2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/irq_work.h>
24 #include <linux/posix-timers.h>
25 #include <linux/perf_event.h>
26 #include <linux/context_tracking.h>
28 #include <asm/irq_regs.h>
30 #include "tick-internal.h"
32 #include <trace/events/timer.h>
35 * Per cpu nohz control structure
37 DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
42 static ktime_t last_jiffies_update
;
44 struct tick_sched
*tick_get_tick_sched(int cpu
)
46 return &per_cpu(tick_cpu_sched
, cpu
);
50 * Must be called with interrupts disabled !
52 static void tick_do_update_jiffies64(ktime_t now
)
54 unsigned long ticks
= 0;
58 * Do a quick check without holding jiffies_lock:
60 delta
= ktime_sub(now
, last_jiffies_update
);
61 if (delta
.tv64
< tick_period
.tv64
)
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock
);
67 delta
= ktime_sub(now
, last_jiffies_update
);
68 if (delta
.tv64
>= tick_period
.tv64
) {
70 delta
= ktime_sub(delta
, tick_period
);
71 last_jiffies_update
= ktime_add(last_jiffies_update
,
74 /* Slow path for long timeouts */
75 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
76 s64 incr
= ktime_to_ns(tick_period
);
78 ticks
= ktime_divns(delta
, incr
);
80 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
88 write_sequnlock(&jiffies_lock
);
93 * Initialize and return retrieve the jiffies update.
95 static ktime_t
tick_init_jiffy_update(void)
99 write_seqlock(&jiffies_lock
);
100 /* Did we start the jiffies update yet ? */
101 if (last_jiffies_update
.tv64
== 0)
102 last_jiffies_update
= tick_next_period
;
103 period
= last_jiffies_update
;
104 write_sequnlock(&jiffies_lock
);
109 static void tick_sched_do_timer(ktime_t now
)
111 int cpu
= smp_processor_id();
113 #ifdef CONFIG_NO_HZ_COMMON
115 * Check if the do_timer duty was dropped. We don't care about
116 * concurrency: This happens only when the cpu in charge went
117 * into a long sleep. If two cpus happen to assign themself to
118 * this duty, then the jiffies update is still serialized by
121 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
122 && !tick_nohz_full_cpu(cpu
))
123 tick_do_timer_cpu
= cpu
;
126 /* Check, if the jiffies need an update */
127 if (tick_do_timer_cpu
== cpu
)
128 tick_do_update_jiffies64(now
);
131 static void tick_sched_handle(struct tick_sched
*ts
, struct pt_regs
*regs
)
133 #ifdef CONFIG_NO_HZ_COMMON
135 * When we are idle and the tick is stopped, we have to touch
136 * the watchdog as we might not schedule for a really long
137 * time. This happens on complete idle SMP systems while
138 * waiting on the login prompt. We also increment the "start of
139 * idle" jiffy stamp so the idle accounting adjustment we do
140 * when we go busy again does not account too much ticks.
142 if (ts
->tick_stopped
) {
143 touch_softlockup_watchdog();
144 if (is_idle_task(current
))
148 update_process_times(user_mode(regs
));
149 profile_tick(CPU_PROFILING
);
152 #ifdef CONFIG_NO_HZ_FULL
153 cpumask_var_t tick_nohz_full_mask
;
154 bool tick_nohz_full_running
;
156 static bool can_stop_full_tick(void)
158 WARN_ON_ONCE(!irqs_disabled());
160 if (!sched_can_stop_tick()) {
161 trace_tick_stop(0, "more than 1 task in runqueue\n");
165 if (!posix_cpu_timers_can_stop_tick(current
)) {
166 trace_tick_stop(0, "posix timers running\n");
170 if (!perf_event_can_stop_tick()) {
171 trace_tick_stop(0, "perf events running\n");
175 /* sched_clock_tick() needs us? */
176 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
178 * TODO: kick full dynticks CPUs when
179 * sched_clock_stable is set.
181 if (!sched_clock_stable()) {
182 trace_tick_stop(0, "unstable sched clock\n");
184 * Don't allow the user to think they can get
185 * full NO_HZ with this machine.
187 WARN_ONCE(tick_nohz_full_running
,
188 "NO_HZ FULL will not work with unstable sched clock");
196 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
);
199 * Re-evaluate the need for the tick on the current CPU
200 * and restart it if necessary.
202 void __tick_nohz_full_check(void)
204 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
206 if (tick_nohz_full_cpu(smp_processor_id())) {
207 if (ts
->tick_stopped
&& !is_idle_task(current
)) {
208 if (!can_stop_full_tick())
209 tick_nohz_restart_sched_tick(ts
, ktime_get());
214 static void nohz_full_kick_work_func(struct irq_work
*work
)
216 __tick_nohz_full_check();
219 static DEFINE_PER_CPU(struct irq_work
, nohz_full_kick_work
) = {
220 .func
= nohz_full_kick_work_func
,
224 * Kick the current CPU if it's full dynticks in order to force it to
225 * re-evaluate its dependency on the tick and restart it if necessary.
227 void tick_nohz_full_kick(void)
229 if (tick_nohz_full_cpu(smp_processor_id()))
230 irq_work_queue(&__get_cpu_var(nohz_full_kick_work
));
233 static void nohz_full_kick_ipi(void *info
)
235 __tick_nohz_full_check();
239 * Kick all full dynticks CPUs in order to force these to re-evaluate
240 * their dependency on the tick and restart it if necessary.
242 void tick_nohz_full_kick_all(void)
244 if (!tick_nohz_full_running
)
248 smp_call_function_many(tick_nohz_full_mask
,
249 nohz_full_kick_ipi
, NULL
, false);
250 tick_nohz_full_kick();
255 * Re-evaluate the need for the tick as we switch the current task.
256 * It might need the tick due to per task/process properties:
257 * perf events, posix cpu timers, ...
259 void __tick_nohz_task_switch(struct task_struct
*tsk
)
263 local_irq_save(flags
);
265 if (!tick_nohz_full_cpu(smp_processor_id()))
268 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
269 tick_nohz_full_kick();
272 local_irq_restore(flags
);
275 /* Parse the boot-time nohz CPU list from the kernel parameters. */
276 static int __init
tick_nohz_full_setup(char *str
)
280 alloc_bootmem_cpumask_var(&tick_nohz_full_mask
);
281 if (cpulist_parse(str
, tick_nohz_full_mask
) < 0) {
282 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
286 cpu
= smp_processor_id();
287 if (cpumask_test_cpu(cpu
, tick_nohz_full_mask
)) {
288 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu
);
289 cpumask_clear_cpu(cpu
, tick_nohz_full_mask
);
291 tick_nohz_full_running
= true;
295 __setup("nohz_full=", tick_nohz_full_setup
);
297 static int tick_nohz_cpu_down_callback(struct notifier_block
*nfb
,
298 unsigned long action
,
301 unsigned int cpu
= (unsigned long)hcpu
;
303 switch (action
& ~CPU_TASKS_FROZEN
) {
304 case CPU_DOWN_PREPARE
:
306 * If we handle the timekeeping duty for full dynticks CPUs,
307 * we can't safely shutdown that CPU.
309 if (tick_nohz_full_running
&& tick_do_timer_cpu
== cpu
)
317 * Worst case string length in chunks of CPU range seems 2 steps
318 * separations: 0,2,4,6,...
319 * This is NR_CPUS + sizeof('\0')
321 static char __initdata nohz_full_buf
[NR_CPUS
+ 1];
323 static int tick_nohz_init_all(void)
327 #ifdef CONFIG_NO_HZ_FULL_ALL
328 if (!alloc_cpumask_var(&tick_nohz_full_mask
, GFP_KERNEL
)) {
329 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
333 cpumask_setall(tick_nohz_full_mask
);
334 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask
);
335 tick_nohz_full_running
= true;
340 void __init
tick_nohz_init(void)
344 if (!tick_nohz_full_running
) {
345 if (tick_nohz_init_all() < 0)
349 for_each_cpu(cpu
, tick_nohz_full_mask
)
350 context_tracking_cpu_set(cpu
);
352 cpu_notifier(tick_nohz_cpu_down_callback
, 0);
353 cpulist_scnprintf(nohz_full_buf
, sizeof(nohz_full_buf
), tick_nohz_full_mask
);
354 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf
);
359 * NOHZ - aka dynamic tick functionality
361 #ifdef CONFIG_NO_HZ_COMMON
365 static int tick_nohz_enabled __read_mostly
= 1;
366 int tick_nohz_active __read_mostly
;
368 * Enable / Disable tickless mode
370 static int __init
setup_tick_nohz(char *str
)
372 if (!strcmp(str
, "off"))
373 tick_nohz_enabled
= 0;
374 else if (!strcmp(str
, "on"))
375 tick_nohz_enabled
= 1;
381 __setup("nohz=", setup_tick_nohz
);
384 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
386 * Called from interrupt entry when the CPU was idle
388 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
389 * must be updated. Otherwise an interrupt handler could use a stale jiffy
390 * value. We do this unconditionally on any cpu, as we don't know whether the
391 * cpu, which has the update task assigned is in a long sleep.
393 static void tick_nohz_update_jiffies(ktime_t now
)
397 __this_cpu_write(tick_cpu_sched
.idle_waketime
, now
);
399 local_irq_save(flags
);
400 tick_do_update_jiffies64(now
);
401 local_irq_restore(flags
);
403 touch_softlockup_watchdog();
407 * Updates the per cpu time idle statistics counters
410 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
414 if (ts
->idle_active
) {
415 delta
= ktime_sub(now
, ts
->idle_entrytime
);
416 if (nr_iowait_cpu(cpu
) > 0)
417 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
419 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
420 ts
->idle_entrytime
= now
;
423 if (last_update_time
)
424 *last_update_time
= ktime_to_us(now
);
428 static void tick_nohz_stop_idle(struct tick_sched
*ts
, ktime_t now
)
430 update_ts_time_stats(smp_processor_id(), ts
, now
, NULL
);
433 sched_clock_idle_wakeup_event(0);
436 static ktime_t
tick_nohz_start_idle(struct tick_sched
*ts
)
438 ktime_t now
= ktime_get();
440 ts
->idle_entrytime
= now
;
442 sched_clock_idle_sleep_event();
447 * get_cpu_idle_time_us - get the total idle time of a cpu
448 * @cpu: CPU number to query
449 * @last_update_time: variable to store update time in. Do not update
452 * Return the cummulative idle time (since boot) for a given
453 * CPU, in microseconds.
455 * This time is measured via accounting rather than sampling,
456 * and is as accurate as ktime_get() is.
458 * This function returns -1 if NOHZ is not enabled.
460 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
462 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
465 if (!tick_nohz_active
)
469 if (last_update_time
) {
470 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
471 idle
= ts
->idle_sleeptime
;
473 if (ts
->idle_active
&& !nr_iowait_cpu(cpu
)) {
474 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
476 idle
= ktime_add(ts
->idle_sleeptime
, delta
);
478 idle
= ts
->idle_sleeptime
;
482 return ktime_to_us(idle
);
485 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
488 * get_cpu_iowait_time_us - get the total iowait time of a cpu
489 * @cpu: CPU number to query
490 * @last_update_time: variable to store update time in. Do not update
493 * Return the cummulative iowait time (since boot) for a given
494 * CPU, in microseconds.
496 * This time is measured via accounting rather than sampling,
497 * and is as accurate as ktime_get() is.
499 * This function returns -1 if NOHZ is not enabled.
501 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
503 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
506 if (!tick_nohz_active
)
510 if (last_update_time
) {
511 update_ts_time_stats(cpu
, ts
, now
, last_update_time
);
512 iowait
= ts
->iowait_sleeptime
;
514 if (ts
->idle_active
&& nr_iowait_cpu(cpu
) > 0) {
515 ktime_t delta
= ktime_sub(now
, ts
->idle_entrytime
);
517 iowait
= ktime_add(ts
->iowait_sleeptime
, delta
);
519 iowait
= ts
->iowait_sleeptime
;
523 return ktime_to_us(iowait
);
525 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
527 static ktime_t
tick_nohz_stop_sched_tick(struct tick_sched
*ts
,
528 ktime_t now
, int cpu
)
530 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
;
531 ktime_t last_update
, expires
, ret
= { .tv64
= 0 };
532 unsigned long rcu_delta_jiffies
;
533 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
536 time_delta
= timekeeping_max_deferment();
538 /* Read jiffies and the time when jiffies were updated last */
540 seq
= read_seqbegin(&jiffies_lock
);
541 last_update
= last_jiffies_update
;
542 last_jiffies
= jiffies
;
543 } while (read_seqretry(&jiffies_lock
, seq
));
545 if (rcu_needs_cpu(cpu
, &rcu_delta_jiffies
) ||
546 arch_needs_cpu(cpu
) || irq_work_needs_cpu()) {
547 next_jiffies
= last_jiffies
+ 1;
550 /* Get the next timer wheel timer */
551 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
552 delta_jiffies
= next_jiffies
- last_jiffies
;
553 if (rcu_delta_jiffies
< delta_jiffies
) {
554 next_jiffies
= last_jiffies
+ rcu_delta_jiffies
;
555 delta_jiffies
= rcu_delta_jiffies
;
560 * Do not stop the tick, if we are only one off (or less)
561 * or if the cpu is required for RCU:
563 if (!ts
->tick_stopped
&& delta_jiffies
<= 1)
566 /* Schedule the tick, if we are at least one jiffie off */
567 if ((long)delta_jiffies
>= 1) {
570 * If this cpu is the one which updates jiffies, then
571 * give up the assignment and let it be taken by the
572 * cpu which runs the tick timer next, which might be
573 * this cpu as well. If we don't drop this here the
574 * jiffies might be stale and do_timer() never
575 * invoked. Keep track of the fact that it was the one
576 * which had the do_timer() duty last. If this cpu is
577 * the one which had the do_timer() duty last, we
578 * limit the sleep time to the timekeeping
579 * max_deferement value which we retrieved
580 * above. Otherwise we can sleep as long as we want.
582 if (cpu
== tick_do_timer_cpu
) {
583 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
584 ts
->do_timer_last
= 1;
585 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
586 time_delta
= KTIME_MAX
;
587 ts
->do_timer_last
= 0;
588 } else if (!ts
->do_timer_last
) {
589 time_delta
= KTIME_MAX
;
592 #ifdef CONFIG_NO_HZ_FULL
594 time_delta
= min(time_delta
,
595 scheduler_tick_max_deferment());
600 * calculate the expiry time for the next timer wheel
601 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
602 * that there is no timer pending or at least extremely
603 * far into the future (12 days for HZ=1000). In this
604 * case we set the expiry to the end of time.
606 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
608 * Calculate the time delta for the next timer event.
609 * If the time delta exceeds the maximum time delta
610 * permitted by the current clocksource then adjust
611 * the time delta accordingly to ensure the
612 * clocksource does not wrap.
614 time_delta
= min_t(u64
, time_delta
,
615 tick_period
.tv64
* delta_jiffies
);
618 if (time_delta
< KTIME_MAX
)
619 expires
= ktime_add_ns(last_update
, time_delta
);
621 expires
.tv64
= KTIME_MAX
;
623 /* Skip reprogram of event if its not changed */
624 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
630 * nohz_stop_sched_tick can be called several times before
631 * the nohz_restart_sched_tick is called. This happens when
632 * interrupts arrive which do not cause a reschedule. In the
633 * first call we save the current tick time, so we can restart
634 * the scheduler tick in nohz_restart_sched_tick.
636 if (!ts
->tick_stopped
) {
637 nohz_balance_enter_idle(cpu
);
638 calc_load_enter_idle();
640 ts
->last_tick
= hrtimer_get_expires(&ts
->sched_timer
);
641 ts
->tick_stopped
= 1;
642 trace_tick_stop(1, " ");
646 * If the expiration time == KTIME_MAX, then
647 * in this case we simply stop the tick timer.
649 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
650 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
651 hrtimer_cancel(&ts
->sched_timer
);
655 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
656 hrtimer_start(&ts
->sched_timer
, expires
,
657 HRTIMER_MODE_ABS_PINNED
);
658 /* Check, if the timer was already in the past */
659 if (hrtimer_active(&ts
->sched_timer
))
661 } else if (!tick_program_event(expires
, 0))
664 * We are past the event already. So we crossed a
665 * jiffie boundary. Update jiffies and raise the
668 tick_do_update_jiffies64(ktime_get());
670 raise_softirq_irqoff(TIMER_SOFTIRQ
);
672 ts
->next_jiffies
= next_jiffies
;
673 ts
->last_jiffies
= last_jiffies
;
674 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
679 static void tick_nohz_full_stop_tick(struct tick_sched
*ts
)
681 #ifdef CONFIG_NO_HZ_FULL
682 int cpu
= smp_processor_id();
684 if (!tick_nohz_full_cpu(cpu
) || is_idle_task(current
))
687 if (!ts
->tick_stopped
&& ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)
690 if (!can_stop_full_tick())
693 tick_nohz_stop_sched_tick(ts
, ktime_get(), cpu
);
697 static bool can_stop_idle_tick(int cpu
, struct tick_sched
*ts
)
700 * If this cpu is offline and it is the one which updates
701 * jiffies, then give up the assignment and let it be taken by
702 * the cpu which runs the tick timer next. If we don't drop
703 * this here the jiffies might be stale and do_timer() never
706 if (unlikely(!cpu_online(cpu
))) {
707 if (cpu
== tick_do_timer_cpu
)
708 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
712 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
)) {
713 ts
->sleep_length
= (ktime_t
) { .tv64
= NSEC_PER_SEC
/HZ
};
720 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
721 static int ratelimit
;
723 if (ratelimit
< 10 &&
724 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK
)) {
725 pr_warn("NOHZ: local_softirq_pending %02x\n",
726 (unsigned int) local_softirq_pending());
732 if (tick_nohz_full_enabled()) {
734 * Keep the tick alive to guarantee timekeeping progression
735 * if there are full dynticks CPUs around
737 if (tick_do_timer_cpu
== cpu
)
740 * Boot safety: make sure the timekeeping duty has been
741 * assigned before entering dyntick-idle mode,
743 if (tick_do_timer_cpu
== TICK_DO_TIMER_NONE
)
750 static void __tick_nohz_idle_enter(struct tick_sched
*ts
)
752 ktime_t now
, expires
;
753 int cpu
= smp_processor_id();
755 now
= tick_nohz_start_idle(ts
);
757 if (can_stop_idle_tick(cpu
, ts
)) {
758 int was_stopped
= ts
->tick_stopped
;
762 expires
= tick_nohz_stop_sched_tick(ts
, now
, cpu
);
763 if (expires
.tv64
> 0LL) {
765 ts
->idle_expires
= expires
;
768 if (!was_stopped
&& ts
->tick_stopped
)
769 ts
->idle_jiffies
= ts
->last_jiffies
;
774 * tick_nohz_idle_enter - stop the idle tick from the idle task
776 * When the next event is more than a tick into the future, stop the idle tick
777 * Called when we start the idle loop.
779 * The arch is responsible of calling:
781 * - rcu_idle_enter() after its last use of RCU before the CPU is put
783 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
785 void tick_nohz_idle_enter(void)
787 struct tick_sched
*ts
;
789 WARN_ON_ONCE(irqs_disabled());
792 * Update the idle state in the scheduler domain hierarchy
793 * when tick_nohz_stop_sched_tick() is called from the idle loop.
794 * State will be updated to busy during the first busy tick after
797 set_cpu_sd_state_idle();
801 ts
= &__get_cpu_var(tick_cpu_sched
);
803 __tick_nohz_idle_enter(ts
);
807 EXPORT_SYMBOL_GPL(tick_nohz_idle_enter
);
810 * tick_nohz_irq_exit - update next tick event from interrupt exit
812 * When an interrupt fires while we are idle and it doesn't cause
813 * a reschedule, it may still add, modify or delete a timer, enqueue
814 * an RCU callback, etc...
815 * So we need to re-calculate and reprogram the next tick event.
817 void tick_nohz_irq_exit(void)
819 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
822 __tick_nohz_idle_enter(ts
);
824 tick_nohz_full_stop_tick(ts
);
828 * tick_nohz_get_sleep_length - return the length of the current sleep
830 * Called from power state control code with interrupts disabled
832 ktime_t
tick_nohz_get_sleep_length(void)
834 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
836 return ts
->sleep_length
;
839 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
841 hrtimer_cancel(&ts
->sched_timer
);
842 hrtimer_set_expires(&ts
->sched_timer
, ts
->last_tick
);
845 /* Forward the time to expire in the future */
846 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
848 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
849 hrtimer_start_expires(&ts
->sched_timer
,
850 HRTIMER_MODE_ABS_PINNED
);
851 /* Check, if the timer was already in the past */
852 if (hrtimer_active(&ts
->sched_timer
))
855 if (!tick_program_event(
856 hrtimer_get_expires(&ts
->sched_timer
), 0))
859 /* Reread time and update jiffies */
861 tick_do_update_jiffies64(now
);
865 static void tick_nohz_restart_sched_tick(struct tick_sched
*ts
, ktime_t now
)
867 /* Update jiffies first */
868 tick_do_update_jiffies64(now
);
869 update_cpu_load_nohz();
871 calc_load_exit_idle();
872 touch_softlockup_watchdog();
874 * Cancel the scheduled timer and restore the tick
876 ts
->tick_stopped
= 0;
877 ts
->idle_exittime
= now
;
879 tick_nohz_restart(ts
, now
);
882 static void tick_nohz_account_idle_ticks(struct tick_sched
*ts
)
884 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
887 if (vtime_accounting_enabled())
890 * We stopped the tick in idle. Update process times would miss the
891 * time we slept as update_process_times does only a 1 tick
892 * accounting. Enforce that this is accounted to idle !
894 ticks
= jiffies
- ts
->idle_jiffies
;
896 * We might be one off. Do not randomly account a huge number of ticks!
898 if (ticks
&& ticks
< LONG_MAX
)
899 account_idle_ticks(ticks
);
904 * tick_nohz_idle_exit - restart the idle tick from the idle task
906 * Restart the idle tick when the CPU is woken up from idle
907 * This also exit the RCU extended quiescent state. The CPU
908 * can use RCU again after this function is called.
910 void tick_nohz_idle_exit(void)
912 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
917 WARN_ON_ONCE(!ts
->inidle
);
921 if (ts
->idle_active
|| ts
->tick_stopped
)
925 tick_nohz_stop_idle(ts
, now
);
927 if (ts
->tick_stopped
) {
928 tick_nohz_restart_sched_tick(ts
, now
);
929 tick_nohz_account_idle_ticks(ts
);
934 EXPORT_SYMBOL_GPL(tick_nohz_idle_exit
);
936 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
938 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
939 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
943 * The nohz low res interrupt handler
945 static void tick_nohz_handler(struct clock_event_device
*dev
)
947 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
948 struct pt_regs
*regs
= get_irq_regs();
949 ktime_t now
= ktime_get();
951 dev
->next_event
.tv64
= KTIME_MAX
;
953 tick_sched_do_timer(now
);
954 tick_sched_handle(ts
, regs
);
956 while (tick_nohz_reprogram(ts
, now
)) {
958 tick_do_update_jiffies64(now
);
963 * tick_nohz_switch_to_nohz - switch to nohz mode
965 static void tick_nohz_switch_to_nohz(void)
967 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
970 if (!tick_nohz_active
)
974 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
978 tick_nohz_active
= 1;
979 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
982 * Recycle the hrtimer in ts, so we can share the
983 * hrtimer_forward with the highres code.
985 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
986 /* Get the next period */
987 next
= tick_init_jiffy_update();
990 hrtimer_set_expires(&ts
->sched_timer
, next
);
991 if (!tick_program_event(next
, 0))
993 next
= ktime_add(next
, tick_period
);
999 * When NOHZ is enabled and the tick is stopped, we need to kick the
1000 * tick timer from irq_enter() so that the jiffies update is kept
1001 * alive during long running softirqs. That's ugly as hell, but
1002 * correctness is key even if we need to fix the offending softirq in
1005 * Note, this is different to tick_nohz_restart. We just kick the
1006 * timer and do not touch the other magic bits which need to be done
1007 * when idle is left.
1009 static void tick_nohz_kick_tick(struct tick_sched
*ts
, ktime_t now
)
1012 /* Switch back to 2.6.27 behaviour */
1016 * Do not touch the tick device, when the next expiry is either
1017 * already reached or less/equal than the tick period.
1019 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
1020 if (delta
.tv64
<= tick_period
.tv64
)
1023 tick_nohz_restart(ts
, now
);
1027 static inline void tick_nohz_irq_enter(void)
1029 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1032 if (!ts
->idle_active
&& !ts
->tick_stopped
)
1035 if (ts
->idle_active
)
1036 tick_nohz_stop_idle(ts
, now
);
1037 if (ts
->tick_stopped
) {
1038 tick_nohz_update_jiffies(now
);
1039 tick_nohz_kick_tick(ts
, now
);
1045 static inline void tick_nohz_switch_to_nohz(void) { }
1046 static inline void tick_nohz_irq_enter(void) { }
1048 #endif /* CONFIG_NO_HZ_COMMON */
1051 * Called from irq_enter to notify about the possible interruption of idle()
1053 void tick_irq_enter(void)
1055 tick_check_oneshot_broadcast_this_cpu();
1056 tick_nohz_irq_enter();
1060 * High resolution timer specific code
1062 #ifdef CONFIG_HIGH_RES_TIMERS
1064 * We rearm the timer until we get disabled by the idle code.
1065 * Called with interrupts disabled.
1067 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
1069 struct tick_sched
*ts
=
1070 container_of(timer
, struct tick_sched
, sched_timer
);
1071 struct pt_regs
*regs
= get_irq_regs();
1072 ktime_t now
= ktime_get();
1074 tick_sched_do_timer(now
);
1077 * Do not call, when we are not in irq context and have
1078 * no valid regs pointer
1081 tick_sched_handle(ts
, regs
);
1083 hrtimer_forward(timer
, now
, tick_period
);
1085 return HRTIMER_RESTART
;
1088 static int sched_skew_tick
;
1090 static int __init
skew_tick(char *str
)
1092 get_option(&str
, &sched_skew_tick
);
1096 early_param("skew_tick", skew_tick
);
1099 * tick_setup_sched_timer - setup the tick emulation timer
1101 void tick_setup_sched_timer(void)
1103 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1104 ktime_t now
= ktime_get();
1107 * Emulate tick processing via per-CPU hrtimers:
1109 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
1110 ts
->sched_timer
.function
= tick_sched_timer
;
1112 /* Get the next period (per cpu) */
1113 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
1115 /* Offset the tick to avert jiffies_lock contention. */
1116 if (sched_skew_tick
) {
1117 u64 offset
= ktime_to_ns(tick_period
) >> 1;
1118 do_div(offset
, num_possible_cpus());
1119 offset
*= smp_processor_id();
1120 hrtimer_add_expires_ns(&ts
->sched_timer
, offset
);
1124 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
1125 hrtimer_start_expires(&ts
->sched_timer
,
1126 HRTIMER_MODE_ABS_PINNED
);
1127 /* Check, if the timer was already in the past */
1128 if (hrtimer_active(&ts
->sched_timer
))
1133 #ifdef CONFIG_NO_HZ_COMMON
1134 if (tick_nohz_enabled
) {
1135 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
1136 tick_nohz_active
= 1;
1140 #endif /* HIGH_RES_TIMERS */
1142 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1143 void tick_cancel_sched_timer(int cpu
)
1145 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
1147 # ifdef CONFIG_HIGH_RES_TIMERS
1148 if (ts
->sched_timer
.base
)
1149 hrtimer_cancel(&ts
->sched_timer
);
1152 memset(ts
, 0, sizeof(*ts
));
1157 * Async notification about clocksource changes
1159 void tick_clock_notify(void)
1163 for_each_possible_cpu(cpu
)
1164 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
1168 * Async notification about clock event changes
1170 void tick_oneshot_notify(void)
1172 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1174 set_bit(0, &ts
->check_clocks
);
1178 * Check, if a change happened, which makes oneshot possible.
1180 * Called cyclic from the hrtimer softirq (driven by the timer
1181 * softirq) allow_nohz signals, that we can switch into low-res nohz
1182 * mode, because high resolution timers are disabled (either compile
1185 int tick_check_oneshot_change(int allow_nohz
)
1187 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
1189 if (!test_and_clear_bit(0, &ts
->check_clocks
))
1192 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
1195 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1201 tick_nohz_switch_to_nohz();