2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
34 #include <asm/div64.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
40 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 static inline int32_t mul_fp(int32_t x
, int32_t y
)
61 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
64 static inline int32_t div_fp(s64 x
, s64 y
)
66 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
69 static inline int ceiling_fp(int32_t x
)
74 mask
= (1 << FRAC_BITS
) - 1;
80 static inline int32_t percent_fp(int percent
)
82 return div_fp(percent
, 100);
85 static inline u64
mul_ext_fp(u64 x
, u64 y
)
87 return (x
* y
) >> EXT_FRAC_BITS
;
90 static inline u64
div_ext_fp(u64 x
, u64 y
)
92 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
95 static inline int32_t percent_ext_fp(int percent
)
97 return div_ext_fp(percent
, 100);
101 * struct sample - Store performance sample
102 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
103 * performance during last sample period
104 * @busy_scaled: Scaled busy value which is used to calculate next
105 * P state. This can be different than core_avg_perf
106 * to account for cpu idle period
107 * @aperf: Difference of actual performance frequency clock count
108 * read from APERF MSR between last and current sample
109 * @mperf: Difference of maximum performance frequency clock count
110 * read from MPERF MSR between last and current sample
111 * @tsc: Difference of time stamp counter between last and
113 * @time: Current time from scheduler
115 * This structure is used in the cpudata structure to store performance sample
116 * data for choosing next P State.
119 int32_t core_avg_perf
;
128 * struct pstate_data - Store P state data
129 * @current_pstate: Current requested P state
130 * @min_pstate: Min P state possible for this platform
131 * @max_pstate: Max P state possible for this platform
132 * @max_pstate_physical:This is physical Max P state for a processor
133 * This can be higher than the max_pstate which can
134 * be limited by platform thermal design power limits
135 * @scaling: Scaling factor to convert frequency to cpufreq
137 * @turbo_pstate: Max Turbo P state possible for this platform
138 * @max_freq: @max_pstate frequency in cpufreq units
139 * @turbo_freq: @turbo_pstate frequency in cpufreq units
141 * Stores the per cpu model P state limits and current P state.
147 int max_pstate_physical
;
150 unsigned int max_freq
;
151 unsigned int turbo_freq
;
155 * struct vid_data - Stores voltage information data
156 * @min: VID data for this platform corresponding to
158 * @max: VID data corresponding to the highest P State.
159 * @turbo: VID data for turbo P state
160 * @ratio: Ratio of (vid max - vid min) /
161 * (max P state - Min P State)
163 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164 * This data is used in Atom platforms, where in addition to target P state,
165 * the voltage data needs to be specified to select next P State.
175 * struct global_params - Global parameters, mostly tunable via sysfs.
176 * @no_turbo: Whether or not to use turbo P-states.
177 * @turbo_disabled: Whethet or not turbo P-states are available at all,
178 * based on the MSR_IA32_MISC_ENABLE value and whether or
179 * not the maximum reported turbo P-state is different from
180 * the maximum reported non-turbo one.
181 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
183 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
186 struct global_params
{
194 * struct cpudata - Per CPU instance data storage
195 * @cpu: CPU number for this instance data
196 * @policy: CPUFreq policy value
197 * @update_util: CPUFreq utility callback information
198 * @update_util_set: CPUFreq utility callback is set
199 * @iowait_boost: iowait-related boost fraction
200 * @last_update: Time of the last update.
201 * @pstate: Stores P state limits for this CPU
202 * @vid: Stores VID limits for this CPU
203 * @last_sample_time: Last Sample time
204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented
205 * This shift is a multiplier to mperf delta to
206 * calculate CPU busy.
207 * @prev_aperf: Last APERF value read from APERF MSR
208 * @prev_mperf: Last MPERF value read from MPERF MSR
209 * @prev_tsc: Last timestamp counter (TSC) value
210 * @prev_cummulative_iowait: IO Wait time difference from last and
212 * @sample: Storage for storing last Sample data
213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
215 * @acpi_perf_data: Stores ACPI perf information read from _PSS
216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
217 * @epp_powersave: Last saved HWP energy performance preference
218 * (EPP) or energy performance bias (EPB),
219 * when policy switched to performance
220 * @epp_policy: Last saved policy used to set EPP/EPB
221 * @epp_default: Power on default HWP energy performance
223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
226 * This structure stores per CPU instance data for all CPUs.
232 struct update_util_data update_util
;
233 bool update_util_set
;
235 struct pstate_data pstate
;
239 u64 last_sample_time
;
240 u64 aperf_mperf_shift
;
244 u64 prev_cummulative_iowait
;
245 struct sample sample
;
246 int32_t min_perf_ratio
;
247 int32_t max_perf_ratio
;
249 struct acpi_processor_performance acpi_perf_data
;
250 bool valid_pss_table
;
252 unsigned int iowait_boost
;
259 static struct cpudata
**all_cpu_data
;
262 * struct pstate_funcs - Per CPU model specific callbacks
263 * @get_max: Callback to get maximum non turbo effective P state
264 * @get_max_physical: Callback to get maximum non turbo physical P state
265 * @get_min: Callback to get minimum P state
266 * @get_turbo: Callback to get turbo P state
267 * @get_scaling: Callback to get frequency scaling factor
268 * @get_val: Callback to convert P state to actual MSR write value
269 * @get_vid: Callback to get VID data for Atom platforms
271 * Core and Atom CPU models have different way to get P State limits. This
272 * structure is used to store those callbacks.
274 struct pstate_funcs
{
275 int (*get_max
)(void);
276 int (*get_max_physical
)(void);
277 int (*get_min
)(void);
278 int (*get_turbo
)(void);
279 int (*get_scaling
)(void);
280 int (*get_aperf_mperf_shift
)(void);
281 u64 (*get_val
)(struct cpudata
*, int pstate
);
282 void (*get_vid
)(struct cpudata
*);
285 static struct pstate_funcs pstate_funcs __read_mostly
;
287 static int hwp_active __read_mostly
;
288 static bool per_cpu_limits __read_mostly
;
290 static struct cpufreq_driver
*intel_pstate_driver __read_mostly
;
293 static bool acpi_ppc
;
296 static struct global_params global
;
298 static DEFINE_MUTEX(intel_pstate_driver_lock
);
299 static DEFINE_MUTEX(intel_pstate_limits_lock
);
303 static bool intel_pstate_get_ppc_enable_status(void)
305 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
306 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
312 #ifdef CONFIG_ACPI_CPPC_LIB
314 /* The work item is needed to avoid CPU hotplug locking issues */
315 static void intel_pstste_sched_itmt_work_fn(struct work_struct
*work
)
317 sched_set_itmt_support();
320 static DECLARE_WORK(sched_itmt_work
, intel_pstste_sched_itmt_work_fn
);
322 static void intel_pstate_set_itmt_prio(int cpu
)
324 struct cppc_perf_caps cppc_perf
;
325 static u32 max_highest_perf
= 0, min_highest_perf
= U32_MAX
;
328 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
333 * The priorities can be set regardless of whether or not
334 * sched_set_itmt_support(true) has been called and it is valid to
335 * update them at any time after it has been called.
