2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
28 #include <linux/msi.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/irqchip/arm-gic-v4.h>
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
44 #include "irq-gic-common.h"
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
52 static u32 lpi_id_bits
;
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59 #define LPI_NRBITS lpi_id_bits
60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63 #define LPI_PROP_DEFAULT_PRIO 0xa0
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
70 struct its_collection
{
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
87 * The ITS structure - contains most of the infrastructure, with the
88 * top-level MSI domain, the command queue, the collections, and the
89 * list of devices writing to it.
93 struct list_head entry
;
95 phys_addr_t phys_base
;
96 struct its_cmd_block
*cmd_base
;
97 struct its_cmd_block
*cmd_write
;
98 struct its_baser tables
[GITS_BASER_NR_REGS
];
99 struct its_collection
*collections
;
100 struct list_head its_device_list
;
108 #define ITS_ITT_ALIGN SZ_256
110 /* Convert page order to size in bytes */
111 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
113 struct event_lpi_map
{
114 unsigned long *lpi_map
;
116 irq_hw_number_t lpi_base
;
118 struct mutex vlpi_lock
;
120 struct its_vlpi_map
*vlpi_maps
;
125 * The ITS view of a device - belongs to an ITS, owns an interrupt
126 * translation table, and a list of interrupts. If it some of its
127 * LPIs are injected into a guest (GICv4), the event_map.vm field
128 * indicates which one.
131 struct list_head entry
;
132 struct its_node
*its
;
133 struct event_lpi_map event_map
;
141 struct its_device
*dev
;
142 struct its_vpe
**vpes
;
146 static LIST_HEAD(its_nodes
);
147 static DEFINE_SPINLOCK(its_lock
);
148 static struct rdists
*gic_rdists
;
149 static struct irq_domain
*its_parent
;
152 * We have a maximum number of 16 ITSs in the whole system if we're
153 * using the ITSList mechanism
155 #define ITS_LIST_MAX 16
157 static unsigned long its_list_map
;
158 static u16 vmovp_seq_num
;
159 static DEFINE_RAW_SPINLOCK(vmovp_lock
);
161 static DEFINE_IDA(its_vpeid_ida
);
163 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
164 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
165 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
167 static struct its_collection
*dev_event_to_col(struct its_device
*its_dev
,
170 struct its_node
*its
= its_dev
->its
;
172 return its
->collections
+ its_dev
->event_map
.col_map
[event
];
176 * ITS command descriptors - parameters to be encoded in a command
179 struct its_cmd_desc
{
182 struct its_device
*dev
;
187 struct its_device
*dev
;
192 struct its_device
*dev
;
197 struct its_device
*dev
;
202 struct its_collection
*col
;
207 struct its_device
*dev
;
213 struct its_device
*dev
;
214 struct its_collection
*col
;
219 struct its_device
*dev
;
224 struct its_collection
*col
;
233 struct its_collection
*col
;
239 struct its_device
*dev
;
247 struct its_device
*dev
;
254 struct its_collection
*col
;
262 * The ITS command block, which is what the ITS actually parses.
264 struct its_cmd_block
{
268 #define ITS_CMD_QUEUE_SZ SZ_64K
269 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
271 typedef struct its_collection
*(*its_cmd_builder_t
)(struct its_cmd_block
*,
272 struct its_cmd_desc
*);
274 typedef struct its_vpe
*(*its_cmd_vbuilder_t
)(struct its_cmd_block
*,
275 struct its_cmd_desc
*);
277 static void its_mask_encode(u64
*raw_cmd
, u64 val
, int h
, int l
)
279 u64 mask
= GENMASK_ULL(h
, l
);
281 *raw_cmd
|= (val
<< l
) & mask
;
284 static void its_encode_cmd(struct its_cmd_block
*cmd
, u8 cmd_nr
)
286 its_mask_encode(&cmd
->raw_cmd
[0], cmd_nr
, 7, 0);
289 static void its_encode_devid(struct its_cmd_block
*cmd
, u32 devid
)
291 its_mask_encode(&cmd
->raw_cmd
[0], devid
, 63, 32);
294 static void its_encode_event_id(struct its_cmd_block
*cmd
, u32 id
)
296 its_mask_encode(&cmd
->raw_cmd
[1], id
, 31, 0);
299 static void its_encode_phys_id(struct its_cmd_block
*cmd
, u32 phys_id
)
301 its_mask_encode(&cmd
->raw_cmd
[1], phys_id
, 63, 32);
304 static void its_encode_size(struct its_cmd_block
*cmd
, u8 size
)
306 its_mask_encode(&cmd
->raw_cmd
[1], size
, 4, 0);
309 static void its_encode_itt(struct its_cmd_block
*cmd
, u64 itt_addr
)
311 its_mask_encode(&cmd
->raw_cmd
[2], itt_addr
>> 8, 50, 8);
314 static void its_encode_valid(struct its_cmd_block
*cmd
, int valid
)
316 its_mask_encode(&cmd
->raw_cmd
[2], !!valid
, 63, 63);
319 static void its_encode_target(struct its_cmd_block
*cmd
, u64 target_addr
)
321 its_mask_encode(&cmd
->raw_cmd
[2], target_addr
>> 16, 50, 16);
324 static void its_encode_collection(struct its_cmd_block
*cmd
, u16 col
)
326 its_mask_encode(&cmd
->raw_cmd
[2], col
, 15, 0);
329 static void its_encode_vpeid(struct its_cmd_block
*cmd
, u16 vpeid
)
331 its_mask_encode(&cmd
->raw_cmd
[1], vpeid
, 47, 32);
334 static void its_encode_virt_id(struct its_cmd_block
*cmd
, u32 virt_id
)
336 its_mask_encode(&cmd
->raw_cmd
[2], virt_id
, 31, 0);
339 static void its_encode_db_phys_id(struct its_cmd_block
*cmd
, u32 db_phys_id
)
341 its_mask_encode(&cmd
->raw_cmd
[2], db_phys_id
, 63, 32);
344 static void its_encode_db_valid(struct its_cmd_block
*cmd
, bool db_valid
)
346 its_mask_encode(&cmd
->raw_cmd
[2], db_valid
, 0, 0);
349 static void its_encode_seq_num(struct its_cmd_block
*cmd
, u16 seq_num
)
351 its_mask_encode(&cmd
->raw_cmd
[0], seq_num
, 47, 32);
354 static void its_encode_its_list(struct its_cmd_block
*cmd
, u16 its_list
)
356 its_mask_encode(&cmd
->raw_cmd
[1], its_list
, 15, 0);
359 static void its_encode_vpt_addr(struct its_cmd_block
*cmd
, u64 vpt_pa
)
361 its_mask_encode(&cmd
->raw_cmd
[3], vpt_pa
>> 16, 50, 16);
364 static void its_encode_vpt_size(struct its_cmd_block
*cmd
, u8 vpt_size
)
366 its_mask_encode(&cmd
->raw_cmd
[3], vpt_size
, 4, 0);
369 static inline void its_fixup_cmd(struct its_cmd_block
*cmd
)
371 /* Let's fixup BE commands */
372 cmd
->raw_cmd
[0] = cpu_to_le64(cmd
->raw_cmd
[0]);
373 cmd
->raw_cmd
[1] = cpu_to_le64(cmd
->raw_cmd
[1]);
374 cmd
->raw_cmd
[2] = cpu_to_le64(cmd
->raw_cmd
[2]);
375 cmd
->raw_cmd
[3] = cpu_to_le64(cmd
->raw_cmd
[3]);
378 static struct its_collection
*its_build_mapd_cmd(struct its_cmd_block
*cmd
,
379 struct its_cmd_desc
*desc
)
381 unsigned long itt_addr
;
382 u8 size
= ilog2(desc
->its_mapd_cmd
.dev
->nr_ites
);
384 itt_addr
= virt_to_phys(desc
->its_mapd_cmd
.dev
->itt
);
385 itt_addr
= ALIGN(itt_addr
, ITS_ITT_ALIGN
);
387 its_encode_cmd(cmd
, GITS_CMD_MAPD
);
388 its_encode_devid(cmd
, desc
->its_mapd_cmd
.dev
->device_id
);
389 its_encode_size(cmd
, size
- 1);
390 its_encode_itt(cmd
, itt_addr
);
391 its_encode_valid(cmd
, desc
->its_mapd_cmd
.valid
);
398 static struct its_collection
*its_build_mapc_cmd(struct its_cmd_block
*cmd
,
399 struct its_cmd_desc
*desc
)
401 its_encode_cmd(cmd
, GITS_CMD_MAPC
);
402 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
403 its_encode_target(cmd
, desc
->its_mapc_cmd
.col
->target_address
);
404 its_encode_valid(cmd
, desc
->its_mapc_cmd
.valid
);
408 return desc
->its_mapc_cmd
.col
;
411 static struct its_collection
*its_build_mapti_cmd(struct its_cmd_block
*cmd
,
412 struct its_cmd_desc
*desc
)
414 struct its_collection
*col
;
416 col
= dev_event_to_col(desc
->its_mapti_cmd
.dev
,
417 desc
->its_mapti_cmd
.event_id
);
419 its_encode_cmd(cmd
, GITS_CMD_MAPTI
);
420 its_encode_devid(cmd
, desc
->its_mapti_cmd
.dev
->device_id
);
421 its_encode_event_id(cmd
, desc
->its_mapti_cmd
.event_id
);
422 its_encode_phys_id(cmd
, desc
->its_mapti_cmd
.phys_id
);
423 its_encode_collection(cmd
, col
->col_id
);
430 static struct its_collection
*its_build_movi_cmd(struct its_cmd_block
*cmd
,
431 struct its_cmd_desc
*desc
)
433 struct its_collection
*col
;
435 col
= dev_event_to_col(desc
->its_movi_cmd
.dev
,
436 desc
->its_movi_cmd
.event_id
);
438 its_encode_cmd(cmd
, GITS_CMD_MOVI
);
439 its_encode_devid(cmd
, desc
->its_movi_cmd
.dev
->device_id
);
440 its_encode_event_id(cmd
, desc
->its_movi_cmd
.event_id
);
441 its_encode_collection(cmd
, desc
->its_movi_cmd
.col
->col_id
);
448 static struct its_collection
*its_build_discard_cmd(struct its_cmd_block
*cmd
,
449 struct its_cmd_desc
*desc
)
451 struct its_collection
*col
;
453 col
= dev_event_to_col(desc
->its_discard_cmd
.dev
,
454 desc
->its_discard_cmd
.event_id
);
456 its_encode_cmd(cmd
, GITS_CMD_DISCARD
);
457 its_encode_devid(cmd
, desc
->its_discard_cmd
.dev
->device_id
);
458 its_encode_event_id(cmd
, desc
->its_discard_cmd
.event_id
);
465 static struct its_collection
*its_build_inv_cmd(struct its_cmd_block
*cmd
,
466 struct its_cmd_desc
*desc
)
468 struct its_collection
*col
;
470 col
= dev_event_to_col(desc
->its_inv_cmd
.dev
,
471 desc
->its_inv_cmd
.event_id
);
473 its_encode_cmd(cmd
, GITS_CMD_INV
);
474 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
475 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
482 static struct its_collection
*its_build_int_cmd(struct its_cmd_block
*cmd
,
483 struct its_cmd_desc
*desc
)
485 struct its_collection
*col
;
487 col
= dev_event_to_col(desc
->its_int_cmd
.dev
,
488 desc
->its_int_cmd
.event_id
);
490 its_encode_cmd(cmd
, GITS_CMD_INT
);
491 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
492 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
499 static struct its_collection
*its_build_clear_cmd(struct its_cmd_block
*cmd
,
500 struct its_cmd_desc
*desc
)
502 struct its_collection
*col
;
504 col
= dev_event_to_col(desc
->its_clear_cmd
.dev
,
505 desc
->its_clear_cmd
.event_id
);
507 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
508 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
509 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
516 static struct its_collection
*its_build_invall_cmd(struct its_cmd_block
*cmd
,
517 struct its_cmd_desc
*desc
)
519 its_encode_cmd(cmd
, GITS_CMD_INVALL
);
520 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
527 static struct its_vpe
*its_build_vinvall_cmd(struct its_cmd_block
