2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
42 #define user_long_t long
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
48 static int load_elf_binary(struct linux_binprm
*bprm
);
49 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
50 int, int, unsigned long);
53 static int load_elf_library(struct file
*);
55 #define load_elf_library NULL
59 * If we don't support core dumping, then supply a NULL so we
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params
*cprm
);
65 #define elf_core_dump NULL
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
71 #define ELF_MIN_ALIGN PAGE_SIZE
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS 0
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
82 static struct linux_binfmt elf_format
= {
83 .module
= THIS_MODULE
,
84 .load_binary
= load_elf_binary
,
85 .load_shlib
= load_elf_library
,
86 .core_dump
= elf_core_dump
,
87 .min_coredump
= ELF_EXEC_PAGESIZE
,
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
92 static int set_brk(unsigned long start
, unsigned long end
)
94 start
= ELF_PAGEALIGN(start
);
95 end
= ELF_PAGEALIGN(end
);
98 addr
= vm_brk(start
, end
- start
);
102 current
->mm
->start_brk
= current
->mm
->brk
= end
;
106 /* We need to explicitly zero any fractional pages
107 after the data section (i.e. bss). This would
108 contain the junk from the file that should not
111 static int padzero(unsigned long elf_bss
)
115 nbyte
= ELF_PAGEOFFSET(elf_bss
);
117 nbyte
= ELF_MIN_ALIGN
- nbyte
;
118 if (clear_user((void __user
*) elf_bss
, nbyte
))
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 (((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
139 #ifndef ELF_BASE_PLATFORM
141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 #define ELF_BASE_PLATFORM NULL
149 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
150 unsigned long load_addr
, unsigned long interp_load_addr
)
152 unsigned long p
= bprm
->p
;
153 int argc
= bprm
->argc
;
154 int envc
= bprm
->envc
;
155 elf_addr_t __user
*argv
;
156 elf_addr_t __user
*envp
;
157 elf_addr_t __user
*sp
;
158 elf_addr_t __user
*u_platform
;
159 elf_addr_t __user
*u_base_platform
;
160 elf_addr_t __user
*u_rand_bytes
;
161 const char *k_platform
= ELF_PLATFORM
;
162 const char *k_base_platform
= ELF_BASE_PLATFORM
;
163 unsigned char k_rand_bytes
[16];
165 elf_addr_t
*elf_info
;
167 const struct cred
*cred
= current_cred();
168 struct vm_area_struct
*vma
;
171 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 * evictions by the processes running on the same package. One
173 * thing we can do is to shuffle the initial stack for them.
176 p
= arch_align_stack(p
);
179 * If this architecture has a platform capability string, copy it
180 * to userspace. In some cases (Sparc), this info is impossible
181 * for userspace to get any other way, in others (i386) it is
186 size_t len
= strlen(k_platform
) + 1;
188 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
189 if (__copy_to_user(u_platform
, k_platform
, len
))
194 * If this architecture has a "base" platform capability
195 * string, copy it to userspace.
197 u_base_platform
= NULL
;
198 if (k_base_platform
) {
199 size_t len
= strlen(k_base_platform
) + 1;
201 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
202 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
207 * Generate 16 random bytes for userspace PRNG seeding.
209 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
210 u_rand_bytes
= (elf_addr_t __user
*)
211 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
212 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
215 /* Create the ELF interpreter info */
216 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
217 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
220 elf_info[ei_index++] = id; \
221 elf_info[ei_index++] = val; \
226 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 * ARCH_DLINFO changes
233 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
234 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
235 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
236 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
237 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
238 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
239 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
240 NEW_AUX_ENT(AT_FLAGS
, 0);
241 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
242 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
243 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
244 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
245 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
246 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
247 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
249 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
251 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
253 NEW_AUX_ENT(AT_PLATFORM
,
254 (elf_addr_t
)(unsigned long)u_platform
);
256 if (k_base_platform
) {
257 NEW_AUX_ENT(AT_BASE_PLATFORM
,
258 (elf_addr_t
)(unsigned long)u_base_platform
);
260 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
261 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
264 /* AT_NULL is zero; clear the rest too */
265 memset(&elf_info
[ei_index
], 0,
266 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
268 /* And advance past the AT_NULL entry. */
271 sp
= STACK_ADD(p
, ei_index
);
273 items
= (argc
+ 1) + (envc
+ 1) + 1;
274 bprm
->p
= STACK_ROUND(sp
, items
);
276 /* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
279 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
281 sp
= (elf_addr_t __user
*)bprm
->p
;
286 * Grow the stack manually; some architectures have a limit on how
287 * far ahead a user-space access may be in order to grow the stack.
289 vma
= find_extend_vma(current
->mm
, bprm
->p
);
293 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 if (__put_user(argc
, sp
++))
297 envp
= argv
+ argc
+ 1;
299 /* Populate argv and envp */
300 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
303 if (__put_user((elf_addr_t
)p
, argv
++))
305 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
306 if (!len
|| len
> MAX_ARG_STRLEN
)
310 if (__put_user(0, argv
))
312 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
315 if (__put_user((elf_addr_t
)p
, envp
++))
317 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
318 if (!len
|| len
> MAX_ARG_STRLEN
)
322 if (__put_user(0, envp
))
324 current
->mm
->env_end
= p
;
326 /* Put the elf_info on the stack in the right place. */
327 sp
= (elf_addr_t __user
*)envp
+ 1;
328 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
335 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
336 struct elf_phdr
*eppnt
, int prot
, int type
,
337 unsigned long total_size
)
339 unsigned long map_addr
;
340 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
341 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
342 addr
= ELF_PAGESTART(addr
);
343 size
= ELF_PAGEALIGN(size
);
345 /* mmap() will return -EINVAL if given a zero size, but a
346 * segment with zero filesize is perfectly valid */
351 * total_size is the size of the ELF (interpreter) image.
352 * The _first_ mmap needs to know the full size, otherwise
353 * randomization might put this image into an overlapping
354 * position with the ELF binary image. (since size < total_size)
355 * So we first map the 'big' image - and unmap the remainder at
356 * the end. (which unmap is needed for ELF images with holes.)
359 total_size
= ELF_PAGEALIGN(total_size
);
360 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
361 if (!BAD_ADDR(map_addr
))
362 vm_munmap(map_addr
+size
, total_size
-size
);
364 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
369 #endif /* !elf_map */
371 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
373 int i
, first_idx
= -1, last_idx
= -1;
375 for (i
= 0; i
< nr
; i
++) {
376 if (cmds
[i
].p_type
== PT_LOAD
) {
385 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
386 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
390 /* This is much more generalized than the library routine read function,
391 so we keep this separate. Technically the library read function
392 is only provided so that we can read a.out libraries that have
395 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
396 struct file
*interpreter
, unsigned long *interp_map_addr
,
397 unsigned long no_base
)
399 struct elf_phdr
*elf_phdata
;
400 struct elf_phdr
*eppnt
;
401 unsigned long load_addr
= 0;
402 int load_addr_set
= 0;
403 unsigned long last_bss
= 0, elf_bss
= 0;
404 unsigned long error
= ~0UL;
405 unsigned long total_size
;
408 /* First of all, some simple consistency checks */
409 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
410 interp_elf_ex
->e_type
!= ET_DYN
)
412 if (!elf_check_arch(interp_elf_ex
))
414 if (!interpreter
->f_op
->mmap
)
418 * If the size of this structure has changed, then punt, since
419 * we will be doing the wrong thing.
421 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
423 if (interp_elf_ex
->e_phnum
< 1 ||
424 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
427 /* Now read in all of the header information */
428 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
429 if (size
> ELF_MIN_ALIGN
)
431 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
435 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
436 (char *)elf_phdata
, size
);
438 if (retval
!= size
) {
444 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
451 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
452 if (eppnt
->p_type
== PT_LOAD
) {
453 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
455 unsigned long vaddr
= 0;
456 unsigned long k
, map_addr
;
458 if (eppnt
->p_flags
& PF_R
)
459 elf_prot
= PROT_READ
;
460 if (eppnt
->p_flags
& PF_W
)
461 elf_prot
|= PROT_WRITE
;
462 if (eppnt
->p_flags
& PF_X
)
463 elf_prot
|= PROT_EXEC
;
464 vaddr
= eppnt
->p_vaddr
;
465 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
466 elf_type
|= MAP_FIXED
;
467 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
470 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
471 eppnt
, elf_prot
, elf_type
, total_size
);
473 if (!*interp_map_addr
)
474 *interp_map_addr
= map_addr
;
476 if (BAD_ADDR(map_addr
))
479 if (!load_addr_set
&&
480 interp_elf_ex
->e_type
== ET_DYN
) {
481 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
486 * Check to see if the section's size will overflow the
487 * allowed task size. Note that p_filesz must always be
488 * <= p_memsize so it's only necessary to check p_memsz.
490 k
= load_addr
+ eppnt
->p_vaddr
;
492 eppnt
->p_filesz
> eppnt
->p_memsz
||
493 eppnt
->p_memsz
> TASK_SIZE
||
494 TASK_SIZE
- eppnt
->p_memsz
< k
) {
500 * Find the end of the file mapping for this phdr, and
501 * keep track of the largest address we see for this.
503 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
508 * Do the same thing for the memory mapping - between
509 * elf_bss and last_bss is the bss section.
511 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
517 if (last_bss
> elf_bss
) {
519 * Now fill out the bss section. First pad the last page up
520 * to the page boundary, and then perform a mmap to make sure
521 * that there are zero-mapped pages up to and including the
524 if (padzero(elf_bss
)) {
529 /* What we have mapped so far */
530 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
532 /* Map the last of the bss segment */
533 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
547 * These are the functions used to load ELF style executables and shared
548 * libraries. There is no binary dependent code anywhere else.
551 #ifndef STACK_RND_MASK
552 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
555 static unsigned long randomize_stack_top(unsigned long stack_top
)
557 unsigned int random_variable
= 0;
559 if ((current
->flags
& PF_RANDOMIZE
) &&
560 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
561 random_variable
= get_random_int() & STACK_RND_MASK
;
562 random_variable
<<= PAGE_SHIFT
;
564 #ifdef CONFIG_STACK_GROWSUP
565 return PAGE_ALIGN(stack_top
) + random_variable
;
567 return PAGE_ALIGN(stack_top
) - random_variable
;
571 static int load_elf_binary(struct linux_binprm
*bprm
)
573 struct file
*interpreter
= NULL
; /* to shut gcc up */
574 unsigned long load_addr
= 0, load_bias
= 0;
575 int load_addr_set
= 0;
576 char * elf_interpreter
= NULL
;
578 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
579 unsigned long elf_bss
, elf_brk
;
582 unsigned long elf_entry
;
583 unsigned long interp_load_addr
= 0;
584 unsigned long start_code
, end_code
, start_data
, end_data
;
585 unsigned long reloc_func_desc __maybe_unused
= 0;
586 int executable_stack
= EXSTACK_DEFAULT
;
587 struct pt_regs
*regs
= current_pt_regs();
589 struct elfhdr elf_ex
;
590 struct elfhdr interp_elf_ex
;
593 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
599 /* Get the exec-header */
600 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
603 /* First of all, some simple consistency checks */
604 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
607 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
609 if (!elf_check_arch(&loc
->elf_ex
))
611 if (!bprm
->file
->f_op
->mmap
)
614 /* Now read in all of the header information */
615 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
617 if (loc
->elf_ex
.e_phnum
< 1 ||
618 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
620 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
622 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
626 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
627 (char *)elf_phdata
, size
);
628 if (retval
!= size
) {
634 elf_ppnt
= elf_phdata
;
643 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
644 if (elf_ppnt
->p_type
== PT_INTERP
) {
645 /* This is the program interpreter used for
646 * shared libraries - for now assume that this
647 * is an a.out format binary
650 if (elf_ppnt
->p_filesz
> PATH_MAX
||
651 elf_ppnt
->p_filesz
< 2)
655 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
657 if (!elf_interpreter
)
660 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
663 if (retval
!= elf_ppnt
->p_filesz
) {
666 goto out_free_interp
;
668 /* make sure path is NULL terminated */
670 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
671 goto out_free_interp
;
673 interpreter
= open_exec(elf_interpreter
);
674 retval
= PTR_ERR(interpreter
);
675 if (IS_ERR(interpreter
))
676 goto out_free_interp
;
679 * If the binary is not readable then enforce
680 * mm->dumpable = 0 regardless of the interpreter's
683 would_dump(bprm
, interpreter
);
685 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
687 if (retval
!= BINPRM_BUF_SIZE
) {
690 goto out_free_dentry
;
693 /* Get the exec headers */
694 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
700 elf_ppnt
= elf_phdata
;
701 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
702 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
703 if (elf_ppnt
->p_flags
& PF_X
)
704 executable_stack
= EXSTACK_ENABLE_X
;
706 executable_stack
= EXSTACK_DISABLE_X
;
710 /* Some simple consistency checks for the interpreter */
711 if (elf_interpreter
) {
713 /* Not an ELF interpreter */
714 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
715 goto out_free_dentry
;
716 /* Verify the interpreter has a valid arch */
717 if (!elf_check_arch(&loc
->interp_elf_ex
))
718 goto out_free_dentry
;
721 /* Flush all traces of the currently running executable */
722 retval
= flush_old_exec(bprm
);
724 goto out_free_dentry
;
726 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
727 may depend on the personality. */
728 SET_PERSONALITY(loc
->elf_ex
);
729 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
730 current
->personality
|= READ_IMPLIES_EXEC
;
732 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
733 current
->flags
|= PF_RANDOMIZE
;
735 setup_new_exec(bprm
);
737 /* Do this so that we can load the interpreter, if need be. We will
738 change some of these later */
739 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
742 send_sig(SIGKILL
, current
, 0);
743 goto out_free_dentry
;
746 current
->mm
->start_stack
= bprm
->p
;
748 /* Now we do a little grungy work by mmapping the ELF image into
749 the correct location in memory. */
750 for(i
= 0, elf_ppnt
= elf_phdata
;
751 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
752 int elf_prot
= 0, elf_flags
;
753 unsigned long k
, vaddr
;
755 if (elf_ppnt
->p_type
!= PT_LOAD
)
758 if (unlikely (elf_brk
> elf_bss
)) {
761 /* There was a PT_LOAD segment with p_memsz > p_filesz
762 before this one. Map anonymous pages, if needed,
763 and clear the area. */
764 retval
= set_brk(elf_bss
+ load_bias
,
765 elf_brk
+ load_bias
);
767 send_sig(SIGKILL
, current
, 0);
768 goto out_free_dentry
;
770 nbyte
= ELF_PAGEOFFSET(elf_bss
);
772 nbyte
= ELF_MIN_ALIGN
- nbyte
;
773 if (nbyte
> elf_brk
- elf_bss
)
774 nbyte
= elf_brk
- elf_bss
;
775 if (clear_user((void __user
*)elf_bss
+
778 * This bss-zeroing can fail if the ELF
779 * file specifies odd protections. So
780 * we don't check the return value
786 if (elf_ppnt
->p_flags
& PF_R
)
787 elf_prot
|= PROT_READ
;
788 if (elf_ppnt
->p_flags
& PF_W
)
789 elf_prot
|= PROT_WRITE
;
790 if (elf_ppnt
->p_flags
& PF_X
)
791 elf_prot
|= PROT_EXEC
;
793 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
795 vaddr
= elf_ppnt
->p_vaddr
;
796 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
797 elf_flags
|= MAP_FIXED
;
798 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
799 /* Try and get dynamic programs out of the way of the
800 * default mmap base, as well as whatever program they
801 * might try to exec. This is because the brk will
802 * follow the loader, and is not movable. */
803 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
804 /* Memory randomization might have been switched off
805 * in runtime via sysctl or explicit setting of
807 * If that is the case, retain the original non-zero
808 * load_bias value in order to establish proper
809 * non-randomized mappings.
811 if (current
->flags
& PF_RANDOMIZE
)
814 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
816 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
820 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
821 elf_prot
, elf_flags
, 0);
822 if (BAD_ADDR(error
)) {
823 send_sig(SIGKILL
, current
, 0);
824 retval
= IS_ERR((void *)error
) ?
825 PTR_ERR((void*)error
) : -EINVAL
;
826 goto out_free_dentry
;
829 if (!load_addr_set
) {
831 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
832 if (loc
->elf_ex
.e_type
== ET_DYN
) {
834 ELF_PAGESTART(load_bias
+ vaddr
);
835 load_addr
+= load_bias
;
836 reloc_func_desc
= load_bias
;
839 k
= elf_ppnt
->p_vaddr
;
846 * Check to see if the section's size will overflow the
847 * allowed task size. Note that p_filesz must always be
848 * <= p_memsz so it is only necessary to check p_memsz.
850 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
851 elf_ppnt
->p_memsz
> TASK_SIZE
||
852 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
853 /* set_brk can never work. Avoid overflows. */
854 send_sig(SIGKILL
, current
, 0);
856 goto out_free_dentry
;
859 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
863 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
867 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
872 loc
->elf_ex
.e_entry
+= load_bias
;
873 elf_bss
+= load_bias
;
874 elf_brk
+= load_bias
;
875 start_code
+= load_bias
;
876 end_code
+= load_bias
;
877 start_data
+= load_bias
;
878 end_data
+= load_bias
;
880 /* Calling set_brk effectively mmaps the pages that we need
881 * for the bss and break sections. We must do this before
882 * mapping in the interpreter, to make sure it doesn't wind
883 * up getting placed where the bss needs to go.
885 retval
= set_brk(elf_bss
, elf_brk
);
887 send_sig(SIGKILL
, current
, 0);
888 goto out_free_dentry
;
890 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
891 send_sig(SIGSEGV
, current
, 0);
892 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
893 goto out_free_dentry
;
896 if (elf_interpreter
) {
897 unsigned long interp_map_addr
= 0;
899 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
903 if (!IS_ERR((void *)elf_entry
)) {
905 * load_elf_interp() returns relocation
908 interp_load_addr
= elf_entry
;
909 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
911 if (BAD_ADDR(elf_entry
)) {
912 force_sig(SIGSEGV
, current
);
913 retval
= IS_ERR((void *)elf_entry
) ?
914 (int)elf_entry
: -EINVAL
;
915 goto out_free_dentry
;
917 reloc_func_desc
= interp_load_addr
;
919 allow_write_access(interpreter
);
921 kfree(elf_interpreter
);
923 elf_entry
= loc
->elf_ex
.e_entry
;
924 if (BAD_ADDR(elf_entry
)) {
925 force_sig(SIGSEGV
, current
);
927 goto out_free_dentry
;
933 set_binfmt(&elf_format
);
935 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
936 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
938 send_sig(SIGKILL
, current
, 0);
941 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
943 install_exec_creds(bprm
);
944 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
945 load_addr
, interp_load_addr
);
947 send_sig(SIGKILL
, current
, 0);
950 /* N.B. passed_fileno might not be initialized? */
951 current
->mm
->end_code
= end_code
;
952 current
->mm
->start_code
= start_code
;
953 current
->mm
->start_data
= start_data
;
954 current
->mm
->end_data
= end_data
;
955 current
->mm
->start_stack
= bprm
->p
;
957 #ifdef arch_randomize_brk
958 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
959 current
->mm
->brk
= current
->mm
->start_brk
=
960 arch_randomize_brk(current
->mm
);
961 #ifdef CONFIG_COMPAT_BRK
962 current
->brk_randomized
= 1;
967 if (current
->personality
& MMAP_PAGE_ZERO
) {
968 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
969 and some applications "depend" upon this behavior.
970 Since we do not have the power to recompile these, we
971 emulate the SVr4 behavior. Sigh. */
972 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
973 MAP_FIXED
| MAP_PRIVATE
, 0);
978 * The ABI may specify that certain registers be set up in special
979 * ways (on i386 %edx is the address of a DT_FINI function, for
980 * example. In addition, it may also specify (eg, PowerPC64 ELF)
981 * that the e_entry field is the address of the function descriptor
982 * for the startup routine, rather than the address of the startup
983 * routine itself. This macro performs whatever initialization to
984 * the regs structure is required as well as any relocations to the
985 * function descriptor entries when executing dynamically links apps.
987 ELF_PLAT_INIT(regs
, reloc_func_desc
);
990 start_thread(regs
, elf_entry
, bprm
->p
);
999 allow_write_access(interpreter
);
1003 kfree(elf_interpreter
);
1009 #ifdef CONFIG_USELIB
1010 /* This is really simpleminded and specialized - we are loading an
1011 a.out library that is given an ELF header. */
1012 static int load_elf_library(struct file
*file
)
1014 struct elf_phdr
*elf_phdata
;
1015 struct elf_phdr
*eppnt
;
1016 unsigned long elf_bss
, bss
, len
;
1017 int retval
, error
, i
, j
;
1018 struct elfhdr elf_ex
;
1021 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1022 if (retval
!= sizeof(elf_ex
))
1025 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1028 /* First of all, some simple consistency checks */
1029 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1030 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1033 /* Now read in all of the header information */
1035 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1036 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1039 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1045 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1049 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1050 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1055 while (eppnt
->p_type
!= PT_LOAD
)
1058 /* Now use mmap to map the library into memory. */
1059 error
= vm_mmap(file
,
1060 ELF_PAGESTART(eppnt
->p_vaddr
),
1062 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1063 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1064 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1066 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1067 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1070 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1071 if (padzero(elf_bss
)) {
1076 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1078 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1080 vm_brk(len
, bss
- len
);
1088 #endif /* #ifdef CONFIG_USELIB */
1090 #ifdef CONFIG_ELF_CORE
1094 * Modelled on fs/exec.c:aout_core_dump()
1095 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1099 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1100 * that are useful for post-mortem analysis are included in every core dump.
1101 * In that way we ensure that the core dump is fully interpretable later
1102 * without matching up the same kernel and hardware config to see what PC values
1103 * meant. These special mappings include - vDSO, vsyscall, and other
1104 * architecture specific mappings
1106 static bool always_dump_vma(struct vm_area_struct
*vma
)
1108 /* Any vsyscall mappings? */
1109 if (vma
== get_gate_vma(vma
->vm_mm
))
1112 * arch_vma_name() returns non-NULL for special architecture mappings,
1113 * such as vDSO sections.
1115 if (arch_vma_name(vma
))
1122 * Decide what to dump of a segment, part, all or none.
1124 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1125 unsigned long mm_flags
)
1127 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1129 /* always dump the vdso and vsyscall sections */
1130 if (always_dump_vma(vma
))
1133 if (vma
->vm_flags
& VM_DONTDUMP
)
1136 /* Hugetlb memory check */
1137 if (vma
->vm_flags
& VM_HUGETLB
) {
1138 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1140 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1145 /* Do not dump I/O mapped devices or special mappings */
1146 if (vma
->vm_flags
& VM_IO
)
1149 /* By default, dump shared memory if mapped from an anonymous file. */
1150 if (vma
->vm_flags
& VM_SHARED
) {
1151 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1152 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1157 /* Dump segments that have been written to. */
1158 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1160 if (vma
->vm_file
== NULL
)
1163 if (FILTER(MAPPED_PRIVATE
))
1167 * If this looks like the beginning of a DSO or executable mapping,
1168 * check for an ELF header. If we find one, dump the first page to
1169 * aid in determining what was mapped here.
1171 if (FILTER(ELF_HEADERS
) &&
1172 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1173 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1175 mm_segment_t fs
= get_fs();
1177 * Doing it this way gets the constant folded by GCC.
1181 char elfmag
[SELFMAG
];
1183 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1184 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1185 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1186 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1187 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1189 * Switch to the user "segment" for get_user(),
1190 * then put back what elf_core_dump() had in place.
1193 if (unlikely(get_user(word
, header
)))
1196 if (word
== magic
.cmp
)
1205 return vma
->vm_end
- vma
->vm_start
;
1208 /* An ELF note in memory */
1213 unsigned int datasz
;
1217 static int notesize(struct memelfnote
*en
)
1221 sz
= sizeof(struct elf_note
);
1222 sz
+= roundup(strlen(en
->name
) + 1, 4);
1223 sz
+= roundup(en
->datasz
, 4);
1228 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1231 en
.n_namesz
= strlen(men
->name
) + 1;
1232 en
.n_descsz
= men
->datasz
;
1233 en
.n_type
= men
->type
;
1235 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1236 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1237 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1240 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1241 u16 machine
, u32 flags
)
1243 memset(elf
, 0, sizeof(*elf
));
1245 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1246 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1247 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1248 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1249 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1251 elf
->e_type
= ET_CORE
;
1252 elf
->e_machine
= machine
;
1253 elf
->e_version
= EV_CURRENT
;
1254 elf
->e_phoff
= sizeof(struct elfhdr
);
1255 elf
->e_flags
= flags
;
1256 elf
->e_ehsize
= sizeof(struct elfhdr
);
1257 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1258 elf
->e_phnum
= segs
;
1263 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1265 phdr
->p_type
= PT_NOTE
;
1266 phdr
->p_offset
= offset
;
1269 phdr
->p_filesz
= sz
;
1276 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1277 unsigned int sz
, void *data
)
1287 * fill up all the fields in prstatus from the given task struct, except
1288 * registers which need to be filled up separately.
1290 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1291 struct task_struct
*p
, long signr
)
1293 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1294 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1295 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1297 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1299 prstatus
->pr_pid
= task_pid_vnr(p
);
1300 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1301 prstatus
->pr_sid
= task_session_vnr(p
);
1302 if (thread_group_leader(p
)) {
1303 struct task_cputime cputime
;
1306 * This is the record for the group leader. It shows the
1307 * group-wide total, not its individual thread total.
1309 thread_group_cputime(p
, &cputime
);
1310 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1311 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1313 cputime_t utime
, stime
;
1315 task_cputime(p
, &utime
, &stime
);
1316 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1317 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1319 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1320 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1323 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1324 struct mm_struct
*mm
)
1326 const struct cred
*cred
;
1327 unsigned int i
, len
;
1329 /* first copy the parameters from user space */
1330 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1332 len
= mm
->arg_end
- mm
->arg_start
;
1333 if (len
>= ELF_PRARGSZ
)
1334 len
= ELF_PRARGSZ
-1;
1335 if (copy_from_user(&psinfo
->pr_psargs
,
1336 (const char __user
*)mm
->arg_start
, len
))
1338 for(i
= 0; i
< len
; i
++)
1339 if (psinfo
->pr_psargs
[i
] == 0)
1340 psinfo
->pr_psargs
[i
] = ' ';
1341 psinfo
->pr_psargs
[len
] = 0;
1344 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1346 psinfo
->pr_pid
= task_pid_vnr(p
);
1347 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1348 psinfo
->pr_sid
= task_session_vnr(p
);
1350 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1351 psinfo
->pr_state
= i
;
1352 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1353 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1354 psinfo
->pr_nice
= task_nice(p
);
1355 psinfo
->pr_flag
= p
->flags
;
1357 cred
= __task_cred(p
);
1358 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1359 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1361 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1366 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1368 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1372 while (auxv
[i
- 2] != AT_NULL
);
1373 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1376 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1377 const siginfo_t
*siginfo
)
1379 mm_segment_t old_fs
= get_fs();
1381 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1383 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1386 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1388 * Format of NT_FILE note:
1390 * long count -- how many files are mapped
1391 * long page_size -- units for file_ofs
1392 * array of [COUNT] elements of
1396 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1398 static int fill_files_note(struct memelfnote
*note
)
1400 struct vm_area_struct
*vma
;
1401 unsigned count
, size
, names_ofs
, remaining
, n
;
1403 user_long_t
*start_end_ofs
;
1404 char *name_base
, *name_curpos
;
1406 /* *Estimated* file count and total data size needed */
1407 count
= current
->mm
->map_count
;
1410 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1412 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1414 size
= round_up(size
, PAGE_SIZE
);
1415 data
= vmalloc(size
);
1419 start_end_ofs
= data
+ 2;
1420 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1421 remaining
= size
- names_ofs
;
1423 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1425 const char *filename
;
1427 file
= vma
->vm_file
;
1430 filename
= d_path(&file
->f_path
, name_curpos
, remaining
);
1431 if (IS_ERR(filename
)) {
1432 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1434 size
= size
* 5 / 4;
1440 /* d_path() fills at the end, move name down */
1441 /* n = strlen(filename) + 1: */
1442 n
= (name_curpos
+ remaining
) - filename
;
1443 remaining
= filename
- name_curpos
;
1444 memmove(name_curpos
, filename
, n
);
1447 *start_end_ofs
++ = vma
->vm_start
;
1448 *start_end_ofs
++ = vma
->vm_end
;
1449 *start_end_ofs
++ = vma
->vm_pgoff
;
1453 /* Now we know exact count of files, can store it */
1455 data
[1] = PAGE_SIZE
;
1457 * Count usually is less than current->mm->map_count,
1458 * we need to move filenames down.
1460 n
= current
->mm
->map_count
- count
;
1462 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1463 memmove(name_base
- shift_bytes
, name_base
,
1464 name_curpos
- name_base
);
1465 name_curpos
-= shift_bytes
;
1468 size
= name_curpos
- (char *)data
;
1469 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1473 #ifdef CORE_DUMP_USE_REGSET
1474 #include <linux/regset.h>
1476 struct elf_thread_core_info
{
1477 struct elf_thread_core_info
*next
;
1478 struct task_struct
*task
;
1479 struct elf_prstatus prstatus
;
1480 struct memelfnote notes
[0];
1483 struct elf_note_info
{
1484 struct elf_thread_core_info
*thread
;
1485 struct memelfnote psinfo
;
1486 struct memelfnote signote
;
1487 struct memelfnote auxv
;
1488 struct memelfnote files
;
1489 user_siginfo_t csigdata
;
1495 * When a regset has a writeback hook, we call it on each thread before
1496 * dumping user memory. On register window machines, this makes sure the
1497 * user memory backing the register data is up to date before we read it.
1499 static void do_thread_regset_writeback(struct task_struct
*task
,
1500 const struct user_regset
*regset
)
1502 if (regset
->writeback
)
1503 regset
->writeback(task
, regset
, 1);
1507 #define PR_REG_SIZE(S) sizeof(S)
1510 #ifndef PRSTATUS_SIZE
1511 #define PRSTATUS_SIZE(S) sizeof(S)
1515 #define PR_REG_PTR(S) (&((S)->pr_reg))
1518 #ifndef SET_PR_FPVALID
1519 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1522 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1523 const struct user_regset_view
*view
,
1524 long signr
, size_t *total
)
1529 * NT_PRSTATUS is the one special case, because the regset data
1530 * goes into the pr_reg field inside the note contents, rather
1531 * than being the whole note contents. We fill the reset in here.
1532 * We assume that regset 0 is NT_PRSTATUS.
1534 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1535 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1536 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1537 PR_REG_PTR(&t
->prstatus
), NULL
);
1539 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1540 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1541 *total
+= notesize(&t
->notes
[0]);
1543 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1546 * Each other regset might generate a note too. For each regset
1547 * that has no core_note_type or is inactive, we leave t->notes[i]
1548 * all zero and we'll know to skip writing it later.
1550 for (i
= 1; i
< view
->n
; ++i
) {
1551 const struct user_regset
*regset
= &view
->regsets
[i
];
1552 do_thread_regset_writeback(t
->task
, regset
);
1553 if (regset
->core_note_type
&& regset
->get
&&
1554 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1556 size_t size
= regset
->n
* regset
->size
;
1557 void *data
= kmalloc(size
, GFP_KERNEL
);
1558 if (unlikely(!data
))
1560 ret
= regset
->get(t
->task
, regset
,
1561 0, size
, data
, NULL
);
1565 if (regset
->core_note_type
!= NT_PRFPREG
)
1566 fill_note(&t
->notes
[i
], "LINUX",
1567 regset
->core_note_type
,
1570 SET_PR_FPVALID(&t
->prstatus
, 1);
1571 fill_note(&t
->notes
[i
], "CORE",
1572 NT_PRFPREG
, size
, data
);
1574 *total
+= notesize(&t
->notes
[i
]);
1582 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1583 struct elf_note_info
*info
,
1584 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1586 struct task_struct
*dump_task
= current
;
1587 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1588 struct elf_thread_core_info
*t
;
1589 struct elf_prpsinfo
*psinfo
;
1590 struct core_thread
*ct
;
1594 info
->thread
= NULL
;
1596 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1597 if (psinfo
== NULL
) {
1598 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1602 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1605 * Figure out how many notes we're going to need for each thread.
1607 info
->thread_notes
= 0;
1608 for (i
= 0; i
< view
->n
; ++i
)
1609 if (view
->regsets
[i
].core_note_type
!= 0)
1610 ++info
->thread_notes
;
1613 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1614 * since it is our one special case.
1616 if (unlikely(info
->thread_notes
== 0) ||
1617 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1623 * Initialize the ELF file header.
1625 fill_elf_header(elf
, phdrs
,
1626 view
->e_machine
, view
->e_flags
);
1629 * Allocate a structure for each thread.
1631 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1632 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1633 notes
[info
->thread_notes
]),
1639 if (ct
->task
== dump_task
|| !info
->thread
) {
1640 t
->next
= info
->thread
;
1644 * Make sure to keep the original task at
1645 * the head of the list.
1647 t
->next
= info
->thread
->next
;
1648 info
->thread
->next
= t
;
1653 * Now fill in each thread's information.
1655 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1656 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1660 * Fill in the two process-wide notes.
1662 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1663 info
->size
+= notesize(&info
->psinfo
);
1665 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1666 info
->size
+= notesize(&info
->signote
);
1668 fill_auxv_note(&info
->auxv
, current
->mm
);
1669 info
->size
+= notesize(&info
->auxv
);
1671 if (fill_files_note(&info
->files
) == 0)
1672 info
->size
+= notesize(&info
->files
);
1677 static size_t get_note_info_size(struct elf_note_info
*info
)
1683 * Write all the notes for each thread. When writing the first thread, the
1684 * process-wide notes are interleaved after the first thread-specific note.
1686 static int write_note_info(struct elf_note_info
*info
,
1687 struct coredump_params
*cprm
)
1690 struct elf_thread_core_info
*t
= info
->thread
;
1695 if (!writenote(&t
->notes
[0], cprm
))
1698 if (first
&& !writenote(&info
->psinfo
, cprm
))
1700 if (first
&& !writenote(&info
->signote
, cprm
))
1702 if (first
&& !writenote(&info
->auxv
, cprm
))
1704 if (first
&& info
->files
.data
&&
1705 !writenote(&info
->files
, cprm
))
1708 for (i
= 1; i
< info
->thread_notes
; ++i
)
1709 if (t
->notes
[i
].data
&&
1710 !writenote(&t
->notes
[i
], cprm
))
1720 static void free_note_info(struct elf_note_info
*info
)
1722 struct elf_thread_core_info
*threads
= info
->thread
;
1725 struct elf_thread_core_info
*t
= threads
;
1727 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1728 for (i
= 1; i
< info
->thread_notes
; ++i
)
1729 kfree(t
->notes
[i
].data
);
1732 kfree(info
->psinfo
.data
);
1733 vfree(info
->files
.data
);
1738 /* Here is the structure in which status of each thread is captured. */
1739 struct elf_thread_status
1741 struct list_head list
;
1742 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1743 elf_fpregset_t fpu
; /* NT_PRFPREG */
1744 struct task_struct
*thread
;
1745 #ifdef ELF_CORE_COPY_XFPREGS
1746 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1748 struct memelfnote notes
[3];
1753 * In order to add the specific thread information for the elf file format,
1754 * we need to keep a linked list of every threads pr_status and then create
1755 * a single section for them in the final core file.
1757 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1760 struct task_struct
*p
= t
->thread
;
1763 fill_prstatus(&t
->prstatus
, p
, signr
);
1764 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1766 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1769 sz
+= notesize(&t
->notes
[0]);
1771 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1773 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1776 sz
+= notesize(&t
->notes
[1]);
1779 #ifdef ELF_CORE_COPY_XFPREGS
1780 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1781 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1782 sizeof(t
->xfpu
), &t
->xfpu
);
1784 sz
+= notesize(&t
->notes
[2]);
1790 struct elf_note_info
{
1791 struct memelfnote
*notes
;
1792 struct memelfnote
*notes_files
;
1793 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1794 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1795 struct list_head thread_list
;
1796 elf_fpregset_t
*fpu
;
1797 #ifdef ELF_CORE_COPY_XFPREGS
1798 elf_fpxregset_t
*xfpu
;
1800 user_siginfo_t csigdata
;
1801 int thread_status_size
;
1805 static int elf_note_info_init(struct elf_note_info
*info
)
1807 memset(info
, 0, sizeof(*info
));
1808 INIT_LIST_HEAD(&info
->thread_list
);
1810 /* Allocate space for ELF notes */
1811 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1814 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1817 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1818 if (!info
->prstatus
)
1820 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1823 #ifdef ELF_CORE_COPY_XFPREGS
1824 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1831 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1832 struct elf_note_info
*info
,
1833 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1835 struct list_head
*t
;
1836 struct core_thread
*ct
;
1837 struct elf_thread_status
*ets
;
1839 if (!elf_note_info_init(info
))
1842 for (ct
= current
->mm
->core_state
->dumper
.next
;
1843 ct
; ct
= ct
->next
) {
1844 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1848 ets
->thread
= ct
->task
;
1849 list_add(&ets
->list
, &info
->thread_list
);
1852 list_for_each(t
, &info
->thread_list
) {
1855 ets
= list_entry(t
, struct elf_thread_status
, list
);
1856 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1857 info
->thread_status_size
+= sz
;
1859 /* now collect the dump for the current */
1860 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1861 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1862 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1865 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
1868 * Set up the notes in similar form to SVR4 core dumps made
1869 * with info from their /proc.
1872 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1873 sizeof(*info
->prstatus
), info
->prstatus
);
1874 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1875 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1876 sizeof(*info
->psinfo
), info
->psinfo
);
1878 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
1879 fill_auxv_note(info
->notes
+ 3, current
->mm
);
1882 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
1883 info
->notes_files
= info
->notes
+ info
->numnote
;
1887 /* Try to dump the FPU. */
1888 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1890 if (info
->prstatus
->pr_fpvalid
)
1891 fill_note(info
->notes
+ info
->numnote
++,
1892 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1893 #ifdef ELF_CORE_COPY_XFPREGS
1894 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1895 fill_note(info
->notes
+ info
->numnote
++,
1896 "LINUX", ELF_CORE_XFPREG_TYPE
,
1897 sizeof(*info
->xfpu
), info
->xfpu
);
1903 static size_t get_note_info_size(struct elf_note_info
*info
)
1908 for (i
= 0; i
< info
->numnote
; i
++)
1909 sz
+= notesize(info
->notes
+ i
);
1911 sz
+= info
->thread_status_size
;
1916 static int write_note_info(struct elf_note_info
*info
,
1917 struct coredump_params
*cprm
)
1920 struct list_head
*t
;
1922 for (i
= 0; i
< info
->numnote
; i
++)
1923 if (!writenote(info
->notes
+ i
, cprm
))
1926 /* write out the thread status notes section */
1927 list_for_each(t
, &info
->thread_list
) {
1928 struct elf_thread_status
*tmp
=
1929 list_entry(t
, struct elf_thread_status
, list
);
1931 for (i
= 0; i
< tmp
->num_notes
; i
++)
1932 if (!writenote(&tmp
->notes
[i
], cprm
))
1939 static void free_note_info(struct elf_note_info
*info
)
1941 while (!list_empty(&info
->thread_list
)) {
1942 struct list_head
*tmp
= info
->thread_list
.next
;
1944 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1947 /* Free data possibly allocated by fill_files_note(): */
1948 if (info
->notes_files
)
1949 vfree(info
->notes_files
->data
);
1951 kfree(info
->prstatus
);
1952 kfree(info
->psinfo
);
1955 #ifdef ELF_CORE_COPY_XFPREGS
1962 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1963 struct vm_area_struct
*gate_vma
)
1965 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1972 * Helper function for iterating across a vma list. It ensures that the caller
1973 * will visit `gate_vma' prior to terminating the search.
1975 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1976 struct vm_area_struct
*gate_vma
)
1978 struct vm_area_struct
*ret
;
1980 ret
= this_vma
->vm_next
;
1983 if (this_vma
== gate_vma
)
1988 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
1989 elf_addr_t e_shoff
, int segs
)
1991 elf
->e_shoff
= e_shoff
;
1992 elf
->e_shentsize
= sizeof(*shdr4extnum
);
1994 elf
->e_shstrndx
= SHN_UNDEF
;
1996 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
1998 shdr4extnum
->sh_type
= SHT_NULL
;
1999 shdr4extnum
->sh_size
= elf
->e_shnum
;
2000 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
2001 shdr4extnum
->sh_info
= segs
;
2004 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
2005 unsigned long mm_flags
)
2007 struct vm_area_struct
*vma
;
2010 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2011 vma
= next_vma(vma
, gate_vma
))
2012 size
+= vma_dump_size(vma
, mm_flags
);
2019 * This is a two-pass process; first we find the offsets of the bits,
2020 * and then they are actually written out. If we run out of core limit
2023 static int elf_core_dump(struct coredump_params
*cprm
)
2028 struct vm_area_struct
*vma
, *gate_vma
;
2029 struct elfhdr
*elf
= NULL
;
2030 loff_t offset
= 0, dataoff
;
2031 struct elf_note_info info
= { };
2032 struct elf_phdr
*phdr4note
= NULL
;
2033 struct elf_shdr
*shdr4extnum
= NULL
;
2038 * We no longer stop all VM operations.
2040 * This is because those proceses that could possibly change map_count
2041 * or the mmap / vma pages are now blocked in do_exit on current
2042 * finishing this core dump.
2044 * Only ptrace can touch these memory addresses, but it doesn't change
2045 * the map_count or the pages allocated. So no possibility of crashing
2046 * exists while dumping the mm->vm_next areas to the core file.
2049 /* alloc memory for large data structures: too large to be on stack */
2050 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2054 * The number of segs are recored into ELF header as 16bit value.
2055 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2057 segs
= current
->mm
->map_count
;
2058 segs
+= elf_core_extra_phdrs();
2060 gate_vma
= get_gate_vma(current
->mm
);
2061 if (gate_vma
!= NULL
)
2064 /* for notes section */
2067 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2068 * this, kernel supports extended numbering. Have a look at
2069 * include/linux/elf.h for further information. */
2070 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2073 * Collect all the non-memory information about the process for the
2074 * notes. This also sets up the file header.
2076 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2084 offset
+= sizeof(*elf
); /* Elf header */
2085 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2087 /* Write notes phdr entry */
2089 size_t sz
= get_note_info_size(&info
);
2091 sz
+= elf_coredump_extra_notes_size();
2093 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2097 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2101 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2103 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
2104 offset
+= elf_core_extra_data_size();
2107 if (e_phnum
== PN_XNUM
) {
2108 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2111 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2116 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2119 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2122 /* Write program headers for segments dump */
2123 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2124 vma
= next_vma(vma
, gate_vma
)) {
2125 struct elf_phdr phdr
;
2127 phdr
.p_type
= PT_LOAD
;
2128 phdr
.p_offset
= offset
;
2129 phdr
.p_vaddr
= vma
->vm_start
;
2131 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
2132 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2133 offset
+= phdr
.p_filesz
;
2134 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2135 if (vma
->vm_flags
& VM_WRITE
)
2136 phdr
.p_flags
|= PF_W
;
2137 if (vma
->vm_flags
& VM_EXEC
)
2138 phdr
.p_flags
|= PF_X
;
2139 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2141 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2145 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2148 /* write out the notes section */
2149 if (!write_note_info(&info
, cprm
))
2152 if (elf_coredump_extra_notes_write(cprm
))
2156 if (!dump_skip(cprm
, dataoff
- cprm
->written
))
2159 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2160 vma
= next_vma(vma
, gate_vma
)) {
2164 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2166 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2170 page
= get_dump_page(addr
);
2172 void *kaddr
= kmap(page
);
2173 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2175 page_cache_release(page
);
2177 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2183 if (!elf_core_write_extra_data(cprm
))
2186 if (e_phnum
== PN_XNUM
) {
2187 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2195 free_note_info(&info
);
2203 #endif /* CONFIG_ELF_CORE */
2205 static int __init
init_elf_binfmt(void)
2207 register_binfmt(&elf_format
);
2211 static void __exit
exit_elf_binfmt(void)
2213 /* Remove the COFF and ELF loaders. */
2214 unregister_binfmt(&elf_format
);
2217 core_initcall(init_elf_binfmt
);
2218 module_exit(exit_elf_binfmt
);
2219 MODULE_LICENSE("GPL");