
))
114 return !!spi_match_id(sdrv
->id_table
, spi
);
116 return strcmp(spi
->modalias
, drv
->name
) == 0;
119 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
121 const struct spi_device
*spi
= to_spi_device(dev
);
124 rc
= acpi_device_uevent_modalias(dev
, env
);
128 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
132 #ifdef CONFIG_PM_SLEEP
133 static int spi_legacy_suspend(struct device
*dev
, pm_message_t message
)
136 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
138 /* suspend will stop irqs and dma; no more i/o */
141 value
= drv
->suspend(to_spi_device(dev
), message
);
143 dev_dbg(dev
, "... can't suspend\n");
148 static int spi_legacy_resume(struct device
*dev
)
151 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
153 /* resume may restart the i/o queue */
156 value
= drv
->resume(to_spi_device(dev
));
158 dev_dbg(dev
, "... can't resume\n");
163 static int spi_pm_suspend(struct device
*dev
)
165 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
168 return pm_generic_suspend(dev
);
170 return spi_legacy_suspend(dev
, PMSG_SUSPEND
);
173 static int spi_pm_resume(struct device
*dev
)
175 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
178 return pm_generic_resume(dev
);
180 return spi_legacy_resume(dev
);
183 static int spi_pm_freeze(struct device
*dev
)
185 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
188 return pm_generic_freeze(dev
);
190 return spi_legacy_suspend(dev
, PMSG_FREEZE
);
193 static int spi_pm_thaw(struct device
*dev
)
195 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
198 return pm_generic_thaw(dev
);
200 return spi_legacy_resume(dev
);
203 static int spi_pm_poweroff(struct device
*dev
)
205 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
208 return pm_generic_poweroff(dev
);
210 return spi_legacy_suspend(dev
, PMSG_HIBERNATE
);
213 static int spi_pm_restore(struct device
*dev
)
215 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
218 return pm_generic_restore(dev
);
220 return spi_legacy_resume(dev
);
223 #define spi_pm_suspend NULL
224 #define spi_pm_resume NULL
225 #define spi_pm_freeze NULL
226 #define spi_pm_thaw NULL
227 #define spi_pm_poweroff NULL
228 #define spi_pm_restore NULL
231 static const struct dev_pm_ops spi_pm
= {
232 .suspend
= spi_pm_suspend
,
233 .resume
= spi_pm_resume
,
234 .freeze
= spi_pm_freeze
,
236 .poweroff
= spi_pm_poweroff
,
237 .restore
= spi_pm_restore
,
239 pm_generic_runtime_suspend
,
240 pm_generic_runtime_resume
,
245 struct bus_type spi_bus_type
= {
247 .dev_groups
= spi_dev_groups
,
248 .match
= spi_match_device
,
249 .uevent
= spi_uevent
,
252 EXPORT_SYMBOL_GPL(spi_bus_type
);
255 static int spi_drv_probe(struct device
*dev
)
257 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
258 struct spi_device
*spi
= to_spi_device(dev
);
261 acpi_dev_pm_attach(&spi
->dev
, true);
262 ret
= sdrv
->probe(spi
);
264 acpi_dev_pm_detach(&spi
->dev
, true);
269 static int spi_drv_remove(struct device
*dev
)
271 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
272 struct spi_device
*spi
= to_spi_device(dev
);
275 ret
= sdrv
->remove(spi
);
276 acpi_dev_pm_detach(&spi
->dev
, true);
281 static void spi_drv_shutdown(struct device
*dev
)
283 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
285 sdrv
->shutdown(to_spi_device(dev
));
289 * spi_register_driver - register a SPI driver
290 * @sdrv: the driver to register
293 int spi_register_driver(struct spi_driver
*sdrv
)
295 sdrv
->driver
.bus
= &spi_bus_type
;
297 sdrv
->driver
.probe
= spi_drv_probe
;
299 sdrv
->driver
.remove
= spi_drv_remove
;
301 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
302 return driver_register(&sdrv
->driver
);
304 EXPORT_SYMBOL_GPL(spi_register_driver
);
306 /*-------------------------------------------------------------------------*/
308 /* SPI devices should normally not be created by SPI device drivers; that
309 * would make them board-specific. Similarly with SPI master drivers.
310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
311 * with other readonly (flashable) information about mainboard devices.
315 struct list_head list
;
316 struct spi_board_info board_info
;
319 static LIST_HEAD(board_list
);
320 static LIST_HEAD(spi_master_list
);
323 * Used to protect add/del opertion for board_info list and
324 * spi_master list, and their matching process
326 static DEFINE_MUTEX(board_lock
);
329 * spi_alloc_device - Allocate a new SPI device
330 * @master: Controller to which device is connected
333 * Allows a driver to allocate and initialize a spi_device without
334 * registering it immediately. This allows a driver to directly
335 * fill the spi_device with device parameters before calling
336 * spi_add_device() on it.
338 * Caller is responsible to call spi_add_device() on the returned
339 * spi_device structure to add it to the SPI master. If the caller
340 * needs to discard the spi_device without adding it, then it should
341 * call spi_dev_put() on it.
343 * Returns a pointer to the new device, or NULL.
