arm/arm64: KVM: Turn off vcpus on PSCI shutdown/reboot
[linux/fpc-iii.git] / arch / arm / mm / mmu.c
blob9f98cec7fe1e1855dc5fcede8b0e24e88d09c3b3
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38 #include <asm/fixmap.h>
40 #include "mm.h"
41 #include "tcm.h"
44 * empty_zero_page is a special page that is used for
45 * zero-initialized data and COW.
47 struct page *empty_zero_page;
48 EXPORT_SYMBOL(empty_zero_page);
51 * The pmd table for the upper-most set of pages.
53 pmd_t *top_pmd;
55 #define CPOLICY_UNCACHED 0
56 #define CPOLICY_BUFFERED 1
57 #define CPOLICY_WRITETHROUGH 2
58 #define CPOLICY_WRITEBACK 3
59 #define CPOLICY_WRITEALLOC 4
61 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
62 static unsigned int ecc_mask __initdata = 0;
63 pgprot_t pgprot_user;
64 pgprot_t pgprot_kernel;
65 pgprot_t pgprot_hyp_device;
66 pgprot_t pgprot_s2;
67 pgprot_t pgprot_s2_device;
69 EXPORT_SYMBOL(pgprot_user);
70 EXPORT_SYMBOL(pgprot_kernel);
72 struct cachepolicy {
73 const char policy[16];
74 unsigned int cr_mask;
75 pmdval_t pmd;
76 pteval_t pte;
77 pteval_t pte_s2;
80 #ifdef CONFIG_ARM_LPAE
81 #define s2_policy(policy) policy
82 #else
83 #define s2_policy(policy) 0
84 #endif
86 static struct cachepolicy cache_policies[] __initdata = {
88 .policy = "uncached",
89 .cr_mask = CR_W|CR_C,
90 .pmd = PMD_SECT_UNCACHED,
91 .pte = L_PTE_MT_UNCACHED,
92 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
93 }, {
94 .policy = "buffered",
95 .cr_mask = CR_C,
96 .pmd = PMD_SECT_BUFFERED,
97 .pte = L_PTE_MT_BUFFERABLE,
98 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
99 }, {
100 .policy = "writethrough",
101 .cr_mask = 0,
102 .pmd = PMD_SECT_WT,
103 .pte = L_PTE_MT_WRITETHROUGH,
104 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
105 }, {
106 .policy = "writeback",
107 .cr_mask = 0,
108 .pmd = PMD_SECT_WB,
109 .pte = L_PTE_MT_WRITEBACK,
110 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
111 }, {
112 .policy = "writealloc",
113 .cr_mask = 0,
114 .pmd = PMD_SECT_WBWA,
115 .pte = L_PTE_MT_WRITEALLOC,
116 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
120 #ifdef CONFIG_CPU_CP15
121 static unsigned long initial_pmd_value __initdata = 0;
124 * Initialise the cache_policy variable with the initial state specified
125 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
126 * the C code sets the page tables up with the same policy as the head
127 * assembly code, which avoids an illegal state where the TLBs can get
128 * confused. See comments in early_cachepolicy() for more information.
130 void __init init_default_cache_policy(unsigned long pmd)
132 int i;
134 initial_pmd_value = pmd;
136 pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
138 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
139 if (cache_policies[i].pmd == pmd) {
140 cachepolicy = i;
141 break;
144 if (i == ARRAY_SIZE(cache_policies))
145 pr_err("ERROR: could not find cache policy\n");
149 * These are useful for identifying cache coherency problems by allowing
150 * the cache or the cache and writebuffer to be turned off. (Note: the
151 * write buffer should not be on and the cache off).
153 static int __init early_cachepolicy(char *p)
155 int i, selected = -1;
157 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
158 int len = strlen(cache_policies[i].policy);
160 if (memcmp(p, cache_policies[i].policy, len) == 0) {
161 selected = i;
162 break;
166 if (selected == -1)
167 pr_err("ERROR: unknown or unsupported cache policy\n");
170 * This restriction is partly to do with the way we boot; it is
171 * unpredictable to have memory mapped using two different sets of
172 * memory attributes (shared, type, and cache attribs). We can not
173 * change these attributes once the initial assembly has setup the
174 * page tables.
