2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
15 #include <traceevent/event-parse.h>
19 #include "util/util.h"
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include <linux/time64.h>
28 #include "util/symbol.h"
29 #include "util/callchain.h"
30 #include "util/strlist.h"
33 #include "util/header.h"
34 #include <subcmd/parse-options.h>
35 #include "util/parse-events.h"
36 #include "util/event.h"
37 #include "util/session.h"
38 #include "util/svghelper.h"
39 #include "util/tool.h"
40 #include "util/data.h"
41 #include "util/debug.h"
43 #define SUPPORT_OLD_POWER_EVENTS 1
44 #define PWR_EVENT_EXIT -1
51 struct perf_tool tool
;
52 struct per_pid
*all_data
;
53 struct power_event
*power_events
;
54 struct wake_event
*wake_events
;
57 u64 min_freq
, /* Lowest CPU frequency seen */
58 max_freq
, /* Highest CPU frequency seen */
60 first_time
, last_time
;
66 /* IO related settings */
79 * Datastructure layout:
80 * We keep an list of "pid"s, matching the kernels notion of a task struct.
81 * Each "pid" entry, has a list of "comm"s.
82 * this is because we want to track different programs different, while
83 * exec will reuse the original pid (by design).
84 * Each comm has a list of samples that will be used to draw
100 struct per_pidcomm
*all
;
101 struct per_pidcomm
*current
;
106 struct per_pidcomm
*next
;
122 struct cpu_sample
*samples
;
123 struct io_sample
*io_samples
;
126 struct sample_wrapper
{
127 struct sample_wrapper
*next
;
130 unsigned char data
[0];
134 #define TYPE_RUNNING 1
135 #define TYPE_WAITING 2
136 #define TYPE_BLOCKED 3
139 struct cpu_sample
*next
;
145 const char *backtrace
;
158 struct io_sample
*next
;
173 struct power_event
*next
;
182 struct wake_event
*next
;
186 const char *backtrace
;
189 struct process_filter
{
192 struct process_filter
*next
;
195 static struct process_filter
*process_filter
;
198 static struct per_pid
*find_create_pid(struct timechart
*tchart
, int pid
)
200 struct per_pid
*cursor
= tchart
->all_data
;
203 if (cursor
->pid
== pid
)
205 cursor
= cursor
->next
;
207 cursor
= zalloc(sizeof(*cursor
));
208 assert(cursor
!= NULL
);
210 cursor
->next
= tchart
->all_data
;
211 tchart
->all_data
= cursor
;
215 static void pid_set_comm(struct timechart
*tchart
, int pid
, char *comm
)
218 struct per_pidcomm
*c
;
219 p
= find_create_pid(tchart
, pid
);
222 if (c
->comm
&& strcmp(c
->comm
, comm
) == 0) {
227 c
->comm
= strdup(comm
);
233 c
= zalloc(sizeof(*c
));
235 c
->comm
= strdup(comm
);
241 static void pid_fork(struct timechart
*tchart
, int pid
, int ppid
, u64 timestamp
)
243 struct per_pid
*p
, *pp
;
244 p
= find_create_pid(tchart
, pid
);
245 pp
= find_create_pid(tchart
, ppid
);
247 if (pp
->current
&& pp
->current
->comm
&& !p
->current
)
248 pid_set_comm(tchart
, pid
, pp
->current
->comm
);
250 p
->start_time
= timestamp
;
251 if (p
->current
&& !p
->current
->start_time
) {
252 p
->current
->start_time
= timestamp
;
253 p
->current
->state_since
= timestamp
;
257 static void pid_exit(struct timechart
*tchart
, int pid
, u64 timestamp
)
260 p
= find_create_pid(tchart
, pid
);
261 p
->end_time
= timestamp
;
263 p
->current
->end_time
= timestamp
;
266 static void pid_put_sample(struct timechart
*tchart
, int pid
, int type
,
267 unsigned int cpu
, u64 start
, u64 end
,
268 const char *backtrace
)
271 struct per_pidcomm
*c
;
272 struct cpu_sample
*sample
;
274 p
= find_create_pid(tchart
, pid
);
277 c
= zalloc(sizeof(*c
));
284 sample
= zalloc(sizeof(*sample
));
285 assert(sample
!= NULL
);
286 sample
->start_time
= start
;
287 sample
->end_time
= end
;
289 sample
->next
= c
->samples
;
291 sample
->backtrace
= backtrace
;
294 if (sample
->type
== TYPE_RUNNING
&& end
> start
&& start
> 0) {
295 c
->total_time
+= (end
-start
);
296 p
->total_time
+= (end
-start
);
299 if (c
->start_time
== 0 || c
->start_time
> start
)
300 c
->start_time
= start
;
301 if (p
->start_time
== 0 || p
->start_time
> start
)
302 p
->start_time
= start
;
305 #define MAX_CPUS 4096
307 static u64 cpus_cstate_start_times
[MAX_CPUS
];
308 static int cpus_cstate_state
[MAX_CPUS
];
309 static u64 cpus_pstate_start_times
[MAX_CPUS
];
310 static u64 cpus_pstate_state
[MAX_CPUS
];
312 static int process_comm_event(struct perf_tool
*tool
,
313 union perf_event
*event
,
314 struct perf_sample
*sample __maybe_unused
,
315 struct machine
*machine __maybe_unused
)
317 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
318 pid_set_comm(tchart
, event
->comm
.tid
, event
->comm
.comm
);
322 static int process_fork_event(struct perf_tool
*tool
,
323 union perf_event
*event
,
324 struct perf_sample
*sample __maybe_unused
,
325 struct machine
*machine __maybe_unused
)
