fs: make fiemap work from compat_ioctl
[linux/fpc-iii.git] / drivers / irqchip / irq-gic-v3-its.c
blobe8d89343d6139424e2caf0baa112955b7005b2e4
1 /*
2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/irqchip/arm-gic-v4.h>
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
44 #include "irq-gic-common.h"
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
52 static u32 lpi_id_bits;
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59 #define LPI_NRBITS lpi_id_bits
60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63 #define LPI_PROP_DEFAULT_PRIO 0xa0
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
68 * CPU.
70 struct its_collection {
71 u64 target_address;
72 u16 col_id;
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
79 struct its_baser {
80 void *base;
81 u64 val;
82 u32 order;
83 u32 psz;
87 * The ITS structure - contains most of the infrastructure, with the
88 * top-level MSI domain, the command queue, the collections, and the
89 * list of devices writing to it.
91 struct its_node {
92 raw_spinlock_t lock;
93 struct list_head entry;
94 void __iomem *base;
95 phys_addr_t phys_base;
96 struct its_cmd_block *cmd_base;
97 struct its_cmd_block *cmd_write;
98 struct its_baser tables[GITS_BASER_NR_REGS];
99 struct its_collection *collections;
100 struct list_head its_device_list;
101 u64 flags;
102 u32 ite_size;
103 u32 device_ids;
104 int numa_node;
105 bool is_v4;
108 #define ITS_ITT_ALIGN SZ_256
110 /* Convert page order to size in bytes */
111 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
113 struct event_lpi_map {
114 unsigned long *lpi_map;
115 u16 *col_map;
116 irq_hw_number_t lpi_base;
117 int nr_lpis;
118 struct mutex vlpi_lock;
119 struct its_vm *vm;
120 struct its_vlpi_map *vlpi_maps;
121 int nr_vlpis;
125 * The ITS view of a device - belongs to an ITS, owns an interrupt
126 * translation table, and a list of interrupts. If it some of its
127 * LPIs are injected into a guest (GICv4), the event_map.vm field
128 * indicates which one.
130 struct its_device {
131 struct list_head entry;
132 struct its_node *its;
133 struct event_lpi_map event_map;
134 void *itt;
135 u32 nr_ites;
136 u32 device_id;
139 static struct {
140 raw_spinlock_t lock;
141 struct its_device *dev;
142 struct its_vpe **vpes;
143 int next_victim;
144 } vpe_proxy;
146 static LIST_HEAD(its_nodes);
147 static DEFINE_SPINLOCK(its_lock);
148 static struct rdists *gic_rdists;
149 static struct irq_domain *its_parent;
152 * We have a maximum number of 16 ITSs in the whole system if we're
153 * using the ITSList mechanism
155 #define ITS_LIST_MAX 16
157 static unsigned long its_list_map;
158 static u16 vmovp_seq_num;
159 static DEFINE_RAW_SPINLOCK(vmovp_lock);
161 static DEFINE_IDA(its_vpeid_ida);
163 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
164 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
165 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
167 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
168 u32 event)
170 struct its_node *its = its_dev->its;
172 return its->collections + its_dev->event_map.col_map[event];
176 * ITS command descriptors - parameters to be encoded in a command
177 * block.
179 struct its_cmd_desc {
180 union {
181 struct {
182 struct its_device *dev;
183 u32 event_id;
184 } its_inv_cmd;
186 struct {
187 struct its_device *dev;
188 u32 event_id;
189 } its_clear_cmd;
191 struct {
192 struct its_device *dev;
193 u32 event_id;
194 } its_int_cmd;
196 struct {
197 struct its_device *dev;
198 int valid;
199 } its_mapd_cmd;
201 struct {
202 struct its_collection *col;
203 int valid;
204 } its_mapc_cmd;
206 struct {
207 struct its_device *dev;
208 u32 phys_id;
209 u32 event_id;
210 } its_mapti_cmd;
212 struct {
213 struct its_device *dev;
214 struct its_collection *col;
215 u32 event_id;
216 } its_movi_cmd;
218 struct {
219 struct its_device *dev;
220 u32 event_id;
221 } its_discard_cmd;
223 struct {
224 struct its_collection *col;
225 } its_invall_cmd;
227 struct {
228 struct its_vpe *vpe;
229 } its_vinvall_cmd;
231 struct {
232 struct its_vpe *vpe;
233 struct its_collection *col;
234 bool valid;
235 } its_vmapp_cmd;
237 struct {
238 struct its_vpe *vpe;
239 struct its_device *dev;
240 u32 virt_id;
241 u32 event_id;
242 bool db_enabled;
243 } its_vmapti_cmd;
245 struct {
246 struct its_vpe *vpe;
247 struct its_device *dev;
248 u32 event_id;
249 bool db_enabled;
250 } its_vmovi_cmd;
252 struct {
253 struct its_vpe *vpe;
254 struct its_collection *col;
255 u16 seq_num;
256 u16 its_list;
257 } its_vmovp_cmd;
262 * The ITS command block, which is what the ITS actually parses.
264 struct its_cmd_block {
265 u64 raw_cmd[4];
268 #define ITS_CMD_QUEUE_SZ SZ_64K
269 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
271 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
272 struct its_cmd_desc *);
274 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_cmd_block *,
275 struct its_cmd_desc *);
277 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
279 u64 mask = GENMASK_ULL(h, l);
280 *raw_cmd &= ~mask;
281 *raw_cmd |= (val << l) & mask;
284 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
286 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
289 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
291 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
294 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
296 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
299 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
301 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
304 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
306 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
309 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
311 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 50, 8);
314 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
316 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
319 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
321 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 50, 16);
324 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
326 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
329 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
331 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
334 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
336 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
339 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
341 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
344 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
346 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
349 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
351 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
354 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
356 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
359 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
361 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 50, 16);
364 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
366 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
369 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
371 /* Let's fixup BE commands */
372 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
373 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
374 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
375 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
378 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
379 struct its_cmd_desc *desc)
381 unsigned long itt_addr;
382 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
384 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
385 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
387 its_encode_cmd(cmd, GITS_CMD_MAPD);
388 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
389 its_encode_size(cmd, size - 1);
390 its_encode_itt(cmd, itt_addr);
391 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
393 its_fixup_cmd(cmd);
395 return NULL;
398 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
399 struct its_cmd_desc *desc)
401 its_encode_cmd(cmd, GITS_CMD_MAPC);
402 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
403 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
404 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
406 its_fixup_cmd(cmd);
408 return desc->its_mapc_cmd.col;
411 static struct its_collection *its_build_mapti_cmd(struct its_cmd_block *cmd,
412 struct its_cmd_desc *desc)
414 struct its_collection *col;
416 col = dev_event_to_col(desc->its_mapti_cmd.dev,
417 desc->its_mapti_cmd.event_id);
419 its_encode_cmd(cmd, GITS_CMD_MAPTI);
420 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
421 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
422 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
423 its_encode_collection(cmd, col->col_id);
425 its_fixup_cmd(cmd);
427 return col;
430 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
431 struct its_cmd_desc *desc)
433 struct its_collection *col;
435 col = dev_event_to_col(desc->its_movi_cmd.dev,
436 desc->its_movi_cmd.event_id);
438 its_encode_cmd(cmd, GITS_CMD_MOVI);
439 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
440 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
441 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
443 its_fixup_cmd(cmd);
445 return col;
448 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
449 struct its_cmd_desc *desc)
451 struct its_collection *col;
453 col = dev_event_to_col(desc->its_discard_cmd.dev,
454 desc->its_discard_cmd.event_id);
456 its_encode_cmd(cmd, GITS_CMD_DISCARD);
457 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
458 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
460 its_fixup_cmd(cmd);
462 return col;
465 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
466 struct its_cmd_desc *desc)
468 struct its_collection *col;
470 col = dev_event_to_col(desc->its_inv_cmd.dev,
471 desc->its_inv_cmd.event_id);
473 its_encode_cmd(cmd, GITS_CMD_INV);
474 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
475 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
477 its_fixup_cmd(cmd);
479 return col;
482 static struct its_collection *its_build_int_cmd(struct its_cmd_block *cmd,
483 struct its_cmd_desc *desc)
485 struct its_collection *col;
487 col = dev_event_to_col(desc->its_int_cmd.dev,
488 desc->its_int_cmd.event_id);
490 its_encode_cmd(cmd, GITS_CMD_INT);
491 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
492 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
494 its_fixup_cmd(cmd);
496 return col;
499 static struct its_collection *its_build_clear_cmd(struct its_cmd_block *cmd,
500 struct its_cmd_desc *desc)
502 struct its_collection *col;
504 col = dev_event_to_col(desc->its_clear_cmd.dev,
505 desc->its_clear_cmd.event_id);
507 its_encode_cmd(cmd, GITS_CMD_CLEAR);
