fs: make fiemap work from compat_ioctl
[linux/fpc-iii.git] / drivers / block / loop.c
blob85de6733469550a238b7353515defd9f6a6cd22d
1 /*
2 * linux/drivers/block/loop.c
4 * Written by Theodore Ts'o, 3/29/93
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
21 * Loadable modules and other fixes by AK, 1998
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include "loop.h"
81 #include <linux/uaccess.h>
83 static DEFINE_IDR(loop_index_idr);
84 static DEFINE_MUTEX(loop_index_mutex);
86 static int max_part;
87 static int part_shift;
89 static int transfer_xor(struct loop_device *lo, int cmd,
90 struct page *raw_page, unsigned raw_off,
91 struct page *loop_page, unsigned loop_off,
92 int size, sector_t real_block)
94 char *raw_buf = kmap_atomic(raw_page) + raw_off;
95 char *loop_buf = kmap_atomic(loop_page) + loop_off;
96 char *in, *out, *key;
97 int i, keysize;
99 if (cmd == READ) {
100 in = raw_buf;
101 out = loop_buf;
102 } else {
103 in = loop_buf;
104 out = raw_buf;
107 key = lo->lo_encrypt_key;
108 keysize = lo->lo_encrypt_key_size;
109 for (i = 0; i < size; i++)
110 *out++ = *in++ ^ key[(i & 511) % keysize];
112 kunmap_atomic(loop_buf);
113 kunmap_atomic(raw_buf);
114 cond_resched();
115 return 0;
118 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
120 if (unlikely(info->lo_encrypt_key_size <= 0))
121 return -EINVAL;
122 return 0;
125 static struct loop_func_table none_funcs = {
126 .number = LO_CRYPT_NONE,
129 static struct loop_func_table xor_funcs = {
130 .number = LO_CRYPT_XOR,
131 .transfer = transfer_xor,
132 .init = xor_init
135 /* xfer_funcs[0] is special - its release function is never called */
136 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137 &none_funcs,
138 &xor_funcs
141 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
143 loff_t loopsize;
145 /* Compute loopsize in bytes */
146 loopsize = i_size_read(file->f_mapping->host);
147 if (offset > 0)
148 loopsize -= offset;
149 /* offset is beyond i_size, weird but possible */
150 if (loopsize < 0)
151 return 0;
153 if (sizelimit > 0 && sizelimit < loopsize)
154 loopsize = sizelimit;
156 * Unfortunately, if we want to do I/O on the device,
157 * the number of 512-byte sectors has to fit into a sector_t.
159 return loopsize >> 9;
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
164 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 static void __loop_update_dio(struct loop_device *lo, bool dio)
169 struct file *file = lo->lo_backing_file;
170 struct address_space *mapping = file->f_mapping;
171 struct inode *inode = mapping->host;
172 unsigned short sb_bsize = 0;
173 unsigned dio_align = 0;
174 bool use_dio;
176 if (inode->i_sb->s_bdev) {
177 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
178 dio_align = sb_bsize - 1;
182 * We support direct I/O only if lo_offset is aligned with the
183 * logical I/O size of backing device, and the logical block
184 * size of loop is bigger than the backing device's and the loop
185 * needn't transform transfer.
187 * TODO: the above condition may be loosed in the future, and
188 * direct I/O may be switched runtime at that time because most
189 * of requests in sane applications should be PAGE_SIZE aligned
191 if (dio) {
192 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
193 !(lo->lo_offset & dio_align) &&
194 mapping->a_ops->direct_IO &&
195 !lo->transfer)
196 use_dio = true;
197 else
198 use_dio = false;
199 } else {
200 use_dio = false;
203 if (lo->use_dio == use_dio)
204 return;
206 /* flush dirty pages before changing direct IO */
207 vfs_fsync(file, 0);
210 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
211 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
212 * will get updated by ioctl(LOOP_GET_STATUS)
214 blk_mq_freeze_queue(lo->lo_queue);
215 lo->use_dio = use_dio;
216 if (use_dio) {
217 queue_flag_clear_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
218 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
219 } else {
220 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
221 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
223 blk_mq_unfreeze_queue(lo->lo_queue);
226 static int
227 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
229 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
230 sector_t x = (sector_t)size;
231 struct block_device *bdev = lo->lo_device;
233 if (unlikely((loff_t)x != size))
234 return -EFBIG;
235 if (lo->lo_offset != offset)
236 lo->lo_offset = offset;
237 if (lo->lo_sizelimit != sizelimit)
238 lo->lo_sizelimit = sizelimit;
239 set_capacity(lo->lo_disk, x);
240 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
241 /* let user-space know about the new size */
242 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
243 return 0;
246 static inline int
247 lo_do_transfer(struct loop_device *lo, int cmd,
248 struct page *rpage, unsigned roffs,
249 struct page *lpage, unsigned loffs,
250 int size, sector_t rblock)
252 int ret;
254 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
255 if (likely(!ret))
256 return 0;
258 printk_ratelimited(KERN_ERR
259 "loop: Transfer error at byte offset %llu, length %i.\n",
260 (unsigned long long)rblock << 9, size);
261 return ret;
264 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
266 struct iov_iter i;
267 ssize_t bw;
269 iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
271 file_start_write(file);
272 bw = vfs_iter_write(file, &i, ppos, 0);
273 file_end_write(file);
275 if (likely(bw == bvec->bv_len))
276 return 0;
278 printk_ratelimited(KERN_ERR
279 "loop: Write error at byte offset %llu, length %i.\n",
280 (unsigned long long)*ppos, bvec->bv_len);
281 if (bw >= 0)
282 bw = -EIO;
283 return bw;
286 static int lo_write_simple(struct loop_device *lo, struct request *rq,
287 loff_t pos)
289 struct bio_vec bvec;
290 struct req_iterator iter;
291 int ret = 0;
293 rq_for_each_segment(bvec, rq, iter) {
294 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
295 if (ret < 0)
296 break;
297 cond_resched();
300 return ret;
304 * This is the slow, transforming version that needs to double buffer the
305 * data as it cannot do the transformations in place without having direct
306 * access to the destination pages of the backing file.