327 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
328 pid_fork(tchart
, event
->fork
.pid
, event
->fork
.ppid
, event
->fork
.time
);
332 static int process_exit_event(struct perf_tool
*tool
,
333 union perf_event
*event
,
334 struct perf_sample
*sample __maybe_unused
,
335 struct machine
*machine __maybe_unused
)
337 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
338 pid_exit(tchart
, event
->fork
.pid
, event
->fork
.time
);
342 #ifdef SUPPORT_OLD_POWER_EVENTS
343 static int use_old_power_events
;
346 static void c_state_start(int cpu
, u64 timestamp
, int state
)
348 cpus_cstate_start_times
[cpu
] = timestamp
;
349 cpus_cstate_state
[cpu
] = state
;
352 static void c_state_end(struct timechart
*tchart
, int cpu
, u64 timestamp
)
354 struct power_event
*pwr
= zalloc(sizeof(*pwr
));
359 pwr
->state
= cpus_cstate_state
[cpu
];
360 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
361 pwr
->end_time
= timestamp
;
364 pwr
->next
= tchart
->power_events
;
366 tchart
->power_events
= pwr
;
369 static void p_state_change(struct timechart
*tchart
, int cpu
, u64 timestamp
, u64 new_freq
)
371 struct power_event
*pwr
;
373 if (new_freq
> 8000000) /* detect invalid data */
376 pwr
= zalloc(sizeof(*pwr
));
380 pwr
->state
= cpus_pstate_state
[cpu
];
381 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
382 pwr
->end_time
= timestamp
;
385 pwr
->next
= tchart
->power_events
;
387 if (!pwr
->start_time
)
388 pwr
->start_time
= tchart
->first_time
;
390 tchart
->power_events
= pwr
;
392 cpus_pstate_state
[cpu
] = new_freq
;
393 cpus_pstate_start_times
[cpu
] = timestamp
;
395 if ((u64
)new_freq
> tchart
->max_freq
)
396 tchart
->max_freq
= new_freq
;
398 if (new_freq
< tchart
->min_freq
|| tchart
->min_freq
== 0)
399 tchart
->min_freq
= new_freq
;
401 if (new_freq
== tchart
->max_freq
- 1000)
402 tchart
->turbo_frequency
= tchart
->max_freq
;
405 static void sched_wakeup(struct timechart
*tchart
, int cpu
, u64 timestamp
,
406 int waker
, int wakee
, u8 flags
, const char *backtrace
)
409 struct wake_event
*we
= zalloc(sizeof(*we
));
414 we
->time
= timestamp
;
416 we
->backtrace
= backtrace
;
418 if ((flags
& TRACE_FLAG_HARDIRQ
) || (flags
& TRACE_FLAG_SOFTIRQ
))
422 we
->next
= tchart
->wake_events
;
423 tchart
->wake_events
= we
;
424 p
= find_create_pid(tchart
, we
->wakee
);
426 if (p
&& p
->current
&& p
->current
->state
== TYPE_NONE
) {
427 p
->current
->state_since
= timestamp
;
428 p
->current
->state
= TYPE_WAITING
;
430 if (p
&& p
->current
&& p
->current
->state
== TYPE_BLOCKED
) {
431 pid_put_sample(tchart
, p
->pid
, p
->current
->state
, cpu
,
432 p
->current
->state_since
, timestamp
, NULL
);
433 p
->current
->state_since
= timestamp
;
434 p
->current
->state
= TYPE_WAITING
;
438 static void sched_switch(struct timechart
*tchart
, int cpu
, u64 timestamp
,
439 int prev_pid
, int next_pid
, u64 prev_state
,
440 const char *backtrace
)
442 struct per_pid
*p
= NULL
, *prev_p
;
444 prev_p
= find_create_pid(tchart
, prev_pid
);
446 p
= find_create_pid(tchart
, next_pid
);
448 if (prev_p
->current
&& prev_p
->current
->state
!= TYPE_NONE
)
449 pid_put_sample(tchart
, prev_pid
, TYPE_RUNNING
, cpu
,
450 prev_p
->current
->state_since
, timestamp
,
452 if (p
&& p
->current
) {
453 if (p
->current
->state
!= TYPE_NONE
)
454 pid_put_sample(tchart
, next_pid
, p
->current
->state
, cpu
,
455 p
->current
->state_since
, timestamp
,
458 p
->current
->state_since
= timestamp
;
459 p
->current
->state
= TYPE_RUNNING
;
462 if (prev_p
->current
) {
463 prev_p
->current
->state
= TYPE_NONE
;
464 prev_p
->current
->state_since
= timestamp
;
466 prev_p
->current
->state
= TYPE_BLOCKED
;
468 prev_p
->current
->state
= TYPE_WAITING
;
472 static const char *cat_backtrace(union perf_event
*event
,
473 struct perf_sample
*sample
,
474 struct machine
*machine
)
476 struct addr_location al
;
480 u8 cpumode
= PERF_RECORD_MISC_USER
;
481 struct addr_location tal
;
482 struct ip_callchain
*chain
= sample
->callchain
;
483 FILE *f
= open_memstream(&p
, &p_len
);
486 perror("open_memstream error");
493 if (machine__resolve(machine
, &al
, sample
) < 0) {
494 fprintf(stderr
, "problem processing %d event, skipping it.\n",
499 for (i
= 0; i
< chain
->nr
; i
++) {
502 if (callchain_param
.order
== ORDER_CALLEE
)
505 ip
= chain
->ips
[chain
->nr
- i
- 1];
507 if (ip
>= PERF_CONTEXT_MAX
) {
509 case PERF_CONTEXT_HV
:
510 cpumode
= PERF_RECORD_MISC_HYPERVISOR
;
512 case PERF_CONTEXT_KERNEL
:
513 cpumode
= PERF_RECORD_MISC_KERNEL
;
515 case PERF_CONTEXT_USER
:
516 cpumode
= PERF_RECORD_MISC_USER
;
519 pr_debug("invalid callchain context: "
520 "%"PRId64
"\n", (s64
) ip
);
523 * It seems the callchain is corrupted.