508 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
509 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
511 its_fixup_cmd(cmd);
513 return col;
516 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
517 struct its_cmd_desc *desc)
519 its_encode_cmd(cmd, GITS_CMD_INVALL);
520 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
522 its_fixup_cmd(cmd);
524 return NULL;
527 static struct its_vpe *its_build_vinvall_cmd(struct its_cmd_block *cmd,
528 struct its_cmd_desc *desc)
530 its_encode_cmd(cmd, GITS_CMD_VINVALL);
531 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
533 its_fixup_cmd(cmd);
535 return desc->its_vinvall_cmd.vpe;
538 static struct its_vpe *its_build_vmapp_cmd(struct its_cmd_block *cmd,
539 struct its_cmd_desc *desc)
541 unsigned long vpt_addr;
543 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
545 its_encode_cmd(cmd, GITS_CMD_VMAPP);
546 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
547 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
548 its_encode_target(cmd, desc->its_vmapp_cmd.col->target_address);
549 its_encode_vpt_addr(cmd, vpt_addr);
550 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
552 its_fixup_cmd(cmd);
554 return desc->its_vmapp_cmd.vpe;
557 static struct its_vpe *its_build_vmapti_cmd(struct its_cmd_block *cmd,
558 struct its_cmd_desc *desc)
560 u32 db;
562 if (desc->its_vmapti_cmd.db_enabled)
563 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
564 else
565 db = 1023;
567 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
568 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
569 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
570 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
571 its_encode_db_phys_id(cmd, db);
572 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
574 its_fixup_cmd(cmd);
576 return desc->its_vmapti_cmd.vpe;
579 static struct its_vpe *its_build_vmovi_cmd(struct its_cmd_block *cmd,
580 struct its_cmd_desc *desc)
582 u32 db;
584 if (desc->its_vmovi_cmd.db_enabled)
585 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
586 else
587 db = 1023;
589 its_encode_cmd(cmd, GITS_CMD_VMOVI);
590 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
591 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
592 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
593 its_encode_db_phys_id(cmd, db);
594 its_encode_db_valid(cmd, true);
596 its_fixup_cmd(cmd);
598 return desc->its_vmovi_cmd.vpe;
601 static struct its_vpe *its_build_vmovp_cmd(struct its_cmd_block *cmd,
602 struct its_cmd_desc *desc)
604 its_encode_cmd(cmd, GITS_CMD_VMOVP);
605 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
606 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
607 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
608 its_encode_target(cmd, desc->its_vmovp_cmd.col->target_address);
610 its_fixup_cmd(cmd);
612 return desc->its_vmovp_cmd.vpe;
615 static u64 its_cmd_ptr_to_offset(struct its_node *its,
616 struct its_cmd_block *ptr)
618 return (ptr - its->cmd_base) * sizeof(*ptr);
621 static int its_queue_full(struct its_node *its)
623 int widx;
624 int ridx;
626 widx = its->cmd_write - its->cmd_base;
627 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
629 /* This is incredibly unlikely to happen, unless the ITS locks up. */
630 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
631 return 1;
633 return 0;
636 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
638 struct its_cmd_block *cmd;
639 u32 count = 1000000; /* 1s! */
641 while (its_queue_full(its)) {
642 count--;
643 if (!count) {
644 pr_err_ratelimited("ITS queue not draining\n");
645 return NULL;
647 cpu_relax();
648 udelay(1);
651 cmd = its->cmd_write++;
653 /* Handle queue wrapping */
654 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
655 its->cmd_write = its->cmd_base;
657 /* Clear command */
658 cmd->raw_cmd[0] = 0;
659 cmd->raw_cmd[1] = 0;
660 cmd->raw_cmd[2] = 0;
661 cmd->raw_cmd[3] = 0;
663 return cmd;
666 static struct its_cmd_block *its_post_commands(struct its_node *its)
668 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
670 writel_relaxed(wr, its->base + GITS_CWRITER);
672 return its->cmd_write;
675 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
678 * Make sure the commands written to memory are observable by
679 * the ITS.
681 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
682 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
683 else
684 dsb(ishst);
687 static void its_wait_for_range_completion(struct its_node *its,
688 struct its_cmd_block *from,
689 struct its_cmd_block *to)
691 u64 rd_idx, from_idx, to_idx;
692 u32 count = 1000000; /* 1s! */
694 from_idx = its_cmd_ptr_to_offset(its, from);
695 to_idx = its_cmd_ptr_to_offset(its, to);
697 while (1) {
698 rd_idx = readl_relaxed(its->base + GITS_CREADR);
700 /* Direct case */
701 if (from_idx < to_idx && rd_idx >= to_idx)
702 break;
704 /* Wrapped case */
705 if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
706 break;
708 count--;
709 if (!count) {
710 pr_err_ratelimited("ITS queue timeout\n");
711 return;
713 cpu_relax();
714 udelay(1);
718 /* Warning, macro hell follows */
719 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
720 void name(struct its_node *its, \
721 buildtype builder, \
722 struct its_cmd_desc *desc) \
724 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
725 synctype *sync_obj; \
726 unsigned long flags; \
728 raw_spin_lock_irqsave(&its->lock, flags); \
730 cmd = its_allocate_entry(its); \
731 if (!cmd) { /* We're soooooo screewed... */ \
732 raw_spin_unlock_irqrestore(&its->lock, flags); \
733 return; \
735 sync_obj = builder(cmd, desc); \
736 its_flush_cmd(its, cmd); \
738 if (sync_obj) { \
739 sync_cmd = its_allocate_entry(its); \
740 if (!sync_cmd) \
741 goto post; \
743 buildfn(sync_cmd, sync_obj); \
744 its_flush_cmd(its, sync_cmd); \
747 post: \
748 next_cmd = its_post_commands(its); \
749 raw_spin_unlock_irqrestore(&its->lock, flags); \
751 its_wait_for_range_completion(its, cmd, next_cmd); \
754 static void its_build_sync_cmd(struct its_cmd_block *sync_cmd,
755 struct its_collection *sync_col)
757 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
758 its_encode_target(sync_cmd, sync_col->target_address);
760 its_fixup_cmd(sync_cmd);
763 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
764 struct its_collection, its_build_sync_cmd)
766 static void its_build_vsync_cmd(struct its_cmd_block *sync_cmd,
767 struct its_vpe *sync_vpe)
769 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
770 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
772 its_fixup_cmd(sync_cmd);
775 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
776 struct its_vpe, its_build_vsync_cmd)
778 static void its_send_int(struct its_device *dev, u32 event_id)
780 struct its_cmd_desc desc;
782 desc.its_int_cmd.dev = dev;
783 desc.its_int_cmd.event_id = event_id;
785 its_send_single_command(dev->its, its_build_int_cmd, &desc);
788 static void its_send_clear(struct its_device *dev, u32 event_id)
790 struct its_cmd_desc desc;
792 desc.its_clear_cmd.dev = dev;
793 desc.its_clear_cmd.event_id = event_id;
795 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
798 static void its_send_inv(struct its_device *dev, u32 event_id)
800 struct its_cmd_desc desc;
802 desc.its_inv_cmd.dev = dev;
803 desc.its_inv_cmd.event_id = event_id;
805 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
808 static void its_send_mapd(struct its_device *dev, int valid)
810 struct its_cmd_desc desc;
812 desc.its_mapd_cmd.dev = dev;
813 desc.its_mapd_cmd.valid = !!valid;
815 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
818 static void its_send_mapc(struct its_node *its, struct its_collection *col,
819 int valid)
821 struct its_cmd_desc desc;
823 desc.its_mapc_cmd.col = col;
824 desc.its_mapc_cmd.valid = !!valid;
826 its_send_single_command(its, its_build_mapc_cmd, &desc);
829 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
831 struct its_cmd_desc desc;
833 desc.its_mapti_cmd.dev = dev;
834 desc.its_mapti_cmd.phys_id = irq_id;
835 desc.its_mapti_cmd.event_id = id;
837 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
840 static void its_send_movi(struct its_device *dev,
841 struct its_collection *col, u32 id)
843 struct its_cmd_desc desc;
845 desc.its_movi_cmd.dev = dev;
846 desc.its_movi_cmd.col = col;
847 desc.its_movi_cmd.event_id = id;
849 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
852 static void its_send_discard(struct its_device *dev, u32 id)
854 struct its_cmd_desc desc;
856 desc.its_discard_cmd.dev = dev;
857 desc.its_discard_cmd.event_id = id;
859 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
862 static void its_send_invall(struct its_node *its, struct its_collection *col)
864 struct its_cmd_desc desc;
866 desc.its_invall_cmd.col = col;
868 its_send_single_command(its, its_build_invall_cmd, &desc);
871 static void its_send_vmapti(struct its_device *dev, u32 id)
873 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
874 struct its_cmd_desc desc;
876 desc.its_vmapti_cmd.vpe = map->vpe;
877 desc.its_vmapti_cmd.dev = dev;
878 desc.its_vmapti_cmd.virt_id = map->vintid;
879 desc.its_vmapti_cmd.event_id = id;
880 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
882 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
885 static void its_send_vmovi(struct its_device *dev, u32 id)
887 struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
888 struct its_cmd_desc desc;
890 desc.its_vmovi_cmd.vpe = map->vpe;
891 desc.its_vmovi_cmd.dev = dev;
892 desc.its_vmovi_cmd.event_id = id;
893 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
895 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
898 static void its_send_vmapp(struct its_vpe *vpe, bool valid)
900 struct its_cmd_desc desc;
901 struct its_node *its;
903 desc.its_vmapp_cmd.vpe = vpe;
904 desc.its_vmapp_cmd.valid = valid;
906 list_for_each_entry(its, &its_nodes, entry) {
907 if (!its->is_v4)
908 continue;
910 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
911 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
915 static void its_send_vmovp(struct its_vpe *vpe)
917 struct its_cmd_desc desc;
918 struct its_node *its;
919 unsigned long flags;
920 int col_id = vpe->col_idx;
922 desc.its_vmovp_cmd.vpe = vpe;
923 desc.its_vmovp_cmd.its_list = (u16)its_list_map;
925 if (!its_list_map) {
926 its = list_first_entry(&its_nodes, struct its_node, entry);
927 desc.its_vmovp_cmd.seq_num = 0;
928 desc.its_vmovp_cmd.col = &its->collections[col_id];
929 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
930 return;
934 * Yet another marvel of the architecture. If using the
935 * its_list "feature", we need to make sure that all ITSs
936 * receive all VMOVP commands in the same order. The only way
937 * to guarantee this is to make vmovp a serialization point.
