2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
10 * This file is released under the GPLv2 license.
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
33 * <Static | [Reserved] | Dynamic>
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
55 * To use this allocator, arch code should do the following:
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
83 #include <linux/sched.h>
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
93 #include "percpu-internal.h"
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
98 #define PCPU_EMPTY_POP_PAGES_LOW 2
99 #define PCPU_EMPTY_POP_PAGES_HIGH 4
102 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
103 #ifndef __addr_to_pcpu_ptr
104 #define __addr_to_pcpu_ptr(addr) \
105 (void __percpu *)((unsigned long)(addr) - \
106 (unsigned long)pcpu_base_addr + \
107 (unsigned long)__per_cpu_start)
109 #ifndef __pcpu_ptr_to_addr
110 #define __pcpu_ptr_to_addr(ptr) \
111 (void __force *)((unsigned long)(ptr) + \
112 (unsigned long)pcpu_base_addr - \
113 (unsigned long)__per_cpu_start)
115 #else /* CONFIG_SMP */
116 /* on UP, it's always identity mapped */
117 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
118 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
119 #endif /* CONFIG_SMP */
121 static int pcpu_unit_pages __ro_after_init
;
122 static int pcpu_unit_size __ro_after_init
;
123 static int pcpu_nr_units __ro_after_init
;
124 static int pcpu_atom_size __ro_after_init
;
125 int pcpu_nr_slots __ro_after_init
;
126 static size_t pcpu_chunk_struct_size __ro_after_init
;
128 /* cpus with the lowest and highest unit addresses */
129 static unsigned int pcpu_low_unit_cpu __ro_after_init
;
130 static unsigned int pcpu_high_unit_cpu __ro_after_init
;
132 /* the address of the first chunk which starts with the kernel static area */
133 void *pcpu_base_addr __ro_after_init
;
134 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
136 static const int *pcpu_unit_map __ro_after_init
; /* cpu -> unit */
137 const unsigned long *pcpu_unit_offsets __ro_after_init
; /* cpu -> unit offset */
139 /* group information, used for vm allocation */
140 static int pcpu_nr_groups __ro_after_init
;
141 static const unsigned long *pcpu_group_offsets __ro_after_init
;
142 static const size_t *pcpu_group_sizes __ro_after_init
;
145 * The first chunk which always exists. Note that unlike other
146 * chunks, this one can be allocated and mapped in several different
147 * ways and thus often doesn't live in the vmalloc area.
149 struct pcpu_chunk
*pcpu_first_chunk __ro_after_init
;
152 * Optional reserved chunk. This chunk reserves part of the first
153 * chunk and serves it for reserved allocations. When the reserved
154 * region doesn't exist, the following variable is NULL.
156 struct pcpu_chunk
*pcpu_reserved_chunk __ro_after_init
;
158 DEFINE_SPINLOCK(pcpu_lock
); /* all internal data structures */
159 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* chunk create/destroy, [de]pop, map ext */
161 struct list_head
*pcpu_slot __ro_after_init
; /* chunk list slots */
163 /* chunks which need their map areas extended, protected by pcpu_lock */
164 static LIST_HEAD(pcpu_map_extend_chunks
);
167 * The number of empty populated pages, protected by pcpu_lock. The
168 * reserved chunk doesn't contribute to the count.
170 int pcpu_nr_empty_pop_pages
;
173 * Balance work is used to populate or destroy chunks asynchronously. We
174 * try to keep the number of populated free pages between
175 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
178 static void pcpu_balance_workfn(struct work_struct
*work
);
179 static DECLARE_WORK(pcpu_balance_work
, pcpu_balance_workfn
);
180 static bool pcpu_async_enabled __read_mostly
;
181 static bool pcpu_atomic_alloc_failed
;
183 static void pcpu_schedule_balance_work(void)
185 if (pcpu_async_enabled
)
186 schedule_work(&pcpu_balance_work
);
190 * pcpu_addr_in_chunk - check if the address is served from this chunk
191 * @chunk: chunk of interest
192 * @addr: percpu address
195 * True if the address is served from this chunk.
197 static bool pcpu_addr_in_chunk(struct pcpu_chunk
*chunk
, void *addr
)
199 void *start_addr
, *end_addr
;
204 start_addr
= chunk
->base_addr
+ chunk
->start_offset
;
205 end_addr
= chunk
->base_addr
+ chunk
->nr_pages
* PAGE_SIZE
-
208 return addr
>= start_addr
&& addr
< end_addr
;
211 static int __pcpu_size_to_slot(int size
)
213 int highbit
= fls(size
); /* size is in bytes */
214 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
217 static int pcpu_size_to_slot(int size
)
219 if (size
== pcpu_unit_size
)
220 return pcpu_nr_slots
- 1;
221 return __pcpu_size_to_slot(size
);
224 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
226 if (chunk
->free_bytes
< PCPU_MIN_ALLOC_SIZE
|| chunk
->contig_bits
== 0)
229 return pcpu_size_to_slot(chunk
->free_bytes
);
232 /* set the pointer to a chunk in a page struct */
233 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
235 page
->index
= (unsigned long)pcpu
;
238 /* obtain pointer to a chunk from a page struct */
239 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
241 return (struct pcpu_chunk
*)page
->index
;
244 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
246 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
249 static unsigned long pcpu_unit_page_offset(unsigned int cpu
, int page_idx
)
251 return pcpu_unit_offsets
[cpu
] + (page_idx
<< PAGE_SHIFT
);
254 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
255 unsigned int cpu
, int page_idx
)
257 return (unsigned long)chunk
->base_addr
+
258 pcpu_unit_page_offset(cpu
, page_idx
);
261 static void pcpu_next_unpop(unsigned long *bitmap
, int *rs
, int *re
, int end
)
263 *rs
= find_next_zero_bit(bitmap
, end
, *rs
);
264 *re
= find_next_bit(bitmap
, end
, *rs
+ 1);
267 static void pcpu_next_pop(unsigned long *bitmap
, int *rs
, int *re
, int end
)
269 *rs
= find_next_bit(bitmap
, end
, *rs
);
270 *re
= find_next_zero_bit(bitmap
, end
, *rs
+ 1);
274 * Bitmap region iterators. Iterates over the bitmap between
275 * [@start, @end) in @chunk. @rs and @re should be integer variables
276 * and will be set to start and end index of the current free region.
278 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
279 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
281 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
283 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
284 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
286 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
289 * The following are helper functions to help access bitmaps and convert
290 * between bitmap offsets to address offsets.
292 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk
*chunk
, int index
)
294 return chunk
->alloc_map
+
295 (index
* PCPU_BITMAP_BLOCK_BITS
/ BITS_PER_LONG
);
298 static unsigned long pcpu_off_to_block_index(int off
)
300 return off
/ PCPU_BITMAP_BLOCK_BITS
;
303 static unsigned long pcpu_off_to_block_off(int off
)
305 return off
& (PCPU_BITMAP_BLOCK_BITS
- 1);
308 static unsigned long pcpu_block_off_to_off(int index
, int off
)
310 return index
* PCPU_BITMAP_BLOCK_BITS
+ off
;
314 * pcpu_next_md_free_region - finds the next hint free area
315 * @chunk: chunk of interest
316 * @bit_off: chunk offset
317 * @bits: size of free area
319 * Helper function for pcpu_for_each_md_free_region. It checks
320 * block->contig_hint and performs aggregation across blocks to find the
321 * next hint. It modifies bit_off and bits in-place to be consumed in the
324 static void pcpu_next_md_free_region(struct pcpu_chunk
*chunk
, int *bit_off
,
327 int i
= pcpu_off_to_block_index(*bit_off
);
328 int block_off
= pcpu_off_to_block_off(*bit_off
);
329 struct pcpu_block_md
*block
;
332 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
334 /* handles contig area across blocks */
336 *bits
+= block
->left_free
;
337 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
343 * This checks three things. First is there a contig_hint to
344 * check. Second, have we checked this hint before by
345 * comparing the block_off. Third, is this the same as the
346 * right contig hint. In the last case, it spills over into
347 * the next block and should be handled by the contig area
348 * across blocks code.
350 *bits
= block
->contig_hint
;
351 if (*bits
&& block
->contig_hint_start
>= block_off
&&
352 *bits
+ block
->contig_hint_start
< PCPU_BITMAP_BLOCK_BITS
) {
353 *bit_off
= pcpu_block_off_to_off(i
,
354 block
->contig_hint_start
);
357 /* reset to satisfy the second predicate above */
360 *bits
= block
->right_free
;
361 *bit_off
= (i
+ 1) * PCPU_BITMAP_BLOCK_BITS
- block
->right_free
;
366 * pcpu_next_fit_region - finds fit areas for a given allocation request
367 * @chunk: chunk of interest
368 * @alloc_bits: size of allocation
369 * @align: alignment of area (max PAGE_SIZE)
370 * @bit_off: chunk offset
371 * @bits: size of free area
373 * Finds the next free region that is viable for use with a given size and
374 * alignment. This only returns if there is a valid area to be used for this
375 * allocation. block->first_free is returned if the allocation request fits
376 * within the block to see if the request can be fulfilled prior to the contig
379 static void pcpu_next_fit_region(struct pcpu_chunk
*chunk
, int alloc_bits
,
380 int align
, int *bit_off
, int *bits
)
382 int i
= pcpu_off_to_block_index(*bit_off
);
383 int block_off
= pcpu_off_to_block_off(*bit_off
);
384 struct pcpu_block_md
*block
;
387 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
389 /* handles contig area across blocks */
391 *bits
+= block
->left_free
;
392 if (*bits
>= alloc_bits
)
394 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
398 /* check block->contig_hint */
399 *bits
= ALIGN(block
->contig_hint_start
, align
) -
400 block
->contig_hint_start
;
402 * This uses the block offset to determine if this has been
403 * checked in the prior iteration.