337 sched_set_itmt_core_prio(cppc_perf
.highest_perf
, cpu
);
339 if (max_highest_perf
<= min_highest_perf
) {
340 if (cppc_perf
.highest_perf
> max_highest_perf
)
341 max_highest_perf
= cppc_perf
.highest_perf
;
343 if (cppc_perf
.highest_perf
< min_highest_perf
)
344 min_highest_perf
= cppc_perf
.highest_perf
;
346 if (max_highest_perf
> min_highest_perf
) {
348 * This code can be run during CPU online under the
349 * CPU hotplug locks, so sched_set_itmt_support()
350 * cannot be called from here. Queue up a work item
353 schedule_work(&sched_itmt_work
);
358 static void intel_pstate_set_itmt_prio(int cpu
)
363 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
370 intel_pstate_set_itmt_prio(policy
->cpu
);
374 if (!intel_pstate_get_ppc_enable_status())
377 cpu
= all_cpu_data
[policy
->cpu
];
379 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
385 * Check if the control value in _PSS is for PERF_CTL MSR, which should
386 * guarantee that the states returned by it map to the states in our
389 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
390 ACPI_ADR_SPACE_FIXED_HARDWARE
)
394 * If there is only one entry _PSS, simply ignore _PSS and continue as
395 * usual without taking _PSS into account
397 if (cpu
->acpi_perf_data
.state_count
< 2)
400 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
401 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
402 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
403 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
404 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
405 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
406 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
410 * The _PSS table doesn't contain whole turbo frequency range.
411 * This just contains +1 MHZ above the max non turbo frequency,
412 * with control value corresponding to max turbo ratio. But
413 * when cpufreq set policy is called, it will call with this
414 * max frequency, which will cause a reduced performance as
415 * this driver uses real max turbo frequency as the max
416 * frequency. So correct this frequency in _PSS table to
417 * correct max turbo frequency based on the turbo state.
418 * Also need to convert to MHz as _PSS freq is in MHz.
420 if (!global
.turbo_disabled
)
421 cpu
->acpi_perf_data
.states
[0].core_frequency
=
422 policy
->cpuinfo
.max_freq
/ 1000;
423 cpu
->valid_pss_table
= true;
424 pr_debug("_PPC limits will be enforced\n");
429 cpu
->valid_pss_table
= false;
430 acpi_processor_unregister_performance(policy
->cpu
);
433 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
437 cpu
= all_cpu_data
[policy
->cpu
];
438 if (!cpu
->valid_pss_table
)
441 acpi_processor_unregister_performance(policy
->cpu
);
444 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
448 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
453 static inline void update_turbo_state(void)
458 cpu
= all_cpu_data
[0];
459 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
460 global
.turbo_disabled
=
461 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
462 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
465 static int min_perf_pct_min(void)
467 struct cpudata
*cpu
= all_cpu_data
[0];
468 int turbo_pstate
= cpu
->pstate
.turbo_pstate
;
470 return turbo_pstate
?
471 (cpu
->pstate
.min_pstate
* 100 / turbo_pstate
) : 0;
474 static s16
intel_pstate_get_epb(struct cpudata
*cpu_data
)
479 if (!static_cpu_has(X86_FEATURE_EPB
))
482 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
486 return (s16
)(epb
& 0x0f);
489 static s16
intel_pstate_get_epp(struct cpudata
*cpu_data
, u64 hwp_req_data
)
493 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
495 * When hwp_req_data is 0, means that caller didn't read
496 * MSR_HWP_REQUEST, so need to read and get EPP.
499 epp
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
,
504 epp
= (hwp_req_data
>> 24) & 0xff;
506 /* When there is no EPP present, HWP uses EPB settings */
507 epp
= intel_pstate_get_epb(cpu_data
);
513 static int intel_pstate_set_epb(int cpu
, s16 pref
)
518 if (!static_cpu_has(X86_FEATURE_EPB
))
521 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
525 epb
= (epb
& ~0x0f) | pref
;
526 wrmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, epb
);
532 * EPP/EPB display strings corresponding to EPP index in the
533 * energy_perf_strings[]
535 *-------------------------------------
538 * 2 balance_performance
542 static const char * const energy_perf_strings
[] = {
545 "balance_performance",
550 static const unsigned int epp_values
[] = {
552 HWP_EPP_BALANCE_PERFORMANCE
,
553 HWP_EPP_BALANCE_POWERSAVE
,
557 static int intel_pstate_get_energy_pref_index(struct cpudata
*cpu_data
)
562 epp
= intel_pstate_get_epp(cpu_data
, 0);
566 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
567 if (epp
== HWP_EPP_PERFORMANCE
)
569 if (epp
<= HWP_EPP_BALANCE_PERFORMANCE
)
571 if (epp
<= HWP_EPP_BALANCE_POWERSAVE
)
575 } else if (static_cpu_has(X86_FEATURE_EPB
)) {
578 * 0x00-0x03 : Performance
579 * 0x04-0x07 : Balance performance
580 * 0x08-0x0B : Balance power
582 * The EPB is a 4 bit value, but our ranges restrict the
583 * value which can be set. Here only using top two bits
586 index
= (epp
>> 2) + 1;
592 static int intel_pstate_set_energy_pref_index(struct cpudata
*cpu_data
,
599 epp
= cpu_data
->epp_default
;
601 mutex_lock(&intel_pstate_limits_lock
);
603 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
606 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, &value
);
610 value
&= ~GENMASK_ULL(31, 24);
613 epp
= epp_values
[pref_index
- 1];
615 value
|= (u64
)epp
<< 24;
616 ret
= wrmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, value
);
619 epp
= (pref_index
- 1) << 2;
620 ret
= intel_pstate_set_epb(cpu_data
->cpu
, epp
);
623 mutex_unlock(&intel_pstate_limits_lock
);
628 static ssize_t
show_energy_performance_available_preferences(
629 struct cpufreq_policy
*policy
, char *buf
)
634 while (energy_perf_strings
[i
] != NULL
)
635 ret
+= sprintf(&buf
[ret
], "%s ", energy_perf_strings
[i
++]);
637 ret
+= sprintf(&buf
[ret
], "\n");
642 cpufreq_freq_attr_ro(energy_performance_available_preferences
);
644 static ssize_t
store_energy_performance_preference(
645 struct cpufreq_policy
*policy
, const char *buf
, size_t count
)
647 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
648 char str_preference
[21];
651 ret
= sscanf(buf
, "%20s", str_preference
);
655 while (energy_perf_strings
[i
] != NULL
) {
656 if (!strcmp(str_preference
, energy_perf_strings
[i
])) {
657 intel_pstate_set_energy_pref_index(cpu_data
, i
);
666 static ssize_t
show_energy_performance_preference(