345 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
347 struct spi_device
*spi
;
348 struct device
*dev
= master
->dev
.parent
;
350 if (!spi_master_get(master
))
353 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
355 dev_err(dev
, "cannot alloc spi_device\n");
356 spi_master_put(master
);
360 spi
->master
= master
;
361 spi
->dev
.parent
= &master
->dev
;
362 spi
->dev
.bus
= &spi_bus_type
;
363 spi
->dev
.release
= spidev_release
;
364 spi
->cs_gpio
= -ENOENT
;
365 device_initialize(&spi
->dev
);
368 EXPORT_SYMBOL_GPL(spi_alloc_device
);
370 static void spi_dev_set_name(struct spi_device
*spi
)
372 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
375 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
379 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
383 static int spi_dev_check(struct device
*dev
, void *data
)
385 struct spi_device
*spi
= to_spi_device(dev
);
386 struct spi_device
*new_spi
= data
;
388 if (spi
->master
== new_spi
->master
&&
389 spi
->chip_select
== new_spi
->chip_select
)
395 * spi_add_device - Add spi_device allocated with spi_alloc_device
396 * @spi: spi_device to register
398 * Companion function to spi_alloc_device. Devices allocated with
399 * spi_alloc_device can be added onto the spi bus with this function.
401 * Returns 0 on success; negative errno on failure
403 int spi_add_device(struct spi_device
*spi
)
405 static DEFINE_MUTEX(spi_add_lock
);
406 struct spi_master
*master
= spi
->master
;
407 struct device
*dev
= master
->dev
.parent
;
410 /* Chipselects are numbered 0..max; validate. */
411 if (spi
->chip_select
>= master
->num_chipselect
) {
412 dev_err(dev
, "cs%d >= max %d\n",
414 master
->num_chipselect
);
418 /* Set the bus ID string */
419 spi_dev_set_name(spi
);
421 /* We need to make sure there's no other device with this
422 * chipselect **BEFORE** we call setup(), else we'll trash
423 * its configuration. Lock against concurrent add() calls.
425 mutex_lock(&spi_add_lock
);
427 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
429 dev_err(dev
, "chipselect %d already in use\n",
434 if (master
->cs_gpios
)
435 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
437 /* Drivers may modify this initial i/o setup, but will
438 * normally rely on the device being setup. Devices
439 * using SPI_CS_HIGH can't coexist well otherwise...
441 status
= spi_setup(spi
);
443 dev_err(dev
, "can't setup %s, status %d\n",
444 dev_name(&spi
->dev
), status
);
448 /* Device may be bound to an active driver when this returns */
449 status
= device_add(&spi
->dev
);
451 dev_err(dev
, "can't add %s, status %d\n",
452 dev_name(&spi
->dev
), status
);
454 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
457 mutex_unlock(&spi_add_lock
);
460 EXPORT_SYMBOL_GPL(spi_add_device
);
463 * spi_new_device - instantiate one new SPI device
464 * @master: Controller to which device is connected
465 * @chip: Describes the SPI device
468 * On typical mainboards, this is purely internal; and it's not needed
469 * after board init creates the hard-wired devices. Some development
470 * platforms may not be able to use spi_register_board_info though, and
471 * this is exported so that for example a USB or parport based adapter
472 * driver could add devices (which it would learn about out-of-band).
474 * Returns the new device, or NULL.
476 struct spi_device
*spi_new_device(struct spi_master
*master
,
477 struct spi_board_info
*chip
)
479 struct spi_device
*proxy
;
482 /* NOTE: caller did any chip->bus_num checks necessary.
484 * Also, unless we change the return value convention to use
485 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 * suggests syslogged diagnostics are best here (ugh).
489 proxy
= spi_alloc_device(master
);
493 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
495 proxy
->chip_select
= chip
->chip_select
;
496 proxy
->max_speed_hz
= chip
->max_speed_hz
;
497 proxy
->mode
= chip
->mode
;
498 proxy
->irq
= chip
->irq
;
499 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
500 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
501 proxy
->controller_data
= chip
->controller_data
;
502 proxy
->controller_state
= NULL
;
504 status
= spi_add_device(proxy
);
512 EXPORT_SYMBOL_GPL(spi_new_device
);
514 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
515 struct spi_board_info
*bi
)
517 struct spi_device
*dev
;
519 if (master
->bus_num
!= bi
->bus_num
)
522 dev
= spi_new_device(master
, bi
);
524 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
529 * spi_register_board_info - register SPI devices for a given board
530 * @info: array of chip descriptors
531 * @n: how many descriptors are provided
534 * Board-specific early init code calls this (probably during arch_initcall)
535 * with segments of the SPI device table. Any device nodes are created later,
536 * after the relevant parent SPI controller (bus_num) is defined. We keep
537 * this table of devices forever, so that reloading a controller driver will
538 * not make Linux forget about these hard-wired devices.
540 * Other code can also call this, e.g. a particular add-on board might provide
541 * SPI devices through its expansion connector, so code initializing that board
542 * would naturally declare its SPI devices.
544 * The board info passed can safely be __initdata ... but be careful of
545 * any embedded pointers (platform_data, etc), they're copied as-is.
547 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
549 struct boardinfo
*bi
;
552 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
556 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
557 struct spi_master
*master
;
559 memcpy(&bi
->board_info
, info
, sizeof(*info
));
560 mutex_lock(&board_lock
);
561 list_add_tail(&bi
->list
, &board_list
);
562 list_for_each_entry(master
, &spi_master_list
, list
)
563 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
564 mutex_unlock(&board_lock
);
570 /*-------------------------------------------------------------------------*/
572 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
574 if (spi
->mode
& SPI_CS_HIGH
)
577 if (spi
->cs_gpio
>= 0)
578 gpio_set_value(spi
->cs_gpio
, !enable
);
579 else if (spi
->master
->set_cs
)
580 spi
->master
->set_cs(spi
, !enable
);
584 * spi_transfer_one_message - Default implementation of transfer_one_message()
586 * This is a standard implementation of transfer_one_message() for
587 * drivers which impelment a transfer_one() operation. It provides
588 * standard handling of delays and chip select management.