405 if (block
->contig_hint
&&
406 block
->contig_hint_start
>= block_off
&&
407 block
->contig_hint
>= *bits
+ alloc_bits
) {
408 *bits
+= alloc_bits
+ block
->contig_hint_start
-
410 *bit_off
= pcpu_block_off_to_off(i
, block
->first_free
);
413 /* reset to satisfy the second predicate above */
416 *bit_off
= ALIGN(PCPU_BITMAP_BLOCK_BITS
- block
->right_free
,
418 *bits
= PCPU_BITMAP_BLOCK_BITS
- *bit_off
;
419 *bit_off
= pcpu_block_off_to_off(i
, *bit_off
);
420 if (*bits
>= alloc_bits
)
424 /* no valid offsets were found - fail condition */
425 *bit_off
= pcpu_chunk_map_bits(chunk
);
429 * Metadata free area iterators. These perform aggregation of free areas
430 * based on the metadata blocks and return the offset @bit_off and size in
431 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
432 * a fit is found for the allocation request.
434 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
435 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
436 (bit_off) < pcpu_chunk_map_bits((chunk)); \
437 (bit_off) += (bits) + 1, \
438 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
440 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
441 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
443 (bit_off) < pcpu_chunk_map_bits((chunk)); \
444 (bit_off) += (bits), \
445 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
449 * pcpu_mem_zalloc - allocate memory
450 * @size: bytes to allocate
451 * @gfp: allocation flags
453 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
454 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
455 * This is to facilitate passing through whitelisted flags. The
456 * returned memory is always zeroed.
459 * Pointer to the allocated area on success, NULL on failure.
461 static void *pcpu_mem_zalloc(size_t size
, gfp_t gfp
)
463 if (WARN_ON_ONCE(!slab_is_available()))
466 if (size
<= PAGE_SIZE
)
467 return kzalloc(size
, gfp
);
469 return __vmalloc(size
, gfp
| __GFP_ZERO
, PAGE_KERNEL
);
473 * pcpu_mem_free - free memory
474 * @ptr: memory to free
476 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
478 static void pcpu_mem_free(void *ptr
)
484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
485 * @chunk: chunk of interest
486 * @oslot: the previous slot it was on
488 * This function is called after an allocation or free changed @chunk.
489 * New slot according to the changed state is determined and @chunk is
490 * moved to the slot. Note that the reserved chunk is never put on
496 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
498 int nslot
= pcpu_chunk_slot(chunk
);
500 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
502 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
504 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
509 * pcpu_cnt_pop_pages- counts populated backing pages in range
510 * @chunk: chunk of interest
511 * @bit_off: start offset
512 * @bits: size of area to check
514 * Calculates the number of populated pages in the region
515 * [page_start, page_end). This keeps track of how many empty populated
516 * pages are available and decide if async work should be scheduled.
519 * The nr of populated pages.
521 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk
*chunk
, int bit_off
,
524 int page_start
= PFN_UP(bit_off
* PCPU_MIN_ALLOC_SIZE
);
525 int page_end
= PFN_DOWN((bit_off
+ bits
) * PCPU_MIN_ALLOC_SIZE
);
527 if (page_start
>= page_end
)
531 * bitmap_weight counts the number of bits set in a bitmap up to
532 * the specified number of bits. This is counting the populated
533 * pages up to page_end and then subtracting the populated pages
534 * up to page_start to count the populated pages in
535 * [page_start, page_end).
537 return bitmap_weight(chunk
->populated
, page_end
) -
538 bitmap_weight(chunk
->populated
, page_start
);
542 * pcpu_chunk_update - updates the chunk metadata given a free area
543 * @chunk: chunk of interest
544 * @bit_off: chunk offset
545 * @bits: size of free area
547 * This updates the chunk's contig hint and starting offset given a free area.
548 * Choose the best starting offset if the contig hint is equal.
550 static void pcpu_chunk_update(struct pcpu_chunk
*chunk
, int bit_off
, int bits
)
552 if (bits
> chunk
->contig_bits
) {
553 chunk
->contig_bits_start
= bit_off
;
554 chunk
->contig_bits
= bits
;
555 } else if (bits
== chunk
->contig_bits
&& chunk
->contig_bits_start
&&
557 __ffs(bit_off
) > __ffs(chunk
->contig_bits_start
))) {
558 /* use the start with the best alignment */
559 chunk
->contig_bits_start
= bit_off
;
564 * pcpu_chunk_refresh_hint - updates metadata about a chunk
565 * @chunk: chunk of interest
567 * Iterates over the metadata blocks to find the largest contig area.
568 * It also counts the populated pages and uses the delta to update the
573 * chunk->contig_bits_start
574 * nr_empty_pop_pages (chunk and global)
576 static void pcpu_chunk_refresh_hint(struct pcpu_chunk
*chunk
)
578 int bit_off
, bits
, nr_empty_pop_pages
;
581 chunk
->contig_bits
= 0;
583 bit_off
= chunk
->first_bit
;
584 bits
= nr_empty_pop_pages
= 0;
585 pcpu_for_each_md_free_region(chunk
, bit_off
, bits
) {
586 pcpu_chunk_update(chunk
, bit_off
, bits
);
588 nr_empty_pop_pages
+= pcpu_cnt_pop_pages(chunk
, bit_off
, bits
);
592 * Keep track of nr_empty_pop_pages.
594 * The chunk maintains the previous number of free pages it held,
595 * so the delta is used to update the global counter. The reserved
596 * chunk is not part of the free page count as they are populated
597 * at init and are special to serving reserved allocations.
599 if (chunk
!= pcpu_reserved_chunk
)
600 pcpu_nr_empty_pop_pages
+=
601 (nr_empty_pop_pages
- chunk
->nr_empty_pop_pages
);
603 chunk
->nr_empty_pop_pages
= nr_empty_pop_pages
;
607 * pcpu_block_update - updates a block given a free area
608 * @block: block of interest
609 * @start: start offset in block
610 * @end: end offset in block
612 * Updates a block given a known free area. The region [start, end) is
613 * expected to be the entirety of the free area within a block. Chooses
614 * the best starting offset if the contig hints are equal.
616 static void pcpu_block_update(struct pcpu_block_md
*block
, int start
, int end
)
618 int contig
= end
- start
;
620 block
->first_free
= min(block
->first_free
, start
);
622 block
->left_free
= contig
;
624 if (end
== PCPU_BITMAP_BLOCK_BITS
)
625 block
->right_free
= contig
;
627 if (contig
> block
->contig_hint
) {
628 block
->contig_hint_start
= start
;
629 block
->contig_hint
= contig
;
630 } else if (block
->contig_hint_start
&& contig
== block
->contig_hint
&&
631 (!start
|| __ffs(start
) > __ffs(block
->contig_hint_start
))) {
632 /* use the start with the best alignment */
633 block
->contig_hint_start
= start
;
638 * pcpu_block_refresh_hint
639 * @chunk: chunk of interest
640 * @index: index of the metadata block
642 * Scans over the block beginning at first_free and updates the block
643 * metadata accordingly.
645 static void pcpu_block_refresh_hint(struct pcpu_chunk
*chunk
, int index
)
647 struct pcpu_block_md
*block
= chunk
->md_blocks
+ index
;
648 unsigned long *alloc_map
= pcpu_index_alloc_map(chunk
, index
);
649 int rs
, re
; /* region start, region end */
652 block
->contig_hint
= 0;
653 block
->left_free
= block
->right_free
= 0;
655 /* iterate over free areas and update the contig hints */
656 pcpu_for_each_unpop_region(alloc_map
, rs
, re
, block
->first_free
,
657 PCPU_BITMAP_BLOCK_BITS
) {
658 pcpu_block_update(block
, rs
, re
);
663 * pcpu_block_update_hint_alloc - update hint on allocation path
664 * @chunk: chunk of interest
665 * @bit_off: chunk offset
666 * @bits: size of request
668 * Updates metadata for the allocation path. The metadata only has to be
669 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
670 * scans are required if the block's contig hint is broken.
672 static void pcpu_block_update_hint_alloc(struct pcpu_chunk
*chunk
, int bit_off
,
675 struct pcpu_block_md
*s_block
, *e_block
, *block
;
676 int s_index
, e_index
; /* block indexes of the freed allocation */
677 int s_off
, e_off
; /* block offsets of the freed allocation */
680 * Calculate per block offsets.
681 * The calculation uses an inclusive range, but the resulting offsets
682 * are [start, end). e_index always points to the last block in the
685 s_index
= pcpu_off_to_block_index(bit_off
);
686 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
687 s_off
= pcpu_off_to_block_off(bit_off
);
688 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
690 s_block
= chunk
->md_blocks
+ s_index
;
691 e_block
= chunk
->md_blocks
+ e_index
;
695 * block->first_free must be updated if the allocation takes its place.
696 * If the allocation breaks the contig_hint, a scan is required to
699 if (s_off
== s_block
->first_free
)
700 s_block
->first_free
= find_next_zero_bit(
701 pcpu_index_alloc_map(chunk
, s_index
),
702 PCPU_BITMAP_BLOCK_BITS
,
705 if (s_off
>= s_block
->contig_hint_start
&&
706 s_off
< s_block
->contig_hint_start
+ s_block
->contig_hint
) {
707 /* block contig hint is broken - scan to fix it */
708 pcpu_block_refresh_hint(chunk
, s_index
);
710 /* update left and right contig manually */
711 s_block
->left_free
= min(s_block
->left_free
, s_off
);
712 if (s_index
== e_index
)
713 s_block
->right_free
= min_t(int, s_block
->right_free
,
714 PCPU_BITMAP_BLOCK_BITS
- e_off
);
716 s_block
->right_free
= 0;
722 if (s_index
!= e_index
) {
724 * When the allocation is across blocks, the end is along
725 * the left part of the e_block.
727 e_block
->first_free
= find_next_zero_bit(
728 pcpu_index_alloc_map(chunk
, e_index
),
729 PCPU_BITMAP_BLOCK_BITS
, e_off
);
731 if (e_off
== PCPU_BITMAP_BLOCK_BITS
) {
732 /* reset the block */
735 if (e_off
> e_block
->contig_hint_start
) {
736 /* contig hint is broken - scan to fix it */
737 pcpu_block_refresh_hint(chunk
, e_index
);
739 e_block
->left_free
= 0;
740 e_block
->right_free
=
741 min_t(int, e_block
->right_free
,
742 PCPU_BITMAP_BLOCK_BITS
- e_off
);
746 /* update in-between md_blocks */
747 for (block
= s_block
+ 1; block
< e_block
; block
++) {
748 block
->contig_hint
= 0;
749 block
->left_free
= 0;
750 block
->right_free
= 0;
755 * The only time a full chunk scan is required is if the chunk
756 * contig hint is broken. Otherwise, it means a smaller space
757 * was used and therefore the chunk contig hint is still correct.
759 if (bit_off
>= chunk
->contig_bits_start
&&
760 bit_off
< chunk
->contig_bits_start
+ chunk
->contig_bits
)
761 pcpu_chunk_refresh_hint(chunk
);
765 * pcpu_block_update_hint_free - updates the block hints on the free path
766 * @chunk: chunk of interest
767 * @bit_off: chunk offset
768 * @bits: size of request
770 * Updates metadata for the allocation path. This avoids a blind block
771 * refresh by making use of the block contig hints. If this fails, it scans
772 * forward and backward to determine the extent of the free area. This is
773 * capped at the boundary of blocks.
775 * A chunk update is triggered if a page becomes free, a block becomes free,
776 * or the free spans across blocks. This tradeoff is to minimize iterating
777 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
778 * may be off by up to a page, but it will never be more than the available
779 * space. If the contig hint is contained in one block, it will be accurate.
781 static void pcpu_block_update_hint_free(struct pcpu_chunk
*chunk
, int bit_off
,
784 struct pcpu_block_md
*s_block
, *e_block
, *block
;
785 int s_index
, e_index
; /* block indexes of the freed allocation */
786 int s_off
, e_off
; /* block offsets of the freed allocation */
787 int start
, end
; /* start and end of the whole free area */
790 * Calculate per block offsets.
791 * The calculation uses an inclusive range, but the resulting offsets
792 * are [start, end). e_index always points to the last block in the
795 s_index
= pcpu_off_to_block_index(bit_off
);
796 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
797 s_off
= pcpu_off_to_block_off(bit_off
);
798 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
800 s_block
= chunk
->md_blocks
+ s_index
;
801 e_block
= chunk
->md_blocks
+ e_index
;
804 * Check if the freed area aligns with the block->contig_hint.
805 * If it does, then the scan to find the beginning/end of the
806 * larger free area can be avoided.
808 * start and end refer to beginning and end of the free area
809 * within each their respective blocks. This is not necessarily
810 * the entire free area as it may span blocks past the beginning
811 * or end of the block.
814 if (s_off
== s_block
->contig_hint
+ s_block
->contig_hint_start
) {
815 start
= s_block
->contig_hint_start
;
818 * Scan backwards to find the extent of the free area.
819 * find_last_bit returns the starting bit, so if the start bit
820 * is returned, that means there was no last bit and the
821 * remainder of the chunk is free.
823 int l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
),
825 start
= (start
== l_bit
) ? 0 : l_bit
+ 1;
829 if (e_off
== e_block
->contig_hint_start
)
830 end
= e_block
->contig_hint_start
+ e_block
->contig_hint
;
832 end
= find_next_bit(pcpu_index_alloc_map(chunk
, e_index
),
833 PCPU_BITMAP_BLOCK_BITS
, end
);
836 e_off
= (s_index
== e_index
) ? end
: PCPU_BITMAP_BLOCK_BITS
;
837 pcpu_block_update(s_block
, start
, e_off
);
839 /* freeing in the same block */
840 if (s_index
!= e_index
) {
842 pcpu_block_update(e_block
, 0, end
);
844 /* reset md_blocks in the middle */
845 for (block
= s_block
+ 1; block
< e_block
; block
++) {
846 block
->first_free
= 0;
847 block
->contig_hint_start
= 0;
848 block
->contig_hint
= PCPU_BITMAP_BLOCK_BITS
;
849 block
->left_free
= PCPU_BITMAP_BLOCK_BITS
;
850 block
->right_free
= PCPU_BITMAP_BLOCK_BITS
;
855 * Refresh chunk metadata when the free makes a page free, a block
856 * free, or spans across blocks. The contig hint may be off by up to
857 * a page, but if the hint is contained in a block, it will be accurate
858 * with the else condition below.
860 if ((ALIGN_DOWN(end
, min(PCPU_BITS_PER_PAGE
, PCPU_BITMAP_BLOCK_BITS
)) >
861 ALIGN(start
, min(PCPU_BITS_PER_PAGE
, PCPU_BITMAP_BLOCK_BITS
))) ||
863 pcpu_chunk_refresh_hint(chunk
);
865 pcpu_chunk_update(chunk
, pcpu_block_off_to_off(s_index
, start
),
866 s_block
->contig_hint
);
870 * pcpu_is_populated - determines if the region is populated
871 * @chunk: chunk of interest
872 * @bit_off: chunk offset
873 * @bits: size of area
874 * @next_off: return value for the next offset to start searching
876 * For atomic allocations, check if the backing pages are populated.
879 * Bool if the backing pages are populated.
880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
882 static bool pcpu_is_populated(struct pcpu_chunk
*chunk
, int bit_off
, int bits
,
885 int page_start
, page_end
, rs
, re
;
887 page_start
= PFN_DOWN(bit_off
* PCPU_MIN_ALLOC_SIZE
);
888 page_end
= PFN_UP((bit_off
+ bits
) * PCPU_MIN_ALLOC_SIZE
);
891 pcpu_next_unpop(chunk
->populated
, &rs
, &re
, page_end
);
895 *next_off
= re
* PAGE_SIZE
/ PCPU_MIN_ALLOC_SIZE
;
900 * pcpu_find_block_fit - finds the block index to start searching
901 * @chunk: chunk of interest
902 * @alloc_bits: size of request in allocation units
903 * @align: alignment of area (max PAGE_SIZE bytes)
904 * @pop_only: use populated regions only
906 * Given a chunk and an allocation spec, find the offset to begin searching
907 * for a free region. This iterates over the bitmap metadata blocks to
908 * find an offset that will be guaranteed to fit the requirements. It is
909 * not quite first fit as if the allocation does not fit in the contig hint
910 * of a block or chunk, it is skipped. This errs on the side of caution
911 * to prevent excess iteration. Poor alignment can cause the allocator to
912 * skip over blocks and chunks that have valid free areas.
915 * The offset in the bitmap to begin searching.
916 * -1 if no offset is found.
918 static int pcpu_find_block_fit(struct pcpu_chunk
*chunk
, int alloc_bits
,
919 size_t align
, bool pop_only
)
921 int bit_off
, bits
, next_off
;
924 * Check to see if the allocation can fit in the chunk's contig hint.
925 * This is an optimization to prevent scanning by assuming if it
926 * cannot fit in the global hint, there is memory pressure and creating
927 * a new chunk would happen soon.
929 bit_off
= ALIGN(chunk
->contig_bits_start
, align
) -
930 chunk
->contig_bits_start
;
931 if (bit_off
+ alloc_bits
> chunk
->contig_bits
)
934 bit_off
= chunk
->first_bit
;
936 pcpu_for_each_fit_region(chunk
, alloc_bits
, align
, bit_off
, bits
) {
937 if (!pop_only
|| pcpu_is_populated(chunk
, bit_off
, bits
,
945 if (bit_off
== pcpu_chunk_map_bits(chunk
))
952 * pcpu_alloc_area - allocates an area from a pcpu_chunk
953 * @chunk: chunk of interest
954 * @alloc_bits: size of request in allocation units
955 * @align: alignment of area (max PAGE_SIZE)
956 * @start: bit_off to start searching
958 * This function takes in a @start offset to begin searching to fit an
959 * allocation of @alloc_bits with alignment @align. It needs to scan
960 * the allocation map because if it fits within the block's contig hint,
961 * @start will be block->first_free. This is an attempt to fill the
962 * allocation prior to breaking the contig hint. The allocation and
963 * boundary maps are updated accordingly if it confirms a valid
967 * Allocated addr offset in @chunk on success.
968 * -1 if no matching area is found.
970 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int alloc_bits
,
971 size_t align
, int start
)
973 size_t align_mask
= (align
) ? (align
- 1) : 0;
974 int bit_off
, end
, oslot
;
976 lockdep_assert_held(&pcpu_lock
);
978 oslot
= pcpu_chunk_slot(chunk
);
981 * Search to find a fit.
983 end
= start
+ alloc_bits
+ PCPU_BITMAP_BLOCK_BITS
;
984 bit_off
= bitmap_find_next_zero_area(chunk
->alloc_map
, end
, start
,
985 alloc_bits
, align_mask
);
989 /* update alloc map */
990 bitmap_set(chunk
->alloc_map
, bit_off
, alloc_bits
);
992 /* update boundary map */
993 set_bit(bit_off
, chunk
->bound_map
);
994 bitmap_clear(chunk
->bound_map
, bit_off
+ 1, alloc_bits
- 1);
995 set_bit(bit_off
+ alloc_bits
, chunk
->bound_map
);
997 chunk
->free_bytes
-= alloc_bits
* PCPU_MIN_ALLOC_SIZE
;
999 /* update first free bit */
1000 if (bit_off
== chunk
->first_bit
)
1001 chunk
->first_bit
= find_next_zero_bit(
1003 pcpu_chunk_map_bits(chunk
),
1004 bit_off
+ alloc_bits
);
1006 pcpu_block_update_hint_alloc(chunk
, bit_off
, alloc_bits
);
1008 pcpu_chunk_relocate(chunk
, oslot
);
1010 return bit_off
* PCPU_MIN_ALLOC_SIZE
;
1014 * pcpu_free_area - frees the corresponding offset
1015 * @chunk: chunk of interest
1016 * @off: addr offset into chunk
1018 * This function determines the size of an allocation to free using
1019 * the boundary bitmap and clears the allocation map.
1021 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int off
)
1023 int bit_off
, bits
, end
, oslot
;
1025 lockdep_assert_held(&pcpu_lock
);
1026 pcpu_stats_area_dealloc(chunk
);
1028 oslot
= pcpu_chunk_slot(chunk
);
1030 bit_off
= off
/ PCPU_MIN_ALLOC_SIZE
;
1032 /* find end index */
1033 end
= find_next_bit(chunk
->bound_map
, pcpu_chunk_map_bits(chunk
),
1035 bits
= end
- bit_off
;
1036 bitmap_clear(chunk
->alloc_map
, bit_off
, bits
);
1038 /* update metadata */
1039 chunk
->free_bytes
+= bits
* PCPU_MIN_ALLOC_SIZE
;
1041 /* update first free bit */
1042 chunk
->first_bit
= min(chunk
->first_bit
, bit_off
);
1044 pcpu_block_update_hint_free(chunk
, bit_off
, bits
);
1046 pcpu_chunk_relocate(chunk
, oslot
);
1049 static void pcpu_init_md_blocks(struct pcpu_chunk
*chunk
)
1051 struct pcpu_block_md
*md_block
;
1053 for (md_block
= chunk
->md_blocks
;
1054 md_block
!= chunk
->md_blocks
+ pcpu_chunk_nr_blocks(chunk
);
1056 md_block
->contig_hint
= PCPU_BITMAP_BLOCK_BITS
;
1057 md_block
->left_free
= PCPU_BITMAP_BLOCK_BITS
;
1058 md_block
->right_free
= PCPU_BITMAP_BLOCK_BITS
;
1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064 * @tmp_addr: the start of the region served
1065 * @map_size: size of the region served
1067 * This is responsible for creating the chunks that serve the first chunk. The
1068 * base_addr is page aligned down of @tmp_addr while the region end is page
1069 * aligned up. Offsets are kept track of to determine the region served. All
1070 * this is done to appease the bitmap allocator in avoiding partial blocks.
1073 * Chunk serving the region at @tmp_addr of @map_size.
1075 static struct pcpu_chunk
* __init
pcpu_alloc_first_chunk(unsigned long tmp_addr
,
1078 struct pcpu_chunk
*chunk
;
1079 unsigned long aligned_addr
, lcm_align
;
1080 int start_offset
, offset_bits
, region_size
, region_bits
;
1082 /* region calculations */
1083 aligned_addr
= tmp_addr
& PAGE_MASK
;
1085 start_offset
= tmp_addr
- aligned_addr
;
1088 * Align the end of the region with the LCM of PAGE_SIZE and
1089 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1092 lcm_align
= lcm(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
);
1093 region_size
= ALIGN(start_offset
+ map_size
, lcm_align
);
1095 /* allocate chunk */
1096 chunk
= memblock_virt_alloc(sizeof(struct pcpu_chunk
) +
1097 BITS_TO_LONGS(region_size
>> PAGE_SHIFT
),
1100 INIT_LIST_HEAD(&chunk
->list
);
1102 chunk
->base_addr
= (void *)aligned_addr
;
1103 chunk
->start_offset
= start_offset
;
1104 chunk
->end_offset
= region_size
- chunk
->start_offset
- map_size
;
1106 chunk
->nr_pages
= region_size
>> PAGE_SHIFT
;
1107 region_bits
= pcpu_chunk_map_bits(chunk
);
1109 chunk
->alloc_map
= memblock_virt_alloc(BITS_TO_LONGS(region_bits
) *
1110 sizeof(chunk
->alloc_map
[0]), 0);
1111 chunk
->bound_map
= memblock_virt_alloc(BITS_TO_LONGS(region_bits
+ 1) *
1112 sizeof(chunk
->bound_map
[0]), 0);
1113 chunk
->md_blocks
= memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk
) *
1114 sizeof(chunk
->md_blocks
[0]), 0);
1115 pcpu_init_md_blocks(chunk
);
1117 /* manage populated page bitmap */
1118 chunk
->immutable
= true;
1119 bitmap_fill(chunk
->populated
, chunk
->nr_pages
);
1120 chunk
->nr_populated
= chunk
->nr_pages
;
1121 chunk
->nr_empty_pop_pages
=
1122 pcpu_cnt_pop_pages(chunk
, start_offset
/ PCPU_MIN_ALLOC_SIZE
,
1123 map_size
/ PCPU_MIN_ALLOC_SIZE
);
1125 chunk
->contig_bits
= map_size
/ PCPU_MIN_ALLOC_SIZE
;
1126 chunk
->free_bytes
= map_size
;
1128 if (chunk
->start_offset
) {
1129 /* hide the beginning of the bitmap */
1130 offset_bits
= chunk
->start_offset
/ PCPU_MIN_ALLOC_SIZE
;
1131 bitmap_set(chunk
->alloc_map
, 0, offset_bits
);
1132 set_bit(0, chunk
->bound_map
);
1133 set_bit(offset_bits
, chunk
->bound_map
);
1135 chunk
->first_bit
= offset_bits
;
1137 pcpu_block_update_hint_alloc(chunk
, 0, offset_bits
);
1140 if (chunk
->end_offset
) {
1141 /* hide the end of the bitmap */
1142 offset_bits
= chunk
->end_offset
/ PCPU_MIN_ALLOC_SIZE
;
1143 bitmap_set(chunk
->alloc_map
,
1144 pcpu_chunk_map_bits(chunk
) - offset_bits
,
1146 set_bit((start_offset
+ map_size
) / PCPU_MIN_ALLOC_SIZE
,
1148 set_bit(region_bits
, chunk
->bound_map
);
1150 pcpu_block_update_hint_alloc(chunk
, pcpu_chunk_map_bits(chunk
)
1151 - offset_bits
, offset_bits
);
1157 static struct pcpu_chunk
*pcpu_alloc_chunk(gfp_t gfp
)
1159 struct pcpu_chunk
*chunk
;
1162 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
, gfp
);
1166 INIT_LIST_HEAD(&chunk
->list
);
1167 chunk
->nr_pages
= pcpu_unit_pages
;
1168 region_bits
= pcpu_chunk_map_bits(chunk
);
1170 chunk
->alloc_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
) *
1171 sizeof(chunk
->alloc_map
[0]), gfp
);
1172 if (!chunk
->alloc_map
)
1173 goto alloc_map_fail
;
1175 chunk
->bound_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
+ 1) *
1176 sizeof(chunk
->bound_map
[0]), gfp
);
1177 if (!chunk
->bound_map
)
1178 goto bound_map_fail
;
1180 chunk
->md_blocks
= pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk
) *
1181 sizeof(chunk
->md_blocks
[0]), gfp
);
1182 if (!chunk
->md_blocks
)
1183 goto md_blocks_fail
;
1185 pcpu_init_md_blocks(chunk
);
1188 chunk
->contig_bits
= region_bits
;
1189 chunk
->free_bytes
= chunk
->nr_pages
* PAGE_SIZE
;
1194 pcpu_mem_free(chunk
->bound_map
);
1196 pcpu_mem_free(chunk
->alloc_map
);
1198 pcpu_mem_free(chunk
);
1203 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
1207 pcpu_mem_free(chunk
->bound_map
);
1208 pcpu_mem_free(chunk
->alloc_map
);
1209 pcpu_mem_free(chunk
);
1213 * pcpu_chunk_populated - post-population bookkeeping
1214 * @chunk: pcpu_chunk which got populated
1215 * @page_start: the start page
1216 * @page_end: the end page
1217 * @for_alloc: if this is to populate for allocation
1219 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1220 * the bookkeeping information accordingly. Must be called after each
1221 * successful population.
1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224 * is to serve an allocation in that area.
1226 static void pcpu_chunk_populated(struct pcpu_chunk
*chunk
, int page_start
,
1227 int page_end
, bool for_alloc
)
1229 int nr
= page_end
- page_start
;
1231 lockdep_assert_held(&pcpu_lock
);
1233 bitmap_set(chunk
->populated
, page_start
, nr
);
1234 chunk
->nr_populated
+= nr
;
1237 chunk
->nr_empty_pop_pages
+= nr
;
1238 pcpu_nr_empty_pop_pages
+= nr
;
1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244 * @chunk: pcpu_chunk which got depopulated
1245 * @page_start: the start page
1246 * @page_end: the end page
1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249 * Update the bookkeeping information accordingly. Must be called after
1250 * each successful depopulation.
1252 static void pcpu_chunk_depopulated(struct pcpu_chunk
*chunk
,
1253 int page_start
, int page_end
)
1255 int nr
= page_end
- page_start
;
1257 lockdep_assert_held(&pcpu_lock
);
1259 bitmap_clear(chunk
->populated
, page_start
, nr
);
1260 chunk
->nr_populated
-= nr
;
1261 chunk
->nr_empty_pop_pages
-= nr
;
1262 pcpu_nr_empty_pop_pages
-= nr
;
1266 * Chunk management implementation.
1268 * To allow different implementations, chunk alloc/free and
1269 * [de]population are implemented in a separate file which is pulled
1270 * into this file and compiled together. The following functions
1271 * should be implemented.
1273 * pcpu_populate_chunk - populate the specified range of a chunk
1274 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1275 * pcpu_create_chunk - create a new chunk
1276 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1277 * pcpu_addr_to_page - translate address to physical address
1278 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1280 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
1281 int page_start
, int page_end
, gfp_t gfp
);
1282 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
1283 int page_start
, int page_end
);
1284 static struct pcpu_chunk
*pcpu_create_chunk(gfp_t gfp
);
1285 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
1286 static struct page
*pcpu_addr_to_page(void *addr
);
1287 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
1289 #ifdef CONFIG_NEED_PER_CPU_KM
1290 #include "percpu-km.c"
1292 #include "percpu-vm.c"
1296 * pcpu_chunk_addr_search - determine chunk containing specified address
1297 * @addr: address for which the chunk needs to be determined.
1299 * This is an internal function that handles all but static allocations.
1300 * Static percpu address values should never be passed into the allocator.
1303 * The address of the found chunk.
1305 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
1307 /* is it in the dynamic region (first chunk)? */
1308 if (pcpu_addr_in_chunk(pcpu_first_chunk
, addr
))
1309 return pcpu_first_chunk
;
1311 /* is it in the reserved region? */
1312 if (pcpu_addr_in_chunk(pcpu_reserved_chunk
, addr
))
1313 return pcpu_reserved_chunk
;
1316 * The address is relative to unit0 which might be unused and
1317 * thus unmapped. Offset the address to the unit space of the
1318 * current processor before looking it up in the vmalloc
1319 * space. Note that any possible cpu id can be used here, so
1320 * there's no need to worry about preemption or cpu hotplug.
1322 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
1323 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
1327 * pcpu_alloc - the percpu allocator
1328 * @size: size of area to allocate in bytes
1329 * @align: alignment of area (max PAGE_SIZE)
1330 * @reserved: allocate from the reserved chunk if available
1331 * @gfp: allocation flags
1333 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1334 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1335 * then no warning will be triggered on invalid or failed allocation
1339 * Percpu pointer to the allocated area on success, NULL on failure.
1341 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
,
1344 /* whitelisted flags that can be passed to the backing allocators */
1345 gfp_t pcpu_gfp
= gfp
& (GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
);
1346 bool is_atomic
= (gfp
& GFP_KERNEL
) != GFP_KERNEL
;
1347 bool do_warn
= !(gfp
& __GFP_NOWARN
);
1348 static int warn_limit
= 10;
1349 struct pcpu_chunk
*chunk
;
1351 int slot
, off
, cpu
, ret
;
1352 unsigned long flags
;
1354 size_t bits
, bit_align
;
1357 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1358 * therefore alignment must be a minimum of that many bytes.
1359 * An allocation may have internal fragmentation from rounding up
1360 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1362 if (unlikely(align
< PCPU_MIN_ALLOC_SIZE
))
1363 align
= PCPU_MIN_ALLOC_SIZE
;
1365 size
= ALIGN(size
, PCPU_MIN_ALLOC_SIZE
);
1366 bits
= size
>> PCPU_MIN_ALLOC_SHIFT
;
1367 bit_align
= align
>> PCPU_MIN_ALLOC_SHIFT
;
1369 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
||
1370 !is_power_of_2(align
))) {
1371 WARN(do_warn
, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1378 * pcpu_balance_workfn() allocates memory under this mutex,
1379 * and it may wait for memory reclaim. Allow current task
1380 * to become OOM victim, in case of memory pressure.
1382 if (gfp
& __GFP_NOFAIL
)
1383 mutex_lock(&pcpu_alloc_mutex
);
1384 else if (mutex_lock_killable(&pcpu_alloc_mutex
))
1388 spin_lock_irqsave(&pcpu_lock
, flags
);
1390 /* serve reserved allocations from the reserved chunk if available */
1391 if (reserved
&& pcpu_reserved_chunk
) {
1392 chunk
= pcpu_reserved_chunk
;
1394 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
, is_atomic
);
1396 err
= "alloc from reserved chunk failed";
1400 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1404 err
= "alloc from reserved chunk failed";
1409 /* search through normal chunks */
1410 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
1411 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1412 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
,
1417 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1424 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1427 * No space left. Create a new chunk. We don't want multiple
1428 * tasks to create chunks simultaneously. Serialize and create iff
1429 * there's still no empty chunk after grabbing the mutex.
1432 err
= "atomic alloc failed, no space left";
1436 if (list_empty(&pcpu_slot
[pcpu_nr_slots
- 1])) {
1437 chunk
= pcpu_create_chunk(pcpu_gfp
);
1439 err
= "failed to allocate new chunk";
1443 spin_lock_irqsave(&pcpu_lock
, flags
);
1444 pcpu_chunk_relocate(chunk
, -1);
1446 spin_lock_irqsave(&pcpu_lock
, flags
);
1452 pcpu_stats_area_alloc(chunk
, size
);
1453 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1455 /* populate if not all pages are already there */
1457 int page_start
, page_end
, rs
, re
;
1459 page_start
= PFN_DOWN(off
);
1460 page_end
= PFN_UP(off
+ size
);
1462 pcpu_for_each_unpop_region(chunk
->populated
, rs
, re
,
1463 page_start
, page_end
) {
1464 WARN_ON(chunk
->immutable
);
1466 ret
= pcpu_populate_chunk(chunk
, rs
, re
, pcpu_gfp
);
1468 spin_lock_irqsave(&pcpu_lock
, flags
);
1470 pcpu_free_area(chunk
, off
);
1471 err
= "failed to populate";
1474 pcpu_chunk_populated(chunk
, rs
, re
, true);
1475 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1478 mutex_unlock(&pcpu_alloc_mutex
);
1481 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_LOW
)
1482 pcpu_schedule_balance_work();
1484 /* clear the areas and return address relative to base address */
1485 for_each_possible_cpu(cpu
)
1486 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1488 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1489 kmemleak_alloc_percpu(ptr
, size
, gfp
);
1491 trace_percpu_alloc_percpu(reserved
, is_atomic
, size
, align
,
1492 chunk
->base_addr
, off
, ptr
);
1497 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1499 trace_percpu_alloc_percpu_fail(reserved
, is_atomic
, size
, align
);
1501 if (!is_atomic
&& do_warn
&& warn_limit
) {
1502 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1503 size
, align
, is_atomic
, err
);
1506 pr_info("limit reached, disable warning\n");
1509 /* see the flag handling in pcpu_blance_workfn() */
1510 pcpu_atomic_alloc_failed
= true;
1511 pcpu_schedule_balance_work();
1513 mutex_unlock(&pcpu_alloc_mutex
);
1519 * __alloc_percpu_gfp - allocate dynamic percpu area
1520 * @size: size of area to allocate in bytes
1521 * @align: alignment of area (max PAGE_SIZE)
1522 * @gfp: allocation flags
1524 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1525 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1526 * be called from any context but is a lot more likely to fail. If @gfp
1527 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1528 * allocation requests.
1531 * Percpu pointer to the allocated area on success, NULL on failure.
1533 void __percpu
*__alloc_percpu_gfp(size_t size
, size_t align
, gfp_t gfp
)
1535 return pcpu_alloc(size
, align
, false, gfp
);
1537 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp
);
1540 * __alloc_percpu - allocate dynamic percpu area
1541 * @size: size of area to allocate in bytes
1542 * @align: alignment of area (max PAGE_SIZE)
1544 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1546 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
1548 return pcpu_alloc(size
, align
, false, GFP_KERNEL
);
1550 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1553 * __alloc_reserved_percpu - allocate reserved percpu area
1554 * @size: size of area to allocate in bytes
1555 * @align: alignment of area (max PAGE_SIZE)
1557 * Allocate zero-filled percpu area of @size bytes aligned at @align
1558 * from reserved percpu area if arch has set it up; otherwise,
1559 * allocation is served from the same dynamic area. Might sleep.
1560 * Might trigger writeouts.
1563 * Does GFP_KERNEL allocation.
1566 * Percpu pointer to the allocated area on success, NULL on failure.
1568 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
1570 return pcpu_alloc(size
, align
, true, GFP_KERNEL
);
1574 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1577 * Reclaim all fully free chunks except for the first one. This is also
1578 * responsible for maintaining the pool of empty populated pages. However,
1579 * it is possible that this is called when physical memory is scarce causing
1580 * OOM killer to be triggered. We should avoid doing so until an actual
1581 * allocation causes the failure as it is possible that requests can be
1582 * serviced from already backed regions.
1584 static void pcpu_balance_workfn(struct work_struct
*work
)
1586 /* gfp flags passed to underlying allocators */
1587 const gfp_t gfp
= GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
;
1589 struct list_head
*free_head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1590 struct pcpu_chunk
*chunk
, *next
;
1591 int slot
, nr_to_pop
, ret
;
1594 * There's no reason to keep around multiple unused chunks and VM
1595 * areas can be scarce. Destroy all free chunks except for one.
1597 mutex_lock(&pcpu_alloc_mutex
);
1598 spin_lock_irq(&pcpu_lock
);
1600 list_for_each_entry_safe(chunk
, next
, free_head
, list
) {
1601 WARN_ON(chunk
->immutable
);
1603 /* spare the first one */
1604 if (chunk
== list_first_entry(free_head
, struct pcpu_chunk
, list
))
1607 list_move(&chunk
->list
, &to_free
);
1610 spin_unlock_irq(&pcpu_lock
);
1612 list_for_each_entry_safe(chunk
, next
, &to_free
, list
) {
1615 pcpu_for_each_pop_region(chunk
->populated
, rs
, re
, 0,
1617 pcpu_depopulate_chunk(chunk
, rs
, re
);
1618 spin_lock_irq(&pcpu_lock
);
1619 pcpu_chunk_depopulated(chunk
, rs
, re
);
1620 spin_unlock_irq(&pcpu_lock
);
1622 pcpu_destroy_chunk(chunk
);
1627 * Ensure there are certain number of free populated pages for
1628 * atomic allocs. Fill up from the most packed so that atomic
1629 * allocs don't increase fragmentation. If atomic allocation
1630 * failed previously, always populate the maximum amount. This
1631 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1632 * failing indefinitely; however, large atomic allocs are not
1633 * something we support properly and can be highly unreliable and
1637 if (pcpu_atomic_alloc_failed
) {
1638 nr_to_pop
= PCPU_EMPTY_POP_PAGES_HIGH
;
1639 /* best effort anyway, don't worry about synchronization */
1640 pcpu_atomic_alloc_failed
= false;
1642 nr_to_pop
= clamp(PCPU_EMPTY_POP_PAGES_HIGH
-
1643 pcpu_nr_empty_pop_pages
,
1644 0, PCPU_EMPTY_POP_PAGES_HIGH
);
1647 for (slot
= pcpu_size_to_slot(PAGE_SIZE
); slot
< pcpu_nr_slots
; slot
++) {
1648 int nr_unpop
= 0, rs
, re
;
1653 spin_lock_irq(&pcpu_lock
);
1654 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1655 nr_unpop
= chunk
->nr_pages
- chunk
->nr_populated
;
1659 spin_unlock_irq(&pcpu_lock
);
1664 /* @chunk can't go away while pcpu_alloc_mutex is held */
1665 pcpu_for_each_unpop_region(chunk
->populated
, rs
, re
, 0,
1667 int nr
= min(re
- rs
, nr_to_pop
);
1669 ret
= pcpu_populate_chunk(chunk
, rs
, rs
+ nr
, gfp
);
1672 spin_lock_irq(&pcpu_lock
);
1673 pcpu_chunk_populated(chunk
, rs
, rs
+ nr
, false);
1674 spin_unlock_irq(&pcpu_lock
);
1685 /* ran out of chunks to populate, create a new one and retry */
1686 chunk
= pcpu_create_chunk(gfp
);
1688 spin_lock_irq(&pcpu_lock
);
1689 pcpu_chunk_relocate(chunk
, -1);
1690 spin_unlock_irq(&pcpu_lock
);
1695 mutex_unlock(&pcpu_alloc_mutex
);
1699 * free_percpu - free percpu area
1700 * @ptr: pointer to area to free
1702 * Free percpu area @ptr.
1705 * Can be called from atomic context.
1707 void free_percpu(void __percpu
*ptr
)
1710 struct pcpu_chunk
*chunk
;
1711 unsigned long flags
;
1717 kmemleak_free_percpu(ptr
);
1719 addr
= __pcpu_ptr_to_addr(ptr
);
1721 spin_lock_irqsave(&pcpu_lock
, flags
);
1723 chunk
= pcpu_chunk_addr_search(addr
);
1724 off
= addr
- chunk
->base_addr
;
1726 pcpu_free_area(chunk
, off
);
1728 /* if there are more than one fully free chunks, wake up grim reaper */
1729 if (chunk
->free_bytes
== pcpu_unit_size
) {
1730 struct pcpu_chunk
*pos
;
1732 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1734 pcpu_schedule_balance_work();
1739 trace_percpu_free_percpu(chunk
->base_addr
, off
, ptr
);
1741 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1743 EXPORT_SYMBOL_GPL(free_percpu
);
1745 bool __is_kernel_percpu_address(unsigned long addr
, unsigned long *can_addr
)
1748 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1749 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1752 for_each_possible_cpu(cpu
) {
1753 void *start
= per_cpu_ptr(base
, cpu
);
1754 void *va
= (void *)addr
;
1756 if (va
>= start
&& va
< start
+ static_size
) {
1758 *can_addr
= (unsigned long) (va
- start
);
1759 *can_addr
+= (unsigned long)
1760 per_cpu_ptr(base
, get_boot_cpu_id());
1766 /* on UP, can't distinguish from other static vars, always false */
1771 * is_kernel_percpu_address - test whether address is from static percpu area
1772 * @addr: address to test
1774 * Test whether @addr belongs to in-kernel static percpu area. Module
1775 * static percpu areas are not considered. For those, use
1776 * is_module_percpu_address().
1779 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1781 bool is_kernel_percpu_address(unsigned long addr
)
1783 return __is_kernel_percpu_address(addr
, NULL
);
1787 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1788 * @addr: the address to be converted to physical address
1790 * Given @addr which is dereferenceable address obtained via one of
1791 * percpu access macros, this function translates it into its physical
1792 * address. The caller is responsible for ensuring @addr stays valid
1793 * until this function finishes.
1795 * percpu allocator has special setup for the first chunk, which currently
1796 * supports either embedding in linear address space or vmalloc mapping,
1797 * and, from the second one, the backing allocator (currently either vm or
1798 * km) provides translation.
1800 * The addr can be translated simply without checking if it falls into the
1801 * first chunk. But the current code reflects better how percpu allocator
1802 * actually works, and the verification can discover both bugs in percpu
1803 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1807 * The physical address for @addr.
1809 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
1811 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1812 bool in_first_chunk
= false;
1813 unsigned long first_low
, first_high
;
1817 * The following test on unit_low/high isn't strictly
1818 * necessary but will speed up lookups of addresses which
1819 * aren't in the first chunk.
1821 * The address check is against full chunk sizes. pcpu_base_addr
1822 * points to the beginning of the first chunk including the
1823 * static region. Assumes good intent as the first chunk may
1824 * not be full (ie. < pcpu_unit_pages in size).
1826 first_low
= (unsigned long)pcpu_base_addr
+
1827 pcpu_unit_page_offset(pcpu_low_unit_cpu
, 0);
1828 first_high
= (unsigned long)pcpu_base_addr
+
1829 pcpu_unit_page_offset(pcpu_high_unit_cpu
, pcpu_unit_pages
);
1830 if ((unsigned long)addr
>= first_low
&&
1831 (unsigned long)addr
< first_high
) {
1832 for_each_possible_cpu(cpu
) {
1833 void *start
= per_cpu_ptr(base
, cpu
);
1835 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
1836 in_first_chunk
= true;
1842 if (in_first_chunk
) {
1843 if (!is_vmalloc_addr(addr
))
1846 return page_to_phys(vmalloc_to_page(addr
)) +
1847 offset_in_page(addr
);
1849 return page_to_phys(pcpu_addr_to_page(addr
)) +
1850 offset_in_page(addr
);
1854 * pcpu_alloc_alloc_info - allocate percpu allocation info
1855 * @nr_groups: the number of groups
1856 * @nr_units: the number of units
1858 * Allocate ai which is large enough for @nr_groups groups containing
1859 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1860 * cpu_map array which is long enough for @nr_units and filled with
1861 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1862 * pointer of other groups.
1865 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1868 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1871 struct pcpu_alloc_info
*ai
;
1872 size_t base_size
, ai_size
;
1876 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1877 __alignof__(ai
->groups
[0].cpu_map
[0]));
1878 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1880 ptr
= memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size
), PAGE_SIZE
);
1886 ai
->groups
[0].cpu_map
= ptr
;
1888 for (unit
= 0; unit
< nr_units
; unit
++)
1889 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1891 ai
->nr_groups
= nr_groups
;
1892 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1898 * pcpu_free_alloc_info - free percpu allocation info
1899 * @ai: pcpu_alloc_info to free
1901 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1903 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1905 memblock_free_early(__pa(ai
), ai
->__ai_size
);
1909 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1911 * @ai: allocation info to dump
1913 * Print out information about @ai using loglevel @lvl.
1915 static void pcpu_dump_alloc_info(const char *lvl
,
1916 const struct pcpu_alloc_info
*ai
)
1918 int group_width
= 1, cpu_width
= 1, width
;
1919 char empty_str
[] = "--------";
1920 int alloc
= 0, alloc_end
= 0;
1922 int upa
, apl
; /* units per alloc, allocs per line */
1928 v
= num_possible_cpus();
1931 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1933 upa
= ai
->alloc_size
/ ai
->unit_size
;
1934 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1935 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1937 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1938 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1939 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1941 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1942 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1943 int unit
= 0, unit_end
= 0;
1945 BUG_ON(gi
->nr_units
% upa
);
1946 for (alloc_end
+= gi
->nr_units
/ upa
;
1947 alloc
< alloc_end
; alloc
++) {
1948 if (!(alloc
% apl
)) {
1950 printk("%spcpu-alloc: ", lvl
);
1952 pr_cont("[%0*d] ", group_width
, group
);
1954 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1955 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1957 cpu_width
, gi
->cpu_map
[unit
]);
1959 pr_cont("%s ", empty_str
);
1966 * pcpu_setup_first_chunk - initialize the first percpu chunk
1967 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1968 * @base_addr: mapped address
1970 * Initialize the first percpu chunk which contains the kernel static
1971 * perpcu area. This function is to be called from arch percpu area
1974 * @ai contains all information necessary to initialize the first
1975 * chunk and prime the dynamic percpu allocator.
1977 * @ai->static_size is the size of static percpu area.
1979 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1980 * reserve after the static area in the first chunk. This reserves
1981 * the first chunk such that it's available only through reserved
1982 * percpu allocation. This is primarily used to serve module percpu
1983 * static areas on architectures where the addressing model has
1984 * limited offset range for symbol relocations to guarantee module
1985 * percpu symbols fall inside the relocatable range.
1987 * @ai->dyn_size determines the number of bytes available for dynamic
1988 * allocation in the first chunk. The area between @ai->static_size +
1989 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1991 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1992 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1995 * @ai->atom_size is the allocation atom size and used as alignment
1998 * @ai->alloc_size is the allocation size and always multiple of
1999 * @ai->atom_size. This is larger than @ai->atom_size if
2000 * @ai->unit_size is larger than @ai->atom_size.
2002 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2003 * percpu areas. Units which should be colocated are put into the
2004 * same group. Dynamic VM areas will be allocated according to these
2005 * groupings. If @ai->nr_groups is zero, a single group containing
2006 * all units is assumed.
2008 * The caller should have mapped the first chunk at @base_addr and
2009 * copied static data to each unit.
2011 * The first chunk will always contain a static and a dynamic region.
2012 * However, the static region is not managed by any chunk. If the first
2013 * chunk also contains a reserved region, it is served by two chunks -
2014 * one for the reserved region and one for the dynamic region. They
2015 * share the same vm, but use offset regions in the area allocation map.
2016 * The chunk serving the dynamic region is circulated in the chunk slots
2017 * and available for dynamic allocation like any other chunk.
2020 * 0 on success, -errno on failure.
2022 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
2025 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2026 size_t static_size
, dyn_size
;
2027 struct pcpu_chunk
*chunk
;
2028 unsigned long *group_offsets
;
2029 size_t *group_sizes
;
2030 unsigned long *unit_off
;
2035 unsigned long tmp_addr
;
2037 #define PCPU_SETUP_BUG_ON(cond) do { \
2038 if (unlikely(cond)) { \
2039 pr_emerg("failed to initialize, %s\n", #cond); \
2040 pr_emerg("cpu_possible_mask=%*pb\n", \
2041 cpumask_pr_args(cpu_possible_mask)); \
2042 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2048 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
2050 PCPU_SETUP_BUG_ON(!ai
->static_size
);
2051 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start
));
2053 PCPU_SETUP_BUG_ON(!base_addr
);
2054 PCPU_SETUP_BUG_ON(offset_in_page(base_addr
));
2055 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
2056 PCPU_SETUP_BUG_ON(offset_in_page(ai
->unit_size
));
2057 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
2058 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->unit_size
, PCPU_BITMAP_BLOCK_SIZE
));
2059 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
2060 PCPU_SETUP_BUG_ON(!ai
->dyn_size
);
2061 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->reserved_size
, PCPU_MIN_ALLOC_SIZE
));
2062 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE
, PAGE_SIZE
) ||
2063 IS_ALIGNED(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
)));
2064 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
2066 /* process group information and build config tables accordingly */
2067 group_offsets
= memblock_virt_alloc(ai
->nr_groups
*
2068 sizeof(group_offsets
[0]), 0);
2069 group_sizes
= memblock_virt_alloc(ai
->nr_groups
*
2070 sizeof(group_sizes
[0]), 0);
2071 unit_map
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_map
[0]), 0);
2072 unit_off
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_off
[0]), 0);
2074 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
2075 unit_map
[cpu
] = UINT_MAX
;
2077 pcpu_low_unit_cpu
= NR_CPUS
;
2078 pcpu_high_unit_cpu
= NR_CPUS
;
2080 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
2081 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2083 group_offsets
[group
] = gi
->base_offset
;
2084 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
2086 for (i
= 0; i
< gi
->nr_units
; i
++) {
2087 cpu
= gi
->cpu_map
[i
];
2091 PCPU_SETUP_BUG_ON(cpu
>= nr_cpu_ids
);
2092 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
2093 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
2095 unit_map
[cpu
] = unit
+ i
;
2096 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
2098 /* determine low/high unit_cpu */
2099 if (pcpu_low_unit_cpu
== NR_CPUS
||
2100 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
2101 pcpu_low_unit_cpu
= cpu
;
2102 if (pcpu_high_unit_cpu
== NR_CPUS
||
2103 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
2104 pcpu_high_unit_cpu
= cpu
;
2107 pcpu_nr_units
= unit
;
2109 for_each_possible_cpu(cpu
)
2110 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
2112 /* we're done parsing the input, undefine BUG macro and dump config */
2113 #undef PCPU_SETUP_BUG_ON
2114 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
2116 pcpu_nr_groups
= ai
->nr_groups
;
2117 pcpu_group_offsets
= group_offsets
;
2118 pcpu_group_sizes
= group_sizes
;
2119 pcpu_unit_map
= unit_map
;
2120 pcpu_unit_offsets
= unit_off
;
2122 /* determine basic parameters */
2123 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2124 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
2125 pcpu_atom_size
= ai
->atom_size
;
2126 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
2127 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
2129 pcpu_stats_save_ai(ai
);
2132 * Allocate chunk slots. The additional last slot is for
2135 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
2136 pcpu_slot
= memblock_virt_alloc(
2137 pcpu_nr_slots
* sizeof(pcpu_slot
[0]), 0);
2138 for (i
= 0; i
< pcpu_nr_slots
; i
++)
2139 INIT_LIST_HEAD(&pcpu_slot
[i
]);
2142 * The end of the static region needs to be aligned with the
2143 * minimum allocation size as this offsets the reserved and
2144 * dynamic region. The first chunk ends page aligned by
2145 * expanding the dynamic region, therefore the dynamic region
2146 * can be shrunk to compensate while still staying above the
2149 static_size
= ALIGN(ai
->static_size
, PCPU_MIN_ALLOC_SIZE
);
2150 dyn_size
= ai
->dyn_size
- (static_size
- ai
->static_size
);
2153 * Initialize first chunk.
2154 * If the reserved_size is non-zero, this initializes the reserved
2155 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2156 * and the dynamic region is initialized here. The first chunk,
2157 * pcpu_first_chunk, will always point to the chunk that serves
2158 * the dynamic region.
2160 tmp_addr
= (unsigned long)base_addr
+ static_size
;
2161 map_size
= ai
->reserved_size
?: dyn_size
;
2162 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2164 /* init dynamic chunk if necessary */
2165 if (ai
->reserved_size
) {
2166 pcpu_reserved_chunk
= chunk
;
2168 tmp_addr
= (unsigned long)base_addr
+ static_size
+
2170 map_size
= dyn_size
;
2171 chunk
= pcpu_alloc_first_chunk(tmp_addr
, map_size
);
2174 /* link the first chunk in */
2175 pcpu_first_chunk
= chunk
;
2176 pcpu_nr_empty_pop_pages
= pcpu_first_chunk
->nr_empty_pop_pages
;
2177 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
2179 pcpu_stats_chunk_alloc();
2180 trace_percpu_create_chunk(base_addr
);
2183 pcpu_base_addr
= base_addr
;
2189 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
2190 [PCPU_FC_AUTO
] = "auto",
2191 [PCPU_FC_EMBED
] = "embed",
2192 [PCPU_FC_PAGE
] = "page",
2195 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
2197 static int __init
percpu_alloc_setup(char *str
)
2204 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2205 else if (!strcmp(str
, "embed"))
2206 pcpu_chosen_fc
= PCPU_FC_EMBED
;
2208 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2209 else if (!strcmp(str
, "page"))
2210 pcpu_chosen_fc
= PCPU_FC_PAGE
;
2213 pr_warn("unknown allocator %s specified\n", str
);
2217 early_param("percpu_alloc", percpu_alloc_setup
);
2220 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2221 * Build it if needed by the arch config or the generic setup is going
2224 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2225 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2226 #define BUILD_EMBED_FIRST_CHUNK
2229 /* build pcpu_page_first_chunk() iff needed by the arch config */
2230 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2231 #define BUILD_PAGE_FIRST_CHUNK
2234 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2235 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2237 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2238 * @reserved_size: the size of reserved percpu area in bytes
2239 * @dyn_size: minimum free size for dynamic allocation in bytes
2240 * @atom_size: allocation atom size
2241 * @cpu_distance_fn: callback to determine distance between cpus, optional
2243 * This function determines grouping of units, their mappings to cpus
2244 * and other parameters considering needed percpu size, allocation
2245 * atom size and distances between CPUs.
2247 * Groups are always multiples of atom size and CPUs which are of
2248 * LOCAL_DISTANCE both ways are grouped together and share space for
2249 * units in the same group. The returned configuration is guaranteed
2250 * to have CPUs on different nodes on different groups and >=75% usage
2251 * of allocated virtual address space.
2254 * On success, pointer to the new allocation_info is returned. On
2255 * failure, ERR_PTR value is returned.
2257 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
2258 size_t reserved_size
, size_t dyn_size
,
2260 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
2262 static int group_map
[NR_CPUS
] __initdata
;
2263 static int group_cnt
[NR_CPUS
] __initdata
;
2264 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
2265 int nr_groups
= 1, nr_units
= 0;
2266 size_t size_sum
, min_unit_size
, alloc_size
;
2267 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
2268 int last_allocs
, group
, unit
;
2269 unsigned int cpu
, tcpu
;
2270 struct pcpu_alloc_info
*ai
;
2271 unsigned int *cpu_map
;
2273 /* this function may be called multiple times */
2274 memset(group_map
, 0, sizeof(group_map
));
2275 memset(group_cnt
, 0, sizeof(group_cnt
));
2277 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2278 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
2279 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
2280 dyn_size
= size_sum
- static_size
- reserved_size
;
2283 * Determine min_unit_size, alloc_size and max_upa such that
2284 * alloc_size is multiple of atom_size and is the smallest
2285 * which can accommodate 4k aligned segments which are equal to
2286 * or larger than min_unit_size.
2288 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
2290 /* determine the maximum # of units that can fit in an allocation */
2291 alloc_size
= roundup(min_unit_size
, atom_size
);
2292 upa
= alloc_size
/ min_unit_size
;
2293 while (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2297 /* group cpus according to their proximity */
2298 for_each_possible_cpu(cpu
) {
2301 for_each_possible_cpu(tcpu
) {
2304 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
2305 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
2306 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
2308 nr_groups
= max(nr_groups
, group
+ 1);
2312 group_map
[cpu
] = group
;
2317 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2318 * Expand the unit_size until we use >= 75% of the units allocated.
2319 * Related to atom_size, which could be much larger than the unit_size.
2321 last_allocs
= INT_MAX
;
2322 for (upa
= max_upa
; upa
; upa
--) {
2323 int allocs
= 0, wasted
= 0;
2325 if (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2328 for (group
= 0; group
< nr_groups
; group
++) {
2329 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
2330 allocs
+= this_allocs
;
2331 wasted
+= this_allocs
* upa
- group_cnt
[group
];
2335 * Don't accept if wastage is over 1/3. The
2336 * greater-than comparison ensures upa==1 always
2337 * passes the following check.
2339 if (wasted
> num_possible_cpus() / 3)
2342 /* and then don't consume more memory */
2343 if (allocs
> last_allocs
)
2345 last_allocs
= allocs
;
2350 /* allocate and fill alloc_info */
2351 for (group
= 0; group
< nr_groups
; group
++)
2352 nr_units
+= roundup(group_cnt
[group
], upa
);
2354 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
2356 return ERR_PTR(-ENOMEM
);
2357 cpu_map
= ai
->groups
[0].cpu_map
;
2359 for (group
= 0; group
< nr_groups
; group
++) {
2360 ai
->groups
[group
].cpu_map
= cpu_map
;
2361 cpu_map
+= roundup(group_cnt
[group
], upa
);
2364 ai
->static_size
= static_size
;
2365 ai
->reserved_size
= reserved_size
;
2366 ai
->dyn_size
= dyn_size
;
2367 ai
->unit_size
= alloc_size
/ upa
;
2368 ai
->atom_size
= atom_size
;
2369 ai
->alloc_size
= alloc_size
;
2371 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
2372 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2375 * Initialize base_offset as if all groups are located
2376 * back-to-back. The caller should update this to
2377 * reflect actual allocation.
2379 gi
->base_offset
= unit
* ai
->unit_size
;
2381 for_each_possible_cpu(cpu
)
2382 if (group_map
[cpu
] == group
)
2383 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
2384 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
2385 unit
+= gi
->nr_units
;
2387 BUG_ON(unit
!= nr_units
);
2391 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2393 #if defined(BUILD_EMBED_FIRST_CHUNK)
2395 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2396 * @reserved_size: the size of reserved percpu area in bytes
2397 * @dyn_size: minimum free size for dynamic allocation in bytes
2398 * @atom_size: allocation atom size
2399 * @cpu_distance_fn: callback to determine distance between cpus, optional
2400 * @alloc_fn: function to allocate percpu page
2401 * @free_fn: function to free percpu page
2403 * This is a helper to ease setting up embedded first percpu chunk and
2404 * can be called where pcpu_setup_first_chunk() is expected.
2406 * If this function is used to setup the first chunk, it is allocated
2407 * by calling @alloc_fn and used as-is without being mapped into
2408 * vmalloc area. Allocations are always whole multiples of @atom_size
2409 * aligned to @atom_size.
2411 * This enables the first chunk to piggy back on the linear physical
2412 * mapping which often uses larger page size. Please note that this
2413 * can result in very sparse cpu->unit mapping on NUMA machines thus
2414 * requiring large vmalloc address space. Don't use this allocator if
2415 * vmalloc space is not orders of magnitude larger than distances
2416 * between node memory addresses (ie. 32bit NUMA machines).
2418 * @dyn_size specifies the minimum dynamic area size.
2420 * If the needed size is smaller than the minimum or specified unit
2421 * size, the leftover is returned using @free_fn.
2424 * 0 on success, -errno on failure.
2426 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
2428 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
2429 pcpu_fc_alloc_fn_t alloc_fn
,
2430 pcpu_fc_free_fn_t free_fn
)
2432 void *base
= (void *)ULONG_MAX
;
2433 void **areas
= NULL
;
2434 struct pcpu_alloc_info
*ai
;
2435 size_t size_sum
, areas_size
;
2436 unsigned long max_distance
;
2437 int group
, i
, highest_group
, rc
;
2439 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
2444 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2445 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
2447 areas
= memblock_virt_alloc_nopanic(areas_size
, 0);
2453 /* allocate, copy and determine base address & max_distance */
2455 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2456 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2457 unsigned int cpu
= NR_CPUS
;
2460 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
2461 cpu
= gi
->cpu_map
[i
];
2462 BUG_ON(cpu
== NR_CPUS
);
2464 /* allocate space for the whole group */
2465 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
2468 goto out_free_areas
;
2470 /* kmemleak tracks the percpu allocations separately */
2474 base
= min(ptr
, base
);
2475 if (ptr
> areas
[highest_group
])
2476 highest_group
= group
;
2478 max_distance
= areas
[highest_group
] - base
;
2479 max_distance
+= ai
->unit_size
* ai
->groups
[highest_group
].nr_units
;
2481 /* warn if maximum distance is further than 75% of vmalloc space */
2482 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
2483 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2484 max_distance
, VMALLOC_TOTAL
);
2485 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486 /* and fail if we have fallback */
2488 goto out_free_areas
;
2493 * Copy data and free unused parts. This should happen after all
2494 * allocations are complete; otherwise, we may end up with
2495 * overlapping groups.
2497 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2498 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2499 void *ptr
= areas
[group
];
2501 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
2502 if (gi
->cpu_map
[i
] == NR_CPUS
) {
2503 /* unused unit, free whole */
2504 free_fn(ptr
, ai
->unit_size
);
2507 /* copy and return the unused part */
2508 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
2509 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
2513 /* base address is now known, determine group base offsets */
2514 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2515 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
2518 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2519 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
2520 ai
->dyn_size
, ai
->unit_size
);
2522 rc
= pcpu_setup_first_chunk(ai
, base
);
2526 for (group
= 0; group
< ai
->nr_groups
; group
++)
2528 free_fn(areas
[group
],
2529 ai
->groups
[group
].nr_units
* ai
->unit_size
);
2531 pcpu_free_alloc_info(ai
);
2533 memblock_free_early(__pa(areas
), areas_size
);
2536 #endif /* BUILD_EMBED_FIRST_CHUNK */
2538 #ifdef BUILD_PAGE_FIRST_CHUNK
2540 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2541 * @reserved_size: the size of reserved percpu area in bytes
2542 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2543 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2544 * @populate_pte_fn: function to populate pte
2546 * This is a helper to ease setting up page-remapped first percpu
2547 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2549 * This is the basic allocator. Static percpu area is allocated
2550 * page-by-page into vmalloc area.
2553 * 0 on success, -errno on failure.
2555 int __init
pcpu_page_first_chunk(size_t reserved_size
,
2556 pcpu_fc_alloc_fn_t alloc_fn
,
2557 pcpu_fc_free_fn_t free_fn
,
2558 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
2560 static struct vm_struct vm
;
2561 struct pcpu_alloc_info
*ai
;
2565 struct page
**pages
;
2570 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
2572 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
2575 BUG_ON(ai
->nr_groups
!= 1);
2576 upa
= ai
->alloc_size
/ai
->unit_size
;
2577 nr_g0_units
= roundup(num_possible_cpus(), upa
);
2578 if (unlikely(WARN_ON(ai
->groups
[0].nr_units
!= nr_g0_units
))) {
2579 pcpu_free_alloc_info(ai
);
2583 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2585 /* unaligned allocations can't be freed, round up to page size */
2586 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
2588 pages
= memblock_virt_alloc(pages_size
, 0);
2590 /* allocate pages */
2592 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2593 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2594 for (i
= 0; i
< unit_pages
; i
++) {
2597 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2599 pr_warn("failed to allocate %s page for cpu%u\n",
2603 /* kmemleak tracks the percpu allocations separately */
2605 pages
[j
++] = virt_to_page(ptr
);
2609 /* allocate vm area, map the pages and copy static data */
2610 vm
.flags
= VM_ALLOC
;
2611 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2612 vm_area_register_early(&vm
, PAGE_SIZE
);
2614 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2615 unsigned long unit_addr
=
2616 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2618 for (i
= 0; i
< unit_pages
; i
++)
2619 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2621 /* pte already populated, the following shouldn't fail */
2622 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2625 panic("failed to map percpu area, err=%d\n", rc
);
2628 * FIXME: Archs with virtual cache should flush local
2629 * cache for the linear mapping here - something
2630 * equivalent to flush_cache_vmap() on the local cpu.
2631 * flush_cache_vmap() can't be used as most supporting
2632 * data structures are not set up yet.
2635 /* copy static data */
2636 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2639 /* we're ready, commit */
2640 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2641 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
2642 ai
->reserved_size
, ai
->dyn_size
);
2644 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
2649 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2652 memblock_free_early(__pa(pages
), pages_size
);
2653 pcpu_free_alloc_info(ai
);
2656 #endif /* BUILD_PAGE_FIRST_CHUNK */
2658 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2660 * Generic SMP percpu area setup.
2662 * The embedding helper is used because its behavior closely resembles
2663 * the original non-dynamic generic percpu area setup. This is
2664 * important because many archs have addressing restrictions and might
2665 * fail if the percpu area is located far away from the previous
2666 * location. As an added bonus, in non-NUMA cases, embedding is
2667 * generally a good idea TLB-wise because percpu area can piggy back
2668 * on the physical linear memory mapping which uses large page
2669 * mappings on applicable archs.
2671 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2672 EXPORT_SYMBOL(__per_cpu_offset
);
2674 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2677 return memblock_virt_alloc_from_nopanic(
2678 size
, align
, __pa(MAX_DMA_ADDRESS
));
2681 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2683 memblock_free_early(__pa(ptr
), size
);
2686 void __init
setup_per_cpu_areas(void)
2688 unsigned long delta
;
2693 * Always reserve area for module percpu variables. That's
2694 * what the legacy allocator did.
2696 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2697 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2698 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2700 panic("Failed to initialize percpu areas.");
2702 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2703 for_each_possible_cpu(cpu
)
2704 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2706 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2708 #else /* CONFIG_SMP */
2711 * UP percpu area setup.
2713 * UP always uses km-based percpu allocator with identity mapping.
2714 * Static percpu variables are indistinguishable from the usual static
2715 * variables and don't require any special preparation.
2717 void __init
setup_per_cpu_areas(void)
2719 const size_t unit_size
=
2720 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
2721 PERCPU_DYNAMIC_RESERVE
));
2722 struct pcpu_alloc_info
*ai
;
2725 ai
= pcpu_alloc_alloc_info(1, 1);
2726 fc
= memblock_virt_alloc_from_nopanic(unit_size
,
2728 __pa(MAX_DMA_ADDRESS
));
2730 panic("Failed to allocate memory for percpu areas.");
2731 /* kmemleak tracks the percpu allocations separately */
2734 ai
->dyn_size
= unit_size
;
2735 ai
->unit_size
= unit_size
;
2736 ai
->atom_size
= unit_size
;
2737 ai
->alloc_size
= unit_size
;
2738 ai
->groups
[0].nr_units
= 1;
2739 ai
->groups
[0].cpu_map
[0] = 0;
2741 if (pcpu_setup_first_chunk(ai
, fc
) < 0)
2742 panic("Failed to initialize percpu areas.");
2744 #warning "the CRIS architecture has physical and virtual addresses confused"
2746 pcpu_free_alloc_info(ai
);
2750 #endif /* CONFIG_SMP */
2753 * Percpu allocator is initialized early during boot when neither slab or
2754 * workqueue is available. Plug async management until everything is up
2757 static int __init
percpu_enable_async(void)
2759 pcpu_async_enabled
= true;
2762 subsys_initcall(percpu_enable_async
);