939 * Wall <-- Head.
941 raw_spin_lock_irqsave(&vmovp_lock, flags);
943 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
945 /* Emit VMOVPs */
946 list_for_each_entry(its, &its_nodes, entry) {
947 if (!its->is_v4)
948 continue;
950 desc.its_vmovp_cmd.col = &its->collections[col_id];
951 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
954 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
957 static void its_send_vinvall(struct its_vpe *vpe)
959 struct its_cmd_desc desc;
960 struct its_node *its;
962 desc.its_vinvall_cmd.vpe = vpe;
964 list_for_each_entry(its, &its_nodes, entry) {
965 if (!its->is_v4)
966 continue;
967 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
972 * irqchip functions - assumes MSI, mostly.
975 static inline u32 its_get_event_id(struct irq_data *d)
977 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
978 return d->hwirq - its_dev->event_map.lpi_base;
981 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
983 irq_hw_number_t hwirq;
984 struct page *prop_page;
985 u8 *cfg;
987 if (irqd_is_forwarded_to_vcpu(d)) {
988 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
989 u32 event = its_get_event_id(d);
991 prop_page = its_dev->event_map.vm->vprop_page;
992 hwirq = its_dev->event_map.vlpi_maps[event].vintid;
993 } else {
994 prop_page = gic_rdists->prop_page;
995 hwirq = d->hwirq;
998 cfg = page_address(prop_page) + hwirq - 8192;
999 *cfg &= ~clr;
1000 *cfg |= set | LPI_PROP_GROUP1;
1003 * Make the above write visible to the redistributors.
1004 * And yes, we're flushing exactly: One. Single. Byte.
1005 * Humpf...
1007 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1008 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1009 else
1010 dsb(ishst);
1013 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1015 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1017 lpi_write_config(d, clr, set);
1018 its_send_inv(its_dev, its_get_event_id(d));
1021 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1023 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1024 u32 event = its_get_event_id(d);
1026 if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1027 return;
1029 its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1032 * More fun with the architecture:
1034 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1035 * value or to 1023, depending on the enable bit. But that
1036 * would be issueing a mapping for an /existing/ DevID+EventID
1037 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1038 * to the /same/ vPE, using this opportunity to adjust the
1039 * doorbell. Mouahahahaha. We loves it, Precious.
1041 its_send_vmovi(its_dev, event);
1044 static void its_mask_irq(struct irq_data *d)
1046 if (irqd_is_forwarded_to_vcpu(d))
1047 its_vlpi_set_doorbell(d, false);
1049 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1052 static void its_unmask_irq(struct irq_data *d)
1054 if (irqd_is_forwarded_to_vcpu(d))
1055 its_vlpi_set_doorbell(d, true);
1057 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1060 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1061 bool force)
1063 unsigned int cpu;
1064 const struct cpumask *cpu_mask = cpu_online_mask;
1065 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1066 struct its_collection *target_col;
1067 u32 id = its_get_event_id(d);
1069 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1070 if (irqd_is_forwarded_to_vcpu(d))
1071 return -EINVAL;
1073 /* lpi cannot be routed to a redistributor that is on a foreign node */
1074 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1075 if (its_dev->its->numa_node >= 0) {
1076 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1077 if (!cpumask_intersects(mask_val, cpu_mask))
1078 return -EINVAL;
1082 cpu = cpumask_any_and(mask_val, cpu_mask);
1084 if (cpu >= nr_cpu_ids)
1085 return -EINVAL;
1087 /* don't set the affinity when the target cpu is same as current one */
1088 if (cpu != its_dev->event_map.col_map[id]) {
1089 target_col = &its_dev->its->collections[cpu];
1090 its_send_movi(its_dev, target_col, id);
1091 its_dev->event_map.col_map[id] = cpu;
1092 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1095 return IRQ_SET_MASK_OK_DONE;
1098 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1100 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1101 struct its_node *its;
1102 u64 addr;
1104 its = its_dev->its;
1105 addr = its->phys_base + GITS_TRANSLATER;
1107 msg->address_lo = lower_32_bits(addr);
1108 msg->address_hi = upper_32_bits(addr);
1109 msg->data = its_get_event_id(d);
1111 iommu_dma_map_msi_msg(d->irq, msg);
1114 static int its_irq_set_irqchip_state(struct irq_data *d,
1115 enum irqchip_irq_state which,
1116 bool state)
1118 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1119 u32 event = its_get_event_id(d);
1121 if (which != IRQCHIP_STATE_PENDING)
1122 return -EINVAL;
1124 if (state)
1125 its_send_int(its_dev, event);
1126 else
1127 its_send_clear(its_dev, event);
1129 return 0;
1132 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1134 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1135 u32 event = its_get_event_id(d);
1136 int ret = 0;
1138 if (!info->map)
1139 return -EINVAL;
1141 mutex_lock(&its_dev->event_map.vlpi_lock);
1143 if (!its_dev->event_map.vm) {
1144 struct its_vlpi_map *maps;
1146 maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1147 GFP_KERNEL);
1148 if (!maps) {
1149 ret = -ENOMEM;
1150 goto out;
1153 its_dev->event_map.vm = info->map->vm;
1154 its_dev->event_map.vlpi_maps = maps;
1155 } else if (its_dev->event_map.vm != info->map->vm) {
1156 ret = -EINVAL;
1157 goto out;
1160 /* Get our private copy of the mapping information */
1161 its_dev->event_map.vlpi_maps[event] = *info->map;
1163 if (irqd_is_forwarded_to_vcpu(d)) {
1164 /* Already mapped, move it around */
1165 its_send_vmovi(its_dev, event);
1166 } else {
1167 /* Drop the physical mapping */
1168 its_send_discard(its_dev, event);
1170 /* and install the virtual one */
1171 its_send_vmapti(its_dev, event);
1172 irqd_set_forwarded_to_vcpu(d);
1174 /* Increment the number of VLPIs */
1175 its_dev->event_map.nr_vlpis++;
1178 out:
1179 mutex_unlock(&its_dev->event_map.vlpi_lock);
1180 return ret;
1183 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1185 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1186 u32 event = its_get_event_id(d);
1187 int ret = 0;
1189 mutex_lock(&its_dev->event_map.vlpi_lock);
1191 if (!its_dev->event_map.vm ||
1192 !its_dev->event_map.vlpi_maps[event].vm) {
1193 ret = -EINVAL;
1194 goto out;
1197 /* Copy our mapping information to the incoming request */
1198 *info->map = its_dev->event_map.vlpi_maps[event];
1200 out:
1201 mutex_unlock(&its_dev->event_map.vlpi_lock);
1202 return ret;
1205 static int its_vlpi_unmap(struct irq_data *d)
1207 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1208 u32 event = its_get_event_id(d);
1209 int ret = 0;
1211 mutex_lock(&its_dev->event_map.vlpi_lock);
1213 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1214 ret = -EINVAL;
1215 goto out;
1218 /* Drop the virtual mapping */
1219 its_send_discard(its_dev, event);
1221 /* and restore the physical one */
1222 irqd_clr_forwarded_to_vcpu(d);
1223 its_send_mapti(its_dev, d->hwirq, event);
1224 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1225 LPI_PROP_ENABLED |
1226 LPI_PROP_GROUP1));
1229 * Drop the refcount and make the device available again if
1230 * this was the last VLPI.
1232 if (!--its_dev->event_map.nr_vlpis) {
1233 its_dev->event_map.vm = NULL;
1234 kfree(its_dev->event_map.vlpi_maps);
1237 out:
1238 mutex_unlock(&its_dev->event_map.vlpi_lock);
1239 return ret;
1242 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1244 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1246 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1247 return -EINVAL;
1249 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1250 lpi_update_config(d, 0xff, info->config);
1251 else
1252 lpi_write_config(d, 0xff, info->config);
1253 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1255 return 0;
1258 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1260 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1261 struct its_cmd_info *info = vcpu_info;
1263 /* Need a v4 ITS */
1264 if (!its_dev->its->is_v4)
1265 return -EINVAL;
1267 /* Unmap request? */
1268 if (!info)
1269 return its_vlpi_unmap(d);
1271 switch (info->cmd_type) {
1272 case MAP_VLPI:
1273 return its_vlpi_map(d, info);
1275 case GET_VLPI:
1276 return its_vlpi_get(d, info);
1278 case PROP_UPDATE_VLPI:
1279 case PROP_UPDATE_AND_INV_VLPI:
1280 return its_vlpi_prop_update(d, info);
1282 default:
1283 return -EINVAL;
1287 static struct irq_chip its_irq_chip = {
1288 .name = "ITS",
1289 .irq_mask = its_mask_irq,
1290 .irq_unmask = its_unmask_irq,
1291 .irq_eoi = irq_chip_eoi_parent,
1292 .irq_set_affinity = its_set_affinity,
1293 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1294 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1295 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1299 * How we allocate LPIs:
1301 * The GIC has id_bits bits for interrupt identifiers. From there, we
1302 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1303 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1304 * bits to the right.