667 struct cpufreq_policy
*policy
, char *buf
)
669 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
672 preference
= intel_pstate_get_energy_pref_index(cpu_data
);
676 return sprintf(buf
, "%s\n", energy_perf_strings
[preference
]);
679 cpufreq_freq_attr_rw(energy_performance_preference
);
681 static struct freq_attr
*hwp_cpufreq_attrs
[] = {
682 &energy_performance_preference
,
683 &energy_performance_available_preferences
,
687 static void intel_pstate_get_hwp_max(unsigned int cpu
, int *phy_max
,
692 rdmsrl_on_cpu(cpu
, MSR_HWP_CAPABILITIES
, &cap
);
694 *current_max
= HWP_GUARANTEED_PERF(cap
);
696 *current_max
= HWP_HIGHEST_PERF(cap
);
698 *phy_max
= HWP_HIGHEST_PERF(cap
);
701 static void intel_pstate_hwp_set(unsigned int cpu
)
703 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
708 max
= cpu_data
->max_perf_ratio
;
709 min
= cpu_data
->min_perf_ratio
;
711 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
)
714 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
716 value
&= ~HWP_MIN_PERF(~0L);
717 value
|= HWP_MIN_PERF(min
);
719 value
&= ~HWP_MAX_PERF(~0L);
720 value
|= HWP_MAX_PERF(max
);
722 if (cpu_data
->epp_policy
== cpu_data
->policy
)
725 cpu_data
->epp_policy
= cpu_data
->policy
;
727 if (cpu_data
->epp_saved
>= 0) {
728 epp
= cpu_data
->epp_saved
;
729 cpu_data
->epp_saved
= -EINVAL
;
733 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
734 epp
= intel_pstate_get_epp(cpu_data
, value
);
735 cpu_data
->epp_powersave
= epp
;
736 /* If EPP read was failed, then don't try to write */
742 /* skip setting EPP, when saved value is invalid */
743 if (cpu_data
->epp_powersave
< 0)
747 * No need to restore EPP when it is not zero. This
749 * - Policy is not changed
750 * - user has manually changed
751 * - Error reading EPB
753 epp
= intel_pstate_get_epp(cpu_data
, value
);
757 epp
= cpu_data
->epp_powersave
;
760 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
761 value
&= ~GENMASK_ULL(31, 24);
762 value
|= (u64
)epp
<< 24;
764 intel_pstate_set_epb(cpu
, epp
);
767 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
770 static int intel_pstate_hwp_save_state(struct cpufreq_policy
*policy
)
772 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
777 cpu_data
->epp_saved
= intel_pstate_get_epp(cpu_data
, 0);
782 static int intel_pstate_resume(struct cpufreq_policy
*policy
)
787 mutex_lock(&intel_pstate_limits_lock
);
789 all_cpu_data
[policy
->cpu
]->epp_policy
= 0;
790 intel_pstate_hwp_set(policy
->cpu
);
792 mutex_unlock(&intel_pstate_limits_lock
);
797 static void intel_pstate_update_policies(void)
801 for_each_possible_cpu(cpu
)
802 cpufreq_update_policy(cpu
);
805 /************************** sysfs begin ************************/
806 #define show_one(file_name, object) \
807 static ssize_t show_##file_name \
808 (struct kobject *kobj, struct attribute *attr, char *buf) \
810 return sprintf(buf, "%u\n", global.object); \
813 static ssize_t
intel_pstate_show_status(char *buf
);
814 static int intel_pstate_update_status(const char *buf
, size_t size
);
816 static ssize_t
show_status(struct kobject
*kobj
,
817 struct attribute
*attr
, char *buf
)
821 mutex_lock(&intel_pstate_driver_lock
);
822 ret
= intel_pstate_show_status(buf
);
823 mutex_unlock(&intel_pstate_driver_lock
);
828 static ssize_t
store_status(struct kobject
*a
, struct attribute
*b
,
829 const char *buf
, size_t count
)
831 char *p
= memchr(buf
, '\n', count
);
834 mutex_lock(&intel_pstate_driver_lock
);
835 ret
= intel_pstate_update_status(buf
, p
? p
- buf
: count
);
836 mutex_unlock(&intel_pstate_driver_lock
);
838 return ret
< 0 ? ret
: count
;
841 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
842 struct attribute
*attr
, char *buf
)
845 int total
, no_turbo
, turbo_pct
;
848 mutex_lock(&intel_pstate_driver_lock
);
850 if (!intel_pstate_driver
) {
851 mutex_unlock(&intel_pstate_driver_lock
);
855 cpu
= all_cpu_data
[0];
857 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
858 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
859 turbo_fp
= div_fp(no_turbo
, total
);
860 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
862 mutex_unlock(&intel_pstate_driver_lock
);
864 return sprintf(buf
, "%u\n", turbo_pct
);
867 static ssize_t
show_num_pstates(struct kobject
*kobj
,
868 struct attribute
*attr
, char *buf
)
873 mutex_lock(&intel_pstate_driver_lock
);
875 if (!intel_pstate_driver
) {
876 mutex_unlock(&intel_pstate_driver_lock
);
880 cpu
= all_cpu_data
[0];
881 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
883 mutex_unlock(&intel_pstate_driver_lock
);
885 return sprintf(buf
, "%u\n", total
);
888 static ssize_t
show_no_turbo(struct kobject
*kobj
,
889 struct attribute
*attr
, char *buf
)
893 mutex_lock(&intel_pstate_driver_lock
);
895 if (!intel_pstate_driver
) {
896 mutex_unlock(&intel_pstate_driver_lock
);
900 update_turbo_state();
901 if (global
.turbo_disabled
)
902 ret
= sprintf(buf
, "%u\n", global
.turbo_disabled
);
904 ret
= sprintf(buf
, "%u\n", global
.no_turbo
);
906 mutex_unlock(&intel_pstate_driver_lock
);
911 static ssize_t
store_no_turbo(struct kobject
*a
, struct attribute
*b
,
912 const char *buf
, size_t count
)
917 ret
= sscanf(buf
, "%u", &input
);
921 mutex_lock(&intel_pstate_driver_lock
);
923 if (!intel_pstate_driver
) {
924 mutex_unlock(&intel_pstate_driver_lock
);
928 mutex_lock(&intel_pstate_limits_lock
);
930 update_turbo_state();
931 if (global
.turbo_disabled
) {
932 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
933 mutex_unlock(&intel_pstate_limits_lock
);
934 mutex_unlock(&intel_pstate_driver_lock
);
938 global
.no_turbo
= clamp_t(int, input
, 0, 1);
940 if (global
.no_turbo
) {
941 struct cpudata
*cpu
= all_cpu_data
[0];
942 int pct
= cpu
->pstate
.max_pstate
* 100 / cpu
->pstate
.turbo_pstate
;
944 /* Squash the global minimum into the permitted range. */
945 if (global
.min_perf_pct
> pct
)
946 global
.min_perf_pct
= pct
;
949 mutex_unlock(&intel_pstate_limits_lock
);
951 intel_pstate_update_policies();
953 mutex_unlock(&intel_pstate_driver_lock
);
958 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct attribute
*b
,
959 const char *buf
, size_t count
)
964 ret
= sscanf(buf
, "%u", &input
);
968 mutex_lock(&intel_pstate_driver_lock
);
970 if (!intel_pstate_driver
) {
971 mutex_unlock(&intel_pstate_driver_lock
);
975 mutex_lock(&intel_pstate_limits_lock
);
977 global
.max_perf_pct
= clamp_t(int, input
, global
.min_perf_pct
, 100);
979 mutex_unlock(&intel_pstate_limits_lock
);
981 intel_pstate_update_policies();
983 mutex_unlock(&intel_pstate_driver_lock
);
988 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct attribute