590 static int spi_transfer_one_message(struct spi_master
*master
,
591 struct spi_message
*msg
)
593 struct spi_transfer
*xfer
;
595 bool keep_cs
= false;
598 spi_set_cs(msg
->spi
, true);
600 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
601 trace_spi_transfer_start(msg
, xfer
);
603 reinit_completion(&master
->xfer_completion
);
605 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
607 dev_err(&msg
->spi
->dev
,
608 "SPI transfer failed: %d\n", ret
);
614 wait_for_completion(&master
->xfer_completion
);
617 trace_spi_transfer_stop(msg
, xfer
);
619 if (msg
->status
!= -EINPROGRESS
)
622 if (xfer
->delay_usecs
)
623 udelay(xfer
->delay_usecs
);
625 if (xfer
->cs_change
) {
626 if (list_is_last(&xfer
->transfer_list
,
631 spi_set_cs(msg
->spi
, cur_cs
);
635 msg
->actual_length
+= xfer
->len
;
639 if (ret
!= 0 || !keep_cs
)
640 spi_set_cs(msg
->spi
, false);
642 if (msg
->status
== -EINPROGRESS
)
645 spi_finalize_current_message(master
);
651 * spi_finalize_current_transfer - report completion of a transfer
653 * Called by SPI drivers using the core transfer_one_message()
654 * implementation to notify it that the current interrupt driven
655 * transfer has finished and the next one may be scheduled.
657 void spi_finalize_current_transfer(struct spi_master
*master
)
659 complete(&master
->xfer_completion
);
661 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
664 * spi_pump_messages - kthread work function which processes spi message queue
665 * @work: pointer to kthread work struct contained in the master struct
667 * This function checks if there is any spi message in the queue that
668 * needs processing and if so call out to the driver to initialize hardware
669 * and transfer each message.
672 static void spi_pump_messages(struct kthread_work
*work
)
674 struct spi_master
*master
=
675 container_of(work
, struct spi_master
, pump_messages
);
677 bool was_busy
= false;
680 /* Lock queue and check for queue work */
681 spin_lock_irqsave(&master
->queue_lock
, flags
);
682 if (list_empty(&master
->queue
) || !master
->running
) {
684 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
687 master
->busy
= false;
688 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
689 if (master
->unprepare_transfer_hardware
&&
690 master
->unprepare_transfer_hardware(master
))
691 dev_err(&master
->dev
,
692 "failed to unprepare transfer hardware\n");
693 if (master
->auto_runtime_pm
) {
694 pm_runtime_mark_last_busy(master
->dev
.parent
);
695 pm_runtime_put_autosuspend(master
->dev
.parent
);
697 trace_spi_master_idle(master
);
701 /* Make sure we are not already running a message */
702 if (master
->cur_msg
) {
703 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
706 /* Extract head of queue */
708 list_first_entry(&master
->queue
, struct spi_message
, queue
);
710 list_del_init(&master
->cur_msg
->queue
);
715 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
717 if (!was_busy
&& master
->auto_runtime_pm
) {
718 ret
= pm_runtime_get_sync(master
->dev
.parent
);
720 dev_err(&master
->dev
, "Failed to power device: %d\n",
727 trace_spi_master_busy(master
);
729 if (!was_busy
&& master
->prepare_transfer_hardware
) {
730 ret
= master
->prepare_transfer_hardware(master
);
732 dev_err(&master
->dev
,
733 "failed to prepare transfer hardware\n");
735 if (master
->auto_runtime_pm
)
736 pm_runtime_put(master
->dev
.parent
);
741 trace_spi_message_start(master
->cur_msg
);
743 if (master
->prepare_message
) {
744 ret
= master
->prepare_message(master
, master
->cur_msg
);
746 dev_err(&master
->dev
,
747 "failed to prepare message: %d\n", ret
);
748 master
->cur_msg
->status
= ret
;
749 spi_finalize_current_message(master
);
752 master
->cur_msg_prepared
= true;
755 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
757 dev_err(&master
->dev
,
758 "failed to transfer one message from queue: %d\n", ret
);
759 master
->cur_msg
->status
= ret
;
760 spi_finalize_current_message(master
);
765 static int spi_init_queue(struct spi_master
*master
)
767 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
769 INIT_LIST_HEAD(&master
->queue
);
770 spin_lock_init(&master
->queue_lock
);
772 master
->running
= false;
773 master
->busy
= false;
775 init_kthread_worker(&master
->kworker
);
776 master
->kworker_task
= kthread_run(kthread_worker_fn
,
777 &master
->kworker
, "%s",
778 dev_name(&master
->dev
));
779 if (IS_ERR(master
->kworker_task
)) {
780 dev_err(&master
->dev
, "failed to create message pump task\n");
783 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
786 * Master config will indicate if this controller should run the
787 * message pump with high (realtime) priority to reduce the transfer
788 * latency on the bus by minimising the delay between a transfer
789 * request and the scheduling of the message pump thread. Without this
790 * setting the message pump thread will remain at default priority.
793 dev_info(&master
->dev
,
794 "will run message pump with realtime priority\n");
795 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
802 * spi_get_next_queued_message() - called by driver to check for queued
804 * @master: the master to check for queued messages
806 * If there are more messages in the queue, the next message is returned from
809 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
811 struct spi_message
*next
;
814 /* get a pointer to the next message, if any */
815 spin_lock_irqsave(&master
->queue_lock
, flags
);
816 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
818 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
822 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
825 * spi_finalize_current_message() - the current message is complete
826 * @master: the master to return the message to
828 * Called by the driver to notify the core that the message in the front of the
829 * queue is complete and can be removed from the queue.