308 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
309 loff_t pos)
311 struct bio_vec bvec, b;
312 struct req_iterator iter;
313 struct page *page;
314 int ret = 0;
316 page = alloc_page(GFP_NOIO);
317 if (unlikely(!page))
318 return -ENOMEM;
320 rq_for_each_segment(bvec, rq, iter) {
321 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
322 bvec.bv_offset, bvec.bv_len, pos >> 9);
323 if (unlikely(ret))
324 break;
326 b.bv_page = page;
327 b.bv_offset = 0;
328 b.bv_len = bvec.bv_len;
329 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
330 if (ret < 0)
331 break;
334 __free_page(page);
335 return ret;
338 static int lo_read_simple(struct loop_device *lo, struct request *rq,
339 loff_t pos)
341 struct bio_vec bvec;
342 struct req_iterator iter;
343 struct iov_iter i;
344 ssize_t len;
346 rq_for_each_segment(bvec, rq, iter) {
347 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
348 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
349 if (len < 0)
350 return len;
352 flush_dcache_page(bvec.bv_page);
354 if (len != bvec.bv_len) {
355 struct bio *bio;
357 __rq_for_each_bio(bio, rq)
358 zero_fill_bio(bio);
359 break;
361 cond_resched();
364 return 0;
367 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
368 loff_t pos)
370 struct bio_vec bvec, b;
371 struct req_iterator iter;
372 struct iov_iter i;
373 struct page *page;
374 ssize_t len;
375 int ret = 0;
377 page = alloc_page(GFP_NOIO);
378 if (unlikely(!page))
379 return -ENOMEM;
381 rq_for_each_segment(bvec, rq, iter) {
382 loff_t offset = pos;
384 b.bv_page = page;
385 b.bv_offset = 0;
386 b.bv_len = bvec.bv_len;
388 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
389 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
390 if (len < 0) {
391 ret = len;
392 goto out_free_page;
395 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
396 bvec.bv_offset, len, offset >> 9);
397 if (ret)
398 goto out_free_page;
400 flush_dcache_page(bvec.bv_page);
402 if (len != bvec.bv_len) {
403 struct bio *bio;
405 __rq_for_each_bio(bio, rq)
406 zero_fill_bio(bio);
407 break;
411 ret = 0;
412 out_free_page:
413 __free_page(page);
414 return ret;
417 static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
420 * We use punch hole to reclaim the free space used by the
421 * image a.k.a. discard. However we do not support discard if
422 * encryption is enabled, because it may give an attacker
423 * useful information.
425 struct file *file = lo->lo_backing_file;
426 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
427 int ret;
429 if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
430 ret = -EOPNOTSUPP;
431 goto out;
434 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
435 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
436 ret = -EIO;
437 out:
438 return ret;
441 static int lo_req_flush(struct loop_device *lo, struct request *rq)
443 struct file *file = lo->lo_backing_file;
444 int ret = vfs_fsync(file, 0);
445 if (unlikely(ret && ret != -EINVAL))
446 ret = -EIO;
448 return ret;
451 static void lo_complete_rq(struct request *rq)
453 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
455 if (unlikely(req_op(cmd->rq) == REQ_OP_READ && cmd->use_aio &&
456 cmd->ret >= 0 && cmd->ret < blk_rq_bytes(cmd->rq))) {
457 struct bio *bio = cmd->rq->bio;
459 bio_advance(bio, cmd->ret);
460 zero_fill_bio(bio);
463 blk_mq_end_request(rq, cmd->ret < 0 ? BLK_STS_IOERR : BLK_STS_OK);
466 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
468 if (!atomic_dec_and_test(&cmd->ref))
469 return;
470 kfree(cmd->bvec);
471 cmd->bvec = NULL;
472 blk_mq_complete_request(cmd->rq);
475 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
477 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
479 cmd->ret = ret;
480 lo_rw_aio_do_completion(cmd);
483 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
484 loff_t pos, bool rw)
486 struct iov_iter iter;
487 struct bio_vec *bvec;
488 struct request *rq = cmd->rq;
489 struct bio *bio = rq->bio;
490 struct file *file = lo->lo_backing_file;
491 unsigned int offset;
492 int segments = 0;
493 int ret;
495 if (rq->bio != rq->biotail) {
496 struct req_iterator iter;
497 struct bio_vec tmp;
499 __rq_for_each_bio(bio, rq)
500 segments += bio_segments(bio);
501 bvec = kmalloc(sizeof(struct bio_vec) * segments, GFP_NOIO);
502 if (!bvec)
503 return -EIO;
504 cmd->bvec = bvec;
507 * The bios of the request may be started from the middle of
508 * the 'bvec' because of bio splitting, so we can't directly
509 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
510 * API will take care of all details for us.
512 rq_for_each_segment(tmp, rq, iter) {
513 *bvec = tmp;
514 bvec++;
516 bvec = cmd->bvec;
517 offset = 0;
518 } else {
520 * Same here, this bio may be started from the middle of the
521 * 'bvec' because of bio splitting, so offset from the bvec
522 * must be passed to iov iterator
524 offset = bio->bi_iter.bi_bvec_done;
525 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
526 segments = bio_segments(bio);
528 atomic_set(&cmd->ref, 2);
530 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
531 segments, blk_rq_bytes(rq));
532 iter.iov_offset = offset;
534 cmd->iocb.ki_pos = pos;
535 cmd->iocb.ki_filp = file;
536 cmd->iocb.ki_complete = lo_rw_aio_complete;
537 cmd->iocb.ki_flags = IOCB_DIRECT;
539 if (rw == WRITE)
540 ret = call_write_iter(file, &cmd->iocb, &iter);
541 else
542 ret = call_read_iter(file, &cmd->iocb, &iter);
544 lo_rw_aio_do_completion(cmd);
546 if (ret != -EIOCBQUEUED)
547 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
548 return 0;
551 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
553 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
554 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
557 * lo_write_simple and lo_read_simple should have been covered
558 * by io submit style function like lo_rw_aio(), one blocker
559 * is that lo_read_simple() need to call flush_dcache_page after
560 * the page is written from kernel, and it isn't easy to handle
561 * this in io submit style function which submits all segments
562 * of the req at one time. And direct read IO doesn't need to
563 * run flush_dcache_page().
565 switch (req_op(rq)) {
566 case REQ_OP_FLUSH:
567 return lo_req_flush(lo, rq);
568 case REQ_OP_DISCARD:
569 case REQ_OP_WRITE_ZEROES:
570 return lo_discard(lo, rq, pos);
571 case REQ_OP_WRITE:
572 if (lo->transfer)
573 return lo_write_transfer(lo, rq, pos);
574 else if (cmd->use_aio)
575 return lo_rw_aio(lo, cmd, pos, WRITE);
576 else
577 return lo_write_simple(lo, rq, pos);
578 case REQ_OP_READ:
579 if (lo->transfer)
580 return lo_read_transfer(lo, rq, pos);
581 else if (cmd->use_aio)
582 return lo_rw_aio(lo, cmd, pos, READ);
583 else
584 return lo_read_simple(lo, rq, pos);
585 default:
586 WARN_ON_ONCE(1);
587 return -EIO;
588 break;
592 static inline void loop_update_dio(struct loop_device *lo)
594 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
595 lo->use_dio);
598 static void loop_reread_partitions(struct loop_device *lo,
599 struct block_device *bdev)
601 int rc;
604 * bd_mutex has been held already in release path, so don't
605 * acquire it if this function is called in such case.