*b
,
989 const char *buf
, size_t count
)
994 ret
= sscanf(buf
, "%u", &input
);
998 mutex_lock(&intel_pstate_driver_lock
);
1000 if (!intel_pstate_driver
) {
1001 mutex_unlock(&intel_pstate_driver_lock
);
1005 mutex_lock(&intel_pstate_limits_lock
);
1007 global
.min_perf_pct
= clamp_t(int, input
,
1008 min_perf_pct_min(), global
.max_perf_pct
);
1010 mutex_unlock(&intel_pstate_limits_lock
);
1012 intel_pstate_update_policies();
1014 mutex_unlock(&intel_pstate_driver_lock
);
1019 show_one(max_perf_pct
, max_perf_pct
);
1020 show_one(min_perf_pct
, min_perf_pct
);
1022 define_one_global_rw(status
);
1023 define_one_global_rw(no_turbo
);
1024 define_one_global_rw(max_perf_pct
);
1025 define_one_global_rw(min_perf_pct
);
1026 define_one_global_ro(turbo_pct
);
1027 define_one_global_ro(num_pstates
);
1029 static struct attribute
*intel_pstate_attributes
[] = {
1037 static const struct attribute_group intel_pstate_attr_group
= {
1038 .attrs
= intel_pstate_attributes
,
1041 static void __init
intel_pstate_sysfs_expose_params(void)
1043 struct kobject
*intel_pstate_kobject
;
1046 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
1047 &cpu_subsys
.dev_root
->kobj
);
1048 if (WARN_ON(!intel_pstate_kobject
))
1051 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1056 * If per cpu limits are enforced there are no global limits, so
1057 * return without creating max/min_perf_pct attributes
1062 rc
= sysfs_create_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1065 rc
= sysfs_create_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1069 /************************** sysfs end ************************/
1071 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
1073 /* First disable HWP notification interrupt as we don't process them */
1074 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY
))
1075 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
1077 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
1078 cpudata
->epp_policy
= 0;
1079 if (cpudata
->epp_default
== -EINVAL
)
1080 cpudata
->epp_default
= intel_pstate_get_epp(cpudata
, 0);
1083 #define MSR_IA32_POWER_CTL_BIT_EE 19
1085 /* Disable energy efficiency optimization */
1086 static void intel_pstate_disable_ee(int cpu
)
1091 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, &power_ctl
);
1095 if (!(power_ctl
& BIT(MSR_IA32_POWER_CTL_BIT_EE
))) {
1096 pr_info("Disabling energy efficiency optimization\n");
1097 power_ctl
|= BIT(MSR_IA32_POWER_CTL_BIT_EE
);
1098 wrmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, power_ctl
);
1102 static int atom_get_min_pstate(void)
1106 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1107 return (value
>> 8) & 0x7F;
1110 static int atom_get_max_pstate(void)
1114 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1115 return (value
>> 16) & 0x7F;
1118 static int atom_get_turbo_pstate(void)
1122 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS
, value
);
1123 return value
& 0x7F;
1126 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
1132 val
= (u64
)pstate
<< 8;
1133 if (global
.no_turbo
&& !global
.turbo_disabled
)
1134 val
|= (u64
)1 << 32;
1136 vid_fp
= cpudata
->vid
.min
+ mul_fp(
1137 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
1138 cpudata
->vid
.ratio
);
1140 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
1141 vid
= ceiling_fp(vid_fp
);
1143 if (pstate
> cpudata
->pstate
.max_pstate
)
1144 vid
= cpudata
->vid
.turbo
;
1149 static int silvermont_get_scaling(void)
1153 /* Defined in Table 35-6 from SDM (Sept 2015) */
1154 static int silvermont_freq_table
[] = {
1155 83300, 100000, 133300, 116700, 80000};
1157 rdmsrl(MSR_FSB_FREQ
, value
);
1161 return silvermont_freq_table
[i
];
1164 static int airmont_get_scaling(void)
1168 /* Defined in Table 35-10 from SDM (Sept 2015) */
1169 static int airmont_freq_table
[] = {
1170 83300, 100000, 133300, 116700, 80000,
1171 93300, 90000, 88900, 87500};
1173 rdmsrl(MSR_FSB_FREQ
, value
);
1177 return airmont_freq_table
[i
];
1180 static void atom_get_vid(struct cpudata
*cpudata
)
1184 rdmsrl(MSR_ATOM_CORE_VIDS
, value
);
1185 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
1186 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
1187 cpudata
->vid
.ratio
= div_fp(
1188 cpudata
->vid
.max
- cpudata
->vid
.min
,
1189 int_tofp(cpudata
->pstate
.max_pstate
-
1190 cpudata
->pstate
.min_pstate
));
1192 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS
, value
);
1193 cpudata
->vid
.turbo
= value
& 0x7f;
1196 static int core_get_min_pstate(void)
1200 rdmsrl(MSR_PLATFORM_INFO
, value
);
1201 return (value
>> 40) & 0xFF;
1204 static int core_get_max_pstate_physical(void)
1208 rdmsrl(MSR_PLATFORM_INFO
, value
);
1209 return (value
>> 8) & 0xFF;
1212 static int core_get_tdp_ratio(u64 plat_info
)
1214 /* Check how many TDP levels present */
1215 if (plat_info
& 0x600000000) {
1221 /* Get the TDP level (0, 1, 2) to get ratios */
1222 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
1226 /* TDP MSR are continuous starting at 0x648 */
1227 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ (tdp_ctrl
& 0x03);
1228 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
1232 /* For level 1 and 2, bits[23:16] contain the ratio */
1233 if (tdp_ctrl
& 0x03)
1236 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
1237 pr_debug("tdp_ratio %x\n", (int)tdp_ratio
);
1239 return (int)tdp_ratio
;
1245 static int core_get_max_pstate(void)
1253 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
1254 max_pstate
= (plat_info
>> 8) & 0xFF;
1256 tdp_ratio
= core_get_tdp_ratio(plat_info
);
1261 /* Turbo activation ratio is not used on HWP platforms */
1265 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
1269 /* Do some sanity checking for safety */
1270 tar_levels
= tar
& 0xff;
1271 if (tdp_ratio
- 1 == tar_levels
) {
1272 max_pstate
= tar_levels
;
1273 pr_debug("max_pstate=TAC %x\n", max_pstate
);
1280 static int core_get_turbo_pstate(void)
1285 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1286 nont
= core_get_max_pstate();
1287 ret
= (value
) & 255;
1293 static inline int core_get_scaling(void)
1298 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1302 val
= (u64
)pstate
<< 8;
1303 if (global
.no_turbo
&& !global
.turbo_disabled
)
1304 val
|= (u64
)1 << 32;
1309 static int knl_get_aperf_mperf_shift(void)
1314 static int knl_get_turbo_pstate(void)
1319 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1320 nont
= core_get_max_pstate();
1321 ret
= (((value
) >> 8) & 0xFF);
1327 static int intel_pstate_get_base_pstate(struct cpudata
*cpu
)
1329 return global
.no_turbo
|| global
.turbo_disabled
?
1330 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1333 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
)
1335 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1336 cpu
->pstate
.current_pstate
= pstate
;
1338 * Generally, there is no guarantee that this code will always run on
1339 * the CPU being updated, so force the register update to run on the
1342 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1343 pstate_funcs
.get_val(cpu
, pstate
));
1346 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1348 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
);
1351 static void intel_pstate_max_within_limits(struct cpudata
*cpu
)
1355 update_turbo_state();
1356 pstate
= intel_pstate_get_base_pstate(cpu
);
1357 pstate
= max(cpu
->pstate
.min_pstate
, cpu
->max_perf_ratio
);
1358 intel_pstate_set_pstate(cpu
, pstate
);
1361 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1363 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1364 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1365 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1366 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1367 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1368 cpu
->pstate
.max_freq
= cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
;
1369 cpu
->pstate
.turbo_freq
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1371 if (pstate_funcs
.get_aperf_mperf_shift
)
1372 cpu
->aperf_mperf_shift
= pstate_funcs
.get_aperf_mperf_shift();
1374 if (pstate_funcs
.get_vid
)
1375 pstate_funcs
.get_vid(cpu
);
1377 intel_pstate_set_min_pstate(cpu
);
1380 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1382 struct sample
*sample
= &cpu
->sample
;
1384 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1387 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1390 unsigned long flags
;
1393 local_irq_save(flags
);
1394 rdmsrl(MSR_IA32_APERF
, aperf
);
1395 rdmsrl(MSR_IA32_MPERF
, mperf
);
1397 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1398 local_irq_restore(flags
);
1401 local_irq_restore(flags
);
1403 cpu
->last_sample_time
= cpu
->sample
.time
;
1404 cpu
->sample
.time
= time
;
1405 cpu
->sample
.aperf
= aperf
;
1406 cpu
->sample
.mperf
= mperf
;
1407 cpu
->sample
.tsc
= tsc
;
1408 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1409 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1410 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1412 cpu
->prev_aperf
= aperf
;
1413 cpu
->prev_mperf
= mperf
;
1414 cpu
->prev_tsc
= tsc
;
1416 * First time this function is invoked in a given cycle, all of the
1417 * previous sample data fields are equal to zero or stale and they must
1418 * be populated with meaningful numbers for things to work, so assume
1419 * that sample.time will always be reset before setting the utilization
1420 * update hook and make the caller skip the sample then.
1422 if (cpu
->last_sample_time
) {
1423 intel_pstate_calc_avg_perf(cpu
);
1429 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1431 return mul_ext_fp(cpu
->sample
.core_avg_perf
, cpu_khz
);
1434 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1436 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1437 cpu
->sample
.core_avg_perf
);
1440 static inline int32_t get_target_pstate(struct cpudata
*cpu
)
1442 struct sample
*sample
= &cpu
->sample
;
1443 int32_t busy_frac
, boost
;
1444 int target
, avg_pstate
;
1446 busy_frac
= div_fp(sample
->mperf
<< cpu
->aperf_mperf_shift
,
1449 boost
= cpu
->iowait_boost
;
1450 cpu
->iowait_boost
>>= 1;
1452 if (busy_frac
< boost
)
1455 sample
->busy_scaled
= busy_frac
* 100;
1457 target
= global
.no_turbo
|| global
.turbo_disabled
?
1458 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1459 target
+= target
>> 2;
1460 target
= mul_fp(target
, busy_frac
);
1461 if (target
< cpu
->pstate
.min_pstate
)
1462 target
= cpu
->pstate
.min_pstate
;
1465 * If the average P-state during the previous cycle was higher than the
1466 * current target, add 50% of the difference to the target to reduce
1467 * possible performance oscillations and offset possible performance
1468 * loss related to moving the workload from one CPU to another within
1471 avg_pstate
= get_avg_pstate(cpu
);
1472 if (avg_pstate
> target
)
1473 target
+= (avg_pstate
- target
) >> 1;
1478 static int intel_pstate_prepare_request(struct cpudata
*cpu
, int pstate
)
1480 int max_pstate
= intel_pstate_get_base_pstate(cpu
);
1483 min_pstate
= max(cpu
->pstate
.min_pstate
, cpu
->min_perf_ratio
);
1484 max_pstate
= max(min_pstate
, cpu
->max_perf_ratio
);
1485 return clamp_t(int, pstate
, min_pstate
, max_pstate
);
1488 static void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1490 if (pstate
== cpu
->pstate
.current_pstate
)
1493 cpu
->pstate
.current_pstate
= pstate
;
1494 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1497 static void intel_pstate_adjust_pstate(struct cpudata
*cpu
)
1499 int from
= cpu
->pstate
.current_pstate
;
1500 struct sample
*sample
;
1503 update_turbo_state();
1505 target_pstate
= get_target_pstate(cpu
);
1506 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1507 trace_cpu_frequency(target_pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1508 intel_pstate_update_pstate(cpu
, target_pstate
);
1510 sample
= &cpu
->sample
;
1511 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1512 fp_toint(sample
->busy_scaled
),
1514 cpu
->pstate
.current_pstate
,
1518 get_avg_frequency(cpu
),
1519 fp_toint(cpu
->iowait_boost
* 100));
1522 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1525 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1528 /* Don't allow remote callbacks */
1529 if (smp_processor_id() != cpu
->cpu
)
1532 if (flags
& SCHED_CPUFREQ_IOWAIT
) {
1533 cpu
->iowait_boost
= int_tofp(1);
1534 cpu
->last_update
= time
;
1536 * The last time the busy was 100% so P-state was max anyway
1537 * so avoid overhead of computation.