176 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
177 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
178 cache_policies[cachepolicy].policy);
179 return 0;
182 if (selected != cachepolicy) {
183 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
184 cachepolicy = selected;
185 flush_cache_all();
186 set_cr(cr);
188 return 0;
190 early_param("cachepolicy", early_cachepolicy);
192 static int __init early_nocache(char *__unused)
194 char *p = "buffered";
195 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
196 early_cachepolicy(p);
197 return 0;
199 early_param("nocache", early_nocache);
201 static int __init early_nowrite(char *__unused)
203 char *p = "uncached";
204 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
205 early_cachepolicy(p);
206 return 0;
208 early_param("nowb", early_nowrite);
210 #ifndef CONFIG_ARM_LPAE
211 static int __init early_ecc(char *p)
213 if (memcmp(p, "on", 2) == 0)
214 ecc_mask = PMD_PROTECTION;
215 else if (memcmp(p, "off", 3) == 0)
216 ecc_mask = 0;
217 return 0;
219 early_param("ecc", early_ecc);
220 #endif
222 #else /* ifdef CONFIG_CPU_CP15 */
224 static int __init early_cachepolicy(char *p)
226 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
228 early_param("cachepolicy", early_cachepolicy);
230 static int __init noalign_setup(char *__unused)
232 pr_warn("noalign kernel parameter not supported without cp15\n");
234 __setup("noalign", noalign_setup);
236 #endif /* ifdef CONFIG_CPU_CP15 / else */
238 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
239 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
240 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
242 static struct mem_type mem_types[] = {
243 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
244 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
245 L_PTE_SHARED,
246 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
247 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
248 L_PTE_SHARED,
249 .prot_l1 = PMD_TYPE_TABLE,
250 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
251 .domain = DOMAIN_IO,
253 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
254 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
255 .prot_l1 = PMD_TYPE_TABLE,
256 .prot_sect = PROT_SECT_DEVICE,
257 .domain = DOMAIN_IO,
259 [MT_DEVICE_CACHED] = { /* ioremap_cached */
260 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
261 .prot_l1 = PMD_TYPE_TABLE,
262 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
263 .domain = DOMAIN_IO,
265 [MT_DEVICE_WC] = { /* ioremap_wc */
266 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PROT_SECT_DEVICE,
269 .domain = DOMAIN_IO,
271 [MT_UNCACHED] = {
272 .prot_pte = PROT_PTE_DEVICE,
273 .prot_l1 = PMD_TYPE_TABLE,
274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275 .domain = DOMAIN_IO,
277 [MT_CACHECLEAN] = {
278 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
279 .domain = DOMAIN_KERNEL,
281 #ifndef CONFIG_ARM_LPAE
282 [MT_MINICLEAN] = {
283 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
284 .domain = DOMAIN_KERNEL,
286 #endif
287 [MT_LOW_VECTORS] = {
288 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
289 L_PTE_RDONLY,
290 .prot_l1 = PMD_TYPE_TABLE,
291 .domain = DOMAIN_USER,
293 [MT_HIGH_VECTORS] = {
294 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
295 L_PTE_USER | L_PTE_RDONLY,
296 .prot_l1 = PMD_TYPE_TABLE,
297 .domain = DOMAIN_USER,
299 [MT_MEMORY_RWX] = {
300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
301 .prot_l1 = PMD_TYPE_TABLE,
302 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303 .domain = DOMAIN_KERNEL,