1306 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1308 #define IRQS_PER_CHUNK_SHIFT 5
1309 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
1310 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1312 static unsigned long *lpi_bitmap;
1313 static u32 lpi_chunks;
1314 static DEFINE_SPINLOCK(lpi_lock);
1316 static int its_lpi_to_chunk(int lpi)
1318 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1321 static int its_chunk_to_lpi(int chunk)
1323 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1326 static int __init its_lpi_init(u32 id_bits)
1328 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1330 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1331 GFP_KERNEL);
1332 if (!lpi_bitmap) {
1333 lpi_chunks = 0;
1334 return -ENOMEM;
1337 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1338 return 0;
1341 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1343 unsigned long *bitmap = NULL;
1344 int chunk_id;
1345 int nr_chunks;
1346 int i;
1348 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1350 spin_lock(&lpi_lock);
1352 do {
1353 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1354 0, nr_chunks, 0);
1355 if (chunk_id < lpi_chunks)
1356 break;
1358 nr_chunks--;
1359 } while (nr_chunks > 0);
1361 if (!nr_chunks)
1362 goto out;
1364 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1365 GFP_ATOMIC);
1366 if (!bitmap)
1367 goto out;
1369 for (i = 0; i < nr_chunks; i++)
1370 set_bit(chunk_id + i, lpi_bitmap);
1372 *base = its_chunk_to_lpi(chunk_id);
1373 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
1375 out:
1376 spin_unlock(&lpi_lock);
1378 if (!bitmap)
1379 *base = *nr_ids = 0;
1381 return bitmap;
1384 static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1386 int lpi;
1388 spin_lock(&lpi_lock);
1390 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1391 int chunk = its_lpi_to_chunk(lpi);
1393 BUG_ON(chunk > lpi_chunks);
1394 if (test_bit(chunk, lpi_bitmap)) {
1395 clear_bit(chunk, lpi_bitmap);
1396 } else {
1397 pr_err("Bad LPI chunk %d\n", chunk);
1401 spin_unlock(&lpi_lock);
1403 kfree(bitmap);
1406 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1408 struct page *prop_page;
1410 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1411 if (!prop_page)
1412 return NULL;
1414 /* Priority 0xa0, Group-1, disabled */
1415 memset(page_address(prop_page),
1416 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1417 LPI_PROPBASE_SZ);
1419 /* Make sure the GIC will observe the written configuration */
1420 gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1422 return prop_page;
1425 static void its_free_prop_table(struct page *prop_page)
1427 free_pages((unsigned long)page_address(prop_page),
1428 get_order(LPI_PROPBASE_SZ));
1431 static int __init its_alloc_lpi_tables(void)
1433 phys_addr_t paddr;
1435 lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1436 gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1437 if (!gic_rdists->prop_page) {
1438 pr_err("Failed to allocate PROPBASE\n");
1439 return -ENOMEM;
1442 paddr = page_to_phys(gic_rdists->prop_page);
1443 pr_info("GIC: using LPI property table @%pa\n", &paddr);
1445 return its_lpi_init(lpi_id_bits);
1448 static const char *its_base_type_string[] = {
1449 [GITS_BASER_TYPE_DEVICE] = "Devices",
1450 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
1451 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1452 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
1453 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
1454 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
1455 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
1458 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1460 u32 idx = baser - its->tables;
1462 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1465 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1466 u64 val)
1468 u32 idx = baser - its->tables;
1470 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1471 baser->val = its_read_baser(its, baser);
1474 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1475 u64 cache, u64 shr, u32 psz, u32 order,
1476 bool indirect)
1478 u64 val = its_read_baser(its, baser);
1479 u64 esz = GITS_BASER_ENTRY_SIZE(val);
1480 u64 type = GITS_BASER_TYPE(val);
1481 u32 alloc_pages;
1482 void *base;
1483 u64 tmp;
1485 retry_alloc_baser:
1486 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1487 if (alloc_pages > GITS_BASER_PAGES_MAX) {
1488 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1489 &its->phys_base, its_base_type_string[type],
1490 alloc_pages, GITS_BASER_PAGES_MAX);
1491 alloc_pages = GITS_BASER_PAGES_MAX;
1492 order = get_order(GITS_BASER_PAGES_MAX * psz);
1495 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1496 if (!base)
1497 return -ENOMEM;
1499 retry_baser:
1500 val = (virt_to_phys(base) |
1501 (type << GITS_BASER_TYPE_SHIFT) |
1502 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
1503 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
1504 cache |
1505 shr |
1506 GITS_BASER_VALID);
1508 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
1510 switch (psz) {
1511 case SZ_4K:
1512 val |= GITS_BASER_PAGE_SIZE_4K;
1513 break;
1514 case SZ_16K:
1515 val |= GITS_BASER_PAGE_SIZE_16K;
1516 break;
1517 case SZ_64K:
1518 val |= GITS_BASER_PAGE_SIZE_64K;
1519 break;
1522 its_write_baser(its, baser, val);
1523 tmp = baser->val;
1525 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1527 * Shareability didn't stick. Just use
1528 * whatever the read reported, which is likely
1529 * to be the only thing this redistributor
1530 * supports. If that's zero, make it
1531 * non-cacheable as well.
1533 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1534 if (!shr) {
1535 cache = GITS_BASER_nC;
1536 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1538 goto retry_baser;
1541 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1543 * Page size didn't stick. Let's try a smaller
1544 * size and retry. If we reach 4K, then
1545 * something is horribly wrong...
1547 free_pages((unsigned long)base, order);
1548 baser->base = NULL;
1550 switch (psz) {
1551 case SZ_16K:
1552 psz = SZ_4K;
1553 goto retry_alloc_baser;
1554 case SZ_64K:
1555 psz = SZ_16K;
1556 goto retry_alloc_baser;
1560 if (val != tmp) {
1561 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1562 &its->phys_base, its_base_type_string[type],
1563 val, tmp);
1564 free_pages((unsigned long)base, order);
1565 return -ENXIO;
1568 baser->order = order;
1569 baser->base = base;
1570 baser->psz = psz;
1571 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1573 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1574 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1575 its_base_type_string[type],
1576 (unsigned long)virt_to_phys(base),
1577 indirect ? "indirect" : "flat", (int)esz,
1578 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1580 return 0;
1583 static bool its_parse_indirect_baser(struct its_node *its,
1584 struct its_baser *baser,
1585 u32 psz, u32 *order)
1587 u64 tmp = its_read_baser(its, baser);
1588 u64 type = GITS_BASER_TYPE(tmp);
1589 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1590 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1591 u32 ids = its->device_ids;
1592 u32 new_order = *order;
1593 bool indirect = false;
1595 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1596 if ((esz << ids) > (psz * 2)) {
1598 * Find out whether hw supports a single or two-level table by
1599 * table by reading bit at offset '62' after writing '1' to it.
1601 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1602 indirect = !!(baser->val & GITS_BASER_INDIRECT);
1604 if (indirect) {
1606 * The size of the lvl2 table is equal to ITS page size
1607 * which is 'psz'. For computing lvl1 table size,
1608 * subtract ID bits that sparse lvl2 table from 'ids'
1609 * which is reported by ITS hardware times lvl1 table
1610 * entry size.
1612 ids -= ilog2(psz / (int)esz);
1613 esz = GITS_LVL1_ENTRY_SIZE;
1618 * Allocate as many entries as required to fit the
1619 * range of device IDs that the ITS can grok... The ID
1620 * space being incredibly sparse, this results in a
1621 * massive waste of memory if two-level device table
1622 * feature is not supported by hardware.
1624 new_order = max_t(u32, get_order(esz << ids), new_order);
1625 if (new_order >= MAX_ORDER) {
1626 new_order = MAX_ORDER - 1;
1627 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1628 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1629 &its->phys_base, its_base_type_string[type],
1630 its->device_ids, ids);
1633 *order = new_order;
1635 return indirect;
1638 static void its_free_tables(struct its_node *its)
1640 int i;
1642 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1643 if (its->tables[i].base) {
1644 free_pages((unsigned long)its->tables[i].base,
1645 its->tables[i].order);
1646 its->tables[i].base = NULL;
1651 static int its_alloc_tables(struct its_node *its)
1653 u64 typer = gic_read_typer(its->base + GITS_TYPER);
1654 u32 ids = GITS_TYPER_DEVBITS(typer);
1655 u64 shr = GITS_BASER_InnerShareable;
1656 u64 cache = GITS_BASER_RaWaWb;
1657 u32 psz = SZ_64K;
1658 int err, i;
1660 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1662 * erratum 22375: only alloc 8MB table size
1663 * erratum 24313: ignore memory access type
1665 cache = GITS_BASER_nCnB;
1666 ids = 0x14; /* 20 bits, 8MB */
1669 its->device_ids = ids;
1671 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1672 struct its_baser *baser = its->tables + i;
1673 u64 val = its_read_baser(its, baser);
1674 u64 type = GITS_BASER_TYPE(val);
1675 u32 order = get_order(psz);
1676 bool indirect = false;
1678 switch (type) {
1679 case GITS_BASER_TYPE_NONE:
1680 continue;
1682 case GITS_BASER_TYPE_DEVICE:
1683 case GITS_BASER_TYPE_VCPU:
1684 indirect = its_parse_indirect_baser(its, baser,
1685 psz, &order);
1686 break;
1689 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1690 if (err < 0) {
1691 its_free_tables(its);
1692 return err;
1695 /* Update settings which will be used for next BASERn */
1696 psz = baser->psz;
1697 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1698 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1701 return 0;
1704 static int its_alloc_collections(struct its_node *its)
1706 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1707 GFP_KERNEL);
1708 if (!its->collections)
1709 return -ENOMEM;
1711 return 0;
1714 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1716 struct page *pend_page;
1718 * The pending pages have to be at least 64kB aligned,
1719 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1721 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1722 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1723 if (!pend_page)
1724 return NULL;
1726 /* Make sure the GIC will observe the zero-ed page */
1727 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1729 return pend_page;
1732 static void its_free_pending_table(struct page *pt)
1734 free_pages((unsigned long)page_address(pt),
1735 get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1738 static void its_cpu_init_lpis(void)
1740 void __iomem *rbase = gic_data_rdist_rd_base();
1741 struct page *pend_page;
1742 u64 val, tmp;
1744 /* If we didn't allocate the pending table yet, do it now */
1745 pend_page = gic_data_rdist()->pend_page;
1746 if (!pend_page) {
1747 phys_addr_t paddr;
1749 pend_page = its_allocate_pending_table(GFP_NOWAIT);
1750 if (!pend_page) {
1751 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1752 smp_processor_id());
1753 return;
1756 paddr = page_to_phys(pend_page);
1757 pr_info("CPU%d: using LPI pending table @%pa\n",
1758 smp_processor_id(), &paddr);
1759 gic_data_rdist()->pend_page = pend_page;
1762 /* Disable LPIs */
1763 val = readl_relaxed(rbase + GICR_CTLR);
1764 val &= ~GICR_CTLR_ENABLE_LPIS;
1765 writel_relaxed(val, rbase + GICR_CTLR);
1768 * Make sure any change to the table is observable by the GIC.