831 void spi_finalize_current_message(struct spi_master
*master
)
833 struct spi_message
*mesg
;
837 spin_lock_irqsave(&master
->queue_lock
, flags
);
838 mesg
= master
->cur_msg
;
839 master
->cur_msg
= NULL
;
841 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
842 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
844 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
845 ret
= master
->unprepare_message(master
, mesg
);
847 dev_err(&master
->dev
,
848 "failed to unprepare message: %d\n", ret
);
851 master
->cur_msg_prepared
= false;
855 mesg
->complete(mesg
->context
);
857 trace_spi_message_done(mesg
);
859 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
861 static int spi_start_queue(struct spi_master
*master
)
865 spin_lock_irqsave(&master
->queue_lock
, flags
);
867 if (master
->running
|| master
->busy
) {
868 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
872 master
->running
= true;
873 master
->cur_msg
= NULL
;
874 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
876 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
881 static int spi_stop_queue(struct spi_master
*master
)
884 unsigned limit
= 500;
887 spin_lock_irqsave(&master
->queue_lock
, flags
);
890 * This is a bit lame, but is optimized for the common execution path.
891 * A wait_queue on the master->busy could be used, but then the common
892 * execution path (pump_messages) would be required to call wake_up or
893 * friends on every SPI message. Do this instead.
895 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
896 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
898 spin_lock_irqsave(&master
->queue_lock
, flags
);
901 if (!list_empty(&master
->queue
) || master
->busy
)
904 master
->running
= false;
906 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
909 dev_warn(&master
->dev
,
910 "could not stop message queue\n");
916 static int spi_destroy_queue(struct spi_master
*master
)
920 ret
= spi_stop_queue(master
);
923 * flush_kthread_worker will block until all work is done.
924 * If the reason that stop_queue timed out is that the work will never
925 * finish, then it does no good to call flush/stop thread, so
929 dev_err(&master
->dev
, "problem destroying queue\n");
933 flush_kthread_worker(&master
->kworker
);
934 kthread_stop(master
->kworker_task
);
940 * spi_queued_transfer - transfer function for queued transfers
941 * @spi: spi device which is requesting transfer
942 * @msg: spi message which is to handled is queued to driver queue
944 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
946 struct spi_master
*master
= spi
->master
;
949 spin_lock_irqsave(&master
->queue_lock
, flags
);
951 if (!master
->running
) {
952 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
955 msg
->actual_length
= 0;
956 msg
->status
= -EINPROGRESS
;
958 list_add_tail(&msg
->queue
, &master
->queue
);
960 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
962 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
966 static int spi_master_initialize_queue(struct spi_master
*master
)
970 master
->queued
= true;
971 master
->transfer
= spi_queued_transfer
;
972 if (!master
->transfer_one_message
)
973 master
->transfer_one_message
= spi_transfer_one_message
;
975 /* Initialize and start queue */
976 ret
= spi_init_queue(master
);
978 dev_err(&master
->dev
, "problem initializing queue\n");
981 ret
= spi_start_queue(master
);
983 dev_err(&master
->dev
, "problem starting queue\n");
984 goto err_start_queue
;
991 spi_destroy_queue(master
);
995 /*-------------------------------------------------------------------------*/
997 #if defined(CONFIG_OF)
999 * of_register_spi_devices() - Register child devices onto the SPI bus
1000 * @master: Pointer to spi_master device
1002 * Registers an spi_device for each child node of master node which has a 'reg'
1005 static void of_register_spi_devices(struct spi_master
*master
)
1007 struct spi_device
*spi
;
1008 struct device_node
*nc
;
1012 if (!master
->dev
.of_node
)
1015 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1016 /* Alloc an spi_device */
1017 spi
= spi_alloc_device(master
);
1019 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1025 /* Select device driver */
1026 if (of_modalias_node(nc
, spi
->modalias
,
1027 sizeof(spi
->modalias
)) < 0) {
1028 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1034 /* Device address */
1035 rc
= of_property_read_u32(nc
, "reg", &value
);
1037 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1042 spi
->chip_select
= value
;
1044 /* Mode (clock phase/polarity/etc.) */
1045 if (of_find_property(nc
, "spi-cpha", NULL
))
1046 spi
->mode
|= SPI_CPHA
;
1047 if (of_find_property(nc
, "spi-cpol", NULL
))
1048 spi
->mode
|= SPI_CPOL
;
1049 if (of_find_property(nc
, "spi-cs-high", NULL
))
1050 spi
->mode
|= SPI_CS_HIGH
;
1051 if (of_find_property(nc
, "spi-3wire", NULL
))
1052 spi
->mode
|= SPI_3WIRE
;
1054 /* Device DUAL/QUAD mode */
1055 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1060 spi
->mode
|= SPI_TX_DUAL
;
1063 spi
->mode
|= SPI_TX_QUAD
;
1066 dev_err(&master
->dev
,
1067 "spi-tx-bus-width %d not supported\n",
1074 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1079 spi
->mode
|= SPI_RX_DUAL
;
1082 spi
->mode
|= SPI_RX_QUAD
;
1085 dev_err(&master
->dev
,
1086 "spi-rx-bus-width %d not supported\n",
1094 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1096 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1101 spi
->max_speed_hz
= value
;
1104 spi
->irq
= irq_of_parse_and_map(nc
, 0);
1106 /* Store a pointer to the node in the device structure */
1108 spi
->dev
.of_node
= nc
;
1110 /* Register the new device */
1111 request_module("%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
1112 rc
= spi_add_device(spi
);
1114 dev_err(&master
->dev
, "spi_device register error %s\n",
1122 static void of_register_spi_devices(struct spi_master
*master
) { }
1126 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1128 struct spi_device
*spi
= data
;
1130 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1131 struct acpi_resource_spi_serialbus
*sb
;
1133 sb
= &ares
->data
.spi_serial_bus
;
1134 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1135 spi
->chip_select
= sb
->device_selection
;
1136 spi
->max_speed_hz
= sb
->connection_speed