533 thread__find_addr_location(al
.thread
, cpumode
,
534 MAP__FUNCTION
, ip
, &tal
);
537 fprintf(f
, "..... %016" PRIx64
" %s\n", ip
,
540 fprintf(f
, "..... %016" PRIx64
"\n", ip
);
543 addr_location__put(&al
);
550 typedef int (*tracepoint_handler
)(struct timechart
*tchart
,
551 struct perf_evsel
*evsel
,
552 struct perf_sample
*sample
,
553 const char *backtrace
);
555 static int process_sample_event(struct perf_tool
*tool
,
556 union perf_event
*event
,
557 struct perf_sample
*sample
,
558 struct perf_evsel
*evsel
,
559 struct machine
*machine
)
561 struct timechart
*tchart
= container_of(tool
, struct timechart
, tool
);
563 if (evsel
->attr
.sample_type
& PERF_SAMPLE_TIME
) {
564 if (!tchart
->first_time
|| tchart
->first_time
> sample
->time
)
565 tchart
->first_time
= sample
->time
;
566 if (tchart
->last_time
< sample
->time
)
567 tchart
->last_time
= sample
->time
;
570 if (evsel
->handler
!= NULL
) {
571 tracepoint_handler f
= evsel
->handler
;
572 return f(tchart
, evsel
, sample
,
573 cat_backtrace(event
, sample
, machine
));
580 process_sample_cpu_idle(struct timechart
*tchart __maybe_unused
,
581 struct perf_evsel
*evsel
,
582 struct perf_sample
*sample
,
583 const char *backtrace __maybe_unused
)
585 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
586 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
588 if (state
== (u32
)PWR_EVENT_EXIT
)
589 c_state_end(tchart
, cpu_id
, sample
->time
);
591 c_state_start(cpu_id
, sample
->time
, state
);
596 process_sample_cpu_frequency(struct timechart
*tchart
,
597 struct perf_evsel
*evsel
,
598 struct perf_sample
*sample
,
599 const char *backtrace __maybe_unused
)
601 u32 state
= perf_evsel__intval(evsel
, sample
, "state");
602 u32 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
604 p_state_change(tchart
, cpu_id
, sample
->time
, state
);
609 process_sample_sched_wakeup(struct timechart
*tchart
,
610 struct perf_evsel
*evsel
,
611 struct perf_sample
*sample
,
612 const char *backtrace
)
614 u8 flags
= perf_evsel__intval(evsel
, sample
, "common_flags");
615 int waker
= perf_evsel__intval(evsel
, sample
, "common_pid");
616 int wakee
= perf_evsel__intval(evsel
, sample
, "pid");
618 sched_wakeup(tchart
, sample
->cpu
, sample
->time
, waker
, wakee
, flags
, backtrace
);
623 process_sample_sched_switch(struct timechart
*tchart
,
624 struct perf_evsel
*evsel
,
625 struct perf_sample
*sample
,
626 const char *backtrace
)
628 int prev_pid
= perf_evsel__intval(evsel
, sample
, "prev_pid");
629 int next_pid
= perf_evsel__intval(evsel
, sample
, "next_pid");
630 u64 prev_state
= perf_evsel__intval(evsel
, sample
, "prev_state");
632 sched_switch(tchart
, sample
->cpu
, sample
->time
, prev_pid
, next_pid
,
633 prev_state
, backtrace
);
637 #ifdef SUPPORT_OLD_POWER_EVENTS
639 process_sample_power_start(struct timechart
*tchart __maybe_unused
,
640 struct perf_evsel
*evsel
,
641 struct perf_sample
*sample
,
642 const char *backtrace __maybe_unused
)
644 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
645 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
647 c_state_start(cpu_id
, sample
->time
, value
);
652 process_sample_power_end(struct timechart
*tchart
,
653 struct perf_evsel
*evsel __maybe_unused
,
654 struct perf_sample
*sample
,
655 const char *backtrace __maybe_unused
)
657 c_state_end(tchart
, sample
->cpu
, sample
->time
);
662 process_sample_power_frequency(struct timechart
*tchart
,
663 struct perf_evsel
*evsel
,
664 struct perf_sample
*sample
,
665 const char *backtrace __maybe_unused
)
667 u64 cpu_id
= perf_evsel__intval(evsel
, sample
, "cpu_id");
668 u64 value
= perf_evsel__intval(evsel
, sample
, "value");
670 p_state_change(tchart
, cpu_id
, sample
->time
, value
);
673 #endif /* SUPPORT_OLD_POWER_EVENTS */
676 * After the last sample we need to wrap up the current C/P state
677 * and close out each CPU for these.
679 static void end_sample_processing(struct timechart
*tchart
)
682 struct power_event
*pwr
;
684 for (cpu
= 0; cpu
<= tchart
->numcpus
; cpu
++) {
687 pwr
= zalloc(sizeof(*pwr
));
691 pwr
->state
= cpus_cstate_state
[cpu
];
692 pwr
->start_time
= cpus_cstate_start_times
[cpu
];
693 pwr
->end_time
= tchart
->last_time
;
696 pwr
->next
= tchart
->power_events
;
698 tchart
->power_events
= pwr
;
702 pwr
= zalloc(sizeof(*pwr
));
706 pwr
->state
= cpus_pstate_state
[cpu
];
707 pwr
->start_time
= cpus_pstate_start_times
[cpu
];
708 pwr
->end_time
= tchart
->last_time
;
711 pwr
->next
= tchart
->power_events
;
713 if (!pwr
->start_time
)
714 pwr
->start_time
= tchart
->first_time
;
716 pwr
->state
= tchart
->min_freq
;
717 tchart
->power_events
= pwr
;
721 static int pid_begin_io_sample(struct timechart
*tchart
, int pid
, int type
,
724 struct per_pid
*p
= find_create_pid(tchart
, pid
);
725 struct per_pidcomm
*c
= p
->current
;
726 struct io_sample
*sample
;
727 struct io_sample
*prev
;
730 c
= zalloc(sizeof(*c
));
738 prev
= c
->io_samples
;
740 if (prev
&& prev
->start_time
&& !prev
->end_time
) {
741 pr_warning("Skip invalid start event: "
742 "previous event already started!\n");
744 /* remove previous event that has been started,
745 * we are not sure we will ever get an end for it */
746 c
->io_samples
= prev
->next
;
751 sample
= zalloc(sizeof(*sample
));