305 [MT_MEMORY_RW] = {
306 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307 L_PTE_XN,
308 .prot_l1 = PMD_TYPE_TABLE,
309 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
310 .domain = DOMAIN_KERNEL,
312 [MT_ROM] = {
313 .prot_sect = PMD_TYPE_SECT,
314 .domain = DOMAIN_KERNEL,
316 [MT_MEMORY_RWX_NONCACHED] = {
317 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
318 L_PTE_MT_BUFFERABLE,
319 .prot_l1 = PMD_TYPE_TABLE,
320 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
321 .domain = DOMAIN_KERNEL,
323 [MT_MEMORY_RW_DTCM] = {
324 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
325 L_PTE_XN,
326 .prot_l1 = PMD_TYPE_TABLE,
327 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
328 .domain = DOMAIN_KERNEL,
330 [MT_MEMORY_RWX_ITCM] = {
331 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
332 .prot_l1 = PMD_TYPE_TABLE,
333 .domain = DOMAIN_KERNEL,
335 [MT_MEMORY_RW_SO] = {
336 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
337 L_PTE_MT_UNCACHED | L_PTE_XN,
338 .prot_l1 = PMD_TYPE_TABLE,
339 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
340 PMD_SECT_UNCACHED | PMD_SECT_XN,
341 .domain = DOMAIN_KERNEL,
343 [MT_MEMORY_DMA_READY] = {
344 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
345 L_PTE_XN,
346 .prot_l1 = PMD_TYPE_TABLE,
347 .domain = DOMAIN_KERNEL,
351 const struct mem_type *get_mem_type(unsigned int type)
353 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
355 EXPORT_SYMBOL(get_mem_type);
357 #define PTE_SET_FN(_name, pteop) \
358 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
359 void *data) \
361 pte_t pte = pteop(*ptep); \
363 set_pte_ext(ptep, pte, 0); \
364 return 0; \
367 #define SET_MEMORY_FN(_name, callback) \
368 int set_memory_##_name(unsigned long addr, int numpages) \
370 unsigned long start = addr; \
371 unsigned long size = PAGE_SIZE*numpages; \
372 unsigned end = start + size; \
374 if (start < MODULES_VADDR || start >= MODULES_END) \
375 return -EINVAL;\
377 if (end < MODULES_VADDR || end >= MODULES_END) \
378 return -EINVAL; \
380 apply_to_page_range(&init_mm, start, size, callback, NULL); \
381 flush_tlb_kernel_range(start, end); \
382 return 0;\
385 PTE_SET_FN(ro, pte_wrprotect)
386 PTE_SET_FN(rw, pte_mkwrite)
387 PTE_SET_FN(x, pte_mkexec)
388 PTE_SET_FN(nx, pte_mknexec)
390 SET_MEMORY_FN(ro, pte_set_ro)
391 SET_MEMORY_FN(rw, pte_set_rw)
392 SET_MEMORY_FN(x, pte_set_x)
393 SET_MEMORY_FN(nx, pte_set_nx)
396 * Adjust the PMD section entries according to the CPU in use.
398 static void __init build_mem_type_table(void)
400 struct cachepolicy *cp;
401 unsigned int cr = get_cr();
402 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
403 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
404 int cpu_arch = cpu_architecture();
405 int i;
407 if (cpu_arch < CPU_ARCH_ARMv6) {
408 #if defined(CONFIG_CPU_DCACHE_DISABLE)
409 if (cachepolicy > CPOLICY_BUFFERED)
410 cachepolicy = CPOLICY_BUFFERED;
411 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
412 if (cachepolicy > CPOLICY_WRITETHROUGH)
413 cachepolicy = CPOLICY_WRITETHROUGH;
414 #endif
416 if (cpu_arch < CPU_ARCH_ARMv5) {
417 if (cachepolicy >= CPOLICY_WRITEALLOC)
418 cachepolicy = CPOLICY_WRITEBACK;
419 ecc_mask = 0;
422 if (is_smp()) {
423 if (cachepolicy != CPOLICY_WRITEALLOC) {
424 pr_warn("Forcing write-allocate cache policy for SMP\n");
425 cachepolicy = CPOLICY_WRITEALLOC;
427 if (!(initial_pmd_value & PMD_SECT_S)) {
428 pr_warn("Forcing shared mappings for SMP\n");
429 initial_pmd_value |= PMD_SECT_S;
434 * Strip out features not present on earlier architectures.
435 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
436 * without extended page tables don't have the 'Shared' bit.
438 if (cpu_arch < CPU_ARCH_ARMv5)
439 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
440 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
441 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
442 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
443 mem_types[i].prot_sect &= ~PMD_SECT_S;
446 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
447 * "update-able on write" bit on ARM610). However, Xscale and
448 * Xscale3 require this bit to be cleared.
450 if (cpu_is_xscale() || cpu_is_xsc3()) {
451 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
452 mem_types[i].prot_sect &= ~PMD_BIT4;
453 mem_types[i].prot_l1 &= ~PMD_BIT4;
455 } else if (cpu_arch < CPU_ARCH_ARMv6) {
456 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
457 if (mem_types[i].prot_l1)
458 mem_types[i].prot_l1 |= PMD_BIT4;
459 if (mem_types[i].prot_sect)
460 mem_types[i].prot_sect |= PMD_BIT4;
465 * Mark the device areas according to the CPU/architecture.
467 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
468 if (!cpu_is_xsc3()) {
470 * Mark device regions on ARMv6+ as execute-never
471 * to prevent speculative instruction fetches.
473 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
474 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
475 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
476 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
478 /* Also setup NX memory mapping */
479 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
481 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
483 * For ARMv7 with TEX remapping,
484 * - shared device is SXCB=1100
485 * - nonshared device is SXCB=0100
486 * - write combine device mem is SXCB=0001
487 * (Uncached Normal memory)
489 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
490 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
491 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
492 } else if (cpu_is_xsc3()) {
494 * For Xscale3,
495 * - shared device is TEXCB=00101
496 * - nonshared device is TEXCB=01000
497 * - write combine device mem is TEXCB=00100
498 * (Inner/Outer Uncacheable in xsc3 parlance)
500 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
501 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
502 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
503 } else {
505 * For ARMv6 and ARMv7 without TEX remapping,
506 * - shared device is TEXCB=00001
507 * - nonshared device is TEXCB=01000
508 * - write combine device mem is TEXCB=00100
509 * (Uncached Normal in ARMv6 parlance).
511 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
512 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
513 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
515 } else {
517 * On others, write combining is "Uncached/Buffered"
519 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
523 * Now deal with the memory-type mappings
525 cp = &cache_policies[cachepolicy];
526 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
527 s2_pgprot = cp->pte_s2;
528 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
529 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
532 * We don't use domains on ARMv6 (since this causes problems with
533 * v6/v7 kernels), so we must use a separate memory type for user
534 * r/o, kernel r/w to map the vectors page.
536 #ifndef CONFIG_ARM_LPAE
537 if (cpu_arch == CPU_ARCH_ARMv6)
538 vecs_pgprot |= L_PTE_MT_VECTORS;
539 #endif
542 * ARMv6 and above have extended page tables.
544 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
545 #ifndef CONFIG_ARM_LPAE
547 * Mark cache clean areas and XIP ROM read only
548 * from SVC mode and no access from userspace.
550 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
551 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
552 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
553 #endif
556 * If the initial page tables were created with the S bit
557 * set, then we need to do the same here for the same
558 * reasons given in early_cachepolicy().
560 if (initial_pmd_value & PMD_SECT_S) {
561 user_pgprot |= L_PTE_SHARED;
562 kern_pgprot |= L_PTE_SHARED;
563 vecs_pgprot |= L_PTE_SHARED;
564 s2_pgprot |= L_PTE_SHARED;
565 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
566 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
567 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
568 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
569 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
570 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
571 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
572 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
573 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
574 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
575 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
580 * Non-cacheable Normal - intended for memory areas that must
581 * not cause dirty cache line writebacks when used
583 if (cpu_arch >= CPU_ARCH_ARMv6) {
584 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
585 /* Non-cacheable Normal is XCB = 001 */
586 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
587 PMD_SECT_BUFFERED;
588 } else {
589 /* For both ARMv6 and non-TEX-remapping ARMv7 */
590 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
591 PMD_SECT_TEX(1);
593 } else {
594 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
597 #ifdef CONFIG_ARM_LPAE
599 * Do not generate access flag faults for the kernel mappings.
601 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
602 mem_types[i].prot_pte |= PTE_EXT_AF;
603 if (mem_types[i].prot_sect)
604 mem_types[i].prot_sect |= PMD_SECT_AF;
606 kern_pgprot |= PTE_EXT_AF;
607 vecs_pgprot |= PTE_EXT_AF;
608 #endif
610 for (i = 0; i < 16; i++) {
611 pteval_t v = pgprot_val(protection_map[i]);
612 protection_map[i] = __pgprot(v | user_pgprot);
615 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
616 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
618 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
619 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
620 L_PTE_DIRTY | kern_pgprot);
621 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
622 pgprot_s2_device = __pgprot(s2_device_pgprot);
623 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
625 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
626 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
627 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
628 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
629 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
630 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
631 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
632 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
633 mem_types[MT_ROM].prot_sect |= cp->pmd;
635 switch (cp->pmd) {
636 case PMD_SECT_WT:
637 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
638 break;
639 case PMD_SECT_WB:
640 case PMD_SECT_WBWA:
641 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
642 break;
644 pr_info("Memory policy: %sData cache %s\n",
645 ecc_mask ? "ECC enabled, " : "", cp->policy);
647 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
648 struct mem_type *t = &mem_types[i];
649 if (t->prot_l1)
650 t->prot_l1 |= PMD_DOMAIN(t->domain);
651 if (t->prot_sect)
652 t->prot_sect |= PMD_DOMAIN(t->domain);
656 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
657 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
658 unsigned long size, pgprot_t vma_prot)
660 if (!pfn_valid(pfn))
661 return pgprot_noncached(vma_prot);
662 else if (file->f_flags & O_SYNC)
663 return pgprot_writecombine(vma_prot);
664 return vma_prot;
666 EXPORT_SYMBOL(phys_mem_access_prot);
667 #endif
669 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
671 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
673 void *ptr = __va(memblock_alloc(sz, align));
674 memset(ptr, 0, sz);
675 return ptr;
678 static void __init *early_alloc(unsigned long sz)
680 return early_alloc_aligned(sz, sz);
683 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
685 if (pmd_none(*pmd)) {
686 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
687 __pmd_populate(pmd, __pa(pte), prot);
689 BUG_ON(pmd_bad(*pmd));
690 return pte_offset_kernel(pmd, addr);
693 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
694 unsigned long end, unsigned long pfn,
695 const struct mem_type *type)
697 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
698 do {
699 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
700 pfn++;
701 } while (pte++, addr += PAGE_SIZE, addr != end);
704 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
705 unsigned long end, phys_addr_t phys,
706 const struct mem_type *type)
708 pmd_t *p = pmd;
710 #ifndef CONFIG_ARM_LPAE
712 * In classic MMU format, puds and pmds are folded in to
713 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
714 * group of L1 entries making up one logical pointer to
715 * an L2 table (2MB), where as PMDs refer to the individual
716 * L1 entries (1MB). Hence increment to get the correct
717 * offset for odd 1MB sections.
718 * (See arch/arm/include/asm/pgtable-2level.h)
720 if (addr & SECTION_SIZE)
721 pmd++;
722 #endif
723 do {
724 *pmd = __pmd(phys | type->prot_sect);
725 phys += SECTION_SIZE;
726 } while (pmd++, addr += SECTION_SIZE, addr != end);
728 flush_pmd_entry(p);
731 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
732 unsigned long end, phys_addr_t phys,
733 const struct mem_type *type)
735 pmd_t *pmd = pmd_offset(pud, addr);
736 unsigned long next;
738 do {
740 * With LPAE, we must loop over to map
741 * all the pmds for the given range.
743 next = pmd_addr_end(addr, end);
746 * Try a section mapping - addr, next and phys must all be
747 * aligned to a section boundary.
749 if (type->prot_sect &&
750 ((addr | next | phys) & ~SECTION_MASK) == 0) {
751 __map_init_section(pmd, addr, next, phys, type);
752 } else {
753 alloc_init_pte(pmd, addr, next,
754 __phys_to_pfn(phys), type);
757 phys += next - addr;
759 } while (pmd++, addr = next, addr != end);
762 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
763 unsigned long end, phys_addr_t phys,
764 const struct mem_type *type)
766 pud_t *pud = pud_offset(pgd, addr);
767 unsigned long next;
769 do {
770 next = pud_addr_end(addr, end);
771 alloc_init_pmd(pud, addr, next, phys, type);
772 phys += next - addr;
773 } while (pud++, addr = next, addr != end);
776 #ifndef CONFIG_ARM_LPAE
777 static void __init create_36bit_mapping(struct map_desc *md,
778 const struct mem_type *type)
780 unsigned long addr, length, end;
781 phys_addr_t phys;
782 pgd_t *pgd;
784 addr = md->virtual;
785 phys = __pfn_to_phys(md->pfn);
786 length = PAGE_ALIGN(md->length);
788 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
789 printk(KERN_ERR "MM: CPU does not support supersection "
790 "mapping for 0x%08llx at 0x%08lx\n",
791 (long long)__pfn_to_phys((u64)md->pfn), addr);
792 return;
795 /* N.B. ARMv6 supersections are only defined to work with domain 0.
796 * Since domain assignments can in fact be arbitrary, the
797 * 'domain == 0' check below is required to insure that ARMv6
798 * supersections are only allocated for domain 0 regardless
799 * of the actual domain assignments in use.
801 if (type->domain) {
802 printk(KERN_ERR "MM: invalid domain in supersection "
803 "mapping for 0x%08llx at 0x%08lx\n",
804 (long long)__pfn_to_phys((u64)md->pfn), addr);
805 return;
808 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
809 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
810 " at 0x%08lx invalid alignment\n",
811 (long long)__pfn_to_phys((u64)md->pfn), addr);
812 return;
816 * Shift bits [35:32] of address into bits [23:20] of PMD
817 * (See ARMv6 spec).
819 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
821 pgd = pgd_offset_k(addr);
822 end = addr + length;
823 do {
824 pud_t *pud = pud_offset(pgd, addr);
825 pmd_t *pmd = pmd_offset(pud, addr);
826 int i;
828 for (i = 0; i < 16; i++)
829 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
831 addr += SUPERSECTION_SIZE;
832 phys += SUPERSECTION_SIZE;
833 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
834 } while (addr != end);
836 #endif /* !CONFIG_ARM_LPAE */
839 * Create the page directory entries and any necessary
840 * page tables for the mapping specified by `md'. We
841 * are able to cope here with varying sizes and address
842 * offsets, and we take full advantage of sections and
843 * supersections.
845 static void __init create_mapping(struct map_desc *md)
847 unsigned long addr, length, end;
848 phys_addr_t phys;
849 const struct mem_type *type;
850 pgd_t *pgd;
852 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
853 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
854 " at 0x%08lx in user region\n",
855 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
856 return;
859 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
860 md->virtual >= PAGE_OFFSET &&
861 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
862 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
863 " at 0x%08lx out of vmalloc space\n",
864 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
867 type = &mem_types[md->type];
869 #ifndef CONFIG_ARM_LPAE
871 * Catch 36-bit addresses
873 if (md->pfn >= 0x100000) {
874 create_36bit_mapping(md, type);
875 return;
877 #endif
879 addr = md->virtual & PAGE_MASK;
880 phys = __pfn_to_phys(md->pfn);
881 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
883 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
884 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
885 "be mapped using pages, ignoring.\n",
886 (long long)__pfn_to_phys(md->pfn), addr);
887 return;
890 pgd = pgd_offset_k(addr);
891 end = addr + length;
892 do {
893 unsigned long next = pgd_addr_end(addr, