ALSA: pcm: Remove yet superfluous WARN_ON()
[linux/fpc-iii.git] / fs / timerfd.c
blob94de69ec6af62535236867f35df8964d0d5c30d7
1 /*
2 * fs/timerfd.c
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
7 * Thanks to Thomas Gleixner for code reviews and useful comments.
9 */
11 #include <linux/alarmtimer.h>
12 #include <linux/file.h>
13 #include <linux/poll.h>
14 #include <linux/init.h>
15 #include <linux/fs.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/time.h>
22 #include <linux/hrtimer.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/timerfd.h>
25 #include <linux/syscalls.h>
26 #include <linux/compat.h>
27 #include <linux/rcupdate.h>
29 struct timerfd_ctx {
30 union {
31 struct hrtimer tmr;
32 struct alarm alarm;
33 } t;
34 ktime_t tintv;
35 ktime_t moffs;
36 wait_queue_head_t wqh;
37 u64 ticks;
38 int clockid;
39 short unsigned expired;
40 short unsigned settime_flags; /* to show in fdinfo */
41 struct rcu_head rcu;
42 struct list_head clist;
43 spinlock_t cancel_lock;
44 bool might_cancel;
47 static LIST_HEAD(cancel_list);
48 static DEFINE_SPINLOCK(cancel_lock);
50 static inline bool isalarm(struct timerfd_ctx *ctx)
52 return ctx->clockid == CLOCK_REALTIME_ALARM ||
53 ctx->clockid == CLOCK_BOOTTIME_ALARM;
57 * This gets called when the timer event triggers. We set the "expired"
58 * flag, but we do not re-arm the timer (in case it's necessary,
59 * tintv.tv64 != 0) until the timer is accessed.
61 static void timerfd_triggered(struct timerfd_ctx *ctx)
63 unsigned long flags;
65 spin_lock_irqsave(&ctx->wqh.lock, flags);
66 ctx->expired = 1;
67 ctx->ticks++;
68 wake_up_locked(&ctx->wqh);
69 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
72 static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
74 struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx,
75 t.tmr);
76 timerfd_triggered(ctx);
77 return HRTIMER_NORESTART;
80 static enum alarmtimer_restart timerfd_alarmproc(struct alarm *alarm,
81 ktime_t now)
83 struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx,
84 t.alarm);
85 timerfd_triggered(ctx);
86 return ALARMTIMER_NORESTART;
90 * Called when the clock was set to cancel the timers in the cancel
91 * list. This will wake up processes waiting on these timers. The
92 * wake-up requires ctx->ticks to be non zero, therefore we increment
93 * it before calling wake_up_locked().
95 void timerfd_clock_was_set(void)
97 ktime_t moffs = ktime_mono_to_real((ktime_t){ .tv64 = 0 });
98 struct timerfd_ctx *ctx;
99 unsigned long flags;
101 rcu_read_lock();
102 list_for_each_entry_rcu(ctx, &cancel_list, clist) {
103 if (!ctx->might_cancel)
104 continue;
105 spin_lock_irqsave(&ctx->wqh.lock, flags);
106 if (ctx->moffs.tv64 != moffs.tv64) {
107 ctx->moffs.tv64 = KTIME_MAX;
108 ctx->ticks++;
109 wake_up_locked(&ctx->wqh);
111 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
113 rcu_read_unlock();
116 static void __timerfd_remove_cancel(struct timerfd_ctx *ctx)
118 if (ctx->might_cancel) {
119 ctx->might_cancel = false;
120 spin_lock(&cancel_lock);
121 list_del_rcu(&ctx->clist);
122 spin_unlock(&cancel_lock);
126 static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
128 spin_lock(&ctx->cancel_lock);
129 __timerfd_remove_cancel(ctx);
130 spin_unlock(&ctx->cancel_lock);
133 static bool timerfd_canceled(struct timerfd_ctx *ctx)
135 if (!ctx->might_cancel || ctx->moffs.tv64 != KTIME_MAX)
136 return false;
137 ctx->moffs = ktime_mono_to_real((ktime_t){ .tv64 = 0 });
138 return true;
141 static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
143 spin_lock(&ctx->cancel_lock);
144 if ((ctx->clockid == CLOCK_REALTIME ||
145 ctx->clockid == CLOCK_REALTIME_ALARM) &&
146 (flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
147 if (!ctx->might_cancel) {
148 ctx->might_cancel = true;
149 spin_lock(&cancel_lock);
150 list_add_rcu(&ctx->clist, &cancel_list);
151 spin_unlock(&cancel_lock);
153 } else {
154 __timerfd_remove_cancel(ctx);
156 spin_unlock(&ctx->cancel_lock);
159 static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
161 ktime_t remaining;
163 if (isalarm(ctx))
164 remaining = alarm_expires_remaining(&ctx->t.alarm);
165 else
166 remaining = hrtimer_expires_remaining(&ctx->t.tmr);
168 return remaining.tv64 < 0 ? ktime_set(0, 0): remaining;
171 static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
172 const struct itimerspec *ktmr)
174 enum hrtimer_mode htmode;
175 ktime_t texp;
176 int clockid = ctx->clockid;
178 htmode = (flags & TFD_TIMER_ABSTIME) ?
179 HRTIMER_MODE_ABS: HRTIMER_MODE_REL;
181 texp = timespec_to_ktime(ktmr->it_value);
182 ctx->expired = 0;
183 ctx->ticks = 0;
184 ctx->tintv = timespec_to_ktime(ktmr->it_interval);
186 if (isalarm(ctx)) {
187 alarm_init(&ctx->t.alarm,
188 ctx->clockid == CLOCK_REALTIME_ALARM ?
189 ALARM_REALTIME : ALARM_BOOTTIME,
190 timerfd_alarmproc);
191 } else {
192 hrtimer_init(&ctx->t.tmr, clockid, htmode);
193 hrtimer_set_expires(&ctx->t.tmr, texp);
194 ctx->t.tmr.function = timerfd_tmrproc;
197 if (texp.tv64 != 0) {
198 if (isalarm(ctx)) {
199 if (flags & TFD_TIMER_ABSTIME)
200 alarm_start(&ctx->t.alarm, texp);
201 else
202 alarm_start_relative(&ctx->t.alarm, texp);
203 } else {
204 hrtimer_start(&ctx->t.tmr, texp, htmode);
207 if (timerfd_canceled(ctx))
208 return -ECANCELED;
211 ctx->settime_flags = flags & TFD_SETTIME_FLAGS;
212 return 0;
215 static int timerfd_release(struct inode *inode, struct file *file)
217 struct timerfd_ctx *ctx = file->private_data;
219 timerfd_remove_cancel(ctx);
221 if (isalarm(ctx))
222 alarm_cancel(&ctx->t.alarm);
223 else
224 hrtimer_cancel(&ctx->t.tmr);
225 kfree_rcu(ctx, rcu);
226 return 0;
229 static unsigned int timerfd_poll(struct file *file, poll_table *wait)
231 struct timerfd_ctx *ctx = file->private_data;
232 unsigned int events = 0;
233 unsigned long flags;
235 poll_wait(file, &ctx->wqh, wait);
237 spin_lock_irqsave(&ctx->wqh.lock, flags);
238 if (ctx->ticks)
239 events |= POLLIN;
240 spin_unlock_irqrestore(&ctx->wqh.lock, flags);
242 return events;
245 static ssize_t timerfd_read(struct file *file, char __user *buf, size_t count,
246 loff_t *ppos)
248 struct timerfd_ctx *ctx = file->private_data;
249 ssize_t res;
250 u64 ticks = 0;
252 if (count < sizeof(ticks))
253 return -EINVAL;
254 spin_lock_irq(&ctx->wqh.lock);
255 if (file->f_flags & O_NONBLOCK)
256 res = -EAGAIN;
257 else
258 res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks);
261 * If clock has changed, we do not care about the
262 * ticks and we do not rearm the timer. Userspace must
263 * reevaluate anyway.
265 if (timerfd_canceled(ctx)) {
266 ctx->ticks = 0;
267 ctx->expired = 0;
268 res = -ECANCELED;
271 if (ctx->ticks) {
272 ticks = ctx->ticks;
274 if (ctx->expired && ctx->tintv.tv64) {
276 * If tintv.tv64 != 0, this is a periodic timer that
277 * needs to be re-armed. We avoid doing it in the timer
278 * callback to avoid DoS attacks specifying a very
279 * short timer period.
281 if (isalarm(ctx)) {
282 ticks += alarm_forward_now(
283 &ctx->t.alarm, ctx->tintv) - 1;
284 alarm_restart(&ctx->t.alarm);
285 } else {
286 ticks += hrtimer_forward_now(&ctx->t.tmr,
287 ctx->tintv) - 1;
288 hrtimer_restart(&ctx->t.tmr);
291 ctx->expired = 0;
292 ctx->ticks = 0;
294 spin_unlock_irq(&ctx->wqh.lock);
295 if (ticks)
296 res = put_user(ticks, (u64 __user *) buf) ? -EFAULT: sizeof(ticks);
297 return res;
300 #ifdef CONFIG_PROC_FS
301 static int timerfd_show(struct seq_file *m, struct file *file)
303 struct timerfd_ctx *ctx = file->private_data;
304 struct itimerspec t;
306 spin_lock_irq(&ctx->wqh.lock);
307 t.it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
308 t.it_interval = ktime_to_timespec(ctx->tintv);
309 spin_unlock_irq(&ctx->wqh.lock);
311 return seq_printf(m,
312 "clockid: %d\n"
313 "ticks: %llu\n"
314 "settime flags: 0%o\n"
315 "it_value: (%llu, %llu)\n"
316 "it_interval: (%llu, %llu)\n",
317 ctx->clockid, (unsigned long long)ctx->ticks,
318 ctx->settime_flags,
319 (unsigned long long)t.it_value.tv_sec,
320 (unsigned long long)t.it_value.tv_nsec,
321 (unsigned long long)t.it_interval.tv_sec,
322 (unsigned long long)t.it_interval.tv_nsec);
324 #else
325 #define timerfd_show NULL
326 #endif
328 #ifdef CONFIG_CHECKPOINT_RESTORE
329 static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
331 struct timerfd_ctx *ctx = file->private_data;
332 int ret = 0;
334 switch (cmd) {
335 case TFD_IOC_SET_TICKS: {
336 u64 ticks;
338 if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks)))
339 return -EFAULT;
340 if (!ticks)
341 return -EINVAL;
343 spin_lock_irq(&ctx->wqh.lock);
344 if (!timerfd_canceled(ctx)) {
345 ctx->ticks = ticks;
346 wake_up_locked(&ctx->wqh);
347 } else
348 ret = -ECANCELED;
349 spin_unlock_irq(&ctx->wqh.lock);
350 break;
352 default:
353 ret = -ENOTTY;
354 break;
357 return ret;
359 #else
360 #define timerfd_ioctl NULL
361 #endif
363 static const struct file_operations timerfd_fops = {
364 .release = timerfd_release,
365 .poll = timerfd_poll,
366 .read = timerfd_read,
367 .llseek = noop_llseek,
368 .show_fdinfo = timerfd_show,
369 .unlocked_ioctl = timerfd_ioctl,
372 static int timerfd_fget(int fd, struct fd *p)
374 struct fd f = fdget(fd);
375 if (!f.file)
376 return -EBADF;
377 if (f.file->f_op != &timerfd_fops) {
378 fdput(f);
379 return -EINVAL;
381 *p = f;
382 return 0;
385 SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
387 int ufd;
388 struct timerfd_ctx *ctx;
390 /* Check the TFD_* constants for consistency. */
391 BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC);
392 BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK);
394 if ((flags & ~TFD_CREATE_FLAGS) ||
395 (clockid != CLOCK_MONOTONIC &&
396 clockid != CLOCK_REALTIME &&
397 clockid != CLOCK_REALTIME_ALARM &&
398 clockid != CLOCK_BOOTTIME &&
399 clockid != CLOCK_BOOTTIME_ALARM))
400 return -EINVAL;
402 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
403 if (!ctx)
404 return -ENOMEM;
406 init_waitqueue_head(&ctx->wqh);
407 spin_lock_init(&ctx->cancel_lock);
408 ctx->clockid = clockid;
410 if (isalarm(ctx))
411 alarm_init(&ctx->t.alarm,
412 ctx->clockid == CLOCK_REALTIME_ALARM ?
413 ALARM_REALTIME : ALARM_BOOTTIME,
414 timerfd_alarmproc);
415 else
416 hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS);
418 ctx->moffs = ktime_mono_to_real((ktime_t){ .tv64 = 0 });
420 ufd = anon_inode_getfd("[timerfd]", &timerfd_fops, ctx,
421 O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
422 if (ufd < 0)
423 kfree(ctx);
425 return ufd;
428 static int do_timerfd_settime(int ufd, int flags,
429 const struct itimerspec *new,
430 struct itimerspec *old)
432 struct fd f;
433 struct timerfd_ctx *ctx;
434 int ret;
436 if ((flags & ~TFD_SETTIME_FLAGS) ||
437 !timespec_valid(&new->it_value) ||
438 !timespec_valid(&new->it_interval))
439 return -EINVAL;
441 ret = timerfd_fget(ufd, &f);
442 if (ret)
443 return ret;
444 ctx = f.file->private_data;
446 timerfd_setup_cancel(ctx, flags);
449 * We need to stop the existing timer before reprogramming
450 * it to the new values.
452 for (;;) {
453 spin_lock_irq(&ctx->wqh.lock);
455 if (isalarm(ctx)) {
456 if (alarm_try_to_cancel(&ctx->t.alarm) >= 0)
457 break;
458 } else {
459 if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0)
460 break;
462 spin_unlock_irq(&ctx->wqh.lock);
463 cpu_relax();
467 * If the timer is expired and it's periodic, we need to advance it
468 * because the caller may want to know the previous expiration time.
469 * We do not update "ticks" and "expired" since the timer will be
470 * re-programmed again in the following timerfd_setup() call.
472 if (ctx->expired && ctx->tintv.tv64) {
473 if (isalarm(ctx))
474 alarm_forward_now(&ctx->t.alarm, ctx->tintv);
475 else
476 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv);
479 old->it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
480 old->it_interval = ktime_to_timespec(ctx->tintv);
483 * Re-program the timer to the new value ...
485 ret = timerfd_setup(ctx, flags, new);
487 spin_unlock_irq(&ctx->wqh.lock);
488 fdput(f);
489 return ret;
492 static int do_timerfd_gettime(int ufd, struct itimerspec *t)
494 struct fd f;
495 struct timerfd_ctx *ctx;
496 int ret = timerfd_fget(ufd, &f);
497 if (ret)
498 return ret;
499 ctx = f.file->private_data;
501 spin_lock_irq(&ctx->wqh.lock);
502 if (ctx->expired && ctx->tintv.tv64) {
503 ctx->expired = 0;
505 if (isalarm(ctx)) {
506 ctx->ticks +=
507 alarm_forward_now(
508 &ctx->t.alarm, ctx->tintv) - 1;
509 alarm_restart(&ctx->t.alarm);
510 } else {
511 ctx->ticks +=
512 hrtimer_forward_now(&ctx->t.tmr, ctx->tintv)
513 - 1;
514 hrtimer_restart(&ctx->t.tmr);
517 t->it_value = ktime_to_timespec(timerfd_get_remaining(ctx));
518 t->it_interval = ktime_to_timespec(ctx->tintv);
519 spin_unlock_irq(&ctx->wqh.lock);
520 fdput(f);
521 return 0;
524 SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
525 const struct itimerspec __user *, utmr,
526 struct itimerspec __user *, otmr)
528 struct itimerspec new, old;
529 int ret;
531 if (copy_from_user(&new, utmr, sizeof(new)))
532 return -EFAULT;
533 ret = do_timerfd_settime(ufd, flags, &new, &old);
534 if (ret)
535 return ret;
536 if (otmr && copy_to_user(otmr, &old, sizeof(old)))
537 return -EFAULT;
539 return ret;
542 SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct itimerspec __user *, otmr)
544 struct itimerspec kotmr;
545 int ret = do_timerfd_gettime(ufd, &kotmr);
546 if (ret)
547 return ret;
548 return copy_to_user(otmr, &kotmr, sizeof(kotmr)) ? -EFAULT: 0;
551 #ifdef CONFIG_COMPAT
552 COMPAT_SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
553 const struct compat_itimerspec __user *, utmr,
554 struct compat_itimerspec __user *, otmr)
556 struct itimerspec new, old;
557 int ret;
559 if (get_compat_itimerspec(&new, utmr))
560 return -EFAULT;
561 ret = do_timerfd_settime(ufd, flags, &new, &old);
562 if (ret)
563 return ret;
564 if (otmr && put_compat_itimerspec(otmr, &old))
565 return -EFAULT;
566 return ret;
569 COMPAT_SYSCALL_DEFINE2(timerfd_gettime, int, ufd,
570 struct compat_itimerspec __user *, otmr)
572 struct itimerspec kotmr;
573 int ret = do_timerfd_gettime(ufd, &kotmr);
574 if (ret)
575 return ret;
576 return put_compat_itimerspec(otmr, &kotmr) ? -EFAULT: 0;
578 #endif