;
1138 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1139 spi
->mode
|= SPI_CPHA
;
1140 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1141 spi
->mode
|= SPI_CPOL
;
1142 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1143 spi
->mode
|= SPI_CS_HIGH
;
1145 } else if (spi
->irq
< 0) {
1148 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1152 /* Always tell the ACPI core to skip this resource */
1156 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1157 void *data
, void **return_value
)
1159 struct spi_master
*master
= data
;
1160 struct list_head resource_list
;
1161 struct acpi_device
*adev
;
1162 struct spi_device
*spi
;
1165 if (acpi_bus_get_device(handle
, &adev
))
1167 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1170 spi
= spi_alloc_device(master
);
1172 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1173 dev_name(&adev
->dev
));
1174 return AE_NO_MEMORY
;
1177 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1180 INIT_LIST_HEAD(&resource_list
);
1181 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1182 acpi_spi_add_resource
, spi
);
1183 acpi_dev_free_resource_list(&resource_list
);
1185 if (ret
< 0 || !spi
->max_speed_hz
) {
1190 adev
->power
.flags
.ignore_parent
= true;
1191 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1192 if (spi_add_device(spi
)) {
1193 adev
->power
.flags
.ignore_parent
= false;
1194 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1195 dev_name(&adev
->dev
));
1202 static void acpi_register_spi_devices(struct spi_master
*master
)
1207 handle
= ACPI_HANDLE(master
->dev
.parent
);
1211 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1212 acpi_spi_add_device
, NULL
,
1214 if (ACPI_FAILURE(status
))
1215 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1218 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1219 #endif /* CONFIG_ACPI */
1221 static void spi_master_release(struct device
*dev
)
1223 struct spi_master
*master
;
1225 master
= container_of(dev
, struct spi_master
, dev
);
1229 static struct class spi_master_class
= {
1230 .name
= "spi_master",
1231 .owner
= THIS_MODULE
,
1232 .dev_release
= spi_master_release
,
1238 * spi_alloc_master - allocate SPI master controller
1239 * @dev: the controller, possibly using the platform_bus
1240 * @size: how much zeroed driver-private data to allocate; the pointer to this
1241 * memory is in the driver_data field of the returned device,
1242 * accessible with spi_master_get_devdata().
1243 * Context: can sleep
1245 * This call is used only by SPI master controller drivers, which are the
1246 * only ones directly touching chip registers. It's how they allocate
1247 * an spi_master structure, prior to calling spi_register_master().
1249 * This must be called from context that can sleep. It returns the SPI
1250 * master structure on success, else NULL.
1252 * The caller is responsible for assigning the bus number and initializing
1253 * the master's methods before calling spi_register_master(); and (after errors
1254 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1257 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1259 struct spi_master
*master
;
1264 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1268 device_initialize(&master
->dev
);
1269 master
->bus_num
= -1;
1270 master
->num_chipselect
= 1;
1271 master
->dev
.class = &spi_master_class
;
1272 master
->dev
.parent
= get_device(dev
);
1273 spi_master_set_devdata(master
, &master
[1]);
1277 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1280 static int of_spi_register_master(struct spi_master
*master
)
1283 struct device_node
*np
= master
->dev
.of_node
;
1288 nb
= of_gpio_named_count(np
, "cs-gpios");
1289 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1291 /* Return error only for an incorrectly formed cs-gpios property */
1292 if (nb
== 0 || nb
== -ENOENT
)
1297 cs
= devm_kzalloc(&master
->dev
,
1298 sizeof(int) * master
->num_chipselect
,
1300 master
->cs_gpios
= cs
;
1302 if (!master
->cs_gpios
)
1305 for (i
= 0; i
< master
->num_chipselect
; i
++)
1308 for (i
= 0; i
< nb
; i
++)
1309 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1314 static int of_spi_register_master(struct spi_master
*master
)
1321 * spi_register_master - register SPI master controller
1322 * @master: initialized master, originally from spi_alloc_master()
1323 * Context: can sleep
1325 * SPI master controllers connect to their drivers using some non-SPI bus,
1326 * such as the platform bus. The final stage of probe() in that code
1327 * includes calling spi_register_master() to hook up to this SPI bus glue.
1329 * SPI controllers use board specific (often SOC specific) bus numbers,
1330 * and board-specific addressing for SPI devices combines those numbers
1331 * with chip select numbers. Since SPI does not directly support dynamic
1332 * device identification, boards need configuration tables telling which
1333 * chip is at which address.
1335 * This must be called from context that can sleep. It returns zero on
1336 * success, else a negative error code (dropping the master's refcount).
1337 * After a successful return, the caller is responsible for calling
1338 * spi_unregister_master().
1340 int spi_register_master(struct spi_master
*master
)
1342 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1343 struct device
*dev
= master
->dev
.parent
;
1344 struct boardinfo
*bi
;
1345 int status
= -ENODEV
;
1351 status
= of_spi_register_master(master
);
1355 /* even if it's just one always-selected device, there must
1356 * be at least one chipselect
1358 if (master
->num_chipselect
== 0)
1361 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1362 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1364 /* convention: dynamically assigned bus IDs count down from the max */
1365 if (master
->bus_num
< 0) {
1366 /* FIXME switch to an IDR based scheme, something like
1367 * I2C now uses, so we can't run out of "dynamic" IDs
1369 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1373 spin_lock_init(&master
->bus_lock_spinlock
);
1374 mutex_init(&master
->bus_lock_mutex
);
1375 master
->bus_lock_flag
= 0;
1376 init_completion(&master
->xfer_completion
);
1378 /* register the device, then userspace will see it.
1379 * registration fails if the bus ID is in use.
1381 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1382 status
= device_add(&master
->dev
);
1385 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1386 dynamic
? " (dynamic)" : "");
1388 /* If we're using a queued driver, start the queue */
1389 if (master
->transfer
)
1390 dev_info(dev
, "master is unqueued, this is deprecated\n");
1392 status
= spi_master_initialize_queue(master
);
1394 device_del(&master
->dev
);
1399 mutex_lock(&board_lock
);
1400 list_add_tail(&master
->list
, &spi_master_list
);
1401 list_for_each_entry(bi
, &board_list
, list
)
1402 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1403 mutex_unlock(&board_lock
);
1405 /* Register devices from the device tree and ACPI */
1406 of_register_spi_devices(master
);
1407 acpi_register_spi_devices(master
);
1411 EXPORT_SYMBOL_GPL(spi_register_master
);
1413 static void devm_spi_unregister(struct device
*dev
, void *res
)
1415 spi_unregister_master(*(struct spi_master
**)res
);
1419 * dev_spi_register_master - register managed SPI master controller
1420 * @dev: device managing SPI master
1421 * @master: initialized master, originally from spi_alloc_master()
1422 * Context: can sleep
1424 * Register a SPI device as with spi_register_master() which will
1425 * automatically be unregister
1427 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1429 struct spi_master
**ptr
;
1432 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1436 ret
= spi_register_master(master
);
1439 devres_add(dev
, ptr
);
1446 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1448 static int __unregister(struct device
*dev
, void *null
)
1450 spi_unregister_device(to_spi_device(dev
));
1455 * spi_unregister_master - unregister SPI master controller
1456 * @master: the master being unregistered
1457 * Context: can sleep
1459 * This call is used only by SPI master controller drivers, which are the
1460 * only ones directly touching chip registers.
1462 * This must be called from context that can sleep.
1464 void spi_unregister_master(struct spi_master
*master
)
1468 if (master
->queued
) {
1469 if (spi_destroy_queue(master
))
1470 dev_err(&master
->dev
, "queue remove failed\n");
1473 mutex_lock(&board_lock
);
1474 list_del(&master
->list
);
1475 mutex_unlock(&board_lock
);
1477 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1478 device_unregister(&master
->dev
);
1480 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1482 int spi_master_suspend(struct spi_master
*master
)
1486 /* Basically no-ops for non-queued masters */
1487 if (!master
->queued
)
1490 ret
= spi_stop_queue(master
);
1492 dev_err(&master
->dev
, "queue stop failed\n");
1496 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1498 int spi_master_resume(struct spi_master
*master
)
1502 if (!master
->queued
)
1505 ret
= spi_start_queue(master
);
1507 dev_err(&master
->dev
, "queue restart failed\n");
1511 EXPORT_SYMBOL_GPL(spi_master_resume
);
1513 static int __spi_master_match(struct device
*dev
, const void *data
)
1515 struct spi_master
*m
;
1516 const u16
*bus_num
= data
;
1518 m
= container_of(dev
, struct spi_master
, dev
);
1519 return m
->bus_num
== *bus_num
;
1523 * spi_busnum_to_master - look up master associated with bus_num
1524 * @bus_num: the master's bus number
1525 * Context: can sleep
1527 * This call may be used with devices that are registered after
1528 * arch init time. It returns a refcounted pointer to the relevant
1529 * spi_master (which the caller must release), or NULL if there is
1530 * no such master registered.
1532 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1535 struct spi_master
*master
= NULL
;
1537 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1538 __spi_master_match
);
1540 master
= container_of(dev
, struct spi_master
, dev
);
1541 /* reference got in class_find_device */
1544 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1547 /*-------------------------------------------------------------------------*/
1549 /* Core methods for SPI master protocol drivers. Some of the
1550 * other core methods are currently defined as inline functions.
1554 * spi_setup - setup SPI mode and clock rate
1555 * @spi: the device whose settings are being modified
1556 * Context: can sleep, and no requests are queued to the device
1558 * SPI protocol drivers may need to update the transfer mode if the
1559 * device doesn't work with its default. They may likewise need
1560 * to update clock rates or word sizes from initial values. This function
1561 * changes those settings, and must be called from a context that can sleep.
1562 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1563 * effect the next time the device is selected and data is transferred to
1564 * or from it. When this function returns, the spi device is deselected.
1566 * Note that this call will fail if the protocol driver specifies an option
1567 * that the underlying controller or its driver does not support. For
1568 * example, not all hardware supports wire transfers using nine bit words,
1569 * LSB-first wire encoding, or active-high chipselects.
1571 int spi_setup(struct spi_device
*spi
)
1576 /* check mode to prevent that DUAL and QUAD set at the same time
1578 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
1579 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
1581 "setup: can not select dual and quad at the same time\n");
1584 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1586 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
1587 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
1589 /* help drivers fail *cleanly* when they need options
1590 * that aren't supported with their current master
1592 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
1594 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
1599 if (!spi
->bits_per_word
)
1600 spi
->bits_per_word
= 8;
1602 if (spi
->master
->setup
)
1603 status
= spi
->master
->setup(spi
);
1605 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1606 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
1607 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
1608 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
1609 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
1610 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
1611 spi
->bits_per_word
, spi
->max_speed_hz
,
1616 EXPORT_SYMBOL_GPL(spi_setup
);
1618 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
1620 struct spi_master
*master
= spi
->master
;
1621 struct spi_transfer
*xfer
;
1623 if (list_empty(&message
->transfers
))
1625 if (!message
->complete
)
1628 /* Half-duplex links include original MicroWire, and ones with
1629 * only one data pin like SPI_3WIRE (switches direction) or where
1630 * either MOSI or MISO is missing. They can also be caused by
1631 * software limitations.
1633 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1634 || (spi
->mode
& SPI_3WIRE
)) {
1635 unsigned flags
= master
->flags
;
1637 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1638 if (xfer
->rx_buf
&& xfer
->tx_buf
)
1640 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
1642 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
1648 * Set transfer bits_per_word and max speed as spi device default if
1649 * it is not set for this transfer.
1650 * Set transfer tx_nbits and rx_nbits as single transfer default
1651 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1653 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1654 message
->frame_length
+= xfer
->len
;
1655 if (!xfer
->bits_per_word
)
1656 xfer
->bits_per_word
= spi
->bits_per_word
;
1657 if (!xfer
->speed_hz
) {
1658 xfer
->speed_hz
= spi
->max_speed_hz
;
1659 if (master
->max_speed_hz
&&
1660 xfer
->speed_hz
> master
->max_speed_hz
)
1661 xfer
->speed_hz
= master
->max_speed_hz
;
1664 if (master
->bits_per_word_mask
) {
1665 /* Only 32 bits fit in the mask */
1666 if (xfer
->bits_per_word
> 32)
1668 if (!(master
->bits_per_word_mask
&
1669 BIT(xfer
->bits_per_word
- 1)))
1673 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
1674 xfer
->speed_hz
< master
->min_speed_hz
)
1676 if (xfer
->speed_hz
&& master
->max_speed_hz
&&
1677 xfer
->speed_hz
> master
->max_speed_hz
)
1680 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
1681 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
1682 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
1683 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
1684 /* check transfer tx/rx_nbits:
1685 * 1. check the value matches one of single, dual and quad
1686 * 2. check tx/rx_nbits match the mode in spi_device
1689 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
1690 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
1691 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
1693 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
1694 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
1696 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
1697 !(spi
->mode
& SPI_TX_QUAD
))
1700 /* check transfer rx_nbits */
1702 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
1703 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
1704 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
1706 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
1707 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
1709 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
1710 !(spi
->mode
& SPI_RX_QUAD
))
1715 message
->status
= -EINPROGRESS
;
1720 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1722 struct spi_master
*master
= spi
->master
;
1726 trace_spi_message_submit(message
);
1728 return master
->transfer(spi
, message
);
1732 * spi_async - asynchronous SPI transfer
1733 * @spi: device with which data will be exchanged
1734 * @message: describes the data transfers, including completion callback
1735 * Context: any (irqs may be blocked, etc)
1737 * This call may be used in_irq and other contexts which can't sleep,
1738 * as well as from task contexts which can sleep.
1740 * The completion callback is invoked in a context which can't sleep.
1741 * Before that invocation, the value of message->status is undefined.
1742 * When the callback is issued, message->status holds either zero (to
1743 * indicate complete success) or a negative error code. After that
1744 * callback returns, the driver which issued the transfer request may
1745 * deallocate the associated memory; it's no longer in use by any SPI
1746 * core or controller driver code.
1748 * Note that although all messages to a spi_device are handled in
1749 * FIFO order, messages may go to different devices in other orders.
1750 * Some device might be higher priority, or have various "hard" access
1751 * time requirements, for example.
1753 * On detection of any fault during the transfer, processing of
1754 * the entire message is aborted, and the device is deselected.
1755 * Until returning from the associated message completion callback,
1756 * no other spi_message queued to that device will be processed.
1757 * (This rule applies equally to all the synchronous transfer calls,
1758 * which are wrappers around this core asynchronous primitive.)
1760 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1762 struct spi_master
*master
= spi
->master
;
1764 unsigned long flags
;
1766 ret
= __spi_validate(spi
, message
);
1770 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1772 if (master
->bus_lock_flag
)
1775 ret
= __spi_async(spi
, message
);
1777 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1781 EXPORT_SYMBOL_GPL(spi_async
);
1784 * spi_async_locked - version of spi_async with exclusive bus usage
1785 * @spi: device with which data will be exchanged
1786 * @message: describes the data transfers, including completion callback
1787 * Context: any (irqs may be blocked, etc)
1789 * This call may be used in_irq and other contexts which can't sleep,
1790 * as well as from task contexts which can sleep.
1792 * The completion callback is invoked in a context which can't sleep.
1793 * Before that invocation, the value of message->status is undefined.
1794 * When the callback is issued, message->status holds either zero (to
1795 * indicate complete success) or a negative error code. After that
1796 * callback returns, the driver which issued the transfer request may
1797 * deallocate the associated memory; it's no longer in use by any SPI
1798 * core or controller driver code.
1800 * Note that although all messages to a spi_device are handled in
1801 * FIFO order, messages may go to different devices in other orders.
1802 * Some device might be higher priority, or have various "hard" access
1803 * time requirements, for example.
1805 * On detection of any fault during the transfer, processing of
1806 * the entire message is aborted, and the device is deselected.
1807 * Until returning from the associated message completion callback,
1808 * no other spi_message queued to that device will be processed.
1809 * (This rule applies equally to all the synchronous transfer calls,
1810 * which are wrappers around this core asynchronous primitive.)
1812 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
1814 struct spi_master
*master
= spi
->master
;
1816 unsigned long flags
;
1818 ret
= __spi_validate(spi
, message
);
1822 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1824 ret
= __spi_async(spi
, message
);
1826 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1831 EXPORT_SYMBOL_GPL(spi_async_locked
);
1834 /*-------------------------------------------------------------------------*/
1836 /* Utility methods for SPI master protocol drivers, layered on
1837 * top of the core. Some other utility methods are defined as
1841 static void spi_complete(void *arg
)
1846 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
1849 DECLARE_COMPLETION_ONSTACK(done
);
1851 struct spi_master
*master
= spi
->master
;
1853 message
->complete
= spi_complete
;
1854 message
->context
= &done
;
1857 mutex_lock(&master
->bus_lock_mutex
);
1859 status
= spi_async_locked(spi
, message
);
1862 mutex_unlock(&master
->bus_lock_mutex
);
1865 wait_for_completion(&done
);
1866 status
= message
->status
;
1868 message
->context
= NULL
;
1873 * spi_sync - blocking/synchronous SPI data transfers
1874 * @spi: device with which data will be exchanged
1875 * @message: describes the data transfers
1876 * Context: can sleep
1878 * This call may only be used from a context that may sleep. The sleep
1879 * is non-interruptible, and has no timeout. Low-overhead controller
1880 * drivers may DMA directly into and out of the message buffers.
1882 * Note that the SPI device's chip select is active during the message,
1883 * and then is normally disabled between messages. Drivers for some
1884 * frequently-used devices may want to minimize costs of selecting a chip,
1885 * by leaving it selected in anticipation that the next message will go
1886 * to the same chip. (That may increase power usage.)
1888 * Also, the caller is guaranteeing that the memory associated with the
1889 * message will not be freed before this call returns.
1891 * It returns zero on success, else a negative error code.
1893 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
1895 return __spi_sync(spi
, message
, 0);
1897 EXPORT_SYMBOL_GPL(spi_sync
);
1900 * spi_sync_locked - version of spi_sync with exclusive bus usage
1901 * @spi: device with which data will be exchanged
1902 * @message: describes the data transfers
1903 * Context: can sleep
1905 * This call may only be used from a context that may sleep. The sleep
1906 * is non-interruptible, and has no timeout. Low-overhead controller
1907 * drivers may DMA directly into and out of the message buffers.
1909 * This call should be used by drivers that require exclusive access to the
1910 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1911 * be released by a spi_bus_unlock call when the exclusive access is over.
1913 * It returns zero on success, else a negative error code.
1915 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
1917 return __spi_sync(spi
, message
, 1);
1919 EXPORT_SYMBOL_GPL(spi_sync_locked
);
1922 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1923 * @master: SPI bus master that should be locked for exclusive bus access
1924 * Context: can sleep
1926 * This call may only be used from a context that may sleep. The sleep
1927 * is non-interruptible, and has no timeout.
1929 * This call should be used by drivers that require exclusive access to the
1930 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1931 * exclusive access is over. Data transfer must be done by spi_sync_locked
1932 * and spi_async_locked calls when the SPI bus lock is held.
1934 * It returns zero on success, else a negative error code.
1936 int spi_bus_lock(struct spi_master
*master
)
1938 unsigned long flags
;
1940 mutex_lock(&master
->bus_lock_mutex
);
1942 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1943 master
->bus_lock_flag
= 1;
1944 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1946 /* mutex remains locked until spi_bus_unlock is called */
1950 EXPORT_SYMBOL_GPL(spi_bus_lock
);
1953 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1954 * @master: SPI bus master that was locked for exclusive bus access
1955 * Context: can sleep
1957 * This call may only be used from a context that may sleep. The sleep
1958 * is non-interruptible, and has no timeout.
1960 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1963 * It returns zero on success, else a negative error code.
1965 int spi_bus_unlock(struct spi_master
*master
)
1967 master
->bus_lock_flag
= 0;
1969 mutex_unlock(&master
->bus_lock_mutex
);
1973 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
1975 /* portable code must never pass more than 32 bytes */
1976 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
1981 * spi_write_then_read - SPI synchronous write followed by read
1982 * @spi: device with which data will be exchanged
1983 * @txbuf: data to be written (need not be dma-safe)
1984 * @n_tx: size of txbuf, in bytes
1985 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1986 * @n_rx: size of rxbuf, in bytes
1987 * Context: can sleep
1989 * This performs a half duplex MicroWire style transaction with the
1990 * device, sending txbuf and then reading rxbuf. The return value
1991 * is zero for success, else a negative errno status code.
1992 * This call may only be used from a context that may sleep.
1994 * Parameters to this routine are always copied using a small buffer;
1995 * portable code should never use this for more than 32 bytes.
1996 * Performance-sensitive or bulk transfer code should instead use
1997 * spi_{async,sync}() calls with dma-safe buffers.
1999 int spi_write_then_read(struct spi_device
*spi
,
2000 const void *txbuf
, unsigned n_tx
,
2001 void *rxbuf
, unsigned n_rx
)
2003 static DEFINE_MUTEX(lock
);
2006 struct spi_message message
;
2007 struct spi_transfer x
[2];
2010 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2011 * copying here, (as a pure convenience thing), but we can
2012 * keep heap costs out of the hot path unless someone else is
2013 * using the pre-allocated buffer or the transfer is too large.
2015 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2016 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2017 GFP_KERNEL
| GFP_DMA
);
2024 spi_message_init(&message
);
2025 memset(x
, 0, sizeof(x
));
2028 spi_message_add_tail(&x
[0], &message
);
2032 spi_message_add_tail(&x
[1], &message
);
2035 memcpy(local_buf
, txbuf
, n_tx
);
2036 x
[0].tx_buf
= local_buf
;
2037 x
[1].rx_buf
= local_buf
+ n_tx
;
2040 status
= spi_sync(spi
, &message
);
2042 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
2044 if (x
[0].tx_buf
== buf
)
2045 mutex_unlock(&lock
);
2051 EXPORT_SYMBOL_GPL(spi_write_then_read
);
2053 /*-------------------------------------------------------------------------*/
2055 static int __init
spi_init(void)
2059 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
2065 status
= bus_register(&spi_bus_type
);
2069 status
= class_register(&spi_master_class
);
2075 bus_unregister(&spi_bus_type
);
2083 /* board_info is normally registered in arch_initcall(),
2084 * but even essential drivers wait till later
2086 * REVISIT only boardinfo really needs static linking. the rest (device and
2087 * driver registration) _could_ be dynamically linked (modular) ... costs
2088 * include needing to have boardinfo data structures be much more public.
2090 postcore_initcall(spi_init
);