1539 if (fp_toint(cpu
->sample
.busy_scaled
) == 100)
1543 } else if (cpu
->iowait_boost
) {
1544 /* Clear iowait_boost if the CPU may have been idle. */
1545 delta_ns
= time
- cpu
->last_update
;
1546 if (delta_ns
> TICK_NSEC
)
1547 cpu
->iowait_boost
= 0;
1549 cpu
->last_update
= time
;
1550 delta_ns
= time
- cpu
->sample
.time
;
1551 if ((s64
)delta_ns
< INTEL_PSTATE_SAMPLING_INTERVAL
)
1555 if (intel_pstate_sample(cpu
, time
))
1556 intel_pstate_adjust_pstate(cpu
);
1559 static struct pstate_funcs core_funcs
= {
1560 .get_max
= core_get_max_pstate
,
1561 .get_max_physical
= core_get_max_pstate_physical
,
1562 .get_min
= core_get_min_pstate
,
1563 .get_turbo
= core_get_turbo_pstate
,
1564 .get_scaling
= core_get_scaling
,
1565 .get_val
= core_get_val
,
1568 static const struct pstate_funcs silvermont_funcs
= {
1569 .get_max
= atom_get_max_pstate
,
1570 .get_max_physical
= atom_get_max_pstate
,
1571 .get_min
= atom_get_min_pstate
,
1572 .get_turbo
= atom_get_turbo_pstate
,
1573 .get_val
= atom_get_val
,
1574 .get_scaling
= silvermont_get_scaling
,
1575 .get_vid
= atom_get_vid
,
1578 static const struct pstate_funcs airmont_funcs
= {
1579 .get_max
= atom_get_max_pstate
,
1580 .get_max_physical
= atom_get_max_pstate
,
1581 .get_min
= atom_get_min_pstate
,
1582 .get_turbo
= atom_get_turbo_pstate
,
1583 .get_val
= atom_get_val
,
1584 .get_scaling
= airmont_get_scaling
,
1585 .get_vid
= atom_get_vid
,
1588 static const struct pstate_funcs knl_funcs
= {
1589 .get_max
= core_get_max_pstate
,
1590 .get_max_physical
= core_get_max_pstate_physical
,
1591 .get_min
= core_get_min_pstate
,
1592 .get_turbo
= knl_get_turbo_pstate
,
1593 .get_aperf_mperf_shift
= knl_get_aperf_mperf_shift
,
1594 .get_scaling
= core_get_scaling
,
1595 .get_val
= core_get_val
,
1598 static const struct pstate_funcs bxt_funcs
= {
1599 .get_max
= core_get_max_pstate
,
1600 .get_max_physical
= core_get_max_pstate_physical
,
1601 .get_min
= core_get_min_pstate
,
1602 .get_turbo
= core_get_turbo_pstate
,
1603 .get_scaling
= core_get_scaling
,
1604 .get_val
= core_get_val
,
1607 #define ICPU(model, policy) \
1608 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1609 (unsigned long)&policy }
1611 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1612 ICPU(INTEL_FAM6_SANDYBRIDGE
, core_funcs
),
1613 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, core_funcs
),
1614 ICPU(INTEL_FAM6_ATOM_SILVERMONT1
, silvermont_funcs
),
1615 ICPU(INTEL_FAM6_IVYBRIDGE
, core_funcs
),
1616 ICPU(INTEL_FAM6_HASWELL_CORE
, core_funcs
),
1617 ICPU(INTEL_FAM6_BROADWELL_CORE
, core_funcs
),
1618 ICPU(INTEL_FAM6_IVYBRIDGE_X
, core_funcs
),
1619 ICPU(INTEL_FAM6_HASWELL_X
, core_funcs
),
1620 ICPU(INTEL_FAM6_HASWELL_ULT
, core_funcs
),
1621 ICPU(INTEL_FAM6_HASWELL_GT3E
, core_funcs
),
1622 ICPU(INTEL_FAM6_BROADWELL_GT3E
, core_funcs
),
1623 ICPU(INTEL_FAM6_ATOM_AIRMONT
, airmont_funcs
),
1624 ICPU(INTEL_FAM6_SKYLAKE_MOBILE
, core_funcs
),
1625 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1626 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP
, core_funcs
),
1627 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1628 ICPU(INTEL_FAM6_XEON_PHI_KNL
, knl_funcs
),
1629 ICPU(INTEL_FAM6_XEON_PHI_KNM
, knl_funcs
),
1630 ICPU(INTEL_FAM6_ATOM_GOLDMONT
, bxt_funcs
),
1631 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE
, bxt_funcs
),
1634 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1636 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] __initconst
= {
1637 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1638 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1639 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1643 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids
[] = {
1644 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP
, core_funcs
),
1648 static int intel_pstate_init_cpu(unsigned int cpunum
)
1650 struct cpudata
*cpu
;
1652 cpu
= all_cpu_data
[cpunum
];
1655 cpu
= kzalloc(sizeof(*cpu
), GFP_KERNEL
);
1659 all_cpu_data
[cpunum
] = cpu
;
1661 cpu
->epp_default
= -EINVAL
;
1662 cpu
->epp_powersave
= -EINVAL
;
1663 cpu
->epp_saved
= -EINVAL
;
1666 cpu
= all_cpu_data
[cpunum
];
1671 const struct x86_cpu_id
*id
;
1673 id
= x86_match_cpu(intel_pstate_cpu_ee_disable_ids
);
1675 intel_pstate_disable_ee(cpunum
);
1677 intel_pstate_hwp_enable(cpu
);
1680 intel_pstate_get_cpu_pstates(cpu
);
1682 pr_debug("controlling: cpu %d\n", cpunum
);
1687 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
1689 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1694 if (cpu
->update_util_set
)
1697 /* Prevent intel_pstate_update_util() from using stale data. */
1698 cpu
->sample
.time
= 0;
1699 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
1700 intel_pstate_update_util
);
1701 cpu
->update_util_set
= true;
1704 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
1706 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
1708 if (!cpu_data
->update_util_set
)
1711 cpufreq_remove_update_util_hook(cpu
);
1712 cpu_data
->update_util_set
= false;
1713 synchronize_sched();
1716 static int intel_pstate_get_max_freq(struct cpudata
*cpu
)
1718 return global
.turbo_disabled
|| global
.no_turbo
?
1719 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
1722 static void intel_pstate_update_perf_limits(struct cpufreq_policy
*policy
,
1723 struct cpudata
*cpu
)
1725 int max_freq
= intel_pstate_get_max_freq(cpu
);
1726 int32_t max_policy_perf
, min_policy_perf
;
1727 int max_state
, turbo_max
;
1730 * HWP needs some special consideration, because on BDX the
1731 * HWP_REQUEST uses abstract value to represent performance
1732 * rather than pure ratios.
1735 intel_pstate_get_hwp_max(cpu
->cpu
, &turbo_max
, &max_state
);
1737 max_state
= intel_pstate_get_base_pstate(cpu
);
1738 turbo_max
= cpu
->pstate
.turbo_pstate
;
1741 max_policy_perf
= max_state
* policy
->max
/ max_freq
;
1742 if (policy
->max
== policy
->min
) {
1743 min_policy_perf
= max_policy_perf
;
1745 min_policy_perf
= max_state
* policy
->min
/ max_freq
;
1746 min_policy_perf
= clamp_t(int32_t, min_policy_perf
,
1747 0, max_policy_perf
);
1750 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1751 policy
->cpu
, max_state
,
1752 min_policy_perf
, max_policy_perf
);
1754 /* Normalize user input to [min_perf, max_perf] */
1755 if (per_cpu_limits
) {
1756 cpu
->min_perf_ratio
= min_policy_perf
;
1757 cpu
->max_perf_ratio
= max_policy_perf
;
1759 int32_t global_min
, global_max
;
1761 /* Global limits are in percent of the maximum turbo P-state. */
1762 global_max
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
1763 global_min
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
1764 global_min
= clamp_t(int32_t, global_min
, 0, global_max
);
1766 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy
->cpu
,
1767 global_min
, global_max
);
1769 cpu
->min_perf_ratio
= max(min_policy_perf
, global_min
);
1770 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
, max_policy_perf
);
1771 cpu
->max_perf_ratio
= min(max_policy_perf
, global_max
);
1772 cpu
->max_perf_ratio
= max(min_policy_perf
, cpu
->max_perf_ratio
);
1774 /* Make sure min_perf <= max_perf */
1775 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
,
1776 cpu
->max_perf_ratio
);
1779 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy
->cpu
,
1780 cpu
->max_perf_ratio
,
1781 cpu
->min_perf_ratio
);
1784 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
1786 struct cpudata
*cpu
;
1788 if (!policy
->cpuinfo
.max_freq
)
1791 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1792 policy
->cpuinfo
.max_freq
, policy
->max
);
1794 cpu
= all_cpu_data
[policy
->cpu
];
1795 cpu
->policy
= policy
->policy
;
1797 mutex_lock(&intel_pstate_limits_lock
);
1799 intel_pstate_update_perf_limits(policy
, cpu
);
1801 if (cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
1803 * NOHZ_FULL CPUs need this as the governor callback may not
1804 * be invoked on them.
1806 intel_pstate_clear_update_util_hook(policy
->cpu
);
1807 intel_pstate_max_within_limits(cpu
);
1809 intel_pstate_set_update_util_hook(policy
->cpu
);
1813 intel_pstate_hwp_set(policy
->cpu
);
1815 mutex_unlock(&intel_pstate_limits_lock
);
1820 static void intel_pstate_adjust_policy_max(struct cpufreq_policy
*policy
,
1821 struct cpudata
*cpu
)
1823 if (cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
1824 policy
->max
< policy
->cpuinfo
.max_freq
&&
1825 policy
->max
> cpu
->pstate
.max_freq
) {
1826 pr_debug("policy->max > max non turbo frequency\n");
1827 policy
->max
= policy
->cpuinfo
.max_freq
;
1831 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
1833 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
1835 update_turbo_state();
1836 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
1837 intel_pstate_get_max_freq(cpu
));
1839 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
1840 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
1843 intel_pstate_adjust_policy_max(policy
, cpu
);
1848 static void intel_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
1850 intel_pstate_set_min_pstate(all_cpu_data
[policy
->cpu
]);
1853 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
1855 pr_debug("CPU %d exiting\n", policy
->cpu
);
1857 intel_pstate_clear_update_util_hook(policy
->cpu
);
1859 intel_pstate_hwp_save_state(policy
);
1861 intel_cpufreq_stop_cpu(policy
);
1864 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
1866 intel_pstate_exit_perf_limits(policy
);
1868 policy
->fast_switch_possible
= false;
1873 static int __intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
1875 struct cpudata
*cpu
;
1878 rc
= intel_pstate_init_cpu(policy
->cpu
);
1882 cpu
= all_cpu_data
[policy
->cpu
];
1884 cpu
->max_perf_ratio
= 0xFF;
1885 cpu
->min_perf_ratio
= 0;
1887 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1888 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1890 /* cpuinfo and default policy values */
1891 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
1892 update_turbo_state();
1893 policy
->cpuinfo
.max_freq
= global
.turbo_disabled
?
1894 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1895 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
1897 intel_pstate_init_acpi_perf_limits(policy
);
1899 policy
->fast_switch_possible
= true;
1904 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
1906 int ret
= __intel_pstate_cpu_init(policy
);
1911 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
))
1912 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
1914 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
1919 static struct cpufreq_driver intel_pstate
= {
1920 .flags
= CPUFREQ_CONST_LOOPS
,
1921 .verify
= intel_pstate_verify_policy
,
1922 .setpolicy
= intel_pstate_set_policy
,
1923 .suspend
= intel_pstate_hwp_save_state
,
1924 .resume
= intel_pstate_resume
,
1925 .init
= intel_pstate_cpu_init
,
1926 .exit
= intel_pstate_cpu_exit
,
1927 .stop_cpu
= intel_pstate_stop_cpu
,
1928 .name
= "intel_pstate",
1931 static int intel_cpufreq_verify_policy(struct cpufreq_policy
*policy
)
1933 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
1935 update_turbo_state();
1936 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
1937 intel_pstate_get_max_freq(cpu
));
1939 intel_pstate_adjust_policy_max(policy
, cpu
);
1941 intel_pstate_update_perf_limits(policy
, cpu
);
1946 static int intel_cpufreq_target(struct cpufreq_policy
*policy
,
1947 unsigned int target_freq
,
1948 unsigned int relation
)
1950 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
1951 struct cpufreq_freqs freqs
;
1954 update_turbo_state();
1956 freqs
.old
= policy
->cur
;
1957 freqs
.new = target_freq
;
1959 cpufreq_freq_transition_begin(policy
, &freqs
);
1961 case CPUFREQ_RELATION_L
:
1962 target_pstate
= DIV_ROUND_UP(freqs
.new, cpu
->pstate
.scaling
);
1964 case CPUFREQ_RELATION_H
:
1965 target_pstate
= freqs
.new / cpu
->pstate
.scaling
;
1968 target_pstate
= DIV_ROUND_CLOSEST(freqs
.new, cpu
->pstate
.scaling
);
1971 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1972 if (target_pstate
!= cpu
->pstate
.current_pstate
) {
1973 cpu
->pstate
.current_pstate
= target_pstate
;
1974 wrmsrl_on_cpu(policy
->cpu
, MSR_IA32_PERF_CTL
,
1975 pstate_funcs
.get_val(cpu
, target_pstate
));
1977 freqs
.new = target_pstate
* cpu
->pstate
.scaling
;
1978 cpufreq_freq_transition_end(policy
, &freqs
, false);
1983 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
1984 unsigned int target_freq
)
1986 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
1989 update_turbo_state();
1991 target_pstate
= DIV_ROUND_UP(target_freq
, cpu
->pstate
.scaling
);
1992 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1993 intel_pstate_update_pstate(cpu
, target_pstate
);
1994 return target_pstate
* cpu
->pstate
.scaling
;
1997 static int intel_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
1999 int ret
= __intel_pstate_cpu_init(policy
);
2004 policy
->cpuinfo
.transition_latency
= INTEL_CPUFREQ_TRANSITION_LATENCY
;
2005 policy
->transition_delay_us
= INTEL_CPUFREQ_TRANSITION_DELAY
;
2006 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2007 policy
->cur
= policy
->cpuinfo
.min_freq
;
2012 static struct cpufreq_driver intel_cpufreq
= {
2013 .flags
= CPUFREQ_CONST_LOOPS
,
2014 .verify
= intel_cpufreq_verify_policy
,
2015 .target
= intel_cpufreq_target
,
2016 .fast_switch
= intel_cpufreq_fast_switch
,
2017 .init
= intel_cpufreq_cpu_init
,
2018 .exit
= intel_pstate_cpu_exit
,
2019 .stop_cpu
= intel_cpufreq_stop_cpu
,
2020 .name
= "intel_cpufreq",
2023 static struct cpufreq_driver
*default_driver
= &intel_pstate
;
2025 static void intel_pstate_driver_cleanup(void)
2030 for_each_online_cpu(cpu
) {
2031 if (all_cpu_data
[cpu
]) {
2032 if (intel_pstate_driver
== &intel_pstate
)
2033 intel_pstate_clear_update_util_hook(cpu
);
2035 kfree(all_cpu_data
[cpu
]);
2036 all_cpu_data
[cpu
] = NULL
;
2040 intel_pstate_driver
= NULL
;
2043 static int intel_pstate_register_driver(struct cpufreq_driver
*driver
)
2047 memset(&global
, 0, sizeof(global
));
2048 global
.max_perf_pct
= 100;
2050 intel_pstate_driver
= driver
;
2051 ret
= cpufreq_register_driver(intel_pstate_driver
);
2053 intel_pstate_driver_cleanup();
2057 global
.min_perf_pct
= min_perf_pct_min();
2062 static int intel_pstate_unregister_driver(void)
2067 cpufreq_unregister_driver(intel_pstate_driver
);
2068 intel_pstate_driver_cleanup();
2073 static ssize_t
intel_pstate_show_status(char *buf
)
2075 if (!intel_pstate_driver
)
2076 return sprintf(buf
, "off\n");
2078 return sprintf(buf
, "%s\n", intel_pstate_driver
== &intel_pstate
?