*cmd
,
528 struct its_cmd_desc
*desc
)
530 its_encode_cmd(cmd
, GITS_CMD_VINVALL
);
531 its_encode_vpeid(cmd
, desc
->its_vinvall_cmd
.vpe
->vpe_id
);
535 return desc
->its_vinvall_cmd
.vpe
;
538 static struct its_vpe
*its_build_vmapp_cmd(struct its_cmd_block
*cmd
,
539 struct its_cmd_desc
*desc
)
541 unsigned long vpt_addr
;
543 vpt_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->vpt_page
));
545 its_encode_cmd(cmd
, GITS_CMD_VMAPP
);
546 its_encode_vpeid(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_id
);
547 its_encode_valid(cmd
, desc
->its_vmapp_cmd
.valid
);
548 its_encode_target(cmd
, desc
->its_vmapp_cmd
.col
->target_address
);
549 its_encode_vpt_addr(cmd
, vpt_addr
);
550 its_encode_vpt_size(cmd
, LPI_NRBITS
- 1);
554 return desc
->its_vmapp_cmd
.vpe
;
557 static struct its_vpe
*its_build_vmapti_cmd(struct its_cmd_block
*cmd
,
558 struct its_cmd_desc
*desc
)
562 if (desc
->its_vmapti_cmd
.db_enabled
)
563 db
= desc
->its_vmapti_cmd
.vpe
->vpe_db_lpi
;
567 its_encode_cmd(cmd
, GITS_CMD_VMAPTI
);
568 its_encode_devid(cmd
, desc
->its_vmapti_cmd
.dev
->device_id
);
569 its_encode_vpeid(cmd
, desc
->its_vmapti_cmd
.vpe
->vpe_id
);
570 its_encode_event_id(cmd
, desc
->its_vmapti_cmd
.event_id
);
571 its_encode_db_phys_id(cmd
, db
);
572 its_encode_virt_id(cmd
, desc
->its_vmapti_cmd
.virt_id
);
576 return desc
->its_vmapti_cmd
.vpe
;
579 static struct its_vpe
*its_build_vmovi_cmd(struct its_cmd_block
*cmd
,
580 struct its_cmd_desc
*desc
)
584 if (desc
->its_vmovi_cmd
.db_enabled
)
585 db
= desc
->its_vmovi_cmd
.vpe
->vpe_db_lpi
;
589 its_encode_cmd(cmd
, GITS_CMD_VMOVI
);
590 its_encode_devid(cmd
, desc
->its_vmovi_cmd
.dev
->device_id
);
591 its_encode_vpeid(cmd
, desc
->its_vmovi_cmd
.vpe
->vpe_id
);
592 its_encode_event_id(cmd
, desc
->its_vmovi_cmd
.event_id
);
593 its_encode_db_phys_id(cmd
, db
);
594 its_encode_db_valid(cmd
, true);
598 return desc
->its_vmovi_cmd
.vpe
;
601 static struct its_vpe
*its_build_vmovp_cmd(struct its_cmd_block
*cmd
,
602 struct its_cmd_desc
*desc
)
604 its_encode_cmd(cmd
, GITS_CMD_VMOVP
);
605 its_encode_seq_num(cmd
, desc
->its_vmovp_cmd
.seq_num
);
606 its_encode_its_list(cmd
, desc
->its_vmovp_cmd
.its_list
);
607 its_encode_vpeid(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_id
);
608 its_encode_target(cmd
, desc
->its_vmovp_cmd
.col
->target_address
);
612 return desc
->its_vmovp_cmd
.vpe
;
615 static u64
its_cmd_ptr_to_offset(struct its_node
*its
,
616 struct its_cmd_block
*ptr
)
618 return (ptr
- its
->cmd_base
) * sizeof(*ptr
);
621 static int its_queue_full(struct its_node
*its
)
626 widx
= its
->cmd_write
- its
->cmd_base
;
627 ridx
= readl_relaxed(its
->base
+ GITS_CREADR
) / sizeof(struct its_cmd_block
);
629 /* This is incredibly unlikely to happen, unless the ITS locks up. */
630 if (((widx
+ 1) % ITS_CMD_QUEUE_NR_ENTRIES
) == ridx
)
636 static struct its_cmd_block
*its_allocate_entry(struct its_node
*its
)
638 struct its_cmd_block
*cmd
;
639 u32 count
= 1000000; /* 1s! */
641 while (its_queue_full(its
)) {
644 pr_err_ratelimited("ITS queue not draining\n");
651 cmd
= its
->cmd_write
++;
653 /* Handle queue wrapping */
654 if (its
->cmd_write
== (its
->cmd_base
+ ITS_CMD_QUEUE_NR_ENTRIES
))
655 its
->cmd_write
= its
->cmd_base
;
666 static struct its_cmd_block
*its_post_commands(struct its_node
*its
)
668 u64 wr
= its_cmd_ptr_to_offset(its
, its
->cmd_write
);
670 writel_relaxed(wr
, its
->base
+ GITS_CWRITER
);
672 return its
->cmd_write
;
675 static void its_flush_cmd(struct its_node
*its
, struct its_cmd_block
*cmd
)
678 * Make sure the commands written to memory are observable by
681 if (its
->flags
& ITS_FLAGS_CMDQ_NEEDS_FLUSHING
)
682 gic_flush_dcache_to_poc(cmd
, sizeof(*cmd
));
687 static void its_wait_for_range_completion(struct its_node
*its
,
688 struct its_cmd_block
*from
,
689 struct its_cmd_block
*to
)
691 u64 rd_idx
, from_idx
, to_idx
;
692 u32 count
= 1000000; /* 1s! */
694 from_idx
= its_cmd_ptr_to_offset(its
, from
);
695 to_idx
= its_cmd_ptr_to_offset(its
, to
);
698 rd_idx
= readl_relaxed(its
->base
+ GITS_CREADR
);
701 if (from_idx
< to_idx
&& rd_idx
>= to_idx
)
705 if (from_idx
>= to_idx
&& rd_idx
>= to_idx
&& rd_idx
< from_idx
)
710 pr_err_ratelimited("ITS queue timeout\n");
718 /* Warning, macro hell follows */
719 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
720 void name(struct its_node *its, \
722 struct its_cmd_desc *desc) \
724 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
725 synctype *sync_obj; \
726 unsigned long flags; \
728 raw_spin_lock_irqsave(&its->lock, flags); \
730 cmd = its_allocate_entry(its); \
731 if (!cmd) { /* We're soooooo screewed... */ \
732 raw_spin_unlock_irqrestore(&its->lock, flags); \
735 sync_obj = builder(cmd, desc); \
736 its_flush_cmd(its, cmd); \
739 sync_cmd = its_allocate_entry(its); \
743 buildfn(sync_cmd, sync_obj); \
744 its_flush_cmd(its, sync_cmd); \
748 next_cmd = its_post_commands(its); \
749 raw_spin_unlock_irqrestore(&its->lock, flags); \
751 its_wait_for_range_completion(its, cmd, next_cmd); \
754 static void its_build_sync_cmd(struct its_cmd_block
*sync_cmd
,
755 struct its_collection
*sync_col
)
757 its_encode_cmd(sync_cmd
, GITS_CMD_SYNC
);
758 its_encode_target(sync_cmd
, sync_col
->target_address
);
760 its_fixup_cmd(sync_cmd
);
763 static BUILD_SINGLE_CMD_FUNC(its_send_single_command
, its_cmd_builder_t
,
764 struct its_collection
, its_build_sync_cmd
)
766 static void its_build_vsync_cmd(struct its_cmd_block
*sync_cmd
,
767 struct its_vpe
*sync_vpe
)
769 its_encode_cmd(sync_cmd
, GITS_CMD_VSYNC
);
770 its_encode_vpeid(sync_cmd
, sync_vpe
->vpe_id
);
772 its_fixup_cmd(sync_cmd
);
775 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand
, its_cmd_vbuilder_t
,
776 struct its_vpe
, its_build_vsync_cmd
)
778 static void its_send_int(struct its_device
*dev
, u32 event_id
)
780 struct its_cmd_desc desc
;
782 desc
.its_int_cmd
.dev
= dev
;
783 desc
.its_int_cmd
.event_id
= event_id
;
785 its_send_single_command(dev
->its
, its_build_int_cmd
, &desc
);
788 static void its_send_clear(struct its_device
*dev
, u32 event_id
)
790 struct its_cmd_desc desc
;
792 desc
.its_clear_cmd
.dev
= dev
;
793 desc
.its_clear_cmd
.event_id
= event_id
;
795 its_send_single_command(dev
->its
, its_build_clear_cmd
, &desc
);
798 static void its_send_inv(struct its_device
*dev
, u32 event_id
)
800 struct its_cmd_desc desc
;
802 desc
.its_inv_cmd
.dev
= dev
;
803 desc
.its_inv_cmd
.event_id
= event_id
;
805 its_send_single_command(dev
->its
, its_build_inv_cmd
, &desc
);
808 static void its_send_mapd(struct its_device
*dev
, int valid
)
810 struct its_cmd_desc desc
;
812 desc
.its_mapd_cmd
.dev
= dev
;
813 desc
.its_mapd_cmd
.valid
= !!valid
;
815 its_send_single_command(dev
->its
, its_build_mapd_cmd
, &desc
);
818 static void its_send_mapc(struct its_node
*its
, struct its_collection
*col
,
821 struct its_cmd_desc desc
;
823 desc
.its_mapc_cmd
.col
= col
;
824 desc
.its_mapc_cmd
.valid
= !!valid
;
826 its_send_single_command(its
, its_build_mapc_cmd
, &desc
);
829 static void its_send_mapti(struct its_device
*dev
, u32 irq_id
, u32 id
)
831 struct its_cmd_desc desc
;
833 desc
.its_mapti_cmd
.dev
= dev
;
834 desc
.its_mapti_cmd
.phys_id
= irq_id
;
835 desc
.its_mapti_cmd
.event_id
= id
;
837 its_send_single_command(dev
->its
, its_build_mapti_cmd
, &desc
);
840 static void its_send_movi(struct its_device
*dev
,
841 struct its_collection
*col
, u32 id
)
843 struct its_cmd_desc desc
;
845 desc
.its_movi_cmd
.dev
= dev
;
846 desc
.its_movi_cmd
.col
= col
;
847 desc
.its_movi_cmd
.event_id
= id
;
849 its_send_single_command(dev
->its
, its_build_movi_cmd
, &desc
);
852 static void its_send_discard(struct its_device
*dev
, u32 id
)
854 struct its_cmd_desc desc
;
856 desc
.its_discard_cmd
.dev
= dev
;
857 desc
.its_discard_cmd
.event_id
= id
;
859 its_send_single_command(dev
->its
, its_build_discard_cmd
, &desc
);
862 static void its_send_invall(struct its_node
*its
, struct its_collection
*col
)
864 struct its_cmd_desc desc
;
866 desc
.its_invall_cmd
.col
= col
;
868 its_send_single_command(its
, its_build_invall_cmd
, &desc
);
871 static void its_send_vmapti(struct its_device
*dev
, u32 id
)
873 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
874 struct its_cmd_desc desc
;
876 desc
.its_vmapti_cmd
.vpe
= map
->vpe
;
877 desc
.its_vmapti_cmd
.dev
= dev
;
878 desc
.its_vmapti_cmd
.virt_id
= map
->vintid
;
879 desc
.its_vmapti_cmd
.event_id
= id
;
880 desc
.its_vmapti_cmd
.db_enabled
= map
->db_enabled
;
882 its_send_single_vcommand(dev
->its
, its_build_vmapti_cmd
, &desc
);
885 static void its_send_vmovi(struct its_device
*dev
, u32 id
)
887 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
888 struct its_cmd_desc desc
;
890 desc
.its_vmovi_cmd
.vpe
= map
->vpe
;
891 desc
.its_vmovi_cmd
.dev
= dev
;
892 desc
.its_vmovi_cmd
.event_id
= id
;
893 desc
.its_vmovi_cmd
.db_enabled
= map
->db_enabled
;
895 its_send_single_vcommand(dev
->its
, its_build_vmovi_cmd
, &desc
);
898 static void its_send_vmapp(struct its_vpe
*vpe
, bool valid
)
900 struct its_cmd_desc desc
;
901 struct its_node
*its
;
903 desc
.its_vmapp_cmd
.vpe
= vpe
;
904 desc
.its_vmapp_cmd
.valid
= valid
;
906 list_for_each_entry(its
, &its_nodes
, entry
) {
910 desc
.its_vmapp_cmd
.col
= &its
->collections
[vpe
->col_idx
];
911 its_send_single_vcommand(its
, its_build_vmapp_cmd
, &desc
);
915 static void its_send_vmovp(struct its_vpe
*vpe
)
917 struct its_cmd_desc desc
;
918 struct its_node
*its
;
920 int col_id
= vpe
->col_idx
;
922 desc
.its_vmovp_cmd
.vpe
= vpe
;
923 desc
.its_vmovp_cmd
.its_list
= (u16
)its_list_map
;
926 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
927 desc
.its_vmovp_cmd
.seq_num
= 0;
928 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
929 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
934 * Yet another marvel of the architecture. If using the
935 * its_list "feature", we need to make sure that all ITSs
936 * receive all VMOVP commands in the same order. The only way
937 * to guarantee this is to make vmovp a serialization point.
941 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
943 desc
.its_vmovp_cmd
.seq_num
= vmovp_seq_num
++;
946 list_for_each_entry(its
, &its_nodes
, entry
) {
950 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
951 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
954 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
957 static void its_send_vinvall(struct its_vpe
*vpe
)
959 struct its_cmd_desc desc
;
960 struct its_node
*its
;
962 desc
.its_vinvall_cmd
.vpe
= vpe
;
964 list_for_each_entry(its
, &its_nodes
, entry
) {
967 its_send_single_vcommand(its
, its_build_vinvall_cmd
, &desc
);
972 * irqchip functions - assumes MSI, mostly.
975 static inline u32
its_get_event_id(struct irq_data
*d
)
977 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
978 return d
->hwirq
- its_dev
->event_map
.lpi_base
;
981 static void lpi_write_config(struct irq_data
*d
, u8 clr
, u8 set
)
983 irq_hw_number_t hwirq
;
984 struct page
*prop_page
;
987 if (irqd_is_forwarded_to_vcpu(d
)) {
988 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
989 u32 event
= its_get_event_id(d
);
991 prop_page
= its_dev
->event_map
.vm
->vprop_page
;
992 hwirq
= its_dev
->event_map
.vlpi_maps
[event
].vintid
;
994 prop_page
= gic_rdists
->prop_page
;
998 cfg
= page_address(prop_page
) + hwirq
- 8192;
1000 *cfg
|= set
| LPI_PROP_GROUP1
;
1003 * Make the above write visible to the redistributors.
1004 * And yes, we're flushing exactly: One. Single. Byte.
1007 if (gic_rdists
->flags
& RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
)
1008 gic_flush_dcache_to_poc(cfg
, sizeof(*cfg
));
1013 static void lpi_update_config(struct irq_data
*d
, u8 clr
, u8 set
)
1015 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1017 lpi_write_config(d
, clr
, set
);
1018 its_send_inv(its_dev
, its_get_event_id(d
));
1021 static void its_vlpi_set_doorbell(struct irq_data
*d
, bool enable
)
1023 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1024 u32 event
= its_get_event_id(d
);
1026 if (its_dev
->event_map
.vlpi_maps
[event
].db_enabled
== enable
)
1029 its_dev
->event_map
.vlpi_maps
[event
].db_enabled
= enable
;
1032 * More fun with the architecture:
1034 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1035 * value or to 1023, depending on the enable bit. But that
1036 * would be issueing a mapping for an /existing/ DevID+EventID
1037 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1038 * to the /same/ vPE, using this opportunity to adjust the
1039 * doorbell. Mouahahahaha. We loves it, Precious.
1041 its_send_vmovi(its_dev
, event
);
1044 static void its_mask_irq(struct irq_data
*d
)
1046 if (irqd_is_forwarded_to_vcpu(d
))
1047 its_vlpi_set_doorbell(d
, false);
1049 lpi_update_config(d
, LPI_PROP_ENABLED
, 0);
1052 static void its_unmask_irq(struct irq_data
*d
)
1054 if (irqd_is_forwarded_to_vcpu(d
))
1055 its_vlpi_set_doorbell(d
, true);
1057 lpi_update_config(d
, 0, LPI_PROP_ENABLED
);
1060 static int its_set_affinity(struct irq_data
*d
, const struct cpumask
*mask_val
,
1064 const struct cpumask
*cpu_mask
= cpu_online_mask
;
1065 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1066 struct its_collection
*target_col
;
1067 u32 id
= its_get_event_id(d
);
1069 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1070 if (irqd_is_forwarded_to_vcpu(d
))
1073 /* lpi cannot be routed to a redistributor that is on a foreign node */
1074 if (its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
1075 if (its_dev
->its
->numa_node
>= 0) {
1076 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
1077 if (!cpumask_intersects(mask_val
, cpu_mask
))
1082 cpu
= cpumask_any_and(mask_val
, cpu_mask
);
1084 if (cpu
>= nr_cpu_ids
)
1087 /* don't set the affinity when the target cpu is same as current one */
1088 if (cpu
!= its_dev
->event_map
.col_map
[id
]) {
1089 target_col
= &its_dev
->its
->collections
[cpu
];
1090 its_send_movi(its_dev
, target_col
, id
);
1091 its_dev
->event_map
.col_map
[id
] = cpu
;
1092 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
1095 return IRQ_SET_MASK_OK_DONE
;
1098 static void its_irq_compose_msi_msg(struct irq_data
*d
, struct msi_msg
*msg
)
1100 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1101 struct its_node
*its
;
1105 addr
= its
->phys_base
+ GITS_TRANSLATER
;
1107 msg
->address_lo
= lower_32_bits(addr
);
1108 msg
->address_hi
= upper_32_bits(addr
);
1109 msg
->data
= its_get_event_id(d
);
1111 iommu_dma_map_msi_msg(d
->irq
, msg
);
1114 static int its_irq_set_irqchip_state(struct irq_data
*d
,
1115 enum irqchip_irq_state which
,
1118 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1119 u32 event
= its_get_event_id(d
);
1121 if (which
!= IRQCHIP_STATE_PENDING
)
1125 its_send_int(its_dev
, event
);
1127 its_send_clear(its_dev
, event
);
1132 static int its_vlpi_map(struct irq_data
*d
, struct its_cmd_info
*info
)
1134 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1135 u32 event
= its_get_event_id(d
);
1141 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1143 if (!its_dev
->event_map
.vm
) {
1144 struct its_vlpi_map
*maps
;
1146 maps
= kzalloc(sizeof(*maps
) * its_dev
->event_map
.nr_lpis
,
1153 its_dev
->event_map
.vm
= info
->map
->vm
;
1154 its_dev
->event_map
.vlpi_maps
= maps
;
1155 } else if (its_dev
->event_map
.vm
!= info
->map
->vm
) {
1160 /* Get our private copy of the mapping information */
1161 its_dev
->event_map
.vlpi_maps
[event
] = *info
->map
;
1163 if (irqd_is_forwarded_to_vcpu(d
)) {
1164 /* Already mapped, move it around */
1165 its_send_vmovi(its_dev
, event
);
1167 /* Drop the physical mapping */
1168 its_send_discard(its_dev
, event
);
1170 /* and install the virtual one */
1171 its_send_vmapti(its_dev
, event
);
1172 irqd_set_forwarded_to_vcpu(d
);
1174 /* Increment the number of VLPIs */
1175 its_dev
->event_map
.nr_vlpis
++;
1179 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1183 static int its_vlpi_get(struct irq_data
*d
, struct its_cmd_info
*info
)
1185 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1186 u32 event
= its_get_event_id(d
);
1189 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1191 if (!its_dev
->event_map
.vm
||
1192 !its_dev
->event_map
.vlpi_maps
[event
].vm
) {
1197 /* Copy our mapping information to the incoming request */
1198 *info
->map
= its_dev
->event_map
.vlpi_maps
[event
];
1201 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1205 static int its_vlpi_unmap(struct irq_data
*d
)
1207 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1208 u32 event
= its_get_event_id(d
);
1211 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1213 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
)) {
1218 /* Drop the virtual mapping */
1219 its_send_discard(its_dev
, event
);
1221 /* and restore the physical one */
1222 irqd_clr_forwarded_to_vcpu(d
);
1223 its_send_mapti(its_dev
, d
->hwirq
, event
);
1224 lpi_update_config(d
, 0xff, (LPI_PROP_DEFAULT_PRIO
|
1229 * Drop the refcount and make the device available again if
1230 * this was the last VLPI.
1232 if (!--its_dev
->event_map
.nr_vlpis
) {
1233 its_dev
->event_map
.vm
= NULL
;
1234 kfree(its_dev
->event_map
.vlpi_maps
);
1238 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1242 static int its_vlpi_prop_update(struct irq_data
*d
, struct its_cmd_info
*info
)
1244 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1246 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
))
1249 if (info
->cmd_type
== PROP_UPDATE_AND_INV_VLPI
)
1250 lpi_update_config(d
, 0xff, info
->config
);
1252 lpi_write_config(d
, 0xff, info
->config
);
1253 its_vlpi_set_doorbell(d
, !!(info
->config
& LPI_PROP_ENABLED
));
1258 static int its_irq_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
1260 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1261 struct its_cmd_info
*info
= vcpu_info
;
1264 if (!its_dev
->its
->is_v4
)
1267 /* Unmap request? */
1269 return its_vlpi_unmap(d
);
1271 switch (info
->cmd_type
) {
1273 return its_vlpi_map(d
, info
);
1276 return its_vlpi_get(d
, info
);
1278 case PROP_UPDATE_VLPI
:
1279 case PROP_UPDATE_AND_INV_VLPI
:
1280 return its_vlpi_prop_update(d
, info
);
1287 static struct irq_chip its_irq_chip
= {
1289 .irq_mask
= its_mask_irq
,
1290 .irq_unmask
= its_unmask_irq
,
1291 .irq_eoi
= irq_chip_eoi_parent
,
1292 .irq_set_affinity
= its_set_affinity
,
1293 .irq_compose_msi_msg
= its_irq_compose_msi_msg
,
1294 .irq_set_irqchip_state
= its_irq_set_irqchip_state
,
1295 .irq_set_vcpu_affinity
= its_irq_set_vcpu_affinity
,
1299 * How we allocate LPIs:
1301 * The GIC has id_bits bits for interrupt identifiers. From there, we
1302 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1303 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1304 * bits to the right.
1306 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1308 #define IRQS_PER_CHUNK_SHIFT 5
1309 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
1310 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1312 static unsigned long *lpi_bitmap
;
1313 static u32 lpi_chunks
;
1314 static DEFINE_SPINLOCK(lpi_lock
);
1316 static int its_lpi_to_chunk(int lpi
)
1318 return (lpi
- 8192) >> IRQS_PER_CHUNK_SHIFT
;
1321 static int its_chunk_to_lpi(int chunk
)
1323 return (chunk
<< IRQS_PER_CHUNK_SHIFT
) + 8192;
1326 static int __init
its_lpi_init(u32 id_bits
)
1328 lpi_chunks
= its_lpi_to_chunk(1UL << id_bits
);
1330 lpi_bitmap
= kzalloc(BITS_TO_LONGS(lpi_chunks
) * sizeof(long),
1337 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks
);
1341 static unsigned long *its_lpi_alloc_chunks(int nr_irqs
, int *base
, int *nr_ids
)
1343 unsigned long *bitmap
= NULL
;
1348 nr_chunks
= DIV_ROUND_UP(nr_irqs
, IRQS_PER_CHUNK
);
1350 spin_lock(&lpi_lock
);
1353 chunk_id
= bitmap_find_next_zero_area(lpi_bitmap
, lpi_chunks
,
1355 if (chunk_id
< lpi_chunks
)
1359 } while (nr_chunks
> 0);
1364 bitmap
= kzalloc(BITS_TO_LONGS(nr_chunks
* IRQS_PER_CHUNK
) * sizeof (long),
1369 for (i
= 0; i
< nr_chunks
; i
++)
1370 set_bit(chunk_id
+ i
, lpi_bitmap
);
1372 *base
= its_chunk_to_lpi(chunk_id
);
1373 *nr_ids
= nr_chunks
* IRQS_PER_CHUNK
;
1376 spin_unlock(&lpi_lock
);
1379 *base
= *nr_ids
= 0;
1384 static void its_lpi_free_chunks(unsigned long *bitmap
, int base
, int nr_ids
)
1388 spin_lock(&lpi_lock
);
1390 for (lpi
= base
; lpi
< (base
+ nr_ids
); lpi
+= IRQS_PER_CHUNK
) {
1391 int chunk
= its_lpi_to_chunk(lpi
);
1393 BUG_ON(chunk
> lpi_chunks
);
1394 if (test_bit(chunk
, lpi_bitmap
)) {
1395 clear_bit(chunk
, lpi_bitmap
);
1397 pr_err("Bad LPI chunk %d\n", chunk
);
1401 spin_unlock(&lpi_lock
);
1406 static struct page
*its_allocate_prop_table(gfp_t gfp_flags
)
1408 struct page
*prop_page
;
1410 prop_page
= alloc_pages(gfp_flags
, get_order(LPI_PROPBASE_SZ
));
1414 /* Priority 0xa0, Group-1, disabled */
1415 memset(page_address(prop_page
),
1416 LPI_PROP_DEFAULT_PRIO
| LPI_PROP_GROUP1
,
1419 /* Make sure the GIC will observe the written configuration */
1420 gic_flush_dcache_to_poc(page_address(prop_page
), LPI_PROPBASE_SZ
);
1425 static void its_free_prop_table(struct page
*prop_page
)
1427 free_pages((unsigned long)page_address(prop_page
),
1428 get_order(LPI_PROPBASE_SZ
));
1431 static int __init
its_alloc_lpi_tables(void)
1435 lpi_id_bits
= min_t(u32
, gic_rdists
->id_bits
, ITS_MAX_LPI_NRBITS
);
1436 gic_rdists
->prop_page
= its_allocate_prop_table(GFP_NOWAIT
);
1437 if (!gic_rdists
->prop_page
) {
1438 pr_err("Failed to allocate PROPBASE\n");
1442 paddr
= page_to_phys(gic_rdists
->prop_page
);
1443 pr_info("GIC: using LPI property table @%pa\n", &paddr
);
1445 return its_lpi_init(lpi_id_bits
);
1448 static const char *its_base_type_string
[] = {
1449 [GITS_BASER_TYPE_DEVICE
] = "Devices",
1450 [GITS_BASER_TYPE_VCPU
] = "Virtual CPUs",
1451 [GITS_BASER_TYPE_RESERVED3
] = "Reserved (3)",
1452 [GITS_BASER_TYPE_COLLECTION
] = "Interrupt Collections",
1453 [GITS_BASER_TYPE_RESERVED5
] = "Reserved (5)",
1454 [GITS_BASER_TYPE_RESERVED6
] = "Reserved (6)",
1455 [GITS_BASER_TYPE_RESERVED7
] = "Reserved (7)",
1458 static u64
its_read_baser(struct its_node
*its
, struct its_baser
*baser
)
1460 u32 idx
= baser
- its
->tables
;
1462 return gits_read_baser(its
->base
+ GITS_BASER
+ (idx
<< 3));
1465 static void its_write_baser(struct its_node
*its
, struct its_baser
*baser
,
1468 u32 idx
= baser
- its
->tables
;
1470 gits_write_baser(val
, its
->base
+ GITS_BASER
+ (idx
<< 3));
1471 baser
->val
= its_read_baser(its
, baser
);
1474 static int its_setup_baser(struct its_node
*its
, struct its_baser
*baser
,
1475 u64 cache
, u64 shr
, u32 psz
, u32 order
,
1478 u64 val
= its_read_baser(its
, baser
);
1479 u64 esz
= GITS_BASER_ENTRY_SIZE(val
);
1480 u64 type
= GITS_BASER_TYPE(val
);
1486 alloc_pages
= (PAGE_ORDER_TO_SIZE(order
) / psz
);
1487 if (alloc_pages
> GITS_BASER_PAGES_MAX
) {
1488 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1489 &its
->phys_base
, its_base_type_string
[type
],
1490 alloc_pages
, GITS_BASER_PAGES_MAX
);
1491 alloc_pages
= GITS_BASER_PAGES_MAX
;
1492 order
= get_order(GITS_BASER_PAGES_MAX
* psz
);
1495 base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, order
);
1500 val
= (virt_to_phys(base
) |
1501 (type
<< GITS_BASER_TYPE_SHIFT
) |
1502 ((esz
- 1) << GITS_BASER_ENTRY_SIZE_SHIFT
) |
1503 ((alloc_pages
- 1) << GITS_BASER_PAGES_SHIFT
) |
1508 val
|= indirect
? GITS_BASER_INDIRECT
: 0x0;
1512 val
|= GITS_BASER_PAGE_SIZE_4K
;
1515 val
|= GITS_BASER_PAGE_SIZE_16K
;
1518 val
|= GITS_BASER_PAGE_SIZE_64K
;
1522 its_write_baser(its
, baser
, val
);
1525 if ((val
^ tmp
) & GITS_BASER_SHAREABILITY_MASK
) {
1527 * Shareability didn't stick. Just use
1528 * whatever the read reported, which is likely
1529 * to be the only thing this redistributor
1530 * supports. If that's zero, make it
1531 * non-cacheable as well.
1533 shr
= tmp
& GITS_BASER_SHAREABILITY_MASK
;
1535 cache
= GITS_BASER_nC
;
1536 gic_flush_dcache_to_poc(base
, PAGE_ORDER_TO_SIZE(order
));
1541 if ((val
^ tmp
) & GITS_BASER_PAGE_SIZE_MASK
) {
1543 * Page size didn't stick. Let's try a smaller
1544 * size and retry. If we reach 4K, then
1545 * something is horribly wrong...
1547 free_pages((unsigned long)base
, order
);
1553 goto retry_alloc_baser
;
1556 goto retry_alloc_baser
;
1561 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1562 &its
->phys_base
, its_base_type_string
[type
],
1564 free_pages((unsigned long)base
, order
);
1568 baser
->order
= order
;
1571 tmp
= indirect
? GITS_LVL1_ENTRY_SIZE
: esz
;
1573 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1574 &its
->phys_base
, (int)(PAGE_ORDER_TO_SIZE(order
) / (int)tmp
),
1575 its_base_type_string
[type
],
1576 (unsigned long)virt_to_phys(base
),
1577 indirect
? "indirect" : "flat", (int)esz
,
1578 psz
/ SZ_1K
, (int)shr
>> GITS_BASER_SHAREABILITY_SHIFT
);
1583 static bool its_parse_indirect_baser(struct its_node
*its
,
1584 struct its_baser
*baser
,
1585 u32 psz
, u32
*order
)
1587 u64 tmp
= its_read_baser(its
, baser
);
1588 u64 type
= GITS_BASER_TYPE(tmp
);
1589 u64 esz
= GITS_BASER_ENTRY_SIZE(tmp
);
1590 u64 val
= GITS_BASER_InnerShareable
| GITS_BASER_RaWaWb
;
1591 u32 ids
= its
->device_ids
;
1592 u32 new_order
= *order
;
1593 bool indirect
= false;
1595 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1596 if ((esz
<< ids
) > (psz
* 2)) {
1598 * Find out whether hw supports a single or two-level table by
1599 * table by reading bit at offset '62' after writing '1' to it.
1601 its_write_baser(its
, baser
, val
| GITS_BASER_INDIRECT
);
1602 indirect
= !!(baser
->val
& GITS_BASER_INDIRECT
);
1606 * The size of the lvl2 table is equal to ITS page size
1607 * which is 'psz'. For computing lvl1 table size,
1608 * subtract ID bits that sparse lvl2 table from 'ids'
1609 * which is reported by ITS hardware times lvl1 table
1612 ids
-= ilog2(psz
/ (int)esz
);
1613 esz
= GITS_LVL1_ENTRY_SIZE
;
1618 * Allocate as many entries as required to fit the
1619 * range of device IDs that the ITS can grok... The ID
1620 * space being incredibly sparse, this results in a
1621 * massive waste of memory if two-level device table
1622 * feature is not supported by hardware.
1624 new_order
= max_t(u32
, get_order(esz
<< ids
), new_order
);
1625 if (new_order
>= MAX_ORDER
) {
1626 new_order
= MAX_ORDER
- 1;
1627 ids
= ilog2(PAGE_ORDER_TO_SIZE(new_order
) / (int)esz
);
1628 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1629 &its
->phys_base
, its_base_type_string
[type
],
1630 its
->device_ids
, ids
);
1638 static void its_free_tables(struct its_node
*its
)
1642 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1643 if (its
->tables
[i
].base
) {
1644 free_pages((unsigned long)its
->tables
[i
].base
,
1645 its
->tables
[i
].order
);
1646 its
->tables
[i
].base
= NULL
;
1651 static int its_alloc_tables(struct its_node
*its
)
1653 u64 typer
= gic_read_typer(its
->base
+ GITS_TYPER
);
1654 u32 ids
= GITS_TYPER_DEVBITS(typer
);
1655 u64 shr
= GITS_BASER_InnerShareable
;
1656 u64 cache
= GITS_BASER_RaWaWb
;
1660 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_22375
) {
1662 * erratum 22375: only alloc 8MB table size
1663 * erratum 24313: ignore memory access type
1665 cache
= GITS_BASER_nCnB
;
1666 ids
= 0x14; /* 20 bits, 8MB */
1669 its
->device_ids
= ids
;
1671 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1672 struct its_baser
*baser
= its
->tables
+ i
;
1673 u64 val
= its_read_baser(its
, baser
);
1674 u64 type
= GITS_BASER_TYPE(val
);
1675 u32 order
= get_order(psz
);
1676 bool indirect
= false;
1679 case GITS_BASER_TYPE_NONE
:
1682 case GITS_BASER_TYPE_DEVICE
:
1683 case GITS_BASER_TYPE_VCPU
:
1684 indirect
= its_parse_indirect_baser(its
, baser
,
1689 err
= its_setup_baser(its
, baser
, cache
, shr
, psz
, order
, indirect
);
1691 its_free_tables(its
);
1695 /* Update settings which will be used for next BASERn */
1697 cache
= baser
->val
& GITS_BASER_CACHEABILITY_MASK
;
1698 shr
= baser
->val
& GITS_BASER_SHAREABILITY_MASK
;
1704 static int its_alloc_collections(struct its_node
*its
)
1706 its
->collections
= kzalloc(nr_cpu_ids
* sizeof(*its
->collections
),
1708 if (!its
->collections
)
1714 static struct page
*its_allocate_pending_table(gfp_t gfp_flags
)
1716 struct page
*pend_page
;
1718 * The pending pages have to be at least 64kB aligned,
1719 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1721 pend_page
= alloc_pages(gfp_flags
| __GFP_ZERO
,
1722 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1726 /* Make sure the GIC will observe the zero-ed page */
1727 gic_flush_dcache_to_poc(page_address(pend_page
), LPI_PENDBASE_SZ
);
1732 static void its_free_pending_table(struct page
*pt
)
1734 free_pages((unsigned long)page_address(pt
),
1735 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1738 static void its_cpu_init_lpis(void)
1740 void __iomem
*rbase
= gic_data_rdist_rd_base();
1741 struct page
*pend_page
;
1744 /* If we didn't allocate the pending table yet, do it now */
1745 pend_page
= gic_data_rdist()->pend_page
;
1749 pend_page
= its_allocate_pending_table(GFP_NOWAIT
);
1751 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1752 smp_processor_id());
1756 paddr
= page_to_phys(pend_page
);
1757 pr_info("CPU%d: using LPI pending table @%pa\n",
1758 smp_processor_id(), &paddr
);
1759 gic_data_rdist()->pend_page
= pend_page
;
1763 val
= readl_relaxed(rbase
+ GICR_CTLR
);
1764 val
&= ~GICR_CTLR_ENABLE_LPIS
;
1765 writel_relaxed(val
, rbase
+ GICR_CTLR
);
1768 * Make sure any change to the table is observable by the GIC.
1773 val
= (page_to_phys(gic_rdists
->prop_page
) |
1774 GICR_PROPBASER_InnerShareable
|
1775 GICR_PROPBASER_RaWaWb
|
1776 ((LPI_NRBITS
- 1) & GICR_PROPBASER_IDBITS_MASK
));
1778 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
1779 tmp
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
1781 if ((tmp
^ val
) & GICR_PROPBASER_SHAREABILITY_MASK
) {
1782 if (!(tmp
& GICR_PROPBASER_SHAREABILITY_MASK
)) {
1784 * The HW reports non-shareable, we must
1785 * remove the cacheability attributes as
1788 val
&= ~(GICR_PROPBASER_SHAREABILITY_MASK
|
1789 GICR_PROPBASER_CACHEABILITY_MASK
);
1790 val
|= GICR_PROPBASER_nC
;
1791 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
1793 pr_info_once("GIC: using cache flushing for LPI property table\n");
1794 gic_rdists
->flags
|= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
;
1798 val
= (page_to_phys(pend_page
) |
1799 GICR_PENDBASER_InnerShareable
|
1800 GICR_PENDBASER_RaWaWb
);
1802 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
1803 tmp
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
1805 if (!(tmp
& GICR_PENDBASER_SHAREABILITY_MASK
)) {
1807 * The HW reports non-shareable, we must remove the
1808 * cacheability attributes as well.
1810 val
&= ~(GICR_PENDBASER_SHAREABILITY_MASK
|
1811 GICR_PENDBASER_CACHEABILITY_MASK
);
1812 val
|= GICR_PENDBASER_nC
;
1813 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
1817 val
= readl_relaxed(rbase
+ GICR_CTLR
);
1818 val
|= GICR_CTLR_ENABLE_LPIS
;
1819 writel_relaxed(val
, rbase
+ GICR_CTLR
);
1821 /* Make sure the GIC has seen the above */
1825 static void its_cpu_init_collection(void)
1827 struct its_node
*its
;
1830 spin_lock(&its_lock
);
1831 cpu
= smp_processor_id();
1833 list_for_each_entry(its
, &its_nodes
, entry
) {
1836 /* avoid cross node collections and its mapping */
1837 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
1838 struct device_node
*cpu_node
;
1840 cpu_node
= of_get_cpu_node(cpu
, NULL
);
1841 if (its
->numa_node
!= NUMA_NO_NODE
&&
1842 its
->numa_node
!= of_node_to_nid(cpu_node
))
1847 * We now have to bind each collection to its target
1850 if (gic_read_typer(its
->base
+ GITS_TYPER
) & GITS_TYPER_PTA
) {
1852 * This ITS wants the physical address of the
1855 target
= gic_data_rdist()->phys_base
;
1858 * This ITS wants a linear CPU number.
1860 target
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
1861 target
= GICR_TYPER_CPU_NUMBER(target
) << 16;
1864 /* Perform collection mapping */
1865 its
->collections
[cpu
].target_address
= target
;
1866 its
->collections
[cpu
].col_id
= cpu
;
1868 its_send_mapc(its
, &its
->collections
[cpu
], 1);
1869 its_send_invall(its
, &its
->collections
[cpu
]);
1872 spin_unlock(&its_lock
);
1875 static struct its_device
*its_find_device(struct its_node
*its
, u32 dev_id
)
1877 struct its_device
*its_dev
= NULL
, *tmp
;
1878 unsigned long flags
;
1880 raw_spin_lock_irqsave(&its
->lock
, flags
);
1882 list_for_each_entry(tmp
, &its
->its_device_list
, entry
) {
1883 if (tmp
->device_id
== dev_id
) {
1889 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
1894 static struct its_baser
*its_get_baser(struct its_node
*its
, u32 type
)
1898 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1899 if (GITS_BASER_TYPE(its
->tables
[i
].val
) == type
)
1900 return &its
->tables
[i
];
1906 static bool its_alloc_table_entry(struct its_baser
*baser
, u32 id
)
1912 /* Don't allow device id that exceeds single, flat table limit */
1913 esz
= GITS_BASER_ENTRY_SIZE(baser
->val
);
1914 if (!(baser
->val
& GITS_BASER_INDIRECT
))
1915 return (id
< (PAGE_ORDER_TO_SIZE(baser
->order
) / esz
));
1917 /* Compute 1st level table index & check if that exceeds table limit */
1918 idx
= id
>> ilog2(baser
->psz
/ esz
);
1919 if (idx
>= (PAGE_ORDER_TO_SIZE(baser
->order
) / GITS_LVL1_ENTRY_SIZE
))
1922 table
= baser
->base
;
1924 /* Allocate memory for 2nd level table */
1926 page
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, get_order(baser
->psz
));
1930 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1931 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
1932 gic_flush_dcache_to_poc(page_address(page
), baser
->psz
);
1934 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
1936 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1937 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
1938 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
1940 /* Ensure updated table contents are visible to ITS hardware */
1947 static bool its_alloc_device_table(struct its_node
*its
, u32 dev_id
)
1949 struct its_baser
*baser
;
1951 baser
= its_get_baser(its
, GITS_BASER_TYPE_DEVICE
);
1953 /* Don't allow device id that exceeds ITS hardware limit */
1955 return (ilog2(dev_id
) < its
->device_ids
);
1957 return its_alloc_table_entry(baser
, dev_id
);
1960 static bool its_alloc_vpe_table(u32 vpe_id
)
1962 struct its_node
*its
;
1965 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
1966 * could try and only do it on ITSs corresponding to devices
1967 * that have interrupts targeted at this VPE, but the
1968 * complexity becomes crazy (and you have tons of memory
1971 list_for_each_entry(its
, &its_nodes
, entry
) {
1972 struct its_baser
*baser
;
1977 baser
= its_get_baser(its
, GITS_BASER_TYPE_VCPU
);
1981 if (!its_alloc_table_entry(baser
, vpe_id
))
1988 static struct its_device
*its_create_device(struct its_node
*its
, u32 dev_id
,
1989 int nvecs
, bool alloc_lpis
)
1991 struct its_device
*dev
;
1992 unsigned long *lpi_map
= NULL
;
1993 unsigned long flags
;
1994 u16
*col_map
= NULL
;
2001 if (!its_alloc_device_table(its
, dev_id
))
2004 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2006 * At least one bit of EventID is being used, hence a minimum
2007 * of two entries. No, the architecture doesn't let you
2008 * express an ITT with a single entry.
2010 nr_ites
= max(2UL, roundup_pow_of_two(nvecs
));
2011 sz
= nr_ites
* its
->ite_size
;
2012 sz
= max(sz
, ITS_ITT_ALIGN
) + ITS_ITT_ALIGN
- 1;
2013 itt
= kzalloc(sz
, GFP_KERNEL
);
2015 lpi_map
= its_lpi_alloc_chunks(nvecs
, &lpi_base
, &nr_lpis
);
2017 col_map
= kzalloc(sizeof(*col_map
) * nr_lpis
,
2020 col_map
= kzalloc(sizeof(*col_map
) * nr_ites
, GFP_KERNEL
);
2025 if (!dev
|| !itt
|| !col_map
|| (!lpi_map
&& alloc_lpis
)) {
2033 gic_flush_dcache_to_poc(itt
, sz
);
2037 dev
->nr_ites
= nr_ites
;
2038 dev
->event_map
.lpi_map
= lpi_map
;
2039 dev
->event_map
.col_map
= col_map
;
2040 dev
->event_map
.lpi_base
= lpi_base
;
2041 dev
->event_map
.nr_lpis
= nr_lpis
;
2042 mutex_init(&dev
->event_map
.vlpi_lock
);
2043 dev
->device_id
= dev_id
;
2044 INIT_LIST_HEAD(&dev
->entry
);
2046 raw_spin_lock_irqsave(&its
->lock
, flags
);
2047 list_add(&dev
->entry
, &its
->its_device_list
);
2048 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
2050 /* Map device to its ITT */
2051 its_send_mapd(dev
, 1);
2056 static void its_free_device(struct its_device
*its_dev
)
2058 unsigned long flags
;
2060 raw_spin_lock_irqsave(&its_dev
->its
->lock
, flags
);
2061 list_del(&its_dev
->entry
);
2062 raw_spin_unlock_irqrestore(&its_dev
->its
->lock
, flags
);
2063 kfree(its_dev
->itt
);
2067 static int its_alloc_device_irq(struct its_device
*dev
, irq_hw_number_t
*hwirq
)
2071 idx
= find_first_zero_bit(dev
->event_map
.lpi_map
,
2072 dev
->event_map
.nr_lpis
);
2073 if (idx
== dev
->event_map
.nr_lpis
)
2076 *hwirq
= dev
->event_map
.lpi_base
+ idx
;
2077 set_bit(idx
, dev
->event_map
.lpi_map
);
2082 static int its_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
2083 int nvec
, msi_alloc_info_t
*info
)
2085 struct its_node
*its
;
2086 struct its_device
*its_dev
;
2087 struct msi_domain_info
*msi_info
;
2091 * We ignore "dev" entierely, and rely on the dev_id that has
2092 * been passed via the scratchpad. This limits this domain's
2093 * usefulness to upper layers that definitely know that they
2094 * are built on top of the ITS.
2096 dev_id
= info
->scratchpad
[0].ul
;
2098 msi_info
= msi_get_domain_info(domain
);
2099 its
= msi_info
->data
;
2101 if (!gic_rdists
->has_direct_lpi
&&
2103 vpe_proxy
.dev
->its
== its
&&
2104 dev_id
== vpe_proxy
.dev
->device_id
) {
2105 /* Bad luck. Get yourself a better implementation */
2106 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2111 its_dev
= its_find_device(its
, dev_id
);
2114 * We already have seen this ID, probably through
2115 * another alias (PCI bridge of some sort). No need to
2116 * create the device.
2118 pr_debug("Reusing ITT for devID %x\n", dev_id
);
2122 its_dev
= its_create_device(its
, dev_id
, nvec
, true);
2126 pr_debug("ITT %d entries, %d bits\n", nvec
, ilog2(nvec
));
2128 info
->scratchpad
[0].ptr
= its_dev
;
2132 static struct msi_domain_ops its_msi_domain_ops
= {
2133 .msi_prepare
= its_msi_prepare
,
2136 static int its_irq_gic_domain_alloc(struct irq_domain
*domain
,
2138 irq_hw_number_t hwirq
)
2140 struct irq_fwspec fwspec
;
2142 if (irq_domain_get_of_node(domain
->parent
)) {
2143 fwspec
.fwnode
= domain
->parent
->fwnode
;
2144 fwspec
.param_count
= 3;
2145 fwspec
.param
[0] = GIC_IRQ_TYPE_LPI
;
2146 fwspec
.param
[1] = hwirq
;
2147 fwspec
.param
[2] = IRQ_TYPE_EDGE_RISING
;
2148 } else if (is_fwnode_irqchip(domain
->parent
->fwnode
)) {
2149 fwspec
.fwnode
= domain
->parent
->fwnode
;
2150 fwspec
.param_count
= 2;
2151 fwspec
.param
[0] = hwirq
;
2152 fwspec
.param
[1] = IRQ_TYPE_EDGE_RISING
;
2157 return irq_domain_alloc_irqs_parent(domain
, virq
, 1, &fwspec
);
2160 static int its_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2161 unsigned int nr_irqs
, void *args
)
2163 msi_alloc_info_t
*info
= args
;
2164 struct its_device
*its_dev
= info
->scratchpad
[0].ptr
;
2165 irq_hw_number_t hwirq
;
2169 for (i
= 0; i
< nr_irqs
; i
++) {
2170 err
= its_alloc_device_irq(its_dev
, &hwirq
);
2174 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
, hwirq
);
2178 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
,
2179 hwirq
, &its_irq_chip
, its_dev
);
2180 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq
+ i
)));
2181 pr_debug("ID:%d pID:%d vID:%d\n",
2182 (int)(hwirq
- its_dev
->event_map
.lpi_base
),
2183 (int) hwirq
, virq
+ i
);
2189 static void its_irq_domain_activate(struct irq_domain
*domain
,
2192 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2193 u32 event
= its_get_event_id(d
);
2194 const struct cpumask
*cpu_mask
= cpu_online_mask
;
2197 /* get the cpu_mask of local node */
2198 if (its_dev
->its
->numa_node
>= 0)
2199 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
2201 /* Bind the LPI to the first possible CPU */
2202 cpu
= cpumask_first(cpu_mask
);
2203 its_dev
->event_map
.col_map
[event
] = cpu
;
2204 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
2206 /* Map the GIC IRQ and event to the device */
2207 its_send_mapti(its_dev
, d
->hwirq
, event
);
2210 static void its_irq_domain_deactivate(struct irq_domain
*domain
,
2213 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2214 u32 event
= its_get_event_id(d
);
2216 /* Stop the delivery of interrupts */
2217 its_send_discard(its_dev
, event
);
2220 static void its_irq_domain_free(struct irq_domain
*domain
, unsigned int virq
,
2221 unsigned int nr_irqs
)
2223 struct irq_data
*d
= irq_domain_get_irq_data(domain
, virq
);
2224 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2227 for (i
= 0; i
< nr_irqs
; i
++) {
2228 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2230 u32 event
= its_get_event_id(data
);
2232 /* Mark interrupt index as unused */
2233 clear_bit(event
, its_dev
->event_map
.lpi_map
);
2235 /* Nuke the entry in the domain */
2236 irq_domain_reset_irq_data(data
);
2239 /* If all interrupts have been freed, start mopping the floor */
2240 if (bitmap_empty(its_dev
->event_map
.lpi_map
,
2241 its_dev
->event_map
.nr_lpis
)) {
2242 its_lpi_free_chunks(its_dev
->event_map
.lpi_map
,
2243 its_dev
->event_map
.lpi_base
,
2244 its_dev
->event_map
.nr_lpis
);
2245 kfree(its_dev
->event_map
.col_map
);
2247 /* Unmap device/itt */
2248 its_send_mapd(its_dev
, 0);
2249 its_free_device(its_dev
);
2252 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2255 static const struct irq_domain_ops its_domain_ops
= {
2256 .alloc
= its_irq_domain_alloc
,
2257 .free
= its_irq_domain_free
,
2258 .activate
= its_irq_domain_activate
,
2259 .deactivate
= its_irq_domain_deactivate
,
2265 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2266 * likely), the only way to perform an invalidate is to use a fake
2267 * device to issue an INV command, implying that the LPI has first
2268 * been mapped to some event on that device. Since this is not exactly
2269 * cheap, we try to keep that mapping around as long as possible, and
2270 * only issue an UNMAP if we're short on available slots.
2272 * Broken by design(tm).
2274 static void its_vpe_db_proxy_unmap_locked(struct its_vpe
*vpe
)
2276 /* Already unmapped? */
2277 if (vpe
->vpe_proxy_event
== -1)
2280 its_send_discard(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2281 vpe_proxy
.vpes
[vpe
->vpe_proxy_event
] = NULL
;
2284 * We don't track empty slots at all, so let's move the
2285 * next_victim pointer if we can quickly reuse that slot
2286 * instead of nuking an existing entry. Not clear that this is
2287 * always a win though, and this might just generate a ripple
2288 * effect... Let's just hope VPEs don't migrate too often.
2290 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2291 vpe_proxy
.next_victim
= vpe
->vpe_proxy_event
;
2293 vpe
->vpe_proxy_event
= -1;
2296 static void its_vpe_db_proxy_unmap(struct its_vpe
*vpe
)
2298 if (!gic_rdists
->has_direct_lpi
) {
2299 unsigned long flags
;
2301 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2302 its_vpe_db_proxy_unmap_locked(vpe
);
2303 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2307 static void its_vpe_db_proxy_map_locked(struct its_vpe
*vpe
)
2309 /* Already mapped? */
2310 if (vpe
->vpe_proxy_event
!= -1)
2313 /* This slot was already allocated. Kick the other VPE out. */
2314 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2315 its_vpe_db_proxy_unmap_locked(vpe_proxy
.vpes
[vpe_proxy
.next_victim
]);
2317 /* Map the new VPE instead */
2318 vpe_proxy
.vpes
[vpe_proxy
.next_victim
] = vpe
;
2319 vpe
->vpe_proxy_event
= vpe_proxy
.next_victim
;
2320 vpe_proxy
.next_victim
= (vpe_proxy
.next_victim
+ 1) % vpe_proxy
.dev
->nr_ites
;
2322 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = vpe
->col_idx
;
2323 its_send_mapti(vpe_proxy
.dev
, vpe
->vpe_db_lpi
, vpe
->vpe_proxy_event
);
2326 static void its_vpe_db_proxy_move(struct its_vpe
*vpe
, int from
, int to
)
2328 unsigned long flags
;
2329 struct its_collection
*target_col
;
2331 if (gic_rdists
->has_direct_lpi
) {
2332 void __iomem
*rdbase
;
2334 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, from
)->rd_base
;
2335 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2336 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2342 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2344 its_vpe_db_proxy_map_locked(vpe
);
2346 target_col
= &vpe_proxy
.dev
->its
->collections
[to
];
2347 its_send_movi(vpe_proxy
.dev
, target_col
, vpe
->vpe_proxy_event
);
2348 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = to
;
2350 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2353 static int its_vpe_set_affinity(struct irq_data
*d
,
2354 const struct cpumask
*mask_val
,
2357 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2358 int cpu
= cpumask_first(mask_val
);
2361 * Changing affinity is mega expensive, so let's be as lazy as
2362 * we can and only do it if we really have to. Also, if mapped
2363 * into the proxy device, we need to move the doorbell
2364 * interrupt to its new location.
2366 if (vpe
->col_idx
!= cpu
) {
2367 int from
= vpe
->col_idx
;
2370 its_send_vmovp(vpe
);
2371 its_vpe_db_proxy_move(vpe
, from
, cpu
);
2374 return IRQ_SET_MASK_OK_DONE
;
2377 static void its_vpe_schedule(struct its_vpe
*vpe
)
2379 void * __iomem vlpi_base
= gic_data_rdist_vlpi_base();
2382 /* Schedule the VPE */
2383 val
= virt_to_phys(page_address(vpe
->its_vm
->vprop_page
)) &
2384 GENMASK_ULL(51, 12);
2385 val
|= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
2386 val
|= GICR_VPROPBASER_RaWb
;
2387 val
|= GICR_VPROPBASER_InnerShareable
;
2388 gits_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2390 val
= virt_to_phys(page_address(vpe
->vpt_page
)) &
2391 GENMASK_ULL(51, 16);
2392 val
|= GICR_VPENDBASER_RaWaWb
;
2393 val
|= GICR_VPENDBASER_NonShareable
;
2395 * There is no good way of finding out if the pending table is
2396 * empty as we can race against the doorbell interrupt very
2397 * easily. So in the end, vpe->pending_last is only an
2398 * indication that the vcpu has something pending, not one
2399 * that the pending table is empty. A good implementation
2400 * would be able to read its coarse map pretty quickly anyway,
2401 * making this a tolerable issue.
2403 val
|= GICR_VPENDBASER_PendingLast
;
2404 val
|= vpe
->idai
? GICR_VPENDBASER_IDAI
: 0;
2405 val
|= GICR_VPENDBASER_Valid
;
2406 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
2409 static void its_vpe_deschedule(struct its_vpe
*vpe
)
2411 void * __iomem vlpi_base
= gic_data_rdist_vlpi_base();
2412 u32 count
= 1000000; /* 1s! */
2416 /* We're being scheduled out */
2417 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
2418 val
&= ~GICR_VPENDBASER_Valid
;
2419 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
2422 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
2423 clean
= !(val
& GICR_VPENDBASER_Dirty
);
2429 } while (!clean
&& count
);
2431 if (unlikely(!clean
&& !count
)) {
2432 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2434 vpe
->pending_last
= true;
2436 vpe
->idai
= !!(val
& GICR_VPENDBASER_IDAI
);
2437 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
2441 static int its_vpe_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
2443 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2444 struct its_cmd_info
*info
= vcpu_info
;
2446 switch (info
->cmd_type
) {
2448 its_vpe_schedule(vpe
);
2451 case DESCHEDULE_VPE
:
2452 its_vpe_deschedule(vpe
);
2456 its_send_vinvall(vpe
);
2464 static void its_vpe_send_cmd(struct its_vpe
*vpe
,
2465 void (*cmd
)(struct its_device
*, u32
))
2467 unsigned long flags
;
2469 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2471 its_vpe_db_proxy_map_locked(vpe
);
2472 cmd(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2474 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2477 static void its_vpe_send_inv(struct irq_data
*d
)
2479 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2481 if (gic_rdists
->has_direct_lpi
) {
2482 void __iomem
*rdbase
;
2484 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2485 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_INVLPIR
);
2486 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2489 its_vpe_send_cmd(vpe
, its_send_inv
);
2493 static void its_vpe_mask_irq(struct irq_data
*d
)
2496 * We need to unmask the LPI, which is described by the parent
2497 * irq_data. Instead of calling into the parent (which won't
2498 * exactly do the right thing, let's simply use the
2499 * parent_data pointer. Yes, I'm naughty.
2501 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
2502 its_vpe_send_inv(d
);
2505 static void its_vpe_unmask_irq(struct irq_data
*d
)
2507 /* Same hack as above... */
2508 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
2509 its_vpe_send_inv(d
);
2512 static int its_vpe_set_irqchip_state(struct irq_data
*d
,
2513 enum irqchip_irq_state which
,
2516 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2518 if (which
!= IRQCHIP_STATE_PENDING
)
2521 if (gic_rdists
->has_direct_lpi
) {
2522 void __iomem
*rdbase
;
2524 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2526 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_SETLPIR
);
2528 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2529 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2534 its_vpe_send_cmd(vpe
, its_send_int
);
2536 its_vpe_send_cmd(vpe
, its_send_clear
);
2542 static struct irq_chip its_vpe_irq_chip
= {
2543 .name
= "GICv4-vpe",
2544 .irq_mask
= its_vpe_mask_irq
,
2545 .irq_unmask
= its_vpe_unmask_irq
,
2546 .irq_eoi
= irq_chip_eoi_parent
,
2547 .irq_set_affinity
= its_vpe_set_affinity
,
2548 .irq_set_irqchip_state
= its_vpe_set_irqchip_state
,
2549 .irq_set_vcpu_affinity
= its_vpe_set_vcpu_affinity
,
2552 static int its_vpe_id_alloc(void)
2554 return ida_simple_get(&its_vpeid_ida
, 0, 1 << 16, GFP_KERNEL
);
2557 static void its_vpe_id_free(u16 id
)
2559 ida_simple_remove(&its_vpeid_ida
, id
);
2562 static int its_vpe_init(struct its_vpe
*vpe
)
2564 struct page
*vpt_page
;
2567 /* Allocate vpe_id */
2568 vpe_id
= its_vpe_id_alloc();
2573 vpt_page
= its_allocate_pending_table(GFP_KERNEL
);
2575 its_vpe_id_free(vpe_id
);
2579 if (!its_alloc_vpe_table(vpe_id
)) {
2580 its_vpe_id_free(vpe_id
);
2581 its_free_pending_table(vpe
->vpt_page
);
2585 vpe
->vpe_id
= vpe_id
;
2586 vpe
->vpt_page
= vpt_page
;
2587 vpe
->vpe_proxy_event
= -1;
2592 static void its_vpe_teardown(struct its_vpe
*vpe
)
2594 its_vpe_db_proxy_unmap(vpe
);
2595 its_vpe_id_free(vpe
->vpe_id
);
2596 its_free_pending_table(vpe
->vpt_page
);
2599 static void its_vpe_irq_domain_free(struct irq_domain
*domain
,
2601 unsigned int nr_irqs
)
2603 struct its_vm
*vm
= domain
->host_data
;
2606 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2608 for (i
= 0; i
< nr_irqs
; i
++) {
2609 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2611 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(data
);
2613 BUG_ON(vm
!= vpe
->its_vm
);
2615 clear_bit(data
->hwirq
, vm
->db_bitmap
);
2616 its_vpe_teardown(vpe
);
2617 irq_domain_reset_irq_data(data
);
2620 if (bitmap_empty(vm
->db_bitmap
, vm
->nr_db_lpis
)) {
2621 its_lpi_free_chunks(vm
->db_bitmap
, vm
->db_lpi_base
, vm
->nr_db_lpis
);
2622 its_free_prop_table(vm
->vprop_page
);
2626 static int its_vpe_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2627 unsigned int nr_irqs
, void *args
)
2629 struct its_vm
*vm
= args
;
2630 unsigned long *bitmap
;
2631 struct page
*vprop_page
;
2632 int base
, nr_ids
, i
, err
= 0;
2636 bitmap
= its_lpi_alloc_chunks(nr_irqs
, &base
, &nr_ids
);
2640 if (nr_ids
< nr_irqs
) {
2641 its_lpi_free_chunks(bitmap
, base
, nr_ids
);
2645 vprop_page
= its_allocate_prop_table(GFP_KERNEL
);
2647 its_lpi_free_chunks(bitmap
, base
, nr_ids
);
2651 vm
->db_bitmap
= bitmap
;
2652 vm
->db_lpi_base
= base
;
2653 vm
->nr_db_lpis
= nr_ids
;
2654 vm
->vprop_page
= vprop_page
;
2656 for (i
= 0; i
< nr_irqs
; i
++) {
2657 vm
->vpes
[i
]->vpe_db_lpi
= base
+ i
;
2658 err
= its_vpe_init(vm
->vpes
[i
]);
2661 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
,
2662 vm
->vpes
[i
]->vpe_db_lpi
);
2665 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
2666 &its_vpe_irq_chip
, vm
->vpes
[i
]);
2672 its_vpe_irq_domain_free(domain
, virq
, i
- 1);
2674 its_lpi_free_chunks(bitmap
, base
, nr_ids
);
2675 its_free_prop_table(vprop_page
);
2681 static void its_vpe_irq_domain_activate(struct irq_domain
*domain
,
2684 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2686 /* Map the VPE to the first possible CPU */
2687 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
2688 its_send_vmapp(vpe
, true);
2689 its_send_vinvall(vpe
);
2692 static void its_vpe_irq_domain_deactivate(struct irq_domain
*domain
,
2695 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2697 its_send_vmapp(vpe
, false);
2700 static const struct irq_domain_ops its_vpe_domain_ops
= {
2701 .alloc
= its_vpe_irq_domain_alloc
,
2702 .free
= its_vpe_irq_domain_free
,
2703 .activate
= its_vpe_irq_domain_activate
,
2704 .deactivate
= its_vpe_irq_domain_deactivate
,
2707 static int its_force_quiescent(void __iomem
*base
)
2709 u32 count
= 1000000; /* 1s */
2712 val
= readl_relaxed(base
+ GITS_CTLR
);
2714 * GIC architecture specification requires the ITS to be both
2715 * disabled and quiescent for writes to GITS_BASER<n> or
2716 * GITS_CBASER to not have UNPREDICTABLE results.
2718 if ((val
& GITS_CTLR_QUIESCENT
) && !(val
& GITS_CTLR_ENABLE
))
2721 /* Disable the generation of all interrupts to this ITS */
2722 val
&= ~(GITS_CTLR_ENABLE
| GITS_CTLR_ImDe
);
2723 writel_relaxed(val
, base
+ GITS_CTLR
);
2725 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2727 val
= readl_relaxed(base
+ GITS_CTLR
);
2728 if (val
& GITS_CTLR_QUIESCENT
)
2740 static void __maybe_unused
its_enable_quirk_cavium_22375(void *data
)
2742 struct its_node
*its
= data
;
2744 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_22375
;
2747 static void __maybe_unused
its_enable_quirk_cavium_23144(void *data
)
2749 struct its_node
*its
= data
;
2751 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_23144
;
2754 static void __maybe_unused
its_enable_quirk_qdf2400_e0065(void *data
)
2756 struct its_node
*its
= data
;
2758 /* On QDF2400, the size of the ITE is 16Bytes */
2762 static const struct gic_quirk its_quirks
[] = {
2763 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2765 .desc
= "ITS: Cavium errata 22375, 24313",
2766 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
2768 .init
= its_enable_quirk_cavium_22375
,
2771 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2773 .desc
= "ITS: Cavium erratum 23144",
2774 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
2776 .init
= its_enable_quirk_cavium_23144
,
2779 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
2781 .desc
= "ITS: QDF2400 erratum 0065",
2782 .iidr
= 0x00001070, /* QDF2400 ITS rev 1.x */
2784 .init
= its_enable_quirk_qdf2400_e0065
,
2791 static void its_enable_quirks(struct its_node
*its
)
2793 u32 iidr
= readl_relaxed(its
->base
+ GITS_IIDR
);
2795 gic_enable_quirks(iidr
, its_quirks
, its
);
2798 static int its_init_domain(struct fwnode_handle
*handle
, struct its_node
*its
)
2800 struct irq_domain
*inner_domain
;
2801 struct msi_domain_info
*info
;
2803 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
2807 inner_domain
= irq_domain_create_tree(handle
, &its_domain_ops
, its
);
2808 if (!inner_domain
) {
2813 inner_domain
->parent
= its_parent
;
2814 irq_domain_update_bus_token(inner_domain
, DOMAIN_BUS_NEXUS
);
2815 inner_domain
->flags
|= IRQ_DOMAIN_FLAG_MSI_REMAP
;
2816 info
->ops
= &its_msi_domain_ops
;
2818 inner_domain
->host_data
= info
;
2823 static int its_init_vpe_domain(void)
2825 struct its_node
*its
;
2829 if (gic_rdists
->has_direct_lpi
) {
2830 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
2834 /* Any ITS will do, even if not v4 */
2835 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
2837 entries
= roundup_pow_of_two(nr_cpu_ids
);
2838 vpe_proxy
.vpes
= kzalloc(sizeof(*vpe_proxy
.vpes
) * entries
,
2840 if (!vpe_proxy
.vpes
) {
2841 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
2845 /* Use the last possible DevID */
2846 devid
= GENMASK(its
->device_ids
- 1, 0);
2847 vpe_proxy
.dev
= its_create_device(its
, devid
, entries
, false);
2848 if (!vpe_proxy
.dev
) {
2849 kfree(vpe_proxy
.vpes
);
2850 pr_err("ITS: Can't allocate GICv4 proxy device\n");
2854 BUG_ON(entries
!= vpe_proxy
.dev
->nr_ites
);
2856 raw_spin_lock_init(&vpe_proxy
.lock
);
2857 vpe_proxy
.next_victim
= 0;
2858 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
2859 devid
, vpe_proxy
.dev
->nr_ites
);
2864 static int __init
its_compute_its_list_map(struct resource
*res
,
2865 void __iomem
*its_base
)
2871 * This is assumed to be done early enough that we're
2872 * guaranteed to be single-threaded, hence no
2873 * locking. Should this change, we should address
2876 its_number
= find_first_zero_bit(&its_list_map
, ITS_LIST_MAX
);
2877 if (its_number
>= ITS_LIST_MAX
) {
2878 pr_err("ITS@%pa: No ITSList entry available!\n",
2883 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
2884 ctlr
&= ~GITS_CTLR_ITS_NUMBER
;
2885 ctlr
|= its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
;
2886 writel_relaxed(ctlr
, its_base
+ GITS_CTLR
);
2887 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
2888 if ((ctlr
& GITS_CTLR_ITS_NUMBER
) != (its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
)) {
2889 its_number
= ctlr
& GITS_CTLR_ITS_NUMBER
;
2890 its_number
>>= GITS_CTLR_ITS_NUMBER_SHIFT
;
2893 if (test_and_set_bit(its_number
, &its_list_map
)) {
2894 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
2895 &res
->start
, its_number
);
2902 static int __init
its_probe_one(struct resource
*res
,
2903 struct fwnode_handle
*handle
, int numa_node
)
2905 struct its_node
*its
;
2906 void __iomem
*its_base
;
2908 u64 baser
, tmp
, typer
;
2911 its_base
= ioremap(res
->start
, resource_size(res
));
2913 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res
->start
);
2917 val
= readl_relaxed(its_base
+ GITS_PIDR2
) & GIC_PIDR2_ARCH_MASK
;
2918 if (val
!= 0x30 && val
!= 0x40) {
2919 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res
->start
);
2924 err
= its_force_quiescent(its_base
);
2926 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res
->start
);
2930 pr_info("ITS %pR\n", res
);
2932 its
= kzalloc(sizeof(*its
), GFP_KERNEL
);
2938 raw_spin_lock_init(&its
->lock
);
2939 INIT_LIST_HEAD(&its
->entry
);
2940 INIT_LIST_HEAD(&its
->its_device_list
);
2941 typer
= gic_read_typer(its_base
+ GITS_TYPER
);
2942 its
->base
= its_base
;
2943 its
->phys_base
= res
->start
;
2944 its
->ite_size
= GITS_TYPER_ITT_ENTRY_SIZE(typer
);
2945 its
->is_v4
= !!(typer
& GITS_TYPER_VLPIS
);
2947 if (!(typer
& GITS_TYPER_VMOVP
)) {
2948 err
= its_compute_its_list_map(res
, its_base
);
2952 pr_info("ITS@%pa: Using ITS number %d\n",
2955 pr_info("ITS@%pa: Single VMOVP capable\n", &res
->start
);
2959 its
->numa_node
= numa_node
;
2961 its
->cmd_base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
2962 get_order(ITS_CMD_QUEUE_SZ
));
2963 if (!its
->cmd_base
) {
2967 its
->cmd_write
= its
->cmd_base
;
2969 its_enable_quirks(its
);
2971 err
= its_alloc_tables(its
);
2975 err
= its_alloc_collections(its
);
2977 goto out_free_tables
;
2979 baser
= (virt_to_phys(its
->cmd_base
) |
2980 GITS_CBASER_RaWaWb
|
2981 GITS_CBASER_InnerShareable
|
2982 (ITS_CMD_QUEUE_SZ
/ SZ_4K
- 1) |
2985 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
2986 tmp
= gits_read_cbaser(its
->base
+ GITS_CBASER
);
2988 if ((tmp
^ baser
) & GITS_CBASER_SHAREABILITY_MASK
) {
2989 if (!(tmp
& GITS_CBASER_SHAREABILITY_MASK
)) {
2991 * The HW reports non-shareable, we must
2992 * remove the cacheability attributes as
2995 baser
&= ~(GITS_CBASER_SHAREABILITY_MASK
|
2996 GITS_CBASER_CACHEABILITY_MASK
);
2997 baser
|= GITS_CBASER_nC
;
2998 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
3000 pr_info("ITS: using cache flushing for cmd queue\n");
3001 its
->flags
|= ITS_FLAGS_CMDQ_NEEDS_FLUSHING
;
3004 gits_write_cwriter(0, its
->base
+ GITS_CWRITER
);
3005 ctlr
= readl_relaxed(its
->base
+ GITS_CTLR
);
3006 ctlr
|= GITS_CTLR_ENABLE
;
3008 ctlr
|= GITS_CTLR_ImDe
;
3009 writel_relaxed(ctlr
, its
->base
+ GITS_CTLR
);
3011 err
= its_init_domain(handle
, its
);
3013 goto out_free_tables
;
3015 spin_lock(&its_lock
);
3016 list_add(&its
->entry
, &its_nodes
);
3017 spin_unlock(&its_lock
);
3022 its_free_tables(its
);
3024 free_pages((unsigned long)its
->cmd_base
, get_order(ITS_CMD_QUEUE_SZ
));
3029 pr_err("ITS@%pa: failed probing (%d)\n", &res
->start
, err
);
3033 static bool gic_rdists_supports_plpis(void)
3035 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
) & GICR_TYPER_PLPIS
);
3038 int its_cpu_init(void)
3040 if (!list_empty(&its_nodes
)) {
3041 if (!gic_rdists_supports_plpis()) {
3042 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3045 its_cpu_init_lpis();
3046 its_cpu_init_collection();
3052 static const struct of_device_id its_device_id
[] = {
3053 { .compatible
= "arm,gic-v3-its", },
3057 static int __init
its_of_probe(struct device_node
*node
)
3059 struct device_node
*np
;
3060 struct resource res
;
3062 for (np
= of_find_matching_node(node
, its_device_id
); np
;
3063 np
= of_find_matching_node(np
, its_device_id
)) {
3064 if (!of_property_read_bool(np
, "msi-controller")) {
3065 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3070 if (of_address_to_resource(np
, 0, &res
)) {
3071 pr_warn("%pOF: no regs?\n", np
);
3075 its_probe_one(&res
, &np
->fwnode
, of_node_to_nid(np
));
3082 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3084 #ifdef CONFIG_ACPI_NUMA
3085 struct its_srat_map
{
3092 static struct its_srat_map
*its_srat_maps __initdata
;
3093 static int its_in_srat __initdata
;
3095 static int __init
acpi_get_its_numa_node(u32 its_id
)
3099 for (i
= 0; i
< its_in_srat
; i
++) {
3100 if (its_id
== its_srat_maps
[i
].its_id
)
3101 return its_srat_maps
[i
].numa_node
;
3103 return NUMA_NO_NODE
;
3106 static int __init
gic_acpi_match_srat_its(struct acpi_subtable_header
*header
,
3107 const unsigned long end
)
3112 static int __init
gic_acpi_parse_srat_its(struct acpi_subtable_header
*header
,
3113 const unsigned long end
)
3116 struct acpi_srat_gic_its_affinity
*its_affinity
;
3118 its_affinity
= (struct acpi_srat_gic_its_affinity
*)header
;
3122 if (its_affinity
->header
.length
< sizeof(*its_affinity
)) {
3123 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3124 its_affinity
->header
.length
);
3128 node
= acpi_map_pxm_to_node(its_affinity
->proximity_domain
);
3130 if (node
== NUMA_NO_NODE
|| node
>= MAX_NUMNODES
) {
3131 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node
);
3135 its_srat_maps
[its_in_srat
].numa_node
= node
;
3136 its_srat_maps
[its_in_srat
].its_id
= its_affinity
->its_id
;
3138 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3139 its_affinity
->proximity_domain
, its_affinity
->its_id
, node
);
3144 static void __init
acpi_table_parse_srat_its(void)
3148 count
= acpi_table_parse_entries(ACPI_SIG_SRAT
,
3149 sizeof(struct acpi_table_srat
),
3150 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3151 gic_acpi_match_srat_its
, 0);
3155 its_srat_maps
= kmalloc(count
* sizeof(struct its_srat_map
),
3157 if (!its_srat_maps
) {
3158 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3162 acpi_table_parse_entries(ACPI_SIG_SRAT
,
3163 sizeof(struct acpi_table_srat
),
3164 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3165 gic_acpi_parse_srat_its
, 0);
3168 /* free the its_srat_maps after ITS probing */
3169 static void __init
acpi_its_srat_maps_free(void)
3171 kfree(its_srat_maps
);
3174 static void __init
acpi_table_parse_srat_its(void) { }
3175 static int __init
acpi_get_its_numa_node(u32 its_id
) { return NUMA_NO_NODE
; }
3176 static void __init
acpi_its_srat_maps_free(void) { }
3179 static int __init
gic_acpi_parse_madt_its(struct acpi_subtable_header
*header
,
3180 const unsigned long end
)
3182 struct acpi_madt_generic_translator
*its_entry
;
3183 struct fwnode_handle
*dom_handle
;
3184 struct resource res
;
3187 its_entry
= (struct acpi_madt_generic_translator
*)header
;
3188 memset(&res
, 0, sizeof(res
));
3189 res
.start
= its_entry
->base_address
;
3190 res
.end
= its_entry
->base_address
+ ACPI_GICV3_ITS_MEM_SIZE
- 1;
3191 res
.flags
= IORESOURCE_MEM
;
3193 dom_handle
= irq_domain_alloc_fwnode((void *)its_entry
->base_address
);
3195 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3200 err
= iort_register_domain_token(its_entry
->translation_id
, dom_handle
);
3202 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3203 &res
.start
, its_entry
->translation_id
);
3207 err
= its_probe_one(&res
, dom_handle
,
3208 acpi_get_its_numa_node(its_entry
->translation_id
));
3212 iort_deregister_domain_token(its_entry
->translation_id
);
3214 irq_domain_free_fwnode(dom_handle
);
3218 static void __init
its_acpi_probe(void)
3220 acpi_table_parse_srat_its();
3221 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR
,
3222 gic_acpi_parse_madt_its
, 0);
3223 acpi_its_srat_maps_free();
3226 static void __init
its_acpi_probe(void) { }
3229 int __init
its_init(struct fwnode_handle
*handle
, struct rdists
*rdists
,
3230 struct irq_domain
*parent_domain
)
3232 struct device_node
*of_node
;
3233 struct its_node
*its
;
3234 bool has_v4
= false;
3237 its_parent
= parent_domain
;
3238 of_node
= to_of_node(handle
);
3240 its_of_probe(of_node
);
3244 if (list_empty(&its_nodes
)) {
3245 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3249 gic_rdists
= rdists
;
3250 err
= its_alloc_lpi_tables();
3254 list_for_each_entry(its
, &its_nodes
, entry
)
3255 has_v4
|= its
->is_v4
;
3257 if (has_v4
& rdists
->has_vlpis
) {
3258 if (its_init_vpe_domain() ||
3259 its_init_v4(parent_domain
, &its_vpe_domain_ops
)) {
3260 rdists
->has_vlpis
= false;
3261 pr_err("ITS: Disabling GICv4 support\n");