Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / drivers / tty / serial / amba-pl011.c
blobd58783d364e3a9443a7c2723e635467e54b014cd
1 /*
2 * Driver for AMBA serial ports
4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 * Copyright 1999 ARM Limited
7 * Copyright (C) 2000 Deep Blue Solutions Ltd.
8 * Copyright (C) 2010 ST-Ericsson SA
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 * This is a generic driver for ARM AMBA-type serial ports. They
25 * have a lot of 16550-like features, but are not register compatible.
26 * Note that although they do have CTS, DCD and DSR inputs, they do
27 * not have an RI input, nor do they have DTR or RTS outputs. If
28 * required, these have to be supplied via some other means (eg, GPIO)
29 * and hooked into this driver.
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
62 #define UART_NR 14
64 #define SERIAL_AMBA_MAJOR 204
65 #define SERIAL_AMBA_MINOR 64
66 #define SERIAL_AMBA_NR UART_NR
68 #define AMBA_ISR_PASS_LIMIT 256
70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX (1 << 16)
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 unsigned int ifls;
76 unsigned int lcrh_tx;
77 unsigned int lcrh_rx;
78 bool oversampling;
79 bool dma_threshold;
80 bool cts_event_workaround;
82 unsigned int (*get_fifosize)(struct amba_device *dev);
85 static unsigned int get_fifosize_arm(struct amba_device *dev)
87 return amba_rev(dev) < 3 ? 16 : 32;
90 static struct vendor_data vendor_arm = {
91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
92 .lcrh_tx = UART011_LCRH,
93 .lcrh_rx = UART011_LCRH,
94 .oversampling = false,
95 .dma_threshold = false,
96 .cts_event_workaround = false,
97 .get_fifosize = get_fifosize_arm,
100 static unsigned int get_fifosize_st(struct amba_device *dev)
102 return 64;
105 static struct vendor_data vendor_st = {
106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
107 .lcrh_tx = ST_UART011_LCRH_TX,
108 .lcrh_rx = ST_UART011_LCRH_RX,
109 .oversampling = true,
110 .dma_threshold = true,
111 .cts_event_workaround = true,
112 .get_fifosize = get_fifosize_st,
115 /* Deals with DMA transactions */
117 struct pl011_sgbuf {
118 struct scatterlist sg;
119 char *buf;
122 struct pl011_dmarx_data {
123 struct dma_chan *chan;
124 struct completion complete;
125 bool use_buf_b;
126 struct pl011_sgbuf sgbuf_a;
127 struct pl011_sgbuf sgbuf_b;
128 dma_cookie_t cookie;
129 bool running;
130 struct timer_list timer;
131 unsigned int last_residue;
132 unsigned long last_jiffies;
133 bool auto_poll_rate;
134 unsigned int poll_rate;
135 unsigned int poll_timeout;
138 struct pl011_dmatx_data {
139 struct dma_chan *chan;
140 struct scatterlist sg;
141 char *buf;
142 bool queued;
146 * We wrap our port structure around the generic uart_port.
148 struct uart_amba_port {
149 struct uart_port port;
150 struct clk *clk;
151 const struct vendor_data *vendor;
152 unsigned int dmacr; /* dma control reg */
153 unsigned int im; /* interrupt mask */
154 unsigned int old_status;
155 unsigned int fifosize; /* vendor-specific */
156 unsigned int lcrh_tx; /* vendor-specific */
157 unsigned int lcrh_rx; /* vendor-specific */
158 unsigned int old_cr; /* state during shutdown */
159 bool autorts;
160 char type[12];
161 #ifdef CONFIG_DMA_ENGINE
162 /* DMA stuff */
163 bool using_tx_dma;
164 bool using_rx_dma;
165 struct pl011_dmarx_data dmarx;
166 struct pl011_dmatx_data dmatx;
167 #endif
171 * Reads up to 256 characters from the FIFO or until it's empty and
172 * inserts them into the TTY layer. Returns the number of characters
173 * read from the FIFO.
175 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
177 u16 status, ch;
178 unsigned int flag, max_count = 256;
179 int fifotaken = 0;
181 while (max_count--) {
182 status = readw(uap->port.membase + UART01x_FR);
183 if (status & UART01x_FR_RXFE)
184 break;
186 /* Take chars from the FIFO and update status */
187 ch = readw(uap->port.membase + UART01x_DR) |
188 UART_DUMMY_DR_RX;
189 flag = TTY_NORMAL;
190 uap->port.icount.rx++;
191 fifotaken++;
193 if (unlikely(ch & UART_DR_ERROR)) {
194 if (ch & UART011_DR_BE) {
195 ch &= ~(UART011_DR_FE | UART011_DR_PE);
196 uap->port.icount.brk++;
197 if (uart_handle_break(&uap->port))
198 continue;
199 } else if (ch & UART011_DR_PE)
200 uap->port.icount.parity++;
201 else if (ch & UART011_DR_FE)
202 uap->port.icount.frame++;
203 if (ch & UART011_DR_OE)
204 uap->port.icount.overrun++;
206 ch &= uap->port.read_status_mask;
208 if (ch & UART011_DR_BE)
209 flag = TTY_BREAK;
210 else if (ch & UART011_DR_PE)
211 flag = TTY_PARITY;
212 else if (ch & UART011_DR_FE)
213 flag = TTY_FRAME;
216 if (uart_handle_sysrq_char(&uap->port, ch & 255))
217 continue;
219 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
222 return fifotaken;
227 * All the DMA operation mode stuff goes inside this ifdef.
228 * This assumes that you have a generic DMA device interface,
229 * no custom DMA interfaces are supported.
231 #ifdef CONFIG_DMA_ENGINE
233 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
235 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
236 enum dma_data_direction dir)
238 dma_addr_t dma_addr;
240 sg->buf = dma_alloc_coherent(chan->device->dev,
241 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
242 if (!sg->buf)
243 return -ENOMEM;
245 sg_init_table(&sg->sg, 1);
246 sg_set_page(&sg->sg, phys_to_page(dma_addr),
247 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
248 sg_dma_address(&sg->sg) = dma_addr;
250 return 0;
253 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
254 enum dma_data_direction dir)
256 if (sg->buf) {
257 dma_free_coherent(chan->device->dev,
258 PL011_DMA_BUFFER_SIZE, sg->buf,
259 sg_dma_address(&sg->sg));
263 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
265 /* DMA is the sole user of the platform data right now */
266 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
267 struct dma_slave_config tx_conf = {
268 .dst_addr = uap->port.mapbase + UART01x_DR,
269 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
270 .direction = DMA_MEM_TO_DEV,
271 .dst_maxburst = uap->fifosize >> 1,
272 .device_fc = false,
274 struct dma_chan *chan;
275 dma_cap_mask_t mask;
277 chan = dma_request_slave_channel(dev, "tx");
279 if (!chan) {
280 /* We need platform data */
281 if (!plat || !plat->dma_filter) {
282 dev_info(uap->port.dev, "no DMA platform data\n");
283 return;
286 /* Try to acquire a generic DMA engine slave TX channel */
287 dma_cap_zero(mask);
288 dma_cap_set(DMA_SLAVE, mask);
290 chan = dma_request_channel(mask, plat->dma_filter,
291 plat->dma_tx_param);
292 if (!chan) {
293 dev_err(uap->port.dev, "no TX DMA channel!\n");
294 return;
298 dmaengine_slave_config(chan, &tx_conf);
299 uap->dmatx.chan = chan;
301 dev_info(uap->port.dev, "DMA channel TX %s\n",
302 dma_chan_name(uap->dmatx.chan));
304 /* Optionally make use of an RX channel as well */
305 chan = dma_request_slave_channel(dev, "rx");
307 if (!chan && plat->dma_rx_param) {
308 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
310 if (!chan) {
311 dev_err(uap->port.dev, "no RX DMA channel!\n");
312 return;
316 if (chan) {
317 struct dma_slave_config rx_conf = {
318 .src_addr = uap->port.mapbase + UART01x_DR,
319 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
320 .direction = DMA_DEV_TO_MEM,
321 .src_maxburst = uap->fifosize >> 1,
322 .device_fc = false,
325 dmaengine_slave_config(chan, &rx_conf);
326 uap->dmarx.chan = chan;
328 if (plat && plat->dma_rx_poll_enable) {
329 /* Set poll rate if specified. */
330 if (plat->dma_rx_poll_rate) {
331 uap->dmarx.auto_poll_rate = false;
332 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
333 } else {
335 * 100 ms defaults to poll rate if not
336 * specified. This will be adjusted with
337 * the baud rate at set_termios.