754 sample
->start_time
= start
;
757 sample
->next
= c
->io_samples
;
758 c
->io_samples
= sample
;
760 if (c
->start_time
== 0 || c
->start_time
> start
)
761 c
->start_time
= start
;
766 static int pid_end_io_sample(struct timechart
*tchart
, int pid
, int type
,
769 struct per_pid
*p
= find_create_pid(tchart
, pid
);
770 struct per_pidcomm
*c
= p
->current
;
771 struct io_sample
*sample
, *prev
;
774 pr_warning("Invalid pidcomm!\n");
778 sample
= c
->io_samples
;
780 if (!sample
) /* skip partially captured events */
783 if (sample
->end_time
) {
784 pr_warning("Skip invalid end event: "
785 "previous event already ended!\n");
789 if (sample
->type
!= type
) {
790 pr_warning("Skip invalid end event: invalid event type!\n");
794 sample
->end_time
= end
;
797 /* we want to be able to see small and fast transfers, so make them
798 * at least min_time long, but don't overlap them */
799 if (sample
->end_time
- sample
->start_time
< tchart
->min_time
)
800 sample
->end_time
= sample
->start_time
+ tchart
->min_time
;
801 if (prev
&& sample
->start_time
< prev
->end_time
) {
802 if (prev
->err
) /* try to make errors more visible */
803 sample
->start_time
= prev
->end_time
;
805 prev
->end_time
= sample
->start_time
;
810 } else if (type
== IOTYPE_READ
|| type
== IOTYPE_WRITE
||
811 type
== IOTYPE_TX
|| type
== IOTYPE_RX
) {
813 if ((u64
)ret
> c
->max_bytes
)
816 c
->total_bytes
+= ret
;
817 p
->total_bytes
+= ret
;
821 /* merge two requests to make svg smaller and render-friendly */
823 prev
->type
== sample
->type
&&
824 prev
->err
== sample
->err
&&
825 prev
->fd
== sample
->fd
&&
826 prev
->end_time
+ tchart
->merge_dist
>= sample
->start_time
) {
828 sample
->bytes
+= prev
->bytes
;
829 sample
->merges
+= prev
->merges
+ 1;
831 sample
->start_time
= prev
->start_time
;
832 sample
->next
= prev
->next
;
835 if (!sample
->err
&& sample
->bytes
> c
->max_bytes
)
836 c
->max_bytes
= sample
->bytes
;
845 process_enter_read(struct timechart
*tchart
,
846 struct perf_evsel
*evsel
,
847 struct perf_sample
*sample
)
849 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
850 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
855 process_exit_read(struct timechart
*tchart
,
856 struct perf_evsel
*evsel
,
857 struct perf_sample
*sample
)
859 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
860 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_READ
,
865 process_enter_write(struct timechart
*tchart
,
866 struct perf_evsel
*evsel
,
867 struct perf_sample
*sample
)
869 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
870 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
875 process_exit_write(struct timechart
*tchart
,
876 struct perf_evsel
*evsel
,
877 struct perf_sample
*sample
)
879 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
880 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_WRITE
,
885 process_enter_sync(struct timechart
*tchart
,
886 struct perf_evsel
*evsel
,
887 struct perf_sample
*sample
)
889 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
890 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
895 process_exit_sync(struct timechart
*tchart
,
896 struct perf_evsel
*evsel
,
897 struct perf_sample
*sample
)
899 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
900 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_SYNC
,
905 process_enter_tx(struct timechart
*tchart
,
906 struct perf_evsel
*evsel
,
907 struct perf_sample
*sample
)
909 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
910 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
915 process_exit_tx(struct timechart
*tchart
,
916 struct perf_evsel
*evsel
,
917 struct perf_sample
*sample
)
919 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
920 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_TX
,
925 process_enter_rx(struct timechart
*tchart
,
926 struct perf_evsel
*evsel
,
927 struct perf_sample
*sample
)
929 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
930 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
935 process_exit_rx(struct timechart
*tchart
,
936 struct perf_evsel
*evsel
,
937 struct perf_sample
*sample
)
939 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
940 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_RX
,
945 process_enter_poll(struct timechart
*tchart
,
946 struct perf_evsel
*evsel
,
947 struct perf_sample
*sample
)
949 long fd
= perf_evsel__intval(evsel
, sample
, "fd");
950 return pid_begin_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
955 process_exit_poll(struct timechart
*tchart
,
956 struct perf_evsel
*evsel
,
957 struct perf_sample
*sample
)
959 long ret
= perf_evsel__intval(evsel
, sample
, "ret");
960 return pid_end_io_sample(tchart
, sample
->tid
, IOTYPE_POLL
,
965 * Sort the pid datastructure
967 static void sort_pids(struct timechart
*tchart
)
969 struct per_pid
*new_list
, *p
, *cursor
, *prev
;
970 /* sort by ppid first, then by pid, lowest to highest */
974 while (tchart
->all_data
) {
975 p
= tchart
->all_data
;
976 tchart
->all_data
= p
->next
;
979 if (new_list
== NULL
) {
987 if (cursor
->ppid
> p
->ppid
||
988 (cursor
->ppid
== p
->ppid
&& cursor
->pid
> p
->pid
)) {
989 /* must insert before */
991 p
->next
= prev
->next
;
1004 cursor
= cursor
->next
;
1009 tchart