607 * If the reread partition isn't from release path, lo_refcnt
608 * must be at least one and it can only become zero when the
609 * current holder is released.
611 if (!atomic_read(&lo->lo_refcnt))
612 rc = __blkdev_reread_part(bdev);
613 else
614 rc = blkdev_reread_part(bdev);
615 if (rc)
616 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
617 __func__, lo->lo_number, lo->lo_file_name, rc);
621 * loop_change_fd switched the backing store of a loopback device to
622 * a new file. This is useful for operating system installers to free up
623 * the original file and in High Availability environments to switch to
624 * an alternative location for the content in case of server meltdown.
625 * This can only work if the loop device is used read-only, and if the
626 * new backing store is the same size and type as the old backing store.
628 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
629 unsigned int arg)
631 struct file *file, *old_file;
632 struct inode *inode;
633 int error;
635 error = -ENXIO;
636 if (lo->lo_state != Lo_bound)
637 goto out;
639 /* the loop device has to be read-only */
640 error = -EINVAL;
641 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
642 goto out;
644 error = -EBADF;
645 file = fget(arg);
646 if (!file)
647 goto out;
649 inode = file->f_mapping->host;
650 old_file = lo->lo_backing_file;
652 error = -EINVAL;
654 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
655 goto out_putf;
657 /* size of the new backing store needs to be the same */
658 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
659 goto out_putf;
661 /* and ... switch */
662 blk_mq_freeze_queue(lo->lo_queue);
663 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
664 lo->lo_backing_file = file;
665 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
666 mapping_set_gfp_mask(file->f_mapping,
667 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
668 loop_update_dio(lo);
669 blk_mq_unfreeze_queue(lo->lo_queue);
671 fput(old_file);
672 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
673 loop_reread_partitions(lo, bdev);
674 return 0;
676 out_putf:
677 fput(file);
678 out:
679 return error;
682 static inline int is_loop_device(struct file *file)
684 struct inode *i = file->f_mapping->host;
686 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
689 /* loop sysfs attributes */
691 static ssize_t loop_attr_show(struct device *dev, char *page,
692 ssize_t (*callback)(struct loop_device *, char *))
694 struct gendisk *disk = dev_to_disk(dev);
695 struct loop_device *lo = disk->private_data;
697 return callback(lo, page);
700 #define LOOP_ATTR_RO(_name) \
701 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
702 static ssize_t loop_attr_do_show_##_name(struct device *d, \
703 struct device_attribute *attr, char *b) \
705 return loop_attr_show(d, b, loop_attr_##_name##_show); \
707 static struct device_attribute loop_attr_##_name = \
708 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
710 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
712 ssize_t ret;
713 char *p = NULL;
715 spin_lock_irq(&lo->lo_lock);
716 if (lo->lo_backing_file)
717 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
718 spin_unlock_irq(&lo->lo_lock);
720 if (IS_ERR_OR_NULL(p))
721 ret = PTR_ERR(p);
722 else {
723 ret = strlen(p);
724 memmove(buf, p, ret);
725 buf[ret++] = '\n';
726 buf[ret] = 0;
729 return ret;
732 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
734 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
737 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
739 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
742 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
744 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
746 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
749 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
751 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
753 return sprintf(buf, "%s\n", partscan ? "1" : "0");
756 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
758 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
760 return sprintf(buf, "%s\n", dio ? "1" : "0");
763 LOOP_ATTR_RO(backing_file);
764 LOOP_ATTR_RO(offset);
765 LOOP_ATTR_RO(sizelimit);
766 LOOP_ATTR_RO(autoclear);
767 LOOP_ATTR_RO(partscan);
768 LOOP_ATTR_RO(dio);
770 static struct attribute *loop_attrs[] = {
771 &loop_attr_backing_file.attr,
772 &loop_attr_offset.attr,
773 &loop_attr_sizelimit.attr,
774 &loop_attr_autoclear.attr,
775 &loop_attr_partscan.attr,
776 &loop_attr_dio.attr,
777 NULL,
780 static struct attribute_group loop_attribute_group = {
781 .name = "loop",
782 .attrs= loop_attrs,
785 static int loop_sysfs_init(struct loop_device *lo)
787 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
788 &loop_attribute_group);
791 static void loop_sysfs_exit(struct loop_device *lo)
793 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
794 &loop_attribute_group);
797 static void loop_config_discard(struct loop_device *lo)
799 struct file *file = lo->lo_backing_file;
800 struct inode *inode = file->f_mapping->host;
801 struct request_queue *q = lo->lo_queue;
804 * We use punch hole to reclaim the free space used by the
805 * image a.k.a. discard. However we do not support discard if
806 * encryption is enabled, because it may give an attacker
807 * useful information.
809 if ((!file->f_op->fallocate) ||
810 lo->lo_encrypt_key_size) {
811 q->limits.discard_granularity = 0;
812 q->limits.discard_alignment = 0;
813 blk_queue_max_discard_sectors(q, 0);
814 blk_queue_max_write_zeroes_sectors(q, 0);
815 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
816 return;
819 q->limits.discard_granularity = inode->i_sb->s_blocksize;
820 q->limits.discard_alignment = 0;
822 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
823 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
824 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
827 static void loop_unprepare_queue(struct loop_device *lo)
829 kthread_flush_worker(&lo->worker);
830 kthread_stop(lo->worker_task);
833 static int loop_kthread_worker_fn(void *worker_ptr)
835 current->flags |= PF_LESS_THROTTLE;
836 return kthread_worker_fn(worker_ptr);
839 static int loop_prepare_queue(struct loop_device *lo)