339 uap->dmarx.auto_poll_rate = true;
340 uap->dmarx.poll_rate = 100;
342 /* 3 secs defaults poll_timeout if not specified. */
343 if (plat->dma_rx_poll_timeout)
344 uap->dmarx.poll_timeout =
345 plat->dma_rx_poll_timeout;
346 else
347 uap->dmarx.poll_timeout = 3000;
348 } else
349 uap->dmarx.auto_poll_rate = false;
351 dev_info(uap->port.dev, "DMA channel RX %s\n",
352 dma_chan_name(uap->dmarx.chan));
356 #ifndef MODULE
358 * Stack up the UARTs and let the above initcall be done at device
359 * initcall time, because the serial driver is called as an arch
360 * initcall, and at this time the DMA subsystem is not yet registered.
361 * At this point the driver will switch over to using DMA where desired.
363 struct dma_uap {
364 struct list_head node;
365 struct uart_amba_port *uap;
366 struct device *dev;
369 static LIST_HEAD(pl011_dma_uarts);
371 static int __init pl011_dma_initcall(void)
373 struct list_head *node, *tmp;
375 list_for_each_safe(node, tmp, &pl011_dma_uarts) {
376 struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
377 pl011_dma_probe_initcall(dmau->dev, dmau->uap);
378 list_del(node);
379 kfree(dmau);
381 return 0;
384 device_initcall(pl011_dma_initcall);
386 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
388 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
389 if (dmau) {
390 dmau->uap = uap;
391 dmau->dev = dev;
392 list_add_tail(&dmau->node, &pl011_dma_uarts);
395 #else
396 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
398 pl011_dma_probe_initcall(dev, uap);
400 #endif
402 static void pl011_dma_remove(struct uart_amba_port *uap)
404 /* TODO: remove the initcall if it has not yet executed */
405 if (uap->dmatx.chan)
406 dma_release_channel(uap->dmatx.chan);
407 if (uap->dmarx.chan)
408 dma_release_channel(uap->dmarx.chan);
411 /* Forward declare this for the refill routine */
412 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
415 * The current DMA TX buffer has been sent.
416 * Try to queue up another DMA buffer.
418 static void pl011_dma_tx_callback(void *data)
420 struct uart_amba_port *uap = data;
421 struct pl011_dmatx_data *dmatx = &uap->dmatx;
422 unsigned long flags;
423 u16 dmacr;
425 spin_lock_irqsave(&uap->port.lock, flags);
426 if (uap->dmatx.queued)
427 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
428 DMA_TO_DEVICE);
430 dmacr = uap->dmacr;
431 uap->dmacr = dmacr & ~UART011_TXDMAE;
432 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
435 * If TX DMA was disabled, it means that we've stopped the DMA for
436 * some reason (eg, XOFF received, or we want to send an X-char.)
438 * Note: we need to be careful here of a potential race between DMA
439 * and the rest of the driver - if the driver disables TX DMA while
440 * a TX buffer completing, we must update the tx queued status to
441 * get further refills (hence we check dmacr).
443 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
444 uart_circ_empty(&uap->port.state->xmit)) {
445 uap->dmatx.queued = false;
446 spin_unlock_irqrestore(&uap->port.lock, flags);
447 return;
450 if (pl011_dma_tx_refill(uap) <= 0) {
452 * We didn't queue a DMA buffer for some reason, but we
453 * have data pending to be sent. Re-enable the TX IRQ.
455 uap->im |= UART011_TXIM;
456 writew(uap->im, uap->port.membase + UART011_IMSC);
458 spin_unlock_irqrestore(&uap->port.lock, flags);
462 * Try to refill the TX DMA buffer.
463 * Locking: called with port lock held and IRQs disabled.
464 * Returns:
465 * 1 if we queued up a TX DMA buffer.
466 * 0 if we didn't want to handle this by DMA
467 * <0 on error
469 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
471 struct pl011_dmatx_data *dmatx = &uap->dmatx;
472 struct dma_chan *chan = dmatx->chan;
473 struct dma_device *dma_dev = chan->device;
474 struct dma_async_tx_descriptor *desc;
475 struct circ_buf *xmit = &uap->port.state->xmit;
476 unsigned int count;
479 * Try to avoid the overhead involved in using DMA if the
480 * transaction fits in the first half of the FIFO, by using
481 * the standard interrupt handling. This ensures that we
482 * issue a uart_write_wakeup() at the appropriate time.
484 count = uart_circ_chars_pending(xmit);
485 if (count < (uap->fifosize >> 1)) {
486 uap->dmatx.queued = false;
487 return 0;
491 * Bodge: don't send the last character by DMA, as this
492 * will prevent XON from notifying us to restart DMA.
494 count -= 1;
496 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
497 if (count > PL011_DMA_BUFFER_SIZE)
498 count = PL011_DMA_BUFFER_SIZE;
500 if (xmit->tail < xmit->head)
501 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
502 else {
503 size_t first = UART_XMIT_SIZE - xmit->tail;
504 size_t second = xmit->head;
506 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
507 if (second)
508 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
511 dmatx->sg.length = count;
513 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
514 uap->dmatx.queued = false;
515 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
516 return -EBUSY;
519 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
520 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
521 if (!desc) {
522 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
523 uap->dmatx.queued = false;
525 * If DMA cannot be used right now, we complete this
526 * transaction via IRQ and let the TTY layer retry.
528 dev_dbg(uap->port.dev, "TX DMA busy\n");
529 return -EBUSY;
532 /* Some data to go along to the callback */
533 desc->callback = pl011_dma_tx_callback;
534 desc->callback_param = uap;
536 /* All errors should happen at prepare time */
537 dmaengine_submit(desc);
539 /* Fire the DMA transaction */
540 dma_dev->device_issue_pending(chan);
542 uap->dmacr |= UART011_TXDMAE;
543 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
544 uap->dmatx.queued = true;
547 * Now we know that DMA will fire, so advance the ring buffer
548 * with the stuff we just dispatched.
550 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
551 uap->port.icount.tx += count;
553 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
554 uart_write_wakeup(&uap->port);
556 return 1;
560 * We received a transmit interrupt without a pending X-char but with
561 * pending characters.
562 * Locking: called with port lock held and IRQs disabled.
563 * Returns:
564 * false if we want to use PIO to transmit
565 * true if we queued a DMA buffer
567 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
569 if (!uap->using_tx_dma)
570 return false;
573 * If we already have a TX buffer queued, but received a
574 * TX interrupt, it will be because we've just sent an X-char.
575 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
577 if (uap->dmatx.queued) {
578 uap->dmacr |= UART011_TXDMAE;
579 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
580 uap->im &= ~UART011_TXIM;
581 writew(uap->im, uap->port.membase + UART011_IMSC);
582 return true;
586 * We don't have a TX buffer queued, so try to queue one.
587 * If we successfully queued a buffer, mask the TX IRQ.
589 if (pl011_dma_tx_refill(uap) > 0) {
590 uap->im &= ~UART011_TXIM;
591 writew(uap->im, uap->port.membase + UART011_IMSC);
592 return true;
594 return false;
598 * Stop the DMA transmit (eg, due to received XOFF).
599 * Locking: called with port lock held and IRQs disabled.
601 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
603 if (uap->dmatx.queued) {
604 uap->dmacr &= ~UART011_TXDMAE;
605 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
610 * Try to start a DMA transmit, or in the case of an XON/OFF
611 * character queued for send, try to get that character out ASAP.
612 * Locking: called with port lock held and IRQs disabled.
613 * Returns:
614 * false if we want the TX IRQ to be enabled
615 * true if we have a buffer queued
617 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
619 u16 dmacr;
621 if (!uap->using_tx_dma)
622 return false;
624 if (!uap->port.x_char) {
625 /* no X-char, try to push chars out in DMA mode */
626 bool ret = true;
628 if (!uap->dmatx.queued) {
629 if (pl011_dma_tx_refill(uap) > 0) {
630 uap->im &= ~UART011_TXIM;
631 ret = true;
632 } else {
633 uap->im |= UART011_TXIM;
634 ret = false;
636 writew(uap->im, uap->port.membase + UART011_IMSC);
637 } else if (!(uap->dmacr & UART011_TXDMAE)) {
638 uap->dmacr |= UART011_TXDMAE;
639 writew(uap->dmacr,
640 uap->port.membase + UART011_DMACR);
642 return ret;
646 * We have an X-char to send. Disable DMA to prevent it loading
647 * the TX fifo, and then see if we can stuff it into the FIFO.
649 dmacr = uap->dmacr;
650 uap->dmacr &= ~UART011_TXDMAE;
651 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
653 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
655 * No space in the FIFO, so enable the transmit interrupt
656 * so we know when there is space. Note that once we've
657 * loaded the character, we should just re-enable DMA.
659 return false;
662 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
663 uap->port.icount.tx++;
664 uap->port.x_char = 0;
666 /* Success - restore the DMA state */
667 uap->dmacr = dmacr;
668 writew(dmacr, uap->port.membase + UART011_DMACR);
670 return true;
674 * Flush the transmit buffer.
675 * Locking: called with port lock held and IRQs disabled.
677 static void pl011_dma_flush_buffer(struct uart_port *port)
678 __releases(&uap->port.lock)
679 __acquires(&uap->port.lock)
681 struct uart_amba_port *uap = (struct uart_amba_port *)port;
683 if (!uap->using_tx_dma)
684 return;
686 /* Avoid deadlock with the DMA engine callback */
687 spin_unlock(&uap->port.lock);
688 dmaengine_terminate_all(uap->dmatx.chan);
689 spin_lock(&uap->port.lock);
690 if (uap->dmatx.queued) {
691 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
692 DMA_TO_DEVICE);
693 uap->dmatx.queued = false;
694 uap->dmacr &= ~UART011_TXDMAE;
695 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
699 static void pl011_dma_rx_callback(void *data);
701 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
703 struct dma_chan *rxchan = uap->dmarx.chan;
704 struct pl011_dmarx_data *dmarx = &uap->dmarx;
705 struct dma_async_tx_descriptor *desc;
706 struct pl011_sgbuf *sgbuf;
708 if (!rxchan)
709 return -EIO;
711 /* Start the RX DMA job */
712 sgbuf = uap->dmarx.use_buf_b ?
713 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
714 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
715 DMA_DEV_TO_MEM,
716 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
718 * If the DMA engine is busy and cannot prepare a
719 * channel, no big deal, the driver will fall back
720 * to interrupt mode as a result of this error code.
722 if (!desc) {
723 uap->dmarx.running = false;
724 dmaengine_terminate_all(rxchan);
725 return -EBUSY;
728 /* Some data to go along to the callback */
729 desc->callback = pl011_dma_rx_callback;
730 desc->callback_param = uap;
731 dmarx->cookie = dmaengine_submit(desc);
732 dma_async_issue_pending(rxchan);
734 uap->dmacr |= UART011_RXDMAE;
735 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
736 uap->dmarx.running = true;
738 uap->im &= ~UART011_RXIM;
739 writew(uap->im, uap->port.membase + UART011_IMSC);
741 return 0;
745 * This is called when either the DMA job is complete, or
746 * the FIFO timeout interrupt occurred. This must be called
747 * with the port spinlock uap->port.lock held.
749 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
750 u32 pending, bool use_buf_b,
751 bool readfifo)
753 struct tty_port *port = &uap->port.state->port;
754 struct pl011_sgbuf *sgbuf = use_buf_b ?
755 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
756 int dma_count = 0;
757 u32 fifotaken = 0; /* only used for vdbg() */
759 struct pl011_dmarx_data *dmarx = &uap->dmarx;
760 int dmataken = 0;
762 if (uap->dmarx.poll_rate) {
763 /* The data can be taken by polling */
764 dmataken = sgbuf->sg.length - dmarx->last_residue;
765 /* Recalculate the pending size */
766 if (pending >= dmataken)
767 pending -= dmataken;
770 /* Pick the remain data from the DMA */
771 if (pending) {
774 * First take all chars in the DMA pipe, then look in the FIFO.
775 * Note that tty_insert_flip_buf() tries to take as many chars
776 * as it can.
778 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
779 pending);
781 uap->port.icount.rx += dma_count;
782 if (dma_count < pending)
783 dev_warn(uap->port.dev,
784 "couldn't insert all characters (TTY is full?)\n");
787 /* Reset the last_residue for Rx DMA poll */
788 if (uap->dmarx.poll_rate)
789 dmarx->last_residue = sgbuf->sg.length;
792 * Only continue with trying to read the FIFO if all DMA chars have
793 * been taken first.
795 if (dma_count == pending && readfifo) {
796 /* Clear any error flags */
797 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
798 uap->port.membase + UART011_ICR);
801 * If we read all the DMA'd characters, and we had an
802 * incomplete buffer, that could be due to an rx error, or
803 * maybe we just timed out. Read any pending chars and check
804 * the error status.
806 * Error conditions will only occur in the FIFO, these will
807 * trigger an immediate interrupt and stop the DMA job, so we
808 * will always find the error in the FIFO, never in the DMA
809 * buffer.
811 fifotaken = pl011_fifo_to_tty(uap);
814 spin_unlock(&uap->port.lock);
815 dev_vdbg(uap->port.dev,
816 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
817 dma_count, fifotaken);
818 tty_flip_buffer_push(port);
819 spin_lock(&uap->port.lock);
822 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
824 struct pl011_dmarx_data *dmarx = &uap->dmarx;
825 struct dma_chan *rxchan = dmarx->chan;
826 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
827 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
828 size_t pending;
829 struct dma_tx_state state;
830 enum dma_status dmastat;
833 * Pause the transfer so we can trust the current counter,
834 * do this before we pause the PL011 block, else we may
835 * overflow the FIFO.
837 if (dmaengine_pause(rxchan))
838 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
839 dmastat = rxchan->device->device_tx_status(rxchan,
840 dmarx->cookie, &state);
841 if (dmastat != DMA_PAUSED)
842 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
844 /* Disable RX DMA - incoming data will wait in the FIFO */
845 uap->dmacr &= ~UART011_RXDMAE;
846 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
847 uap->dmarx.running = false;
849 pending = sgbuf->sg.length - state.residue;
850 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
851 /* Then we terminate the transfer - we now know our residue */
852 dmaengine_terminate_all(rxchan);
855 * This will take the chars we have so far and insert
856 * into the framework.
858 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
860 /* Switch buffer & re-trigger DMA job */
861 dmarx->use_buf_b = !dmarx->use_buf_b;
862 if (pl011_dma_rx_trigger_dma(uap)) {
863 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
864 "fall back to interrupt mode\n");
865 uap->im |= UART011_RXIM;
866 writew(uap->im, uap->port.membase + UART011_IMSC);
870 static void pl011_dma_rx_callback(void *data)
872 struct uart_amba_port *uap = data;
873 struct pl011_dmarx_data *dmarx = &uap->dmarx;
874 struct dma_chan *rxchan = dmarx->chan;
875 bool lastbuf = dmarx->use_buf_b;
876 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
877 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
878 size_t pending;
879 struct dma_tx_state state;
880 int ret;
883 * This completion interrupt occurs typically when the
884 * RX buffer is totally stuffed but no timeout has yet
885 * occurred. When that happens, we just want the RX
886 * routine to flush out the secondary DMA buffer while
887 * we immediately trigger the next DMA job.
889 spin_lock_irq(&uap->port.lock);
891 * Rx data can be taken by the UART interrupts during
892 * the DMA irq handler. So we check the residue here.
894 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
895 pending = sgbuf->sg.length - state.residue;
896 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
897 /* Then we terminate the transfer - we now know our residue */
898 dmaengine_terminate_all(rxchan);
900 uap->dmarx.running = false;
901 dmarx->use_buf_b = !lastbuf;
902 ret = pl011_dma_rx_trigger_dma(uap);
904 pl011_dma_rx_chars(uap, pending, lastbuf, false);
905 spin_unlock_irq(&uap->port.lock);
907 * Do this check after we picked the DMA chars so we don't
908 * get some IRQ immediately from RX.
910 if (ret) {
911 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
912 "fall back to interrupt mode\n");
913 uap->im |= UART011_RXIM;
914 writew(uap->im, uap->port.membase + UART011_IMSC);
919 * Stop accepting received characters, when we're shutting down or
920 * suspending this port.
921 * Locking: called with port lock held and IRQs disabled.
923 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
925 /* FIXME. Just disable the DMA enable */
926 uap->dmacr &= ~UART011_RXDMAE;
927 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
931 * Timer handler for Rx DMA polling.
932 * Every polling, It checks the residue in the dma buffer and transfer
933 * data to the tty. Also, last_residue is updated for the next polling.
935 static void pl011_dma_rx_poll(unsigned long args)
937 struct uart_amba_port *uap = (struct uart_amba_port *)args;
938 struct tty_port *port = &uap->port.state->port;
939 struct pl011_dmarx_data *dmarx = &uap->dmarx;
940 struct dma_chan *rxchan = uap->dmarx.chan;
941 unsigned long flags = 0;
942 unsigned int dmataken = 0;
943 unsigned int size = 0;
944 struct pl011_sgbuf *sgbuf;
945 int dma_count;
946 struct dma_tx_state state;
948 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
949 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
950 if (likely(state.residue < dmarx->last_residue)) {
951 dmataken = sgbuf->sg.length - dmarx->last_residue;
952 size = dmarx->last_residue - state.residue;
953 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
954 size);
955 if (dma_count == size)
956 dmarx->last_residue = state.residue;
957 dmarx->last_jiffies = jiffies;
959 tty_flip_buffer_push(port);
962 * If no data is received in poll_timeout, the driver will fall back
963 * to interrupt mode. We will retrigger DMA at the first interrupt.
965 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
966 > uap->dmarx.poll_timeout) {
968 spin_lock_irqsave(&uap->port.lock, flags);
969 pl011_dma_rx_stop(uap);
970 uap->im |= UART011_RXIM;
971 writew(uap->im, uap->port.membase + UART011_IMSC);
972 spin_unlock_irqrestore(&uap->port.lock, flags);
974 uap->dmarx.running = false;
975 dmaengine_terminate_all(rxchan);
976 del_timer(&uap->dmarx.timer);
977 } else {
978 mod_timer(&uap->dmarx.timer,
979 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
983 static void pl011_dma_startup(struct uart_amba_port *uap)
985 int ret;
987 if (!uap->dmatx.chan)
988 return;
990 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
991 if (!uap->dmatx.buf) {
992 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
993 uap->port.fifosize = uap->fifosize;
994 return;
997 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
999 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1000 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1001 uap->using_tx_dma = true;
1003 if (!uap->dmarx.chan)
1004 goto skip_rx;
1006 /* Allocate and map DMA RX buffers */
1007 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1008 DMA_FROM_DEVICE);
1009 if (ret) {
1010 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1011 "RX buffer A", ret);
1012 goto skip_rx;
1015 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1016 DMA_FROM_DEVICE);
1017 if (ret) {
1018 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1019 "RX buffer B", ret);
1020 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1021 DMA_FROM_DEVICE);
1022 goto skip_rx;
1025 uap->using_rx_dma = true;
1027 skip_rx:
1028 /* Turn on DMA error (RX/TX will be enabled on demand) */
1029 uap->dmacr |= UART011_DMAONERR;
1030 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1033 * ST Micro variants has some specific dma burst threshold
1034 * compensation. Set this to 16 bytes, so burst will only
1035 * be issued above/below 16 bytes.
1037 if (uap->vendor->dma_threshold)
1038 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1039 uap->port.membase + ST_UART011_DMAWM);
1041 if (uap->using_rx_dma) {
1042 if (pl011_dma_rx_trigger_dma(uap))
1043 dev_dbg(uap->port.dev, "could not trigger initial "
1044 "RX DMA job, fall back to interrupt mode\n");
1045 if (uap->dmarx.poll_rate) {
1046 init_timer(&(uap->dmarx.timer));
1047 uap->dmarx.timer.function = pl011_dma_rx_poll;
1048 uap->dmarx.timer.data = (unsigned long)uap;
1049 mod_timer(&uap->dmarx.timer,
1050 jiffies +
1051 msecs_to_jiffies(uap->dmarx.poll_rate));
1052 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1053 uap->dmarx.last_jiffies = jiffies;
1058 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1060 if (!(uap->using_tx_dma || uap->using_rx_dma))
1061 return;
1063 /* Disable RX and TX DMA */
1064 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1065 barrier();
1067 spin_lock_irq(&uap->port.lock);
1068 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1069 writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1070 spin_unlock_irq(&uap->port.lock);
1072 if (uap->using_tx_dma) {
1073 /* In theory, this should already be done by pl011_dma_flush_buffer */
1074 dmaengine_terminate_all(uap->dmatx.chan);
1075 if (uap->dmatx.queued) {
1076 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1077 DMA_TO_DEVICE);
1078 uap->dmatx.queued = false;
1081 kfree(uap->dmatx.buf);
1082 uap->using_tx_dma = false;
1085 if (uap->using_rx_dma) {
1086 dmaengine_terminate_all(uap->dmarx.chan);
1087 /* Clean up the RX DMA */
1088 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1089 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1090 if (uap->dmarx.poll_rate)
1091 del_timer_sync(&uap->dmarx.timer);
1092 uap->using_rx_dma = false;
1096 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1098 return uap->using_rx_dma;
1101 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1103 return uap->using_rx_dma && uap->dmarx.running;
1106 #else
1107 /* Blank functions if the DMA engine is not available */
1108 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1112 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1116 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1120 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1124 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1126 return false;
1129 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1133 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1135 return false;
1138 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1142 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1146 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1148 return -EIO;
1151 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1153 return false;
1156 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1158 return false;
1161 #define pl011_dma_flush_buffer NULL
1162 #endif
1164 static void pl011_stop_tx(struct uart_port *port)
1166 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1168 uap->im &= ~UART011_TXIM;
1169 writew(uap->im, uap->port.membase + UART011_IMSC);
1170 pl011_dma_tx_stop(uap);
1173 static void pl011_start_tx(struct uart_port *port)
1175 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1177 if (!pl011_dma_tx_start(uap)) {
1178 uap->im |= UART011_TXIM;
1179 writew(uap->im, uap->port.membase + UART011_IMSC);
1183 static void pl011_stop_rx(struct uart_port *port)
1185 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1187 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1188 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1189 writew(uap->im, uap->port.membase + UART011_IMSC);
1191 pl011_dma_rx_stop(uap);
1194 static void pl011_enable_ms(struct uart_port *port)
1196 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1198 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1199 writew(uap->im, uap->port.membase + UART011_IMSC);
1202 static void pl011_rx_chars(struct uart_amba_port *uap)
1203 __releases(&uap->port.lock)
1204 __acquires(&uap->port.lock)
1206 pl011_fifo_to_tty(uap);
1208 spin_unlock(&uap->port.lock);
1209 tty_flip_buffer_push(&uap->port.state->port);
1211 * If we were temporarily out of DMA mode for a while,
1212 * attempt to switch back to DMA mode again.
1214 if (pl011_dma_rx_available(uap)) {
1215 if (pl011_dma_rx_trigger_dma(uap)) {
1216 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1217 "fall back to interrupt mode again\n");
1218 uap->im |= UART011_RXIM;
1219 writew(uap->im, uap->port.membase + UART011_IMSC);
1220 } else {
1221 #ifdef CONFIG_DMA_ENGINE
1222 /* Start Rx DMA poll */
1223 if (uap->dmarx.poll_rate) {
1224 uap->dmarx.last_jiffies = jiffies;
1225 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1226 mod_timer(&uap->dmarx.timer,
1227 jiffies +
1228 msecs_to_jiffies(uap->dmarx.poll_rate));
1230 #endif
1233 spin_lock(&uap->port.lock);
1236 static void pl011_tx_chars(struct uart_amba_port *uap)
1238 struct circ_buf *xmit = &uap->port.state->xmit;
1239 int count;
1241 if (uap->port.x_char) {
1242 writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1243 uap->port.icount.tx++;
1244 uap->port.x_char = 0;
1245 return;
1247 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1248 pl011_stop_tx(&uap->port);
1249 return;
1252 /* If we are using DMA mode, try to send some characters. */
1253 if (pl011_dma_tx_irq(uap))
1254 return;
1256 count = uap->fifosize >> 1;
1257 do {
1258 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1259 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1260 uap->port.icount.tx++;
1261 if (uart_circ_empty(xmit))
1262 break;
1263 } while (--count > 0);
1265 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1266 uart_write_wakeup(&uap->port);
1268 if (uart_circ_empty(xmit))
1269 pl011_stop_tx(&uap->port);
1272 static void pl011_modem_status(struct uart_amba_port *uap)
1274 unsigned int status, delta;
1276 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1278 delta = status ^ uap->old_status;
1279 uap->old_status = status;
1281 if (!delta)
1282 return;
1284 if (delta & UART01x_FR_DCD)
1285 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1287 if (delta & UART01x_FR_DSR)
1288 uap->port.icount.dsr++;
1290 if (delta & UART01x_FR_CTS)
1291 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1293 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1296 static irqreturn_t pl011_int(int irq, void *dev_id)
1298 struct uart_amba_port *uap = dev_id;
1299 unsigned long flags;
1300 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1301 int handled = 0;
1302 unsigned int dummy_read;
1304 spin_lock_irqsave(&uap->port.lock, flags);
1305 status = readw(uap->port.membase + UART011_MIS);
1306 if (status) {
1307 do {
1308 if (uap->vendor->cts_event_workaround) {
1309 /* workaround to make sure that all bits are unlocked.. */
1310 writew(0x00, uap->port.membase + UART011_ICR);
1313 * WA: introduce 26ns(1 uart clk) delay before W1C;
1314 * single apb access will incur 2 pclk(133.12Mhz) delay,
1315 * so add 2 dummy reads
1317 dummy_read = readw(uap->port.membase + UART011_ICR);
1318 dummy_read = readw(uap->port.membase + UART011_ICR);
1321 writew(status & ~(UART011_TXIS|UART011_RTIS|
1322 UART011_RXIS),
1323 uap->port.membase + UART011_ICR);
1325 if (status & (UART011_RTIS|UART011_RXIS)) {
1326 if (pl011_dma_rx_running(uap))
1327 pl011_dma_rx_irq(uap);
1328 else
1329 pl011_rx_chars(uap);
1331 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1332 UART011_CTSMIS|UART011_RIMIS))
1333 pl011_modem_status(uap);
1334 if (status & UART011_TXIS)
1335 pl011_tx_chars(uap);
1337 if (pass_counter-- == 0)
1338 break;
1340 status = readw(uap->port.membase + UART011_MIS);
1341 } while (status != 0);
1342 handled = 1;
1345 spin_unlock_irqrestore(&uap->port.lock, flags);
1347 return IRQ_RETVAL(handled);
1350 static unsigned int pl011_tx_empty(struct uart_port *port)
1352 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1353 unsigned int status = readw(uap->port.membase + UART01x_FR);
1354 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1357 static unsigned int pl011_get_mctrl(struct uart_port *port)
1359 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1360 unsigned int result = 0;
1361 unsigned int status = readw(uap->port.membase + UART01x_FR);
1363 #define TIOCMBIT(uartbit, tiocmbit) \
1364 if (status & uartbit) \
1365 result |= tiocmbit
1367 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1368 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1369 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1370 TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1371 #undef TIOCMBIT
1372 return result;
1375 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1377 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1378 unsigned int cr;
1380 cr = readw(uap->port.membase + UART011_CR);
1382 #define TIOCMBIT(tiocmbit, uartbit) \
1383 if (mctrl & tiocmbit) \
1384 cr |= uartbit; \
1385 else \
1386 cr &= ~uartbit
1388 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1389 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1390 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1391 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1392 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1394 if (uap->autorts) {
1395 /* We need to disable auto-RTS if we want to turn RTS off */
1396 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1398 #undef TIOCMBIT
1400 writew(cr, uap->port.membase + UART011_CR);
1403 static void pl011_break_ctl(struct uart_port *port, int break_state)
1405 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1406 unsigned long flags;
1407 unsigned int lcr_h;
1409 spin_lock_irqsave(&uap->port.lock, flags);
1410 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1411 if (break_state == -1)
1412 lcr_h |= UART01x_LCRH_BRK;
1413 else
1414 lcr_h &= ~UART01x_LCRH_BRK;
1415 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1416 spin_unlock_irqrestore(&uap->port.lock, flags);
1419 #ifdef CONFIG_CONSOLE_POLL
1421 static void pl011_quiesce_irqs(struct uart_port *port)
1423 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1424 unsigned char __iomem *regs = uap->port.membase;
1426 writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1428 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1429 * we simply mask it. start_tx() will unmask it.
1431 * Note we can race with start_tx(), and if the race happens, the
1432 * polling user might get another interrupt just after we clear it.
1433 * But it should be OK and can happen even w/o the race, e.g.
1434 * controller immediately got some new data and raised the IRQ.
1436 * And whoever uses polling routines assumes that it manages the device
1437 * (including tx queue), so we're also fine with start_tx()'s caller
1438 * side.
1440 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1443 static int pl011_get_poll_char(struct uart_port *port)
1445 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1446 unsigned int status;
1449 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1450 * debugger.
1452 pl011_quiesce_irqs(port);
1454 status = readw(uap->port.membase + UART01x_FR);
1455 if (status & UART01x_FR_RXFE)
1456 return NO_POLL_CHAR;
1458 return readw(uap->port.membase + UART01x_DR);
1461 static void pl011_put_poll_char(struct uart_port *port,
1462 unsigned char ch)
1464 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1466 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1467 barrier();
1469 writew(ch, uap->port.membase + UART01x_DR);
1472 #endif /* CONFIG_CONSOLE_POLL */
1474 static int pl011_hwinit(struct uart_port *port)
1476 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1477 int retval;
1479 /* Optionaly enable pins to be muxed in and configured */
1480 pinctrl_pm_select_default_state(port->dev);
1483 * Try to enable the clock producer.
1485 retval = clk_prepare_enable(uap->clk);
1486 if (retval)
1487 goto out;
1489 uap->port.uartclk = clk_get_rate(uap->clk);
1491 /* Clear pending error and receive interrupts */
1492 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1493 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1496 * Save interrupts enable mask, and enable RX interrupts in case if
1497 * the interrupt is used for NMI entry.
1499 uap->im = readw(uap->port.membase + UART011_IMSC);
1500 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1502 if (dev_get_platdata(uap->port.dev)) {
1503 struct amba_pl011_data *plat;
1505 plat = dev_get_platdata(uap->port.dev);
1506 if (plat->init)
1507 plat->init();
1509 return 0;
1510 out:
1511 return retval;
1514 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1516 writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1517 if (uap->lcrh_rx != uap->lcrh_tx) {
1518 int i;
1520 * Wait 10 PCLKs before writing LCRH_TX register,
1521 * to get this delay write read only register 10 times
1523 for (i = 0; i < 10; ++i)
1524 writew(0xff, uap->port.membase + UART011_MIS);
1525 writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1529 static int pl011_startup(struct uart_port *port)
1531 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1532 unsigned int cr, lcr_h, fbrd, ibrd;
1533 int retval;
1535 retval = pl011_hwinit(port);
1536 if (retval)
1537 goto clk_dis;
1539 writew(uap->im, uap->port.membase + UART011_IMSC);
1542 * Allocate the IRQ
1544 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1545 if (retval)
1546 goto clk_dis;
1548 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1551 * Provoke TX FIFO interrupt into asserting. Taking care to preserve
1552 * baud rate and data format specified by FBRD, IBRD and LCRH as the
1553 * UART may already be in use as a console.
1555 spin_lock_irq(&uap->port.lock);
1557 fbrd = readw(uap->port.membase + UART011_FBRD);
1558 ibrd = readw(uap->port.membase + UART011_IBRD);
1559 lcr_h = readw(uap->port.membase + uap->lcrh_rx);
1561 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1562 writew(cr, uap->port.membase + UART011_CR);
1563 writew(0, uap->port.membase + UART011_FBRD);
1564 writew(1, uap->port.membase + UART011_IBRD);
1565 pl011_write_lcr_h(uap, 0);
1566 writew(0, uap->port.membase + UART01x_DR);
1567 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1568 barrier();
1570 writew(fbrd, uap->port.membase + UART011_FBRD);
1571 writew(ibrd, uap->port.membase + UART011_IBRD);
1572 pl011_write_lcr_h(uap, lcr_h);
1574 /* restore RTS and DTR */
1575 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1576 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1577 writew(cr, uap->port.membase + UART011_CR);
1579 spin_unlock_irq(&uap->port.lock);
1582 * initialise the old status of the modem signals
1584 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1586 /* Startup DMA */
1587 pl011_dma_startup(uap);
1590 * Finally, enable interrupts, only timeouts when using DMA
1591 * if initial RX DMA job failed, start in interrupt mode
1592 * as well.
1594 spin_lock_irq(&uap->port.lock);
1595 /* Clear out any spuriously appearing RX interrupts */
1596 writew(UART011_RTIS | UART011_RXIS,
1597 uap->port.membase + UART011_ICR);
1598 uap->im = UART011_RTIM;
1599 if (!pl011_dma_rx_running(uap))
1600 uap->im |= UART011_RXIM;
1601 writew(uap->im, uap->port.membase + UART011_IMSC);
1602 spin_unlock_irq(&uap->port.lock);
1604 return 0;
1606 clk_dis:
1607 clk_disable_unprepare(uap->clk);
1608 return retval;
1611 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1612 unsigned int lcrh)
1614 unsigned long val;
1616 val = readw(uap->port.membase + lcrh);
1617 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1618 writew(val, uap->port.membase + lcrh);
1621 static void pl011_shutdown(struct uart_port *port)
1623 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1624 unsigned int cr;
1627 * disable all interrupts
1629 spin_lock_irq(&uap->port.lock);
1630 uap->im = 0;
1631 writew(uap->im, uap->port.membase + UART011_IMSC);
1632 writew(0xffff, uap->port.membase + UART011_ICR);
1633 spin_unlock_irq(&uap->port.lock);
1635 pl011_dma_shutdown(uap);
1638 * Free the interrupt
1640 free_irq(uap->port.irq, uap);
1643 * disable the port
1644 * disable the port. It should not disable RTS and DTR.
1645 * Also RTS and DTR state should be preserved to restore
1646 * it during startup().
1648 uap->autorts = false;
1649 spin_lock_irq(&uap->port.lock);
1650 cr = readw(uap->port.membase + UART011_CR);
1651 uap->old_cr = cr;
1652 cr &= UART011_CR_RTS | UART011_CR_DTR;
1653 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1654 writew(cr, uap->port.membase + UART011_CR);
1655 spin_unlock_irq(&uap->port.lock);
1658 * disable break condition and fifos
1660 pl011_shutdown_channel(uap, uap->lcrh_rx);
1661 if (uap->lcrh_rx != uap->lcrh_tx)
1662 pl011_shutdown_channel(uap, uap->lcrh_tx);
1665 * Shut down the clock producer
1667 clk_disable_unprepare(uap->clk);
1668 /* Optionally let pins go into sleep states */
1669 pinctrl_pm_select_sleep_state(port->dev);
1671 if (dev_get_platdata(uap->port.dev)) {
1672 struct amba_pl011_data *plat;
1674 plat = dev_get_platdata(uap->port.dev);
1675 if (plat->exit)
1676 plat->exit();
1681 static void
1682 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1683 struct ktermios *old)
1685 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1686 unsigned int lcr_h, old_cr;
1687 unsigned long flags;
1688 unsigned int baud, quot, clkdiv;
1690 if (uap->vendor->oversampling)
1691 clkdiv = 8;
1692 else
1693 clkdiv = 16;
1696 * Ask the core to calculate the divisor for us.
1698 baud = uart_get_baud_rate(port, termios, old, 0,
1699 port->uartclk / clkdiv);
1700 #ifdef CONFIG_DMA_ENGINE
1702 * Adjust RX DMA polling rate with baud rate if not specified.
1704 if (uap->dmarx.auto_poll_rate)
1705 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1706 #endif
1708 if (baud > port->uartclk/16)
1709 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1710 else
1711 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1713 switch (termios->c_cflag & CSIZE) {
1714 case CS5:
1715 lcr_h = UART01x_LCRH_WLEN_5;
1716 break;
1717 case CS6:
1718 lcr_h = UART01x_LCRH_WLEN_6;
1719 break;
1720 case CS7:
1721 lcr_h = UART01x_LCRH_WLEN_7;
1722 break;
1723 default: // CS8
1724 lcr_h = UART01x_LCRH_WLEN_8;
1725 break;
1727 if (termios->c_cflag & CSTOPB)
1728 lcr_h |= UART01x_LCRH_STP2;
1729 if (termios->c_cflag & PARENB) {
1730 lcr_h |= UART01x_LCRH_PEN;
1731 if (!(termios->c_cflag & PARODD))
1732 lcr_h |= UART01x_LCRH_EPS;
1734 if (uap->fifosize > 1)
1735 lcr_h |= UART01x_LCRH_FEN;
1737 spin_lock_irqsave(&port->lock, flags);
1740 * Update the per-port timeout.
1742 uart_update_timeout(port, termios->c_cflag, baud);
1744 port->read_status_mask = UART011_DR_OE | 255;
1745 if (termios->c_iflag & INPCK)
1746 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1747 if (termios->c_iflag & (BRKINT | PARMRK))
1748 port->read_status_mask |= UART011_DR_BE;
1751 * Characters to ignore
1753 port->ignore_status_mask = 0;
1754 if (termios->c_iflag & IGNPAR)
1755 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1756 if (termios->c_iflag & IGNBRK) {
1757 port->ignore_status_mask |= UART011_DR_BE;
1759 * If we're ignoring parity and break indicators,
1760 * ignore overruns too (for real raw support).
1762 if (termios->c_iflag & IGNPAR)
1763 port->ignore_status_mask |= UART011_DR_OE;
1767 * Ignore all characters if CREAD is not set.
1769 if ((termios->c_cflag & CREAD) == 0)
1770 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1772 if (UART_ENABLE_MS(port, termios->c_cflag))
1773 pl011_enable_ms(port);
1775 /* first, disable everything */
1776 old_cr = readw(port->membase + UART011_CR);
1777 writew(0, port->membase + UART011_CR);
1779 if (termios->c_cflag & CRTSCTS) {
1780 if (old_cr & UART011_CR_RTS)
1781 old_cr |= UART011_CR_RTSEN;
1783 old_cr |= UART011_CR_CTSEN;
1784 uap->autorts = true;
1785 } else {
1786 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1787 uap->autorts = false;
1790 if (uap->vendor->oversampling) {
1791 if (baud > port->uartclk / 16)
1792 old_cr |= ST_UART011_CR_OVSFACT;
1793 else
1794 old_cr &= ~ST_UART011_CR_OVSFACT;
1798 * Workaround for the ST Micro oversampling variants to
1799 * increase the bitrate slightly, by lowering the divisor,
1800 * to avoid delayed sampling of start bit at high speeds,
1801 * else we see data corruption.
1803 if (uap->vendor->oversampling) {
1804 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1805 quot -= 1;
1806 else if ((baud > 3250000) && (quot > 2))
1807 quot -= 2;
1809 /* Set baud rate */
1810 writew(quot & 0x3f, port->membase + UART011_FBRD);
1811 writew(quot >> 6, port->membase + UART011_IBRD);
1814 * ----------v----------v----------v----------v-----
1815 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1816 * UART011_FBRD & UART011_IBRD.
1817 * ----------^----------^----------^----------^-----
1819 pl011_write_lcr_h(uap, lcr_h);
1820 writew(old_cr, port->membase + UART011_CR);
1822 spin_unlock_irqrestore(&port->lock, flags);
1825 static const char *pl011_type(struct uart_port *port)
1827 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1828 return uap->port.type == PORT_AMBA ? uap->type : NULL;
1832 * Release the memory region(s) being used by 'port'
1834 static void pl011_release_port(struct uart_port *port)
1836 release_mem_region(port->mapbase, SZ_4K);
1840 * Request the memory region(s) being used by 'port'
1842 static int pl011_request_port(struct uart_port *port)
1844 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1845 != NULL ? 0 : -EBUSY;
1849 * Configure/autoconfigure the port.
1851 static void pl011_config_port(struct uart_port *port, int flags)
1853 if (flags & UART_CONFIG_TYPE) {
1854 port->type = PORT_AMBA;
1855 pl011_request_port(port);
1860 * verify the new serial_struct (for TIOCSSERIAL).
1862 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1864 int ret = 0;
1865 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1866 ret = -EINVAL;
1867 if (ser->irq < 0 || ser->irq >= nr_irqs)
1868 ret = -EINVAL;
1869 if (ser->baud_base < 9600)
1870 ret = -EINVAL;
1871 return ret;
1874 static struct uart_ops amba_pl011_pops = {
1875 .tx_empty = pl011_tx_empty,
1876 .set_mctrl = pl011_set_mctrl,
1877 .get_mctrl = pl011_get_mctrl,
1878 .stop_tx = pl011_stop_tx,
1879 .start_tx = pl011_start_tx,
1880 .stop_rx = pl011_stop_rx,
1881 .enable_ms = pl011_enable_ms,
1882 .break_ctl = pl011_break_ctl,
1883 .startup = pl011_startup,
1884 .shutdown = pl011_shutdown,
1885 .flush_buffer = pl011_dma_flush_buffer,
1886 .set_termios = pl011_set_termios,
1887 .type = pl011_type,
1888 .release_port = pl011_release_port,
1889 .request_port = pl011_request_port,
1890 .config_port = pl011_config_port,
1891 .verify_port = pl011_verify_port,
1892 #ifdef CONFIG_CONSOLE_POLL
1893 .poll_init = pl011_hwinit,
1894 .poll_get_char = pl011_get_poll_char,
1895 .poll_put_char = pl011_put_poll_char,
1896 #endif
1899 static struct uart_amba_port *amba_ports[UART_NR];
1901 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1903 static void pl011_console_putchar(struct uart_port *port, int ch)
1905 struct uart_amba_port *uap = (struct uart_amba_port *)port;
1907 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1908 barrier();
1909 writew(ch, uap->port.membase + UART01x_DR);
1912 static void
1913 pl011_console_write(struct console *co, const char *s, unsigned int count)
1915 struct uart_amba_port *uap = amba_ports[co->index];
1916 unsigned int status, old_cr, new_cr;
1917 unsigned long flags;
1918 int locked = 1;
1920 clk_enable(uap->clk);
1922 local_irq_save(flags);
1923 if (uap->port.sysrq)
1924 locked = 0;
1925 else if (oops_in_progress)
1926 locked = spin_trylock(&uap->port.lock);
1927 else
1928 spin_lock(&uap->port.lock);
1931 * First save the CR then disable the interrupts
1933 old_cr = readw(uap->port.membase + UART011_CR);
1934 new_cr = old_cr & ~UART011_CR_CTSEN;
1935 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1936 writew(new_cr, uap->port.membase + UART011_CR);
1938 uart_console_write(&uap->port, s, count, pl011_console_putchar);
1941 * Finally, wait for transmitter to become empty
1942 * and restore the TCR
1944 do {
1945 status = readw(uap->port.membase + UART01x_FR);
1946 } while (status & UART01x_FR_BUSY);
1947 writew(old_cr, uap->port.membase + UART011_CR);
1949 if (locked)
1950 spin_unlock(&uap->port.lock);
1951 local_irq_restore(flags);
1953 clk_disable(uap->clk);
1956 static void __init
1957 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1958 int *parity, int *bits)
1960 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1961 unsigned int lcr_h, ibrd, fbrd;
1963 lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1965 *parity = 'n';
1966 if (lcr_h & UART01x_LCRH_PEN) {
1967 if (lcr_h & UART01x_LCRH_EPS)
1968 *parity = 'e';
1969 else
1970 *parity = 'o';
1973 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1974 *bits = 7;
1975 else
1976 *bits = 8;
1978 ibrd = readw(uap->port.membase + UART011_IBRD);
1979 fbrd = readw(uap->port.membase + UART011_FBRD);
1981 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1983 if (uap->vendor->oversampling) {
1984 if (readw(uap->port.membase + UART011_CR)
1985 & ST_UART011_CR_OVSFACT)
1986 *baud *= 2;
1991 static int __init pl011_console_setup(struct console *co, char *options)
1993 struct uart_amba_port *uap;
1994 int baud = 38400;
1995 int bits = 8;
1996 int parity = 'n';
1997 int flow = 'n';
1998 int ret;
2001 * Check whether an invalid uart number has been specified, and
2002 * if so, search for the first available port that does have
2003 * console support.
2005 if (co->index >= UART_NR)
2006 co->index = 0;
2007 uap = amba_ports[co->index];
2008 if (!uap)
2009 return -ENODEV;
2011 /* Allow pins to be muxed in and configured */
2012 pinctrl_pm_select_default_state(uap->port.dev);
2014 ret = clk_prepare(uap->clk);
2015 if (ret)
2016 return ret;
2018 if (dev_get_platdata(uap->port.dev)) {
2019 struct amba_pl011_data *plat;
2021 plat = dev_get_platdata(uap->port.dev);
2022 if (plat->init)
2023 plat->init();
2026 uap->port.uartclk = clk_get_rate(uap->clk);
2028 if (options)
2029 uart_parse_options(options, &baud, &parity, &bits, &flow);
2030 else
2031 pl011_console_get_options(uap, &baud, &parity, &bits);
2033 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2036 static struct uart_driver amba_reg;
2037 static struct console amba_console = {
2038 .name = "ttyAMA",
2039 .write = pl011_console_write,
2040 .device = uart_console_device,
2041 .setup = pl011_console_setup,
2042 .flags = CON_PRINTBUFFER,
2043 .index = -1,
2044 .data = &amba_reg,
2047 #define AMBA_CONSOLE (&amba_console)
2048 #else
2049 #define AMBA_CONSOLE NULL
2050 #endif
2052 static struct uart_driver amba_reg = {
2053 .owner = THIS_MODULE,
2054 .driver_name = "ttyAMA",
2055 .dev_name = "ttyAMA",
2056 .major = SERIAL_AMBA_MAJOR,
2057 .minor = SERIAL_AMBA_MINOR,
2058 .nr = UART_NR,
2059 .cons = AMBA_CONSOLE,
2062 static int pl011_probe_dt_alias(int index, struct device *dev)
2064 struct device_node *np;
2065 static bool seen_dev_with_alias = false;
2066 static bool seen_dev_without_alias = false;
2067 int ret = index;
2069 if (!IS_ENABLED(CONFIG_OF))
2070 return ret;
2072 np = dev->of_node;
2073 if (!np)
2074 return ret;
2076 ret = of_alias_get_id(np, "serial");
2077 if (IS_ERR_VALUE(ret)) {
2078 seen_dev_without_alias = true;
2079 ret = index;
2080 } else {
2081 seen_dev_with_alias = true;
2082 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2083 dev_warn(dev, "requested serial port %d not available.\n", ret);
2084 ret = index;
2088 if (seen_dev_with_alias && seen_dev_without_alias)
2089 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2091 return ret;
2094 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2096 struct uart_amba_port *uap;
2097 struct vendor_data *vendor = id->data;
2098 void __iomem *base;
2099 int i, ret;
2101 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2102 if (amba_ports[i] == NULL)
2103 break;
2105 if (i == ARRAY_SIZE(amba_ports)) {
2106 ret = -EBUSY;
2107 goto out;
2110 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2111 GFP_KERNEL);
2112 if (uap == NULL) {
2113 ret = -ENOMEM;
2114 goto out;
2117 i = pl011_probe_dt_alias(i, &dev->dev);
2119 base = devm_ioremap(&dev->dev, dev->res.start,
2120 resource_size(&dev->res));
2121 if (!base) {
2122 ret = -ENOMEM;
2123 goto out;
2126 uap->clk = devm_clk_get(&dev->dev, NULL);
2127 if (IS_ERR(uap->clk)) {
2128 ret = PTR_ERR(uap->clk);
2129 goto out;
2132 uap->vendor = vendor;
2133 uap->lcrh_rx = vendor->lcrh_rx;
2134 uap->lcrh_tx = vendor->lcrh_tx;
2135 uap->old_cr = 0;
2136 uap->fifosize = vendor->get_fifosize(dev);
2137 uap->port.dev = &dev->dev;
2138 uap->port.mapbase = dev->res.start;
2139 uap->port.membase = base;
2140 uap->port.iotype = UPIO_MEM;
2141 uap->port.irq = dev->irq[0];
2142 uap->port.fifosize = uap->fifosize;
2143 uap->port.ops = &amba_pl011_pops;
2144 uap->port.flags = UPF_BOOT_AUTOCONF;
2145 uap->port.line = i;
2146 pl011_dma_probe(&dev->dev, uap);
2148 /* Ensure interrupts from this UART are masked and cleared */
2149 writew(0, uap->port.membase + UART011_IMSC);
2150 writew(0xffff, uap->port.membase + UART011_ICR);
2152 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2154 amba_ports[i] = uap;
2156 amba_set_drvdata(dev, uap);
2157 ret = uart_add_one_port(&amba_reg, &uap->port);
2158 if (ret) {
2159 amba_ports[i] = NULL;
2160 pl011_dma_remove(uap);
2162 out:
2163 return ret;
2166 static int pl011_remove(struct amba_device *dev)
2168 struct uart_amba_port *uap = amba_get_drvdata(dev);
2169 int i;
2171 uart_remove_one_port(&amba_reg, &uap->port);
2173 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2174 if (amba_ports[i] == uap)
2175 amba_ports[i] = NULL;
2177 pl011_dma_remove(uap);
2178 return 0;
2181 #ifdef CONFIG_PM_SLEEP
2182 static int pl011_suspend(struct device *dev)
2184 struct uart_amba_port *uap = dev_get_drvdata(dev);
2186 if (!uap)
2187 return -EINVAL;
2189 return uart_suspend_port(&amba_reg, &uap->port);
2192 static int pl011_resume(struct device *dev)
2194 struct uart_amba_port *uap = dev_get_drvdata(dev);
2196 if (!uap)
2197 return -EINVAL;
2199 return uart_resume_port(&amba_reg, &uap->port);
2201 #endif
2203 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2205 static struct amba_id pl011_ids[] = {
2207 .id = 0x00041011,
2208 .mask = 0x000fffff,
2209 .data = &vendor_arm,
2212 .id = 0x00380802,
2213 .mask = 0x00ffffff,
2214 .data = &vendor_st,
2216 { 0, 0 },
2219 MODULE_DEVICE_TABLE(amba, pl011_ids);
2221 static struct amba_driver pl011_driver = {
2222 .drv = {
2223 .name = "uart-pl011",
2224 .pm = &pl011_dev_pm_ops,
2226 .id_table = pl011_ids,
2227 .probe = pl011_probe,
2228 .remove = pl011_remove,
2231 static int __init pl011_init(void)
2233 int ret;
2234 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2236 ret = uart_register_driver(&amba_reg);
2237 if (ret == 0) {
2238 ret = amba_driver_register(&pl011_driver);
2239 if (ret)
2240 uart_unregister_driver(&amba_reg);
2242 return ret;
2245 static void __exit pl011_exit(void)
2247 amba_driver_unregister(&pl011_driver);
2248 uart_unregister_driver(&amba_reg);
2252 * While this can be a module, if builtin it's most likely the console
2253 * So let's leave module_exit but move module_init to an earlier place
2255 arch_initcall(pl011_init);
2256 module_exit(pl011_exit);
2258 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2259 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2260 MODULE_LICENSE("GPL");