2079 "active" : "passive");
2082 static int intel_pstate_update_status(const char *buf
, size_t size
)
2086 if (size
== 3 && !strncmp(buf
, "off", size
))
2087 return intel_pstate_driver
?
2088 intel_pstate_unregister_driver() : -EINVAL
;
2090 if (size
== 6 && !strncmp(buf
, "active", size
)) {
2091 if (intel_pstate_driver
) {
2092 if (intel_pstate_driver
== &intel_pstate
)
2095 ret
= intel_pstate_unregister_driver();
2100 return intel_pstate_register_driver(&intel_pstate
);
2103 if (size
== 7 && !strncmp(buf
, "passive", size
)) {
2104 if (intel_pstate_driver
) {
2105 if (intel_pstate_driver
== &intel_cpufreq
)
2108 ret
= intel_pstate_unregister_driver();
2113 return intel_pstate_register_driver(&intel_cpufreq
);
2119 static int no_load __initdata
;
2120 static int no_hwp __initdata
;
2121 static int hwp_only __initdata
;
2122 static unsigned int force_load __initdata
;
2124 static int __init
intel_pstate_msrs_not_valid(void)
2126 if (!pstate_funcs
.get_max() ||
2127 !pstate_funcs
.get_min() ||
2128 !pstate_funcs
.get_turbo())
2134 static void __init
copy_cpu_funcs(struct pstate_funcs
*funcs
)
2136 pstate_funcs
.get_max
= funcs
->get_max
;
2137 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
2138 pstate_funcs
.get_min
= funcs
->get_min
;
2139 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
2140 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
2141 pstate_funcs
.get_val
= funcs
->get_val
;
2142 pstate_funcs
.get_vid
= funcs
->get_vid
;
2143 pstate_funcs
.get_aperf_mperf_shift
= funcs
->get_aperf_mperf_shift
;
2148 static bool __init
intel_pstate_no_acpi_pss(void)
2152 for_each_possible_cpu(i
) {
2154 union acpi_object
*pss
;
2155 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
2156 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2161 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
2162 if (ACPI_FAILURE(status
))
2165 pss
= buffer
.pointer
;
2166 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
2177 static bool __init
intel_pstate_has_acpi_ppc(void)
2181 for_each_possible_cpu(i
) {
2182 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2186 if (acpi_has_method(pr
->handle
, "_PPC"))
2197 /* Hardware vendor-specific info that has its own power management modes */
2198 static struct acpi_platform_list plat_info
[] __initdata
= {
2199 {"HP ", "ProLiant", 0, ACPI_SIG_FADT
, all_versions
, 0, PSS
},
2200 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2201 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2202 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2203 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2204 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2205 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2206 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2207 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2208 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2209 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2210 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2211 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2212 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2213 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT
, all_versions
, 0, PPC
},
2217 static bool __init
intel_pstate_platform_pwr_mgmt_exists(void)
2219 const struct x86_cpu_id
*id
;
2223 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
2225 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
2226 if ( misc_pwr
& (1 << 8))
2230 idx
= acpi_match_platform_list(plat_info
);
2234 switch (plat_info
[idx
].data
) {
2236 return intel_pstate_no_acpi_pss();
2238 return intel_pstate_has_acpi_ppc() && !force_load
;
2244 static void intel_pstate_request_control_from_smm(void)
2247 * It may be unsafe to request P-states control from SMM if _PPC support
2248 * has not been enabled.
2251 acpi_processor_pstate_control();
2253 #else /* CONFIG_ACPI not enabled */
2254 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2255 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2256 static inline void intel_pstate_request_control_from_smm(void) {}
2257 #endif /* CONFIG_ACPI */
2259 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
2260 { X86_VENDOR_INTEL
, 6, X86_MODEL_ANY
, X86_FEATURE_HWP
},
2264 static int __init
intel_pstate_init(void)
2271 if (x86_match_cpu(hwp_support_ids
)) {
2272 copy_cpu_funcs(&core_funcs
);
2275 intel_pstate
.attr
= hwp_cpufreq_attrs
;
2276 goto hwp_cpu_matched
;
2279 const struct x86_cpu_id
*id
;
2281 id
= x86_match_cpu(intel_pstate_cpu_ids
);
2285 copy_cpu_funcs((struct pstate_funcs
*)id
->driver_data
);
2288 if (intel_pstate_msrs_not_valid())
2293 * The Intel pstate driver will be ignored if the platform
2294 * firmware has its own power management modes.
2296 if (intel_pstate_platform_pwr_mgmt_exists())
2299 if (!hwp_active
&& hwp_only
)
2302 pr_info("Intel P-state driver initializing\n");
2304 all_cpu_data
= vzalloc(sizeof(void *) * num_possible_cpus());
2308 intel_pstate_request_control_from_smm();
2310 intel_pstate_sysfs_expose_params();
2312 mutex_lock(&intel_pstate_driver_lock
);
2313 rc
= intel_pstate_register_driver(default_driver
);
2314 mutex_unlock(&intel_pstate_driver_lock
);
2319 pr_info("HWP enabled\n");
2323 device_initcall(intel_pstate_init
);
2325 static int __init
intel_pstate_setup(char *str
)
2330 if (!strcmp(str
, "disable")) {
2332 } else if (!strcmp(str
, "passive")) {
2333 pr_info("Passive mode enabled\n");
2334 default_driver
= &intel_cpufreq
;
2337 if (!strcmp(str
, "no_hwp")) {
2338 pr_info("HWP disabled\n");
2341 if (!strcmp(str
, "force"))
2343 if (!strcmp(str
, "hwp_only"))
2345 if (!strcmp(str
, "per_cpu_perf_limits"))
2346 per_cpu_limits
= true;
2349 if (!strcmp(str
, "support_acpi_ppc"))
2355 early_param("intel_pstate", intel_pstate_setup
);
2357 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2358 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2359 MODULE_LICENSE("GPL");