->all_data
= new_list
;
1013 static void draw_c_p_states(struct timechart
*tchart
)
1015 struct power_event
*pwr
;
1016 pwr
= tchart
->power_events
;
1019 * two pass drawing so that the P state bars are on top of the C state blocks
1022 if (pwr
->type
== CSTATE
)
1023 svg_cstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1027 pwr
= tchart
->power_events
;
1029 if (pwr
->type
== PSTATE
) {
1031 pwr
->state
= tchart
->min_freq
;
1032 svg_pstate(pwr
->cpu
, pwr
->start_time
, pwr
->end_time
, pwr
->state
);
1038 static void draw_wakeups(struct timechart
*tchart
)
1040 struct wake_event
*we
;
1042 struct per_pidcomm
*c
;
1044 we
= tchart
->wake_events
;
1046 int from
= 0, to
= 0;
1047 char *task_from
= NULL
, *task_to
= NULL
;
1049 /* locate the column of the waker and wakee */
1050 p
= tchart
->all_data
;
1052 if (p
->pid
== we
->waker
|| p
->pid
== we
->wakee
) {
1055 if (c
->Y
&& c
->start_time
<= we
->time
&& c
->end_time
>= we
->time
) {
1056 if (p
->pid
== we
->waker
&& !from
) {
1058 task_from
= strdup(c
->comm
);
1060 if (p
->pid
== we
->wakee
&& !to
) {
1062 task_to
= strdup(c
->comm
);
1069 if (p
->pid
== we
->waker
&& !from
) {
1071 task_from
= strdup(c
->comm
);
1073 if (p
->pid
== we
->wakee
&& !to
) {
1075 task_to
= strdup(c
->comm
);
1084 task_from
= malloc(40);
1085 sprintf(task_from
, "[%i]", we
->waker
);
1088 task_to
= malloc(40);
1089 sprintf(task_to
, "[%i]", we
->wakee
);
1092 if (we
->waker
== -1)
1093 svg_interrupt(we
->time
, to
, we
->backtrace
);
1094 else if (from
&& to
&& abs(from
- to
) == 1)
1095 svg_wakeline(we
->time
, from
, to
, we
->backtrace
);
1097 svg_partial_wakeline(we
->time
, from
, task_from
, to
,
1098 task_to
, we
->backtrace
);
1106 static void draw_cpu_usage(struct timechart
*tchart
)
1109 struct per_pidcomm
*c
;
1110 struct cpu_sample
*sample
;
1111 p
= tchart
->all_data
;
1115 sample
= c
->samples
;
1117 if (sample
->type
== TYPE_RUNNING
) {
1118 svg_process(sample
->cpu
,
1126 sample
= sample
->next
;
1134 static void draw_io_bars(struct timechart
*tchart
)
1140 struct per_pidcomm
*c
;
1141 struct io_sample
*sample
;
1144 p
= tchart
->all_data
;
1154 svg_box(Y
, c
->start_time
, c
->end_time
, "process3");
1155 sample
= c
->io_samples
;
1156 for (sample
= c
->io_samples
; sample
; sample
= sample
->next
) {
1157 double h
= (double)sample
->bytes
/ c
->max_bytes
;
1159 if (tchart
->skip_eagain
&&
1160 sample
->err
== -EAGAIN
)
1166 if (sample
->type
== IOTYPE_SYNC
)
1171 sample
->err
? "error" : "sync",
1175 else if (sample
->type
== IOTYPE_POLL
)
1180 sample
->err
? "error" : "poll",
1184 else if (sample
->type
== IOTYPE_READ
)
1189 sample
->err
? "error" : "disk",
1193 else if (sample
->type
== IOTYPE_WRITE
)
1198 sample
->err
? "error" : "disk",
1202 else if (sample
->type
== IOTYPE_RX
)
1207 sample
->err
? "error" : "net",
1211 else if (sample
->type
== IOTYPE_TX
)
1216 sample
->err
? "error" : "net",
1223 bytes
= c
->total_bytes
;
1225 bytes
= bytes
/ 1024;
1229 bytes
= bytes
/ 1024;
1233 bytes
= bytes
/ 1024;
1238 sprintf(comm
, "%s:%i (%3.1f %sbytes)", c
->comm
?: "", p
->pid
, bytes
, suf
);
1239 svg_text(Y
, c
->start_time
, comm
);
1249 static void draw_process_bars(struct timechart
*tchart
)
1252 struct per_pidcomm
*c
;
1253 struct cpu_sample
*sample
;
1256 Y
= 2 * tchart
->numcpus
+ 2;
1258 p
= tchart
->all_data
;
1268 svg_box(Y
, c
->start_time
, c
->end_time
, "process");
1269 sample
= c
->samples
;
1271 if (sample
->type
== TYPE_RUNNING
)
1272 svg_running(Y
, sample
->cpu
,
1276 if (sample
->type
== TYPE_BLOCKED
)
1277 svg_blocked(Y
, sample
->cpu
,
1281 if (sample
->type
== TYPE_WAITING
)
1282 svg_waiting(Y
, sample
->cpu
,
1286 sample
= sample
->next
;
1291 if (c
->total_time
> 5000000000) /* 5 seconds */
1292 sprintf(comm
, "%s:%i (%2.2fs)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_SEC
);
1294 sprintf(comm
, "%s:%i (%3.1fms)", c
->comm
, p
->pid
, c
->total_time
/ (double)NSEC_PER_MSEC
);
1296 svg_text(Y
, c
->start_time
, comm
);
1306 static void add_process_filter(const char *string
)
1308 int pid
= strtoull(string
, NULL
, 10);
1309 struct process_filter
*filt
= malloc(sizeof(*filt
));
1314 filt
->name
= strdup(string
);
1316 filt
->next
= process_filter
;
1318 process_filter
= filt
;
1321 static int passes_filter(struct per_pid
*p
, struct per_pidcomm
*c
)
1323 struct process_filter
*filt
;
1324 if (!process_filter
)
1327 filt
= process_filter
;
1329 if (filt
->pid
&& p
->pid
== filt
->pid
)
1331 if (strcmp(filt
->name
, c
->comm
) == 0)
1338 static int determine_display_tasks_filtered(struct timechart
*tchart
)
1341 struct per_pidcomm
*c
;
1344 p
= tchart
->all_data
;
1347 if (p
->start_time
== 1)
1348 p
->start_time
= tchart
->first_time
;
1350 /* no exit marker, task kept running to the end */
1351 if (p
->end_time
== 0)
1352 p
->end_time
= tchart
->last_time
;
1359 if (c
->start_time
== 1)
1360 c
->start_time
= tchart
->first_time
;
1362 if (passes_filter(p
, c
)) {
1368 if (c
->end_time
== 0)
1369 c
->end_time
= tchart
->last_time
;
1378 static int determine_display_tasks(struct timechart
*tchart
, u64 threshold
)
1381 struct per_pidcomm
*c
;
1384 p
= tchart
->all_data
;
1387 if (p
->start_time
== 1)
1388 p
->start_time
= tchart
->first_time
;
1390 /* no exit marker, task kept running to the end */
1391 if (p
->end_time
== 0)
1392 p
->end_time
= tchart
->last_time
;
1393 if (p
->total_time
>= threshold
)
1401 if (c
->start_time
== 1)
1402 c
->start_time
= tchart
->first_time
;
1404 if (c
->total_time
>= threshold
) {
1409 if (c
->end_time
== 0)
1410 c
->end_time
= tchart
->last_time
;
1419 static int determine_display_io_tasks(struct timechart
*timechart
, u64 threshold
)
1422 struct per_pidcomm
*c
;
1425 p
= timechart
->all_data
;
1427 /* no exit marker, task kept running to the end */
1428 if (p
->end_time
== 0)
1429 p
->end_time
= timechart
->last_time
;
1436 if (c
->total_bytes
>= threshold
) {
1441 if (c
->end_time
== 0)
1442 c
->end_time
= timechart
->last_time
;
1451 #define BYTES_THRESH (1 * 1024 * 1024)
1452 #define TIME_THRESH 10000000
1454 static void write_svg_file(struct timechart
*tchart
, const char *filename
)
1458 int thresh
= tchart
->io_events
? BYTES_THRESH
: TIME_THRESH
;
1460 if (tchart
->power_only
)
1461 tchart
->proc_num
= 0;
1463 /* We'd like to show at least proc_num tasks;
1464 * be less picky if we have fewer */
1467 count
= determine_display_tasks_filtered(tchart
);
1468 else if (tchart
->io_events
)
1469 count
= determine_display_io_tasks(tchart
, thresh
);
1471 count
= determine_display_tasks(tchart
, thresh
);
1473 } while (!process_filter
&& thresh
&& count
< tchart
->proc_num
);
1475 if (!tchart
->proc_num
)
1478 if (tchart
->io_events
) {
1479 open_svg(filename
, 0, count
, tchart
->first_time
, tchart
->last_time
);
1484 draw_io_bars(tchart
);
1486 open_svg(filename
, tchart
->numcpus
, count
, tchart
->first_time
, tchart
->last_time
);
1492 for (i
= 0; i
< tchart
->numcpus
; i
++)
1493 svg_cpu_box(i
, tchart
->max_freq
, tchart
->turbo_frequency
);
1495 draw_cpu_usage(tchart
);
1496 if (tchart
->proc_num
)
1497 draw_process_bars(tchart
);
1498 if (!tchart
->tasks_only
)
1499 draw_c_p_states(tchart
);
1500 if (tchart
->proc_num
)
1501 draw_wakeups(tchart
);
1507 static int process_header(struct perf_file_section
*section __maybe_unused
,
1508 struct perf_header
*ph
,
1510 int fd __maybe_unused
,
1513 struct timechart
*tchart
= data
;
1517 tchart
->numcpus
= ph
->env
.nr_cpus_avail
;
1520 case HEADER_CPU_TOPOLOGY
:
1521 if (!tchart
->topology
)
1524 if (svg_build_topology_map(ph
->env
.sibling_cores
,
1525 ph
->env
.nr_sibling_cores
,
1526 ph
->env
.sibling_threads
,
1527 ph
->env
.nr_sibling_threads
))
1528 fprintf(stderr
, "problem building topology\n");
1538 static int __cmd_timechart(struct timechart
*tchart
, const char *output_name
)
1540 const struct perf_evsel_str_handler power_tracepoints
[] = {
1541 { "power:cpu_idle", process_sample_cpu_idle
},
1542 { "power:cpu_frequency", process_sample_cpu_frequency
},
1543 { "sched:sched_wakeup", process_sample_sched_wakeup
},
1544 { "sched:sched_switch", process_sample_sched_switch
},
1545 #ifdef SUPPORT_OLD_POWER_EVENTS
1546 { "power:power_start", process_sample_power_start
},
1547 { "power:power_end", process_sample_power_end
},
1548 { "power:power_frequency", process_sample_power_frequency
},
1551 { "syscalls:sys_enter_read", process_enter_read
},
1552 { "syscalls:sys_enter_pread64", process_enter_read
},
1553 { "syscalls:sys_enter_readv", process_enter_read
},
1554 { "syscalls:sys_enter_preadv", process_enter_read
},
1555 { "syscalls:sys_enter_write", process_enter_write
},
1556 { "syscalls:sys_enter_pwrite64", process_enter_write
},
1557 { "syscalls:sys_enter_writev", process_enter_write
},
1558 { "syscalls:sys_enter_pwritev", process_enter_write
},
1559 { "syscalls:sys_enter_sync", process_enter_sync
},
1560 { "syscalls:sys_enter_sync_file_range", process_enter_sync
},
1561 { "syscalls:sys_enter_fsync", process_enter_sync
},
1562 { "syscalls:sys_enter_msync", process_enter_sync
},
1563 { "syscalls:sys_enter_recvfrom", process_enter_rx
},
1564 { "syscalls:sys_enter_recvmmsg", process_enter_rx
},
1565 { "syscalls:sys_enter_recvmsg", process_enter_rx
},
1566 { "syscalls:sys_enter_sendto", process_enter_tx
},
1567 { "syscalls:sys_enter_sendmsg", process_enter_tx
},
1568 { "syscalls:sys_enter_sendmmsg", process_enter_tx
},
1569 { "syscalls:sys_enter_epoll_pwait", process_enter_poll
},
1570 { "syscalls:sys_enter_epoll_wait", process_enter_poll
},
1571 { "syscalls:sys_enter_poll", process_enter_poll
},
1572 { "syscalls:sys_enter_ppoll", process_enter_poll
},
1573 { "syscalls:sys_enter_pselect6", process_enter_poll
},
1574 { "syscalls:sys_enter_select", process_enter_poll
},
1576 { "syscalls:sys_exit_read", process_exit_read
},
1577 { "syscalls:sys_exit_pread64", process_exit_read
},
1578 { "syscalls:sys_exit_readv", process_exit_read
},
1579 { "syscalls:sys_exit_preadv", process_exit_read
},
1580 { "syscalls:sys_exit_write", process_exit_write
},
1581 { "syscalls:sys_exit_pwrite64", process_exit_write
},
1582 { "syscalls:sys_exit_writev", process_exit_write
},
1583 { "syscalls:sys_exit_pwritev", process_exit_write
},
1584 { "syscalls:sys_exit_sync", process_exit_sync
},
1585 { "syscalls:sys_exit_sync_file_range", process_exit_sync
},
1586 { "syscalls:sys_exit_fsync", process_exit_sync
},
1587 { "syscalls:sys_exit_msync", process_exit_sync
},
1588 { "syscalls:sys_exit_recvfrom", process_exit_rx
},
1589 { "syscalls:sys_exit_recvmmsg", process_exit_rx
},
1590 { "syscalls:sys_exit_recvmsg", process_exit_rx
},
1591 { "syscalls:sys_exit_sendto", process_exit_tx
},
1592 { "syscalls:sys_exit_sendmsg", process_exit_tx
},
1593 { "syscalls:sys_exit_sendmmsg", process_exit_tx
},
1594 { "syscalls:sys_exit_epoll_pwait", process_exit_poll
},
1595 { "syscalls:sys_exit_epoll_wait", process_exit_poll
},
1596 { "syscalls:sys_exit_poll", process_exit_poll
},
1597 { "syscalls:sys_exit_ppoll", process_exit_poll
},
1598 { "syscalls:sys_exit_pselect6", process_exit_poll
},
1599 { "syscalls:sys_exit_select", process_exit_poll
},
1601 struct perf_data_file file
= {
1603 .mode
= PERF_DATA_MODE_READ
,
1604 .force
= tchart
->force
,
1607 struct perf_session
*session
= perf_session__new(&file
, false,
1611 if (session
== NULL
)
1614 symbol__init(&session
->header
.env
);
1616 (void)perf_header__process_sections(&session
->header
,
1617 perf_data_file__fd(session
->file
),
1621 if (!perf_session__has_traces(session
, "timechart record"))
1624 if (perf_session__set_tracepoints_handlers(session
,
1625 power_tracepoints
)) {
1626 pr_err("Initializing session tracepoint handlers failed\n");
1630 ret
= perf_session__process_events(session
);
1634 end_sample_processing(tchart
);
1638 write_svg_file(tchart
, output_name
);
1640 pr_info("Written %2.1f seconds of trace to %s.\n",
1641 (tchart
->last_time
- tchart
->first_time
) / (double)NSEC_PER_SEC
, output_name
);
1643 perf_session__delete(session
);
1647 static int timechart__io_record(int argc
, const char **argv
)
1649 unsigned int rec_argc
, i
;
1650 const char **rec_argv
;
1652 char *filter
= NULL
;
1654 const char * const common_args
[] = {
1655 "record", "-a", "-R", "-c", "1",
1657 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1659 const char * const disk_events
[] = {
1660 "syscalls:sys_enter_read",
1661 "syscalls:sys_enter_pread64",
1662 "syscalls:sys_enter_readv",
1663 "syscalls:sys_enter_preadv",
1664 "syscalls:sys_enter_write",
1665 "syscalls:sys_enter_pwrite64",
1666 "syscalls:sys_enter_writev",
1667 "syscalls:sys_enter_pwritev",
1668 "syscalls:sys_enter_sync",
1669 "syscalls:sys_enter_sync_file_range",
1670 "syscalls:sys_enter_fsync",
1671 "syscalls:sys_enter_msync",
1673 "syscalls:sys_exit_read",
1674 "syscalls:sys_exit_pread64",
1675 "syscalls:sys_exit_readv",
1676 "syscalls:sys_exit_preadv",
1677 "syscalls:sys_exit_write",
1678 "syscalls:sys_exit_pwrite64",
1679 "syscalls:sys_exit_writev",
1680 "syscalls:sys_exit_pwritev",
1681 "syscalls:sys_exit_sync",
1682 "syscalls:sys_exit_sync_file_range",
1683 "syscalls:sys_exit_fsync",
1684 "syscalls:sys_exit_msync",
1686 unsigned int disk_events_nr
= ARRAY_SIZE(disk_events
);
1688 const char * const net_events
[] = {
1689 "syscalls:sys_enter_recvfrom",
1690 "syscalls:sys_enter_recvmmsg",
1691 "syscalls:sys_enter_recvmsg",
1692 "syscalls:sys_enter_sendto",
1693 "syscalls:sys_enter_sendmsg",
1694 "syscalls:sys_enter_sendmmsg",
1696 "syscalls:sys_exit_recvfrom",
1697 "syscalls:sys_exit_recvmmsg",
1698 "syscalls:sys_exit_recvmsg",
1699 "syscalls:sys_exit_sendto",
1700 "syscalls:sys_exit_sendmsg",
1701 "syscalls:sys_exit_sendmmsg",
1703 unsigned int net_events_nr
= ARRAY_SIZE(net_events
);
1705 const char * const poll_events
[] = {
1706 "syscalls:sys_enter_epoll_pwait",
1707 "syscalls:sys_enter_epoll_wait",
1708 "syscalls:sys_enter_poll",
1709 "syscalls:sys_enter_ppoll",
1710 "syscalls:sys_enter_pselect6",
1711 "syscalls:sys_enter_select",
1713 "syscalls:sys_exit_epoll_pwait",
1714 "syscalls:sys_exit_epoll_wait",
1715 "syscalls:sys_exit_poll",
1716 "syscalls:sys_exit_ppoll",
1717 "syscalls:sys_exit_pselect6",
1718 "syscalls:sys_exit_select",
1720 unsigned int poll_events_nr
= ARRAY_SIZE(poll_events
);
1722 rec_argc
= common_args_nr
+
1723 disk_events_nr
* 4 +
1725 poll_events_nr
* 4 +
1727 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1729 if (rec_argv
== NULL
)
1732 if (asprintf(&filter
, "common_pid != %d", getpid()) < 0)
1736 for (i
= 0; i
< common_args_nr
; i
++)
1737 *p
++ = strdup(common_args
[i
]);
1739 for (i
= 0; i
< disk_events_nr
; i
++) {
1740 if (!is_valid_tracepoint(disk_events
[i
])) {
1746 *p
++ = strdup(disk_events
[i
]);
1750 for (i
= 0; i
< net_events_nr
; i
++) {
1751 if (!is_valid_tracepoint(net_events
[i
])) {
1757 *p
++ = strdup(net_events
[i
]);
1761 for (i
= 0; i
< poll_events_nr
; i
++) {
1762 if (!is_valid_tracepoint(poll_events
[i
])) {
1768 *p
++ = strdup(poll_events
[i
]);
1773 for (i
= 0; i
< (unsigned int)argc
; i
++)
1776 return cmd_record(rec_argc
, rec_argv
, NULL
);
1780 static int timechart__record(struct timechart
*tchart
, int argc
, const char **argv
)
1782 unsigned int rec_argc
, i
, j
;
1783 const char **rec_argv
;
1785 unsigned int record_elems
;
1787 const char * const common_args
[] = {
1788 "record", "-a", "-R", "-c", "1",
1790 unsigned int common_args_nr
= ARRAY_SIZE(common_args
);
1792 const char * const backtrace_args
[] = {
1795 unsigned int backtrace_args_no
= ARRAY_SIZE(backtrace_args
);
1797 const char * const power_args
[] = {
1798 "-e", "power:cpu_frequency",
1799 "-e", "power:cpu_idle",
1801 unsigned int power_args_nr
= ARRAY_SIZE(power_args
);
1803 const char * const old_power_args
[] = {
1804 #ifdef SUPPORT_OLD_POWER_EVENTS
1805 "-e", "power:power_start",
1806 "-e", "power:power_end",
1807 "-e", "power:power_frequency",
1810 unsigned int old_power_args_nr
= ARRAY_SIZE(old_power_args
);
1812 const char * const tasks_args
[] = {
1813 "-e", "sched:sched_wakeup",
1814 "-e", "sched:sched_switch",
1816 unsigned int tasks_args_nr
= ARRAY_SIZE(tasks_args
);
1818 #ifdef SUPPORT_OLD_POWER_EVENTS
1819 if (!is_valid_tracepoint("power:cpu_idle") &&
1820 is_valid_tracepoint("power:power_start")) {
1821 use_old_power_events
= 1;
1824 old_power_args_nr
= 0;
1828 if (tchart
->power_only
)
1831 if (tchart
->tasks_only
) {
1833 old_power_args_nr
= 0;
1836 if (!tchart
->with_backtrace
)
1837 backtrace_args_no
= 0;
1839 record_elems
= common_args_nr
+ tasks_args_nr
+
1840 power_args_nr
+ old_power_args_nr
+ backtrace_args_no
;
1842 rec_argc
= record_elems
+ argc
;
1843 rec_argv
= calloc(rec_argc
+ 1, sizeof(char *));
1845 if (rec_argv
== NULL
)
1849 for (i
= 0; i
< common_args_nr
; i
++)
1850 *p
++ = strdup(common_args
[i
]);
1852 for (i
= 0; i
< backtrace_args_no
; i
++)
1853 *p
++ = strdup(backtrace_args
[i
]);
1855 for (i
= 0; i
< tasks_args_nr
; i
++)
1856 *p
++ = strdup(tasks_args
[i
]);
1858 for (i
= 0; i
< power_args_nr
; i
++)
1859 *p
++ = strdup(power_args
[i
]);
1861 for (i
= 0; i
< old_power_args_nr
; i
++)
1862 *p
++ = strdup(old_power_args
[i
]);
1864 for (j
= 0; j
< (unsigned int)argc
; j
++)
1867 return cmd_record(rec_argc
, rec_argv
, NULL
);
1871 parse_process(const struct option
*opt __maybe_unused
, const char *arg
,
1872 int __maybe_unused unset
)
1875 add_process_filter(arg
);
1880 parse_highlight(const struct option
*opt __maybe_unused
, const char *arg
,
1881 int __maybe_unused unset
)
1883 unsigned long duration
= strtoul(arg
, NULL
, 0);
1885 if (svg_highlight
|| svg_highlight_name
)
1889 svg_highlight
= duration
;
1891 svg_highlight_name
= strdup(arg
);
1897 parse_time(const struct option
*opt
, const char *arg
, int __maybe_unused unset
)
1900 u64
*value
= opt
->value
;
1902 if (sscanf(arg
, "%" PRIu64
"%cs", value
, &unit
) > 0) {
1905 *value
*= NSEC_PER_MSEC
;
1908 *value
*= NSEC_PER_USEC
;
1920 int cmd_timechart(int argc
, const char **argv
,
1921 const char *prefix __maybe_unused
)
1923 struct timechart tchart
= {
1925 .comm
= process_comm_event
,
1926 .fork
= process_fork_event
,
1927 .exit
= process_exit_event
,
1928 .sample
= process_sample_event
,
1929 .ordered_events
= true,
1932 .min_time
= NSEC_PER_MSEC
,
1935 const char *output_name
= "output.svg";
1936 const struct option timechart_options
[] = {
1937 OPT_STRING('i', "input", &input_name
, "file", "input file name"),
1938 OPT_STRING('o', "output", &output_name
, "file", "output file name"),
1939 OPT_INTEGER('w', "width", &svg_page_width
, "page width"),
1940 OPT_CALLBACK(0, "highlight", NULL
, "duration or task name",
1941 "highlight tasks. Pass duration in ns or process name.",
1943 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1944 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1945 "output processes data only"),
1946 OPT_CALLBACK('p', "process", NULL
, "process",
1947 "process selector. Pass a pid or process name.",
1949 OPT_CALLBACK(0, "symfs", NULL
, "directory",
1950 "Look for files with symbols relative to this directory",
1951 symbol__config_symfs
),
1952 OPT_INTEGER('n', "proc-num", &tchart
.proc_num
,
1953 "min. number of tasks to print"),
1954 OPT_BOOLEAN('t', "topology", &tchart
.topology
,
1955 "sort CPUs according to topology"),
1956 OPT_BOOLEAN(0, "io-skip-eagain", &tchart
.skip_eagain
,
1957 "skip EAGAIN errors"),
1958 OPT_CALLBACK(0, "io-min-time", &tchart
.min_time
, "time",
1959 "all IO faster than min-time will visually appear longer",
1961 OPT_CALLBACK(0, "io-merge-dist", &tchart
.merge_dist
, "time",
1962 "merge events that are merge-dist us apart",
1964 OPT_BOOLEAN('f', "force", &tchart
.force
, "don't complain, do it"),
1967 const char * const timechart_subcommands
[] = { "record", NULL
};
1968 const char *timechart_usage
[] = {
1969 "perf timechart [<options>] {record}",
1973 const struct option timechart_record_options
[] = {
1974 OPT_BOOLEAN('P', "power-only", &tchart
.power_only
, "output power data only"),
1975 OPT_BOOLEAN('T', "tasks-only", &tchart
.tasks_only
,
1976 "output processes data only"),
1977 OPT_BOOLEAN('I', "io-only", &tchart
.io_only
,
1978 "record only IO data"),
1979 OPT_BOOLEAN('g', "callchain", &tchart
.with_backtrace
, "record callchain"),
1982 const char * const timechart_record_usage
[] = {
1983 "perf timechart record [<options>]",
1986 argc
= parse_options_subcommand(argc
, argv
, timechart_options
, timechart_subcommands
,
1987 timechart_usage
, PARSE_OPT_STOP_AT_NON_OPTION
);
1989 if (tchart
.power_only
&& tchart
.tasks_only
) {
1990 pr_err("-P and -T options cannot be used at the same time.\n");
1994 if (argc
&& !strncmp(argv
[0], "rec", 3)) {
1995 argc
= parse_options(argc
, argv
, timechart_record_options
,
1996 timechart_record_usage
,
1997 PARSE_OPT_STOP_AT_NON_OPTION
);
1999 if (tchart
.power_only
&& tchart
.tasks_only
) {
2000 pr_err("-P and -T options cannot be used at the same time.\n");
2005 return timechart__io_record(argc
, argv
);
2007 return timechart__record(&tchart
, argc
, argv
);
2009 usage_with_options(timechart_usage
, timechart_options
);
2013 return __cmd_timechart(&tchart
, output_name
);