1770 dsb(sy);
1772 /* set PROPBASE */
1773 val = (page_to_phys(gic_rdists->prop_page) |
1774 GICR_PROPBASER_InnerShareable |
1775 GICR_PROPBASER_RaWaWb |
1776 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1778 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1779 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1781 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1782 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1784 * The HW reports non-shareable, we must
1785 * remove the cacheability attributes as
1786 * well.
1788 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1789 GICR_PROPBASER_CACHEABILITY_MASK);
1790 val |= GICR_PROPBASER_nC;
1791 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1793 pr_info_once("GIC: using cache flushing for LPI property table\n");
1794 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1797 /* set PENDBASE */
1798 val = (page_to_phys(pend_page) |
1799 GICR_PENDBASER_InnerShareable |
1800 GICR_PENDBASER_RaWaWb);
1802 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1803 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1805 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1807 * The HW reports non-shareable, we must remove the
1808 * cacheability attributes as well.
1810 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1811 GICR_PENDBASER_CACHEABILITY_MASK);
1812 val |= GICR_PENDBASER_nC;
1813 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1816 /* Enable LPIs */
1817 val = readl_relaxed(rbase + GICR_CTLR);
1818 val |= GICR_CTLR_ENABLE_LPIS;
1819 writel_relaxed(val, rbase + GICR_CTLR);
1821 /* Make sure the GIC has seen the above */
1822 dsb(sy);
1825 static void its_cpu_init_collection(void)
1827 struct its_node *its;
1828 int cpu;
1830 spin_lock(&its_lock);
1831 cpu = smp_processor_id();
1833 list_for_each_entry(its, &its_nodes, entry) {
1834 u64 target;
1836 /* avoid cross node collections and its mapping */
1837 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1838 struct device_node *cpu_node;
1840 cpu_node = of_get_cpu_node(cpu, NULL);
1841 if (its->numa_node != NUMA_NO_NODE &&
1842 its->numa_node != of_node_to_nid(cpu_node))
1843 continue;
1847 * We now have to bind each collection to its target
1848 * redistributor.
1850 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1852 * This ITS wants the physical address of the
1853 * redistributor.
1855 target = gic_data_rdist()->phys_base;
1856 } else {
1858 * This ITS wants a linear CPU number.
1860 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1861 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1864 /* Perform collection mapping */
1865 its->collections[cpu].target_address = target;
1866 its->collections[cpu].col_id = cpu;
1868 its_send_mapc(its, &its->collections[cpu], 1);
1869 its_send_invall(its, &its->collections[cpu]);
1872 spin_unlock(&its_lock);
1875 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1877 struct its_device *its_dev = NULL, *tmp;
1878 unsigned long flags;
1880 raw_spin_lock_irqsave(&its->lock, flags);
1882 list_for_each_entry(tmp, &its->its_device_list, entry) {
1883 if (tmp->device_id == dev_id) {
1884 its_dev = tmp;
1885 break;
1889 raw_spin_unlock_irqrestore(&its->lock, flags);
1891 return its_dev;
1894 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1896 int i;
1898 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1899 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1900 return &its->tables[i];
1903 return NULL;
1906 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
1908 struct page *page;
1909 u32 esz, idx;
1910 __le64 *table;
1912 /* Don't allow device id that exceeds single, flat table limit */
1913 esz = GITS_BASER_ENTRY_SIZE(baser->val);
1914 if (!(baser->val & GITS_BASER_INDIRECT))
1915 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1917 /* Compute 1st level table index & check if that exceeds table limit */
1918 idx = id >> ilog2(baser->psz / esz);
1919 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1920 return false;
1922 table = baser->base;
1924 /* Allocate memory for 2nd level table */
1925 if (!table[idx]) {
1926 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1927 if (!page)
1928 return false;
1930 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1931 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1932 gic_flush_dcache_to_poc(page_address(page), baser->psz);
1934 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1936 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1937 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1938 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1940 /* Ensure updated table contents are visible to ITS hardware */
1941 dsb(sy);
1944 return true;
1947 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1949 struct its_baser *baser;
1951 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1953 /* Don't allow device id that exceeds ITS hardware limit */
1954 if (!baser)
1955 return (ilog2(dev_id) < its->device_ids);
1957 return its_alloc_table_entry(baser, dev_id);
1960 static bool its_alloc_vpe_table(u32 vpe_id)
1962 struct its_node *its;
1965 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
1966 * could try and only do it on ITSs corresponding to devices
1967 * that have interrupts targeted at this VPE, but the
1968 * complexity becomes crazy (and you have tons of memory
1969 * anyway, right?).
1971 list_for_each_entry(its, &its_nodes, entry) {
1972 struct its_baser *baser;
1974 if (!its->is_v4)
1975 continue;
1977 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
1978 if (!baser)
1979 return false;
1981 if (!its_alloc_table_entry(baser, vpe_id))
1982 return false;
1985 return true;
1988 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1989 int nvecs, bool alloc_lpis)
1991 struct its_device *dev;
1992 unsigned long *lpi_map = NULL;
1993 unsigned long flags;
1994 u16 *col_map = NULL;
1995 void *itt;
1996 int lpi_base;
1997 int nr_lpis;
1998 int nr_ites;
1999 int sz;
2001 if (!its_alloc_device_table(its, dev_id))
2002 return NULL;
2004 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2006 * At least one bit of EventID is being used, hence a minimum
2007 * of two entries. No, the architecture doesn't let you
2008 * express an ITT with a single entry.
2010 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
2011 sz = nr_ites * its->ite_size;
2012 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2013 itt = kzalloc(sz, GFP_KERNEL);
2014 if (alloc_lpis) {
2015 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2016 if (lpi_map)
2017 col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2018 GFP_KERNEL);
2019 } else {
2020 col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2021 nr_lpis = 0;
2022 lpi_base = 0;
2025 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
2026 kfree(dev);
2027 kfree(itt);
2028 kfree(lpi_map);
2029 kfree(col_map);
2030 return NULL;
2033 gic_flush_dcache_to_poc(itt, sz);
2035 dev->its = its;
2036 dev->itt = itt;
2037 dev->nr_ites = nr_ites;
2038 dev->event_map.lpi_map = lpi_map;
2039 dev->event_map.col_map = col_map;
2040 dev->event_map.lpi_base = lpi_base;
2041 dev->event_map.nr_lpis = nr_lpis;
2042 mutex_init(&dev->event_map.vlpi_lock);
2043 dev->device_id = dev_id;
2044 INIT_LIST_HEAD(&dev->entry);
2046 raw_spin_lock_irqsave(&its->lock, flags);
2047 list_add(&dev->entry, &its->its_device_list);
2048 raw_spin_unlock_irqrestore(&its->lock, flags);
2050 /* Map device to its ITT */
2051 its_send_mapd(dev, 1);
2053 return dev;
2056 static void its_free_device(struct its_device *its_dev)
2058 unsigned long flags;
2060 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2061 list_del(&its_dev->entry);
2062 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2063 kfree(its_dev->itt);
2064 kfree(its_dev);
2067 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2069 int idx;
2071 idx = find_first_zero_bit(dev->event_map.lpi_map,
2072 dev->event_map.nr_lpis);
2073 if (idx == dev->event_map.nr_lpis)
2074 return -ENOSPC;
2076 *hwirq = dev->event_map.lpi_base + idx;
2077 set_bit(idx, dev->event_map.lpi_map);
2079 return 0;
2082 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2083 int nvec, msi_alloc_info_t *info)
2085 struct its_node *its;
2086 struct its_device *its_dev;
2087 struct msi_domain_info *msi_info;
2088 u32 dev_id;
2091 * We ignore "dev" entierely, and rely on the dev_id that has
2092 * been passed via the scratchpad. This limits this domain's
2093 * usefulness to upper layers that definitely know that they
2094 * are built on top of the ITS.
2096 dev_id = info->scratchpad[0].ul;
2098 msi_info = msi_get_domain_info(domain);
2099 its = msi_info->data;
2101 if (!gic_rdists->has_direct_lpi &&
2102 vpe_proxy.dev &&
2103 vpe_proxy.dev->its == its &&
2104 dev_id == vpe_proxy.dev->device_id) {
2105 /* Bad luck. Get yourself a better implementation */
2106 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2107 dev_id);
2108 return -EINVAL;
2111 its_dev = its_find_device(its, dev_id);
2112 if (its_dev) {
2114 * We already have seen this ID, probably through
2115 * another alias (PCI bridge of some sort). No need to
2116 * create the device.
2118 pr_debug("Reusing ITT for devID %x\n", dev_id);
2119 goto out;
2122 its_dev = its_create_device(its, dev_id, nvec, true);
2123 if (!its_dev)
2124 return -ENOMEM;
2126 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2127 out:
2128 info->scratchpad[0].ptr = its_dev;
2129 return 0;
2132 static struct msi_domain_ops its_msi_domain_ops = {
2133 .msi_prepare = its_msi_prepare,
2136 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2137 unsigned int virq,
2138 irq_hw_number_t hwirq)
2140 struct irq_fwspec fwspec;
2142 if (irq_domain_get_of_node(domain->parent)) {
2143 fwspec.fwnode = domain->parent->fwnode;
2144 fwspec.param_count = 3;
2145 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2146 fwspec.param[1] = hwirq;
2147 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2148 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2149 fwspec.fwnode = domain->parent->fwnode;
2150 fwspec.param_count = 2;
2151 fwspec.param[0] = hwirq;
2152 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2153 } else {
2154 return -EINVAL;
2157 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2160 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2161 unsigned int nr_irqs, void *args)
2163 msi_alloc_info_t *info = args;
2164 struct its_device *its_dev = info->scratchpad[0].ptr;
2165 irq_hw_number_t hwirq;
2166 int err;
2167 int i;
2169 for (i = 0; i < nr_irqs; i++) {
2170 err = its_alloc_device_irq(its_dev, &hwirq);
2171 if (err)
2172 return err;
2174 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2175 if (err)
2176 return err;
2178 irq_domain_set_hwirq_and_chip(domain, virq + i,
2179 hwirq, &its_irq_chip, its_dev);
2180 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2181 pr_debug("ID:%d pID:%d vID:%d\n",
2182 (int)(hwirq - its_dev->event_map.lpi_base),
2183 (int) hwirq, virq + i);
2186 return 0;
2189 static void its_irq_domain_activate(struct irq_domain *domain,
2190 struct irq_data *d)
2192 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2193 u32 event = its_get_event_id(d);
2194 const struct cpumask *cpu_mask = cpu_online_mask;
2195 int cpu;
2197 /* get the cpu_mask of local node */
2198 if (its_dev->its->numa_node >= 0)
2199 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2201 /* Bind the LPI to the first possible CPU */
2202 cpu = cpumask_first(cpu_mask);
2203 its_dev->event_map.col_map[event] = cpu;
2204 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2206 /* Map the GIC IRQ and event to the device */
2207 its_send_mapti(its_dev, d->hwirq, event);
2210 static void its_irq_domain_deactivate(struct irq_domain *domain,
2211 struct irq_data *d)
2213 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2214 u32 event = its_get_event_id(d);
2216 /* Stop the delivery of interrupts */
2217 its_send_discard(its_dev, event);
2220 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2221 unsigned int nr_irqs)
2223 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2224 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2225 int i;
2227 for (i = 0; i < nr_irqs; i++) {
2228 struct irq_data *data = irq_domain_get_irq_data(domain,
2229 virq + i);
2230 u32 event = its_get_event_id(data);
2232 /* Mark interrupt index as unused */
2233 clear_bit(event, its_dev->event_map.lpi_map);
2235 /* Nuke the entry in the domain */
2236 irq_domain_reset_irq_data(data);
2239 /* If all interrupts have been freed, start mopping the floor */
2240 if (bitmap_empty(its_dev->event_map.lpi_map,
2241 its_dev->event_map.nr_lpis)) {
2242 its_lpi_free_chunks(its_dev->event_map.lpi_map,
2243 its_dev->event_map.lpi_base,
2244 its_dev->event_map.nr_lpis);
2245 kfree(its_dev->event_map.col_map);
2247 /* Unmap device/itt */
2248 its_send_mapd(its_dev, 0);
2249 its_free_device(its_dev);
2252 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2255 static const struct irq_domain_ops its_domain_ops = {
2256 .alloc = its_irq_domain_alloc,
2257 .free = its_irq_domain_free,
2258 .activate = its_irq_domain_activate,
2259 .deactivate = its_irq_domain_deactivate,
2263 * This is insane.
2265 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2266 * likely), the only way to perform an invalidate is to use a fake
2267 * device to issue an INV command, implying that the LPI has first
2268 * been mapped to some event on that device. Since this is not exactly
2269 * cheap, we try to keep that mapping around as long as possible, and
2270 * only issue an UNMAP if we're short on available slots.
2272 * Broken by design(tm).
2274 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2276 /* Already unmapped? */
2277 if (vpe->vpe_proxy_event == -1)
2278 return;
2280 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2281 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2284 * We don't track empty slots at all, so let's move the
2285 * next_victim pointer if we can quickly reuse that slot
2286 * instead of nuking an existing entry. Not clear that this is
2287 * always a win though, and this might just generate a ripple
2288 * effect... Let's just hope VPEs don't migrate too often.
2290 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2291 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2293 vpe->vpe_proxy_event = -1;
2296 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2298 if (!gic_rdists->has_direct_lpi) {
2299 unsigned long flags;
2301 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2302 its_vpe_db_proxy_unmap_locked(vpe);
2303 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2307 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2309 /* Already mapped? */
2310 if (vpe->vpe_proxy_event != -1)
2311 return;
2313 /* This slot was already allocated. Kick the other VPE out. */
2314 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2315 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2317 /* Map the new VPE instead */
2318 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2319 vpe->vpe_proxy_event = vpe_proxy.next_victim;
2320 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2322 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2323 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2326 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2328 unsigned long flags;
2329 struct its_collection *target_col;
2331 if (gic_rdists->has_direct_lpi) {
2332 void __iomem *rdbase;
2334 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2335 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2336 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2337 cpu_relax();
2339 return;
2342 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2344 its_vpe_db_proxy_map_locked(vpe);
2346 target_col = &vpe_proxy.dev->its->collections[to];
2347 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2348 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2350 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2353 static int its_vpe_set_affinity(struct irq_data *d,
2354 const struct cpumask *mask_val,
2355 bool force)
2357 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2358 int cpu = cpumask_first(mask_val);
2361 * Changing affinity is mega expensive, so let's be as lazy as
2362 * we can and only do it if we really have to. Also, if mapped
2363 * into the proxy device, we need to move the doorbell
2364 * interrupt to its new location.
2366 if (vpe->col_idx != cpu) {
2367 int from = vpe->col_idx;
2369 vpe->col_idx = cpu;
2370 its_send_vmovp(vpe);
2371 its_vpe_db_proxy_move(vpe, from, cpu);
2374 return IRQ_SET_MASK_OK_DONE;
2377 static void its_vpe_schedule(struct its_vpe *vpe)
2379 void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2380 u64 val;
2382 /* Schedule the VPE */
2383 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2384 GENMASK_ULL(51, 12);
2385 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2386 val |= GICR_VPROPBASER_RaWb;
2387 val |= GICR_VPROPBASER_InnerShareable;
2388 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2390 val = virt_to_phys(page_address(vpe->vpt_page)) &
2391 GENMASK_ULL(51, 16);
2392 val |= GICR_VPENDBASER_RaWaWb;
2393 val |= GICR_VPENDBASER_NonShareable;
2395 * There is no good way of finding out if the pending table is
2396 * empty as we can race against the doorbell interrupt very
2397 * easily. So in the end, vpe->pending_last is only an
2398 * indication that the vcpu has something pending, not one
2399 * that the pending table is empty. A good implementation
2400 * would be able to read its coarse map pretty quickly anyway,
2401 * making this a tolerable issue.
2403 val |= GICR_VPENDBASER_PendingLast;
2404 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2405 val |= GICR_VPENDBASER_Valid;
2406 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2409 static void its_vpe_deschedule(struct its_vpe *vpe)
2411 void * __iomem vlpi_base = gic_data_rdist_vlpi_base();
2412 u32 count = 1000000; /* 1s! */
2413 bool clean;
2414 u64 val;
2416 /* We're being scheduled out */
2417 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2418 val &= ~GICR_VPENDBASER_Valid;
2419 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2421 do {
2422 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2423 clean = !(val & GICR_VPENDBASER_Dirty);
2424 if (!clean) {
2425 count--;
2426 cpu_relax();
2427 udelay(1);
2429 } while (!clean && count);
2431 if (unlikely(!clean && !count)) {
2432 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2433 vpe->idai = false;
2434 vpe->pending_last = true;
2435 } else {
2436 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2437 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2441 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2443 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2444 struct its_cmd_info *info = vcpu_info;
2446 switch (info->cmd_type) {
2447 case SCHEDULE_VPE:
2448 its_vpe_schedule(vpe);
2449 return 0;
2451 case DESCHEDULE_VPE:
2452 its_vpe_deschedule(vpe);
2453 return 0;
2455 case INVALL_VPE:
2456 its_send_vinvall(vpe);
2457 return 0;
2459 default:
2460 return -EINVAL;
2464 static void its_vpe_send_cmd(struct its_vpe *vpe,
2465 void (*cmd)(struct its_device *, u32))
2467 unsigned long flags;
2469 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2471 its_vpe_db_proxy_map_locked(vpe);
2472 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2474 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2477 static void its_vpe_send_inv(struct irq_data *d)
2479 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2481 if (gic_rdists->has_direct_lpi) {
2482 void __iomem *rdbase;
2484 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2485 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2486 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2487 cpu_relax();
2488 } else {
2489 its_vpe_send_cmd(vpe, its_send_inv);
2493 static void its_vpe_mask_irq(struct irq_data *d)
2496 * We need to unmask the LPI, which is described by the parent
2497 * irq_data. Instead of calling into the parent (which won't
2498 * exactly do the right thing, let's simply use the
2499 * parent_data pointer. Yes, I'm naughty.
2501 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2502 its_vpe_send_inv(d);
2505 static void its_vpe_unmask_irq(struct irq_data *d)
2507 /* Same hack as above... */
2508 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2509 its_vpe_send_inv(d);
2512 static int its_vpe_set_irqchip_state(struct irq_data *d,
2513 enum irqchip_irq_state which,
2514 bool state)
2516 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2518 if (which != IRQCHIP_STATE_PENDING)
2519 return -EINVAL;
2521 if (gic_rdists->has_direct_lpi) {
2522 void __iomem *rdbase;
2524 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2525 if (state) {
2526 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2527 } else {
2528 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2529 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2530 cpu_relax();
2532 } else {
2533 if (state)
2534 its_vpe_send_cmd(vpe, its_send_int);
2535 else
2536 its_vpe_send_cmd(vpe, its_send_clear);
2539 return 0;
2542 static struct irq_chip its_vpe_irq_chip = {
2543 .name = "GICv4-vpe",
2544 .irq_mask = its_vpe_mask_irq,
2545 .irq_unmask = its_vpe_unmask_irq,
2546 .irq_eoi = irq_chip_eoi_parent,
2547 .irq_set_affinity = its_vpe_set_affinity,
2548 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
2549 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
2552 static int its_vpe_id_alloc(void)
2554 return ida_simple_get(&its_vpeid_ida, 0, 1 << 16, GFP_KERNEL);
2557 static void its_vpe_id_free(u16 id)
2559 ida_simple_remove(&its_vpeid_ida, id);
2562 static int its_vpe_init(struct its_vpe *vpe)
2564 struct page *vpt_page;
2565 int vpe_id;
2567 /* Allocate vpe_id */
2568 vpe_id = its_vpe_id_alloc();
2569 if (vpe_id < 0)
2570 return vpe_id;
2572 /* Allocate VPT */
2573 vpt_page = its_allocate_pending_table(GFP_KERNEL);
2574 if (!vpt_page) {
2575 its_vpe_id_free(vpe_id);
2576 return -ENOMEM;
2579 if (!its_alloc_vpe_table(vpe_id)) {
2580 its_vpe_id_free(vpe_id);
2581 its_free_pending_table(vpe->vpt_page);
2582 return -ENOMEM;
2585 vpe->vpe_id = vpe_id;
2586 vpe->vpt_page = vpt_page;
2587 vpe->vpe_proxy_event = -1;
2589 return 0;
2592 static void its_vpe_teardown(struct its_vpe *vpe)
2594 its_vpe_db_proxy_unmap(vpe);
2595 its_vpe_id_free(vpe->vpe_id);
2596 its_free_pending_table(vpe->vpt_page);
2599 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2600 unsigned int virq,
2601 unsigned int nr_irqs)
2603 struct its_vm *vm = domain->host_data;
2604 int i;
2606 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2608 for (i = 0; i < nr_irqs; i++) {
2609 struct irq_data *data = irq_domain_get_irq_data(domain,
2610 virq + i);
2611 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2613 BUG_ON(vm != vpe->its_vm);
2615 clear_bit(data->hwirq, vm->db_bitmap);
2616 its_vpe_teardown(vpe);
2617 irq_domain_reset_irq_data(data);
2620 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2621 its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2622 its_free_prop_table(vm->vprop_page);
2626 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2627 unsigned int nr_irqs, void *args)
2629 struct its_vm *vm = args;
2630 unsigned long *bitmap;
2631 struct page *vprop_page;
2632 int base, nr_ids, i, err = 0;
2634 BUG_ON(!vm);
2636 bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2637 if (!bitmap)
2638 return -ENOMEM;
2640 if (nr_ids < nr_irqs) {
2641 its_lpi_free_chunks(bitmap, base, nr_ids);
2642 return -ENOMEM;
2645 vprop_page = its_allocate_prop_table(GFP_KERNEL);
2646 if (!vprop_page) {
2647 its_lpi_free_chunks(bitmap, base, nr_ids);
2648 return -ENOMEM;
2651 vm->db_bitmap = bitmap;
2652 vm->db_lpi_base = base;
2653 vm->nr_db_lpis = nr_ids;
2654 vm->vprop_page = vprop_page;
2656 for (i = 0; i < nr_irqs; i++) {
2657 vm->vpes[i]->vpe_db_lpi = base + i;
2658 err = its_vpe_init(vm->vpes[i]);
2659 if (err)
2660 break;
2661 err = its_irq_gic_domain_alloc(domain, virq + i,
2662 vm->vpes[i]->vpe_db_lpi);
2663 if (err)
2664 break;
2665 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2666 &its_vpe_irq_chip, vm->vpes[i]);
2667 set_bit(i, bitmap);
2670 if (err) {
2671 if (i > 0)
2672 its_vpe_irq_domain_free(domain, virq, i - 1);
2674 its_lpi_free_chunks(bitmap, base, nr_ids);
2675 its_free_prop_table(vprop_page);
2678 return err;
2681 static void its_vpe_irq_domain_activate(struct irq_domain *domain,
2682 struct irq_data *d)
2684 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2686 /* Map the VPE to the first possible CPU */
2687 vpe->col_idx = cpumask_first(cpu_online_mask);
2688 its_send_vmapp(vpe, true);
2689 its_send_vinvall(vpe);
2692 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2693 struct irq_data *d)
2695 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2697 its_send_vmapp(vpe, false);
2700 static const struct irq_domain_ops its_vpe_domain_ops = {
2701 .alloc = its_vpe_irq_domain_alloc,
2702 .free = its_vpe_irq_domain_free,
2703 .activate = its_vpe_irq_domain_activate,
2704 .deactivate = its_vpe_irq_domain_deactivate,
2707 static int its_force_quiescent(void __iomem *base)
2709 u32 count = 1000000; /* 1s */
2710 u32 val;
2712 val = readl_relaxed(base + GITS_CTLR);
2714 * GIC architecture specification requires the ITS to be both
2715 * disabled and quiescent for writes to GITS_BASER<n> or
2716 * GITS_CBASER to not have UNPREDICTABLE results.
2718 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2719 return 0;
2721 /* Disable the generation of all interrupts to this ITS */
2722 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2723 writel_relaxed(val, base + GITS_CTLR);
2725 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2726 while (1) {
2727 val = readl_relaxed(base + GITS_CTLR);
2728 if (val & GITS_CTLR_QUIESCENT)
2729 return 0;
2731 count--;
2732 if (!count)
2733 return -EBUSY;
2735 cpu_relax();
2736 udelay(1);
2740 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
2742 struct its_node *its = data;
2744 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2747 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
2749 struct its_node *its = data;
2751 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2754 static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2756 struct its_node *its = data;
2758 /* On QDF2400, the size of the ITE is 16Bytes */
2759 its->ite_size = 16;
2762 static const struct gic_quirk its_quirks[] = {
2763 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2765 .desc = "ITS: Cavium errata 22375, 24313",
2766 .iidr = 0xa100034c, /* ThunderX pass 1.x */
2767 .mask = 0xffff0fff,
2768 .init = its_enable_quirk_cavium_22375,
2770 #endif
2771 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2773 .desc = "ITS: Cavium erratum 23144",
2774 .iidr = 0xa100034c, /* ThunderX pass 1.x */
2775 .mask = 0xffff0fff,
2776 .init = its_enable_quirk_cavium_23144,
2778 #endif
2779 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
2781 .desc = "ITS: QDF2400 erratum 0065",
2782 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
2783 .mask = 0xffffffff,
2784 .init = its_enable_quirk_qdf2400_e0065,
2786 #endif
2791 static void its_enable_quirks(struct its_node *its)
2793 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
2795 gic_enable_quirks(iidr, its_quirks, its);
2798 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
2800 struct irq_domain *inner_domain;
2801 struct msi_domain_info *info;
2803 info = kzalloc(sizeof(*info), GFP_KERNEL);
2804 if (!info)
2805 return -ENOMEM;
2807 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
2808 if (!inner_domain) {
2809 kfree(info);
2810 return -ENOMEM;
2813 inner_domain->parent = its_parent;
2814 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
2815 inner_domain->flags |= IRQ_DOMAIN_FLAG_MSI_REMAP;
2816 info->ops = &its_msi_domain_ops;
2817 info->data = its;
2818 inner_domain->host_data = info;
2820 return 0;
2823 static int its_init_vpe_domain(void)
2825 struct its_node *its;
2826 u32 devid;
2827 int entries;
2829 if (gic_rdists->has_direct_lpi) {
2830 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
2831 return 0;
2834 /* Any ITS will do, even if not v4 */
2835 its = list_first_entry(&its_nodes, struct its_node, entry);
2837 entries = roundup_pow_of_two(nr_cpu_ids);
2838 vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
2839 GFP_KERNEL);
2840 if (!vpe_proxy.vpes) {
2841 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
2842 return -ENOMEM;
2845 /* Use the last possible DevID */
2846 devid = GENMASK(its->device_ids - 1, 0);
2847 vpe_proxy.dev = its_create_device(its, devid, entries, false);
2848 if (!vpe_proxy.dev) {
2849 kfree(vpe_proxy.vpes);
2850 pr_err("ITS: Can't allocate GICv4 proxy device\n");
2851 return -ENOMEM;
2854 BUG_ON(entries != vpe_proxy.dev->nr_ites);
2856 raw_spin_lock_init(&vpe_proxy.lock);
2857 vpe_proxy.next_victim = 0;
2858 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
2859 devid, vpe_proxy.dev->nr_ites);
2861 return 0;
2864 static int __init its_compute_its_list_map(struct resource *res,
2865 void __iomem *its_base)
2867 int its_number;
2868 u32 ctlr;
2871 * This is assumed to be done early enough that we're
2872 * guaranteed to be single-threaded, hence no
2873 * locking. Should this change, we should address
2874 * this.