841 kthread_init_worker(&lo->worker);
842 lo->worker_task = kthread_run(loop_kthread_worker_fn,
843 &lo->worker, "loop%d", lo->lo_number);
844 if (IS_ERR(lo->worker_task))
845 return -ENOMEM;
846 set_user_nice(lo->worker_task, MIN_NICE);
847 return 0;
850 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
851 struct block_device *bdev, unsigned int arg)
853 struct file *file, *f;
854 struct inode *inode;
855 struct address_space *mapping;
856 int lo_flags = 0;
857 int error;
858 loff_t size;
860 /* This is safe, since we have a reference from open(). */
861 __module_get(THIS_MODULE);
863 error = -EBADF;
864 file = fget(arg);
865 if (!file)
866 goto out;
868 error = -EBUSY;
869 if (lo->lo_state != Lo_unbound)
870 goto out_putf;
872 /* Avoid recursion */
873 f = file;
874 while (is_loop_device(f)) {
875 struct loop_device *l;
877 if (f->f_mapping->host->i_bdev == bdev)
878 goto out_putf;
880 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
881 if (l->lo_state == Lo_unbound) {
882 error = -EINVAL;
883 goto out_putf;
885 f = l->lo_backing_file;
888 mapping = file->f_mapping;
889 inode = mapping->host;
891 error = -EINVAL;
892 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
893 goto out_putf;
895 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
896 !file->f_op->write_iter)
897 lo_flags |= LO_FLAGS_READ_ONLY;
899 error = -EFBIG;
900 size = get_loop_size(lo, file);
901 if ((loff_t)(sector_t)size != size)
902 goto out_putf;
903 error = loop_prepare_queue(lo);
904 if (error)
905 goto out_putf;
907 error = 0;
909 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
911 lo->use_dio = false;
912 lo->lo_device = bdev;
913 lo->lo_flags = lo_flags;
914 lo->lo_backing_file = file;
915 lo->transfer = NULL;
916 lo->ioctl = NULL;
917 lo->lo_sizelimit = 0;
918 lo->old_gfp_mask = mapping_gfp_mask(mapping);
919 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
921 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
922 blk_queue_write_cache(lo->lo_queue, true, false);
924 loop_update_dio(lo);
925 set_capacity(lo->lo_disk, size);
926 bd_set_size(bdev, size << 9);
927 loop_sysfs_init(lo);
928 /* let user-space know about the new size */
929 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
931 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
932 block_size(inode->i_bdev) : PAGE_SIZE);
934 lo->lo_state = Lo_bound;
935 if (part_shift)
936 lo->lo_flags |= LO_FLAGS_PARTSCAN;
937 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
938 loop_reread_partitions(lo, bdev);
940 /* Grab the block_device to prevent its destruction after we
941 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
943 bdgrab(bdev);
944 return 0;
946 out_putf:
947 fput(file);
948 out:
949 /* This is safe: open() is still holding a reference. */
950 module_put(THIS_MODULE);
951 return error;
954 static int
955 loop_release_xfer(struct loop_device *lo)
957 int err = 0;
958 struct loop_func_table *xfer = lo->lo_encryption;
960 if (xfer) {
961 if (xfer->release)
962 err = xfer->release(lo);
963 lo->transfer = NULL;
964 lo->lo_encryption = NULL;
965 module_put(xfer->owner);
967 return err;
970 static int
971 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
972 const struct loop_info64 *i)
974 int err = 0;
976 if (xfer) {
977 struct module *owner = xfer->owner;
979 if (!try_module_get(owner))
980 return -EINVAL;
981 if (xfer->init)
982 err = xfer->init(lo, i);
983 if (err)
984 module_put(owner);
985 else
986 lo->lo_encryption = xfer;
988 return err;
991 static int loop_clr_fd(struct loop_device *lo)
993 struct file *filp = lo->lo_backing_file;
994 gfp_t gfp = lo->old_gfp_mask;
995 struct block_device *bdev = lo->lo_device;
997 if (lo->lo_state != Lo_bound)
998 return -ENXIO;
1001 * If we've explicitly asked to tear down the loop device,
1002 * and it has an elevated reference count, set it for auto-teardown when
1003 * the last reference goes away. This stops $!~#$@ udev from
1004 * preventing teardown because it decided that it needs to run blkid on
1005 * the loopback device whenever they appear. xfstests is notorious for
1006 * failing tests because blkid via udev races with a losetup
1007 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1008 * command to fail with EBUSY.
1010 if (atomic_read(&lo->lo_refcnt) > 1) {
1011 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1012 mutex_unlock(&lo->lo_ctl_mutex);
1013 return 0;
1016 if (filp == NULL)
1017 return -EINVAL;
1019 /* freeze request queue during the transition */
1020 blk_mq_freeze_queue(lo->lo_queue);
1022 spin_lock_irq(&lo->lo_lock);
1023 lo->lo_state = Lo_rundown;
1024 lo->lo_backing_file = NULL;
1025 spin_unlock_irq(&lo->lo_lock);
1027 loop_release_xfer(lo);
1028 lo->transfer = NULL;
1029 lo->ioctl = NULL;
1030 lo->lo_device = NULL;
1031 lo->lo_encryption = NULL;
1032 lo->lo_offset = 0;
1033 lo->lo_sizelimit = 0;
1034 lo->lo_encrypt_key_size = 0;
1035 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1036 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1037 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1038 blk_queue_logical_block_size(lo->lo_queue, 512);
1039 blk_queue_physical_block_size(lo->lo_queue, 512);
1040 blk_queue_io_min(lo->lo_queue, 512);
1041 if (bdev) {
1042 bdput(bdev);
1043 invalidate_bdev(bdev);
1045 set_capacity(lo->lo_disk, 0);
1046 loop_sysfs_exit(lo);
1047 if (bdev) {
1048 bd_set_size(bdev, 0);
1049 /* let user-space know about this change */
1050 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1052 mapping_set_gfp_mask(filp->f_mapping, gfp);
1053 lo->lo_state = Lo_unbound;
1054 /* This is safe: open() is still holding a reference. */
1055 module_put(THIS_MODULE);
1056 blk_mq_unfreeze_queue(lo->lo_queue);
1058 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1059 loop_reread_partitions(lo, bdev);
1060 lo->lo_flags = 0;
1061 if (!part_shift)
1062 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1063 loop_unprepare_queue(lo);
1064 mutex_unlock(&lo->lo_ctl_mutex);
1066 * Need not hold lo_ctl_mutex to fput backing file.
1067 * Calling fput holding lo_ctl_mutex triggers a circular
1068 * lock dependency possibility warning as fput can take
1069 * bd_mutex which is usually taken before lo_ctl_mutex.
1071 fput(filp);
1072 return 0;
1075 static int
1076 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1078 int err;
1079 struct loop_func_table *xfer;
1080 kuid_t uid = current_uid();
1082 if (lo->lo_encrypt_key_size &&
1083 !uid_eq(lo->lo_key_owner, uid) &&
1084 !capable(CAP_SYS_ADMIN))
1085 return -EPERM;
1086 if (lo->lo_state != Lo_bound)
1087 return -ENXIO;
1088 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1089 return -EINVAL;
1091 /* I/O need to be drained during transfer transition */
1092 blk_mq_freeze_queue(lo->lo_queue);
1094 err = loop_release_xfer(lo);
1095 if (err)
1096 goto exit;
1098 if (info->lo_encrypt_type) {
1099 unsigned int type = info->lo_encrypt_type;
1101 if (type >= MAX_LO_CRYPT)
1102 return -EINVAL;
1103 xfer = xfer_funcs[type];
1104 if (xfer == NULL)
1105 return -EINVAL;
1106 } else
1107 xfer = NULL;
1109 err = loop_init_xfer(lo, xfer, info);
1110 if (err)
1111 goto exit;
1113 if (lo->lo_offset != info->lo_offset ||
1114 lo->lo_sizelimit != info->lo_sizelimit) {
1115 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1116 err = -EFBIG;
1117 goto exit;
1121 loop_config_discard(lo);
1123 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1124 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1125 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1126 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1128 if (!xfer)
1129 xfer = &none_funcs;
1130 lo->transfer = xfer->transfer;
1131 lo->ioctl = xfer->ioctl;
1133 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1134 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1135 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1137 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1138 lo->lo_init[0] = info->lo_init[0];
1139 lo->lo_init[1] = info->lo_init[1];
1140 if (info->lo_encrypt_key_size) {
1141 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1142 info->lo_encrypt_key_size);
1143 lo->lo_key_owner = uid;
1146 /* update dio if lo_offset or transfer is changed */
1147 __loop_update_dio(lo, lo->use_dio);
1149 exit:
1150 blk_mq_unfreeze_queue(lo->lo_queue);
1152 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1153 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1154 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1155 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1156 loop_reread_partitions(lo, lo->lo_device);
1159 return err;
1162 static int
1163 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1165 struct file *file = lo->lo_backing_file;
1166 struct kstat stat;
1167 int error;
1169 if (lo->lo_state != Lo_bound)
1170 return -ENXIO;
1171 error = vfs_getattr(&file->f_path, &stat,
1172 STATX_INO, AT_STATX_SYNC_AS_STAT);
1173 if (error)
1174 return error;
1175 memset(info, 0, sizeof(*info));
1176 info->lo_number = lo->lo_number;
1177 info->lo_device = huge_encode_dev(stat.dev);
1178 info->lo_inode = stat.ino;
1179 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1180 info->lo_offset = lo->lo_offset;
1181 info->lo_sizelimit = lo->lo_sizelimit;
1182 info->lo_flags = lo->lo_flags;
1183 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1184 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1185 info->lo_encrypt_type =
1186 lo->lo_encryption ? lo->lo_encryption->number : 0;
1187 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1188 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1189 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1190 lo->lo_encrypt_key_size);
1192 return 0;
1195 static void
1196 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1198 memset(info64, 0, sizeof(*info64));
1199 info64->lo_number = info->lo_number;
1200 info64->lo_device = info->lo_device;
1201 info64->lo_inode = info->lo_inode;
1202 info64->lo_rdevice = info->lo_rdevice;
1203 info64->lo_offset = info->lo_offset;
1204 info64->lo_sizelimit = 0;
1205 info64->lo_encrypt_type = info->lo_encrypt_type;
1206 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1207 info64->lo_flags = info->lo_flags;
1208 info64->lo_init[0] = info->lo_init[0];
1209 info64->lo_init[1] = info->lo_init[1];
1210 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1211 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1212 else
1213 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1214 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1217 static int
1218 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1220 memset(info, 0, sizeof(*info));
1221 info->lo_number = info64->lo_number;
1222 info->lo_device = info64->lo_device;
1223 info->lo_inode = info64->lo_inode;
1224 info->lo_rdevice = info64->lo_rdevice;
1225 info->lo_offset = info64->lo_offset;
1226 info->lo_encrypt_type = info64->lo_encrypt_type;
1227 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1228 info->lo_flags = info64->lo_flags;
1229 info->lo_init[0] = info64->lo_init[0];
1230 info->lo_init[1] = info64->lo_init[1];
1231 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1232 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1233 else
1234 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1235 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1237 /* error in case values were truncated */
1238 if (info->lo_device != info64->lo_device ||
1239 info->lo_rdevice != info64->lo_rdevice ||
1240 info->lo_inode != info64->lo_inode ||
1241 info->lo_offset != info64->lo_offset)
1242 return -EOVERFLOW;
1244 return 0;
1247 static int
1248 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1250 struct loop_info info;
1251 struct loop_info64 info64;
1253 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1254 return -EFAULT;
1255 loop_info64_from_old(&info, &info64);
1256 return loop_set_status(lo, &info64);
1259 static int
1260 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1262 struct loop_info64 info64;
1264 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1265 return -EFAULT;
1266 return loop_set_status(lo, &info64);
1269 static int
1270 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1271 struct loop_info info;
1272 struct loop_info64 info64;
1273 int err = 0;
1275 if (!arg)
1276 err = -EINVAL;
1277 if (!err)
1278 err = loop_get_status(lo, &info64);
1279 if (!err)
1280 err = loop_info64_to_old(&info64, &info);
1281 if (!err && copy_to_user(arg, &info, sizeof(info)))
1282 err = -EFAULT;
1284 return err;
1287 static int
1288 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1289 struct loop_info64 info64;
1290 int err = 0;
1292 if (!arg)
1293 err = -EINVAL;
1294 if (!err)
1295 err = loop_get_status(lo, &info64);
1296 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1297 err = -EFAULT;
1299 return err;
1302 static int loop_set_capacity(struct loop_device *lo)
1304 if (unlikely(lo->lo_state != Lo_bound))
1305 return -ENXIO;
1307 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1310 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1312 int error = -ENXIO;
1313 if (lo->lo_state != Lo_bound)
1314 goto out;
1316 __loop_update_dio(lo, !!arg);
1317 if (lo->use_dio == !!arg)
1318 return 0;
1319 error = -EINVAL;
1320 out:
1321 return error;
1324 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1326 if (lo->lo_state != Lo_bound)
1327 return -ENXIO;
1329 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1330 return -EINVAL;
1332 blk_mq_freeze_queue(lo->lo_queue);
1334 blk_queue_logical_block_size(lo->lo_queue, arg);
1335 blk_queue_physical_block_size(lo->lo_queue, arg);
1336 blk_queue_io_min(lo->lo_queue, arg);
