1 /* arch/sparc64/kernel/kprobes.c
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/extable.h>
9 #include <linux/kdebug.h>
10 #include <linux/slab.h>
11 #include <linux/context_tracking.h>
12 #include <asm/signal.h>
13 #include <asm/cacheflush.h>
14 #include <linux/uaccess.h>
16 /* We do not have hardware single-stepping on sparc64.
17 * So we implement software single-stepping with breakpoint
18 * traps. The top-level scheme is similar to that used
19 * in the x86 kprobes implementation.
21 * In the kprobe->ainsn.insn[] array we store the original
22 * instruction at index zero and a break instruction at
25 * When we hit a kprobe we:
26 * - Run the pre-handler
27 * - Remember "regs->tnpc" and interrupt level stored in
28 * "regs->tstate" so we can restore them later
29 * - Disable PIL interrupts
30 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
31 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
32 * - Mark that we are actively in a kprobe
34 * At this point we wait for the second breakpoint at
35 * kprobe->ainsn.insn[1] to hit. When it does we:
36 * - Run the post-handler
37 * - Set regs->tpc to "remembered" regs->tnpc stored above,
38 * restore the PIL interrupt level in "regs->tstate" as well
39 * - Make any adjustments necessary to regs->tnpc in order
40 * to handle relative branches correctly. See below.
41 * - Mark that we are no longer actively in a kprobe.
44 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
) = NULL
;
45 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
47 struct kretprobe_blackpoint kretprobe_blacklist
[] = {{NULL
, NULL
}};
49 int __kprobes
arch_prepare_kprobe(struct kprobe
*p
)
51 if ((unsigned long) p
->addr
& 0x3UL
)
54 p
->ainsn
.insn
[0] = *p
->addr
;
55 flushi(&p
->ainsn
.insn
[0]);
57 p
->ainsn
.insn
[1] = BREAKPOINT_INSTRUCTION_2
;
58 flushi(&p
->ainsn
.insn
[1]);
64 void __kprobes
arch_arm_kprobe(struct kprobe
*p
)
66 *p
->addr
= BREAKPOINT_INSTRUCTION
;
70 void __kprobes
arch_disarm_kprobe(struct kprobe
*p
)
76 static void __kprobes
save_previous_kprobe(struct kprobe_ctlblk
*kcb
)
78 kcb
->prev_kprobe
.kp
= kprobe_running();
79 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
80 kcb
->prev_kprobe
.orig_tnpc
= kcb
->kprobe_orig_tnpc
;
81 kcb
->prev_kprobe
.orig_tstate_pil
= kcb
->kprobe_orig_tstate_pil
;
84 static void __kprobes
restore_previous_kprobe(struct kprobe_ctlblk
*kcb
)
86 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
87 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
88 kcb
->kprobe_orig_tnpc
= kcb
->prev_kprobe
.orig_tnpc
;
89 kcb
->kprobe_orig_tstate_pil
= kcb
->prev_kprobe
.orig_tstate_pil
;
92 static void __kprobes
set_current_kprobe(struct kprobe
*p
, struct pt_regs
*regs
,
93 struct kprobe_ctlblk
*kcb
)
95 __this_cpu_write(current_kprobe
, p
);
96 kcb
->kprobe_orig_tnpc
= regs
->tnpc
;
97 kcb
->kprobe_orig_tstate_pil
= (regs
->tstate
& TSTATE_PIL
);
100 static void __kprobes
prepare_singlestep(struct kprobe
*p
, struct pt_regs
*regs
,
101 struct kprobe_ctlblk
*kcb
)
103 regs
->tstate
|= TSTATE_PIL
;
105 /*single step inline, if it a breakpoint instruction*/
106 if (p
->opcode
== BREAKPOINT_INSTRUCTION
) {
107 regs
->tpc
= (unsigned long) p
->addr
;
108 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
110 regs
->tpc
= (unsigned long) &p
->ainsn
.insn
[0];
111 regs
->tnpc
= (unsigned long) &p
->ainsn
.insn
[1];
115 static int __kprobes
kprobe_handler(struct pt_regs
*regs
)
118 void *addr
= (void *) regs
->tpc
;
120 struct kprobe_ctlblk
*kcb
;
123 * We don't want to be preempted for the entire
124 * duration of kprobe processing
127 kcb
= get_kprobe_ctlblk();
129 if (kprobe_running()) {
130 p
= get_kprobe(addr
);
132 if (kcb
->kprobe_status
== KPROBE_HIT_SS
) {
133 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
134 kcb
->kprobe_orig_tstate_pil
);
137 /* We have reentered the kprobe_handler(), since
138 * another probe was hit while within the handler.
139 * We here save the original kprobes variables and
140 * just single step on the instruction of the new probe
141 * without calling any user handlers.
143 save_previous_kprobe(kcb
);
144 set_current_kprobe(p
, regs
, kcb
);
145 kprobes_inc_nmissed_count(p
);
146 kcb
->kprobe_status
= KPROBE_REENTER
;
147 prepare_singlestep(p
, regs
, kcb
);
150 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
151 /* The breakpoint instruction was removed by
152 * another cpu right after we hit, no further
153 * handling of this interrupt is appropriate
158 p
= __this_cpu_read(current_kprobe
);
159 if (p
->break_handler
&& p
->break_handler(p
, regs
))
165 p
= get_kprobe(addr
);
167 if (*(u32
*)addr
!= BREAKPOINT_INSTRUCTION
) {
169 * The breakpoint instruction was removed right
170 * after we hit it. Another cpu has removed
171 * either a probepoint or a debugger breakpoint
172 * at this address. In either case, no further
173 * handling of this interrupt is appropriate.
177 /* Not one of ours: let kernel handle it */
181 set_current_kprobe(p
, regs
, kcb
);
182 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
183 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
187 prepare_singlestep(p
, regs
, kcb
);
188 kcb
->kprobe_status
= KPROBE_HIT_SS
;
192 preempt_enable_no_resched();
196 /* If INSN is a relative control transfer instruction,
197 * return the corrected branch destination value.
199 * regs->tpc and regs->tnpc still hold the values of the
200 * program counters at the time of trap due to the execution
201 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
204 static unsigned long __kprobes
relbranch_fixup(u32 insn
, struct kprobe
*p
,
205 struct pt_regs
*regs
)
207 unsigned long real_pc
= (unsigned long) p
->addr
;
209 /* Branch not taken, no mods necessary. */
210 if (regs
->tnpc
== regs
->tpc
+ 0x4UL
)
211 return real_pc
+ 0x8UL
;
213 /* The three cases are call, branch w/prediction,
214 * and traditional branch.
216 if ((insn
& 0xc0000000) == 0x40000000 ||
217 (insn
& 0xc1c00000) == 0x00400000 ||
218 (insn
& 0xc1c00000) == 0x00800000) {
219 unsigned long ainsn_addr
;
221 ainsn_addr
= (unsigned long) &p
->ainsn
.insn
[0];
223 /* The instruction did all the work for us
224 * already, just apply the offset to the correct
225 * instruction location.
227 return (real_pc
+ (regs
->tnpc
- ainsn_addr
));
230 /* It is jmpl or some other absolute PC modification instruction,
236 /* If INSN is an instruction which writes it's PC location
237 * into a destination register, fix that up.
239 static void __kprobes
retpc_fixup(struct pt_regs
*regs
, u32 insn
,
240 unsigned long real_pc
)
242 unsigned long *slot
= NULL
;
244 /* Simplest case is 'call', which always uses %o7 */
245 if ((insn
& 0xc0000000) == 0x40000000) {
246 slot
= ®s
->u_regs
[UREG_I7
];
249 /* 'jmpl' encodes the register inside of the opcode */
250 if ((insn
& 0xc1f80000) == 0x81c00000) {
251 unsigned long rd
= ((insn
>> 25) & 0x1f);
254 slot
= ®s
->u_regs
[rd
];
256 /* Hard case, it goes onto the stack. */
260 slot
= (unsigned long *)
261 (regs
->u_regs
[UREG_FP
] + STACK_BIAS
);
270 * Called after single-stepping. p->addr is the address of the
271 * instruction which has been replaced by the breakpoint
272 * instruction. To avoid the SMP problems that can occur when we
273 * temporarily put back the original opcode to single-step, we
274 * single-stepped a copy of the instruction. The address of this
275 * copy is &p->ainsn.insn[0].
277 * This function prepares to return from the post-single-step
280 static void __kprobes
resume_execution(struct kprobe
*p
,
281 struct pt_regs
*regs
, struct kprobe_ctlblk
*kcb
)
283 u32 insn
= p
->ainsn
.insn
[0];
285 regs
->tnpc
= relbranch_fixup(insn
, p
, regs
);
287 /* This assignment must occur after relbranch_fixup() */
288 regs
->tpc
= kcb
->kprobe_orig_tnpc
;
290 retpc_fixup(regs
, insn
, (unsigned long) p
->addr
);
292 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
293 kcb
->kprobe_orig_tstate_pil
);
296 static int __kprobes
post_kprobe_handler(struct pt_regs
*regs
)
298 struct kprobe
*cur
= kprobe_running();
299 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
304 if ((kcb
->kprobe_status
!= KPROBE_REENTER
) && cur
->post_handler
) {
305 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
306 cur
->post_handler(cur
, regs
, 0);
309 resume_execution(cur
, regs
, kcb
);
311 /*Restore back the original saved kprobes variables and continue. */
312 if (kcb
->kprobe_status
== KPROBE_REENTER
) {
313 restore_previous_kprobe(kcb
);
316 reset_current_kprobe();
318 preempt_enable_no_resched();
323 int __kprobes
kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
325 struct kprobe
*cur
= kprobe_running();
326 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
327 const struct exception_table_entry
*entry
;
329 switch(kcb
->kprobe_status
) {
333 * We are here because the instruction being single
334 * stepped caused a page fault. We reset the current
335 * kprobe and the tpc points back to the probe address
336 * and allow the page fault handler to continue as a
339 regs
->tpc
= (unsigned long)cur
->addr
;
340 regs
->tnpc
= kcb
->kprobe_orig_tnpc
;
341 regs
->tstate
= ((regs
->tstate
& ~TSTATE_PIL
) |
342 kcb
->kprobe_orig_tstate_pil
);
343 if (kcb
->kprobe_status
== KPROBE_REENTER
)
344 restore_previous_kprobe(kcb
);
346 reset_current_kprobe();
347 preempt_enable_no_resched();
349 case KPROBE_HIT_ACTIVE
:
350 case KPROBE_HIT_SSDONE
:
352 * We increment the nmissed count for accounting,
353 * we can also use npre/npostfault count for accounting
354 * these specific fault cases.
356 kprobes_inc_nmissed_count(cur
);
359 * We come here because instructions in the pre/post
360 * handler caused the page_fault, this could happen
361 * if handler tries to access user space by
362 * copy_from_user(), get_user() etc. Let the
363 * user-specified handler try to fix it first.
365 if (cur
->fault_handler
&& cur
->fault_handler(cur
, regs
, trapnr
))
369 * In case the user-specified fault handler returned
370 * zero, try to fix up.
373 entry
= search_exception_tables(regs
->tpc
);
375 regs
->tpc
= entry
->fixup
;
376 regs
->tnpc
= regs
->tpc
+ 4;
381 * fixup_exception() could not handle it,
382 * Let do_page_fault() fix it.
393 * Wrapper routine to for handling exceptions.
395 int __kprobes
kprobe_exceptions_notify(struct notifier_block
*self
,
396 unsigned long val
, void *data
)
398 struct die_args
*args
= (struct die_args
*)data
;
399 int ret
= NOTIFY_DONE
;
401 if (args
->regs
&& user_mode(args
->regs
))
406 if (kprobe_handler(args
->regs
))
410 if (post_kprobe_handler(args
->regs
))
419 asmlinkage
void __kprobes
kprobe_trap(unsigned long trap_level
,
420 struct pt_regs
*regs
)
422 enum ctx_state prev_state
= exception_enter();
424 BUG_ON(trap_level
!= 0x170 && trap_level
!= 0x171);
426 if (user_mode(regs
)) {
428 bad_trap(regs
, trap_level
);
432 /* trap_level == 0x170 --> ta 0x70
433 * trap_level == 0x171 --> ta 0x71
435 if (notify_die((trap_level
== 0x170) ? DIE_DEBUG
: DIE_DEBUG_2
,
436 (trap_level
== 0x170) ? "debug" : "debug_2",
437 regs
, 0, trap_level
, SIGTRAP
) != NOTIFY_STOP
)
438 bad_trap(regs
, trap_level
);
440 exception_exit(prev_state
);
443 /* Jprobes support. */
444 int __kprobes
setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
446 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
447 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
449 memcpy(&(kcb
->jprobe_saved_regs
), regs
, sizeof(*regs
));
451 regs
->tpc
= (unsigned long) jp
->entry
;
452 regs
->tnpc
= ((unsigned long) jp
->entry
) + 0x4UL
;
453 regs
->tstate
|= TSTATE_PIL
;
458 void __kprobes
jprobe_return(void)
460 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
461 register unsigned long orig_fp
asm("g1");
463 orig_fp
= kcb
->jprobe_saved_regs
.u_regs
[UREG_FP
];
464 __asm__
__volatile__("\n"
465 "1: cmp %%sp, %0\n\t"
466 "blu,a,pt %%xcc, 1b\n\t"
468 ".globl jprobe_return_trap_instruction\n"
469 "jprobe_return_trap_instruction:\n\t"
475 extern void jprobe_return_trap_instruction(void);
477 int __kprobes
longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
479 u32
*addr
= (u32
*) regs
->tpc
;
480 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
482 if (addr
== (u32
*) jprobe_return_trap_instruction
) {
483 memcpy(regs
, &(kcb
->jprobe_saved_regs
), sizeof(*regs
));
484 preempt_enable_no_resched();
490 /* The value stored in the return address register is actually 2
491 * instructions before where the callee will return to.
492 * Sequences usually look something like this
494 * call some_function <--- return register points here
495 * nop <--- call delay slot
496 * whatever <--- where callee returns to
498 * To keep trampoline_probe_handler logic simpler, we normalize the
499 * value kept in ri->ret_addr so we don't need to keep adjusting it
502 void __kprobes
arch_prepare_kretprobe(struct kretprobe_instance
*ri
,
503 struct pt_regs
*regs
)
505 ri
->ret_addr
= (kprobe_opcode_t
*)(regs
->u_regs
[UREG_RETPC
] + 8);
507 /* Replace the return addr with trampoline addr */
508 regs
->u_regs
[UREG_RETPC
] =
509 ((unsigned long)kretprobe_trampoline
) - 8;
513 * Called when the probe at kretprobe trampoline is hit
515 static int __kprobes
trampoline_probe_handler(struct kprobe
*p
,
516 struct pt_regs
*regs
)
518 struct kretprobe_instance
*ri
= NULL
;
519 struct hlist_head
*head
, empty_rp
;
520 struct hlist_node
*tmp
;
521 unsigned long flags
, orig_ret_address
= 0;
522 unsigned long trampoline_address
=(unsigned long)&kretprobe_trampoline
;
524 INIT_HLIST_HEAD(&empty_rp
);
525 kretprobe_hash_lock(current
, &head
, &flags
);
528 * It is possible to have multiple instances associated with a given
529 * task either because an multiple functions in the call path
530 * have a return probe installed on them, and/or more than one return
531 * return probe was registered for a target function.
533 * We can handle this because:
534 * - instances are always inserted at the head of the list
535 * - when multiple return probes are registered for the same
536 * function, the first instance's ret_addr will point to the
537 * real return address, and all the rest will point to
538 * kretprobe_trampoline
540 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
541 if (ri
->task
!= current
)
542 /* another task is sharing our hash bucket */
545 if (ri
->rp
&& ri
->rp
->handler
)
546 ri
->rp
->handler(ri
, regs
);
548 orig_ret_address
= (unsigned long)ri
->ret_addr
;
549 recycle_rp_inst(ri
, &empty_rp
);
551 if (orig_ret_address
!= trampoline_address
)
553 * This is the real return address. Any other
554 * instances associated with this task are for
555 * other calls deeper on the call stack
560 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
561 regs
->tpc
= orig_ret_address
;
562 regs
->tnpc
= orig_ret_address
+ 4;
564 reset_current_kprobe();
565 kretprobe_hash_unlock(current
, &flags
);
566 preempt_enable_no_resched();
568 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
569 hlist_del(&ri
->hlist
);
573 * By returning a non-zero value, we are telling
574 * kprobe_handler() that we don't want the post_handler
575 * to run (and have re-enabled preemption)
580 static void __used
kretprobe_trampoline_holder(void)
582 asm volatile(".global kretprobe_trampoline\n"
583 "kretprobe_trampoline:\n"
587 static struct kprobe trampoline_p
= {
588 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
589 .pre_handler
= trampoline_probe_handler
592 int __init
arch_init_kprobes(void)
594 return register_kprobe(&trampoline_p
);
597 int __kprobes
arch_trampoline_kprobe(struct kprobe
*p
)
599 if (p
->addr
== (kprobe_opcode_t
*)&kretprobe_trampoline
)