2876 its_number = find_first_zero_bit(&its_list_map, ITS_LIST_MAX);
2877 if (its_number >= ITS_LIST_MAX) {
2878 pr_err("ITS@%pa: No ITSList entry available!\n",
2879 &res->start);
2880 return -EINVAL;
2883 ctlr = readl_relaxed(its_base + GITS_CTLR);
2884 ctlr &= ~GITS_CTLR_ITS_NUMBER;
2885 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
2886 writel_relaxed(ctlr, its_base + GITS_CTLR);
2887 ctlr = readl_relaxed(its_base + GITS_CTLR);
2888 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
2889 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
2890 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
2893 if (test_and_set_bit(its_number, &its_list_map)) {
2894 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
2895 &res->start, its_number);
2896 return -EINVAL;
2899 return its_number;
2902 static int __init its_probe_one(struct resource *res,
2903 struct fwnode_handle *handle, int numa_node)
2905 struct its_node *its;
2906 void __iomem *its_base;
2907 u32 val, ctlr;
2908 u64 baser, tmp, typer;
2909 int err;
2911 its_base = ioremap(res->start, resource_size(res));
2912 if (!its_base) {
2913 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
2914 return -ENOMEM;
2917 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
2918 if (val != 0x30 && val != 0x40) {
2919 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
2920 err = -ENODEV;
2921 goto out_unmap;
2924 err = its_force_quiescent(its_base);
2925 if (err) {
2926 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
2927 goto out_unmap;
2930 pr_info("ITS %pR\n", res);
2932 its = kzalloc(sizeof(*its), GFP_KERNEL);
2933 if (!its) {
2934 err = -ENOMEM;
2935 goto out_unmap;
2938 raw_spin_lock_init(&its->lock);
2939 INIT_LIST_HEAD(&its->entry);
2940 INIT_LIST_HEAD(&its->its_device_list);
2941 typer = gic_read_typer(its_base + GITS_TYPER);
2942 its->base = its_base;
2943 its->phys_base = res->start;
2944 its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
2945 its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
2946 if (its->is_v4) {
2947 if (!(typer & GITS_TYPER_VMOVP)) {
2948 err = its_compute_its_list_map(res, its_base);
2949 if (err < 0)
2950 goto out_free_its;
2952 pr_info("ITS@%pa: Using ITS number %d\n",
2953 &res->start, err);
2954 } else {
2955 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
2959 its->numa_node = numa_node;
2961 its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2962 get_order(ITS_CMD_QUEUE_SZ));
2963 if (!its->cmd_base) {
2964 err = -ENOMEM;
2965 goto out_free_its;
2967 its->cmd_write = its->cmd_base;
2969 its_enable_quirks(its);
2971 err = its_alloc_tables(its);
2972 if (err)
2973 goto out_free_cmd;
2975 err = its_alloc_collections(its);
2976 if (err)
2977 goto out_free_tables;
2979 baser = (virt_to_phys(its->cmd_base) |
2980 GITS_CBASER_RaWaWb |
2981 GITS_CBASER_InnerShareable |
2982 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
2983 GITS_CBASER_VALID);
2985 gits_write_cbaser(baser, its->base + GITS_CBASER);
2986 tmp = gits_read_cbaser(its->base + GITS_CBASER);
2988 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
2989 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
2991 * The HW reports non-shareable, we must
2992 * remove the cacheability attributes as
2993 * well.
2995 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
2996 GITS_CBASER_CACHEABILITY_MASK);
2997 baser |= GITS_CBASER_nC;
2998 gits_write_cbaser(baser, its->base + GITS_CBASER);
3000 pr_info("ITS: using cache flushing for cmd queue\n");
3001 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3004 gits_write_cwriter(0, its->base + GITS_CWRITER);
3005 ctlr = readl_relaxed(its->base + GITS_CTLR);
3006 ctlr |= GITS_CTLR_ENABLE;
3007 if (its->is_v4)
3008 ctlr |= GITS_CTLR_ImDe;
3009 writel_relaxed(ctlr, its->base + GITS_CTLR);
3011 err = its_init_domain(handle, its);
3012 if (err)
3013 goto out_free_tables;
3015 spin_lock(&its_lock);
3016 list_add(&its->entry, &its_nodes);
3017 spin_unlock(&its_lock);
3019 return 0;
3021 out_free_tables:
3022 its_free_tables(its);
3023 out_free_cmd:
3024 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3025 out_free_its:
3026 kfree(its);
3027 out_unmap:
3028 iounmap(its_base);
3029 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3030 return err;
3033 static bool gic_rdists_supports_plpis(void)
3035 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3038 int its_cpu_init(void)
3040 if (!list_empty(&its_nodes)) {
3041 if (!gic_rdists_supports_plpis()) {
3042 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3043 return -ENXIO;
3045 its_cpu_init_lpis();
3046 its_cpu_init_collection();
3049 return 0;
3052 static const struct of_device_id its_device_id[] = {
3053 { .compatible = "arm,gic-v3-its", },
3057 static int __init its_of_probe(struct device_node *node)
3059 struct device_node *np;
3060 struct resource res;
3062 for (np = of_find_matching_node(node, its_device_id); np;
3063 np = of_find_matching_node(np, its_device_id)) {
3064 if (!of_property_read_bool(np, "msi-controller")) {
3065 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3066 np);
3067 continue;
3070 if (of_address_to_resource(np, 0, &res)) {
3071 pr_warn("%pOF: no regs?\n", np);
3072 continue;
3075 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3077 return 0;
3080 #ifdef CONFIG_ACPI
3082 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3084 #ifdef CONFIG_ACPI_NUMA
3085 struct its_srat_map {
3086 /* numa node id */
3087 u32 numa_node;
3088 /* GIC ITS ID */
3089 u32 its_id;
3092 static struct its_srat_map *its_srat_maps __initdata;
3093 static int its_in_srat __initdata;
3095 static int __init acpi_get_its_numa_node(u32 its_id)
3097 int i;
3099 for (i = 0; i < its_in_srat; i++) {
3100 if (its_id == its_srat_maps[i].its_id)
3101 return its_srat_maps[i].numa_node;
3103 return NUMA_NO_NODE;
3106 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3107 const unsigned long end)
3109 return 0;
3112 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3113 const unsigned long end)
3115 int node;
3116 struct acpi_srat_gic_its_affinity *its_affinity;
3118 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3119 if (!its_affinity)
3120 return -EINVAL;
3122 if (its_affinity->header.length < sizeof(*its_affinity)) {
3123 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3124 its_affinity->header.length);
3125 return -EINVAL;
3128 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3130 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3131 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3132 return 0;
3135 its_srat_maps[its_in_srat].numa_node = node;
3136 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3137 its_in_srat++;
3138 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3139 its_affinity->proximity_domain, its_affinity->its_id, node);
3141 return 0;
3144 static void __init acpi_table_parse_srat_its(void)
3146 int count;
3148 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3149 sizeof(struct acpi_table_srat),
3150 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3151 gic_acpi_match_srat_its, 0);
3152 if (count <= 0)
3153 return;
3155 its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3156 GFP_KERNEL);
3157 if (!its_srat_maps) {
3158 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3159 return;
3162 acpi_table_parse_entries(ACPI_SIG_SRAT,
3163 sizeof(struct acpi_table_srat),
3164 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3165 gic_acpi_parse_srat_its, 0);
3168 /* free the its_srat_maps after ITS probing */
3169 static void __init acpi_its_srat_maps_free(void)
3171 kfree(its_srat_maps);
3173 #else
3174 static void __init acpi_table_parse_srat_its(void) { }
3175 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3176 static void __init acpi_its_srat_maps_free(void) { }
3177 #endif
3179 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3180 const unsigned long end)
3182 struct acpi_madt_generic_translator *its_entry;
3183 struct fwnode_handle *dom_handle;
3184 struct resource res;
3185 int err;
3187 its_entry = (struct acpi_madt_generic_translator *)header;
3188 memset(&res, 0, sizeof(res));
3189 res.start = its_entry->base_address;
3190 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3191 res.flags = IORESOURCE_MEM;
3193 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3194 if (!dom_handle) {
3195 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3196 &res.start);
3197 return -ENOMEM;
3200 err = iort_register_domain_token(its_entry->translation_id, dom_handle);
3201 if (err) {
3202 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3203 &res.start, its_entry->translation_id);
3204 goto dom_err;
3207 err = its_probe_one(&res, dom_handle,
3208 acpi_get_its_numa_node(its_entry->translation_id));
3209 if (!err)
3210 return 0;
3212 iort_deregister_domain_token(its_entry->translation_id);
3213 dom_err:
3214 irq_domain_free_fwnode(dom_handle);
3215 return err;
3218 static void __init its_acpi_probe(void)
3220 acpi_table_parse_srat_its();
3221 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3222 gic_acpi_parse_madt_its, 0);
3223 acpi_its_srat_maps_free();
3225 #else
3226 static void __init its_acpi_probe(void) { }
3227 #endif
3229 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3230 struct irq_domain *parent_domain)
3232 struct device_node *of_node;
3233 struct its_node *its;
3234 bool has_v4 = false;
3235 int err;
3237 its_parent = parent_domain;
3238 of_node = to_of_node(handle);
3239 if (of_node)
3240 its_of_probe(of_node);
3241 else
3242 its_acpi_probe();
3244 if (list_empty(&its_nodes)) {
3245 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3246 return -ENXIO;
3249 gic_rdists = rdists;
3250 err = its_alloc_lpi_tables();
3251 if (err)
3252 return err;
3254 list_for_each_entry(its, &its_nodes, entry)
3255 has_v4 |= its->is_v4;
3257 if (has_v4 & rdists->has_vlpis) {
3258 if (its_init_vpe_domain() ||
3259 its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3260 rdists->has_vlpis = false;
3261 pr_err("ITS: Disabling GICv4 support\n");
3265 return 0;