1337 loop_update_dio(lo);
1339 blk_mq_unfreeze_queue(lo->lo_queue);
1341 return 0;
1344 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1345 unsigned int cmd, unsigned long arg)
1347 struct loop_device *lo = bdev->bd_disk->private_data;
1348 int err;
1350 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1351 switch (cmd) {
1352 case LOOP_SET_FD:
1353 err = loop_set_fd(lo, mode, bdev, arg);
1354 break;
1355 case LOOP_CHANGE_FD:
1356 err = loop_change_fd(lo, bdev, arg);
1357 break;
1358 case LOOP_CLR_FD:
1359 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1360 err = loop_clr_fd(lo);
1361 if (!err)
1362 goto out_unlocked;
1363 break;
1364 case LOOP_SET_STATUS:
1365 err = -EPERM;
1366 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1367 err = loop_set_status_old(lo,
1368 (struct loop_info __user *)arg);
1369 break;
1370 case LOOP_GET_STATUS:
1371 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1372 break;
1373 case LOOP_SET_STATUS64:
1374 err = -EPERM;
1375 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1376 err = loop_set_status64(lo,
1377 (struct loop_info64 __user *) arg);
1378 break;
1379 case LOOP_GET_STATUS64:
1380 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1381 break;
1382 case LOOP_SET_CAPACITY:
1383 err = -EPERM;
1384 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1385 err = loop_set_capacity(lo);
1386 break;
1387 case LOOP_SET_DIRECT_IO:
1388 err = -EPERM;
1389 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1390 err = loop_set_dio(lo, arg);
1391 break;
1392 case LOOP_SET_BLOCK_SIZE:
1393 err = -EPERM;
1394 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1395 err = loop_set_block_size(lo, arg);
1396 break;
1397 default:
1398 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1400 mutex_unlock(&lo->lo_ctl_mutex);
1402 out_unlocked:
1403 return err;
1406 #ifdef CONFIG_COMPAT
1407 struct compat_loop_info {
1408 compat_int_t lo_number; /* ioctl r/o */
1409 compat_dev_t lo_device; /* ioctl r/o */
1410 compat_ulong_t lo_inode; /* ioctl r/o */
1411 compat_dev_t lo_rdevice; /* ioctl r/o */
1412 compat_int_t lo_offset;
1413 compat_int_t lo_encrypt_type;
1414 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1415 compat_int_t lo_flags; /* ioctl r/o */
1416 char lo_name[LO_NAME_SIZE];
1417 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1418 compat_ulong_t lo_init[2];
1419 char reserved[4];
1423 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1424 * - noinlined to reduce stack space usage in main part of driver
1426 static noinline int
1427 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1428 struct loop_info64 *info64)
1430 struct compat_loop_info info;
1432 if (copy_from_user(&info, arg, sizeof(info)))
1433 return -EFAULT;
1435 memset(info64, 0, sizeof(*info64));
1436 info64->lo_number = info.lo_number;
1437 info64->lo_device = info.lo_device;
1438 info64->lo_inode = info.lo_inode;
1439 info64->lo_rdevice = info.lo_rdevice;
1440 info64->lo_offset = info.lo_offset;
1441 info64->lo_sizelimit = 0;
1442 info64->lo_encrypt_type = info.lo_encrypt_type;
1443 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1444 info64->lo_flags = info.lo_flags;
1445 info64->lo_init[0] = info.lo_init[0];
1446 info64->lo_init[1] = info.lo_init[1];
1447 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1448 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1449 else
1450 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1451 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1452 return 0;
1456 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1457 * - noinlined to reduce stack space usage in main part of driver
1459 static noinline int
1460 loop_info64_to_compat(const struct loop_info64 *info64,
1461 struct compat_loop_info __user *arg)
1463 struct compat_loop_info info;
1465 memset(&info, 0, sizeof(info));
1466 info.lo_number = info64->lo_number;
1467 info.lo_device = info64->lo_device;
1468 info.lo_inode = info64->lo_inode;
1469 info.lo_rdevice = info64->lo_rdevice;
1470 info.lo_offset = info64->lo_offset;
1471 info.lo_encrypt_type = info64->lo_encrypt_type;
1472 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1473 info.lo_flags = info64->lo_flags;
1474 info.lo_init[0] = info64->lo_init[0];
1475 info.lo_init[1] = info64->lo_init[1];
1476 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1477 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1478 else
1479 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1480 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1482 /* error in case values were truncated */
1483 if (info.lo_device != info64->lo_device ||
1484 info.lo_rdevice != info64->lo_rdevice ||
1485 info.lo_inode != info64->lo_inode ||
1486 info.lo_offset != info64->lo_offset ||
1487 info.lo_init[0] != info64->lo_init[0] ||
1488 info.lo_init[1] != info64->lo_init[1])
1489 return -EOVERFLOW;
1491 if (copy_to_user(arg, &info, sizeof(info)))
1492 return -EFAULT;
1493 return 0;
1496 static int
1497 loop_set_status_compat(struct loop_device *lo,
1498 const struct compat_loop_info __user *arg)
1500 struct loop_info64 info64;
1501 int ret;
1503 ret = loop_info64_from_compat(arg, &info64);
1504 if (ret < 0)
1505 return ret;
1506 return loop_set_status(lo, &info64);
1509 static int
1510 loop_get_status_compat(struct loop_device *lo,
1511 struct compat_loop_info __user *arg)
1513 struct loop_info64 info64;
1514 int err = 0;
1516 if (!arg)
1517 err = -EINVAL;
1518 if (!err)
1519 err = loop_get_status(lo, &info64);
1520 if (!err)
1521 err = loop_info64_to_compat(&info64, arg);
1522 return err;
1525 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1526 unsigned int cmd, unsigned long arg)
1528 struct loop_device *lo = bdev->bd_disk->private_data;
1529 int err;
1531 switch(cmd) {
1532 case LOOP_SET_STATUS:
1533 mutex_lock(&lo->lo_ctl_mutex);
1534 err = loop_set_status_compat(
1535 lo, (const struct compat_loop_info __user *) arg);
1536 mutex_unlock(&lo->lo_ctl_mutex);
1537 break;
1538 case LOOP_GET_STATUS:
1539 mutex_lock(&lo->lo_ctl_mutex);
1540 err = loop_get_status_compat(
1541 lo, (struct compat_loop_info __user *) arg);
1542 mutex_unlock(&lo->lo_ctl_mutex);
1543 break;
1544 case LOOP_SET_CAPACITY:
1545 case LOOP_CLR_FD:
1546 case LOOP_GET_STATUS64:
1547 case LOOP_SET_STATUS64:
1548 arg = (unsigned long) compat_ptr(arg);
1549 case LOOP_SET_FD:
1550 case LOOP_CHANGE_FD:
1551 err = lo_ioctl(bdev, mode, cmd, arg);
1552 break;
1553 default:
1554 err = -ENOIOCTLCMD;
1555 break;
1557 return err;
1559 #endif
1561 static int lo_open(struct block_device *bdev, fmode_t mode)
1563 struct loop_device *lo;
1564 int err = 0;
1566 mutex_lock(&loop_index_mutex);
1567 lo = bdev->bd_disk->private_data;
1568 if (!lo) {
1569 err = -ENXIO;
1570 goto out;
1573 atomic_inc(&lo->lo_refcnt);
1574 out:
1575 mutex_unlock(&loop_index_mutex);
1576 return err;
1579 static void lo_release(struct gendisk *disk, fmode_t mode)
1581 struct loop_device *lo = disk->private_data;
1582 int err;
1584 if (atomic_dec_return(&lo->lo_refcnt))
1585 return;
1587 mutex_lock(&lo->lo_ctl_mutex);
1588 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1590 * In autoclear mode, stop the loop thread
1591 * and remove configuration after last close.
1593 err = loop_clr_fd(lo);
1594 if (!err)
1595 return;
1596 } else if (lo->lo_state == Lo_bound) {
1598 * Otherwise keep thread (if running) and config,
1599 * but flush possible ongoing bios in thread.
1601 blk_mq_freeze_queue(lo->lo_queue);
1602 blk_mq_unfreeze_queue(lo->lo_queue);
1605 mutex_unlock(&lo->lo_ctl_mutex);
1608 static const struct block_device_operations lo_fops = {
1609 .owner = THIS_MODULE,
1610 .open = lo_open,
1611 .release = lo_release,
1612 .ioctl = lo_ioctl,
1613 #ifdef CONFIG_COMPAT
1614 .compat_ioctl = lo_compat_ioctl,
1615 #endif
1619 * And now the modules code and kernel interface.
1621 static int max_loop;
1622 module_param(max_loop, int, S_IRUGO);
1623 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1624 module_param(max_part, int, S_IRUGO);
1625 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1626 MODULE_LICENSE("GPL");
1627 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1629 int loop_register_transfer(struct loop_func_table *funcs)
1631 unsigned int n = funcs->number;
1633 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1634 return -EINVAL;
1635 xfer_funcs[n] = funcs;
1636 return 0;
1639 static int unregister_transfer_cb(int id, void *ptr, void *data)
1641 struct loop_device *lo = ptr;
1642 struct loop_func_table *xfer = data;
1644 mutex_lock(&lo->lo_ctl_mutex);
1645 if (lo->lo_encryption == xfer)
1646 loop_release_xfer(lo);
1647 mutex_unlock(&lo->lo_ctl_mutex);
1648 return 0;
1651 int loop_unregister_transfer(int number)
1653 unsigned int n = number;
1654 struct loop_func_table *xfer;
1656 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1657 return -EINVAL;
1659 xfer_funcs[n] = NULL;
1660 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1661 return 0;
1664 EXPORT_SYMBOL(loop_register_transfer);
1665 EXPORT_SYMBOL(loop_unregister_transfer);
1667 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1668 const struct blk_mq_queue_data *bd)
1670 struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1671 struct loop_device *lo = cmd->rq->q->queuedata;
1673 blk_mq_start_request(bd->rq);
1675 if (lo->lo_state != Lo_bound)
1676 return BLK_STS_IOERR;
1678 switch (req_op(cmd->rq)) {
1679 case REQ_OP_FLUSH:
1680 case REQ_OP_DISCARD:
1681 case REQ_OP_WRITE_ZEROES:
1682 cmd->use_aio = false;
1683 break;
1684 default:
1685 cmd->use_aio = lo->use_dio;
1686 break;
1689 kthread_queue_work(&lo->worker, &cmd->work);
1691 return BLK_STS_OK;
1694 static void loop_handle_cmd(struct loop_cmd *cmd)
1696 const bool write = op_is_write(req_op(cmd->rq));
1697 struct loop_device *lo = cmd->rq->q->queuedata;
1698 int ret = 0;
1700 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1701 ret = -EIO;
1702 goto failed;
1705 ret = do_req_filebacked(lo, cmd->rq);
1706 failed:
1707 /* complete non-aio request */
1708 if (!cmd->use_aio || ret) {
1709 cmd->ret = ret ? -EIO : 0;
1710 blk_mq_complete_request(cmd->rq);
1714 static void loop_queue_work(struct kthread_work *work)
1716 struct loop_cmd *cmd =
1717 container_of(work, struct loop_cmd, work);
1719 loop_handle_cmd(cmd);
1722 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1723 unsigned int hctx_idx, unsigned int numa_node)
1725 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1727 cmd->rq = rq;
1728 kthread_init_work(&cmd->work, loop_queue_work);
1730 return 0;
1733 static const struct blk_mq_ops loop_mq_ops = {
1734 .queue_rq = loop_queue_rq,
1735 .init_request = loop_init_request,
1736 .complete = lo_complete_rq,
1739 static int loop_add(struct loop_device **l, int i)
1741 struct loop_device *lo;
1742 struct gendisk *disk;
1743 int err;
1745 err = -ENOMEM;
1746 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1747 if (!lo)
1748 goto out;
1750 lo->lo_state = Lo_unbound;
1752 /* allocate id, if @id >= 0, we're requesting that specific id */
1753 if (i >= 0) {
1754 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1755 if (err == -ENOSPC)
1756 err = -EEXIST;
1757 } else {
1758 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1760 if (err < 0)
1761 goto out_free_dev;
1762 i = err;
1764 err = -ENOMEM;
1765 lo->tag_set.ops = &loop_mq_ops;
1766 lo->tag_set.nr_hw_queues = 1;
1767 lo->tag_set.queue_depth = 128;
1768 lo->tag_set.numa_node = NUMA_NO_NODE;
1769 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1770 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1771 lo->tag_set.driver_data = lo;
1773 err = blk_mq_alloc_tag_set(&lo->tag_set);
1774 if (err)
1775 goto out_free_idr;
1777 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1778 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1779 err = PTR_ERR(lo->lo_queue);
1780 goto out_cleanup_tags;
1782 lo->lo_queue->queuedata = lo;
1784 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
1787 * By default, we do buffer IO, so it doesn't make sense to enable
1788 * merge because the I/O submitted to backing file is handled page by
1789 * page. For directio mode, merge does help to dispatch bigger request
1790 * to underlayer disk. We will enable merge once directio is enabled.
1792 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, lo->lo_queue);
1794 err = -ENOMEM;
1795 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1796 if (!disk)
1797 goto out_free_queue;
1800 * Disable partition scanning by default. The in-kernel partition
1801 * scanning can be requested individually per-device during its
1802 * setup. Userspace can always add and remove partitions from all
1803 * devices. The needed partition minors are allocated from the
1804 * extended minor space, the main loop device numbers will continue
1805 * to match the loop minors, regardless of the number of partitions
1806 * used.
1808 * If max_part is given, partition scanning is globally enabled for
1809 * all loop devices. The minors for the main loop devices will be
1810 * multiples of max_part.
1812 * Note: Global-for-all-devices, set-only-at-init, read-only module
1813 * parameteters like 'max_loop' and 'max_part' make things needlessly
1814 * complicated, are too static, inflexible and may surprise
1815 * userspace tools. Parameters like this in general should be avoided.
1817 if (!part_shift)
1818 disk->flags |= GENHD_FL_NO_PART_SCAN;
1819 disk->flags |= GENHD_FL_EXT_DEVT;
1820 mutex_init(&lo->lo_ctl_mutex);
1821 atomic_set(&lo->lo_refcnt, 0);
1822 lo->lo_number = i;
1823 spin_lock_init(&lo->lo_lock);
1824 disk->major = LOOP_MAJOR;
1825 disk->first_minor = i << part_shift;
1826 disk->fops = &lo_fops;
1827 disk->private_data = lo;
1828 disk->queue = lo->lo_queue;
1829 sprintf(disk->disk_name, "loop%d", i);
1830 add_disk(disk);
1831 *l = lo;
1832 return lo->lo_number;
1834 out_free_queue:
1835 blk_cleanup_queue(lo->lo_queue);
1836 out_cleanup_tags:
1837 blk_mq_free_tag_set(&lo->tag_set);
1838 out_free_idr:
1839 idr_remove(&loop_index_idr, i);
1840 out_free_dev:
1841 kfree(lo);
1842 out:
1843 return err;
1846 static void loop_remove(struct loop_device *lo)
1848 blk_cleanup_queue(lo->lo_queue);
1849 del_gendisk(lo->lo_disk);
1850 blk_mq_free_tag_set(&lo->tag_set);
1851 put_disk(lo->lo_disk);
1852 kfree(lo);
1855 static int find_free_cb(int id, void *ptr, void *data)
1857 struct loop_device *lo = ptr;
1858 struct loop_device **l = data;
1860 if (lo->lo_state == Lo_unbound) {
1861 *l = lo;
1862 return 1;
1864 return 0;
1867 static int loop_lookup(struct loop_device **l, int i)
1869 struct loop_device *lo;
1870 int ret = -ENODEV;
1872 if (i < 0) {
1873 int err;
1875 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1876 if (err == 1) {
1877 *l = lo;
1878 ret = lo->lo_number;
1880 goto out;
1883 /* lookup and return a specific i */
1884 lo = idr_find(&loop_index_idr, i);
1885 if (lo) {
1886 *l = lo;
1887 ret = lo->lo_number;
1889 out:
1890 return ret;
1893 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1895 struct loop_device *lo;
1896 struct kobject *kobj;
1897 int err;
1899 mutex_lock(&loop_index_mutex);
1900 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1901 if (err < 0)
1902 err = loop_add(&lo, MINOR(dev) >> part_shift);
1903 if (err < 0)
1904 kobj = NULL;
1905 else
1906 kobj = get_disk(lo->lo_disk);
1907 mutex_unlock(&loop_index_mutex);
1909 *part = 0;
1910 return kobj;
1913 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1914 unsigned long parm)
1916 struct loop_device *lo;
1917 int ret = -ENOSYS;
1919 mutex_lock(&loop_index_mutex);
1920 switch (cmd) {
1921 case LOOP_CTL_ADD:
1922 ret = loop_lookup(&lo, parm);
1923 if (ret >= 0) {
1924 ret = -EEXIST;
1925 break;
1927 ret = loop_add(&lo, parm);
1928 break;
1929 case LOOP_CTL_REMOVE:
1930 ret = loop_lookup(&lo, parm);
1931 if (ret < 0)
1932 break;
1933 mutex_lock(&lo->lo_ctl_mutex);
1934 if (lo->lo_state != Lo_unbound) {
1935 ret = -EBUSY;
1936 mutex_unlock(&lo->lo_ctl_mutex);
1937 break;
1939 if (atomic_read(&lo->lo_refcnt) > 0) {
1940 ret = -EBUSY;
1941 mutex_unlock(&lo->lo_ctl_mutex);
1942 break;
1944 lo->lo_disk->private_data = NULL;
1945 mutex_unlock(&lo->lo_ctl_mutex);
1946 idr_remove(&loop_index_idr, lo->lo_number);
1947 loop_remove(lo);
1948 break;
1949 case LOOP_CTL_GET_FREE:
1950 ret = loop_lookup(&lo, -1);
1951 if (ret >= 0)
1952 break;
1953 ret = loop_add(&lo, -1);
1955 mutex_unlock(&loop_index_mutex);
1957 return ret;
1960 static const struct file_operations loop_ctl_fops = {
1961 .open = nonseekable_open,
1962 .unlocked_ioctl = loop_control_ioctl,
1963 .compat_ioctl = loop_control_ioctl,
1964 .owner = THIS_MODULE,
1965 .llseek = noop_llseek,
1968 static struct miscdevice loop_misc = {
1969 .minor = LOOP_CTRL_MINOR,
1970 .name = "loop-control",
1971 .fops = &loop_ctl_fops,
1974 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1975 MODULE_ALIAS("devname:loop-control");
1977 static int __init loop_init(void)
1979 int i, nr;
1980 unsigned long range;
1981 struct loop_device *lo;
1982 int err;
1984 part_shift = 0;
1985 if (max_part > 0) {
1986 part_shift = fls(max_part);
1989 * Adjust max_part according to part_shift as it is exported
1990 * to user space so that user can decide correct minor number
1991 * if [s]he want to create more devices.
1993 * Note that -1 is required because partition 0 is reserved
1994 * for the whole disk.
1996 max_part = (1UL << part_shift) - 1;
1999 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2000 err = -EINVAL;
2001 goto err_out;
2004 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2005 err = -EINVAL;
2006 goto err_out;
2010 * If max_loop is specified, create that many devices upfront.
2011 * This also becomes a hard limit. If max_loop is not specified,
2012 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2013 * init time. Loop devices can be requested on-demand with the
2014 * /dev/loop-control interface, or be instantiated by accessing
2015 * a 'dead' device node.
2017 if (max_loop) {
2018 nr = max_loop;
2019 range = max_loop << part_shift;
2020 } else {
2021 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2022 range = 1UL << MINORBITS;
2025 err = misc_register(&loop_misc);
2026 if (err < 0)
2027 goto err_out;
2030 if (register_blkdev(LOOP_MAJOR, "loop")) {
2031 err = -EIO;
2032 goto misc_out;
2035 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2036 THIS_MODULE, loop_probe, NULL, NULL);
2038 /* pre-create number of devices given by config or max_loop */
2039 mutex_lock(&loop_index_mutex);
2040 for (i = 0; i < nr; i++)
2041 loop_add(&lo, i);
2042 mutex_unlock(&loop_index_mutex);
2044 printk(KERN_INFO "loop: module loaded\n");
2045 return 0;
2047 misc_out:
2048 misc_deregister(&loop_misc);
2049 err_out:
2050 return err;
2053 static int loop_exit_cb(int id, void *ptr, void *data)
2055 struct loop_device *lo = ptr;
2057 loop_remove(lo);
2058 return 0;
2061 static void __exit loop_exit(void)
2063 unsigned long range;
2065 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2067 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2068 idr_destroy(&loop_index_idr);
2070 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2071 unregister_blkdev(LOOP_MAJOR, "loop");
2073 misc_deregister(&loop_misc);
2076 module_init(loop_init);
2077 module_exit(loop_exit);
2079 #ifndef MODULE
2080 static int __init max_loop_setup(char *str)
2082 max_loop = simple_strtol(str, NULL, 0);
2083 return 1;
2086 __setup("max_loop=", max_loop_setup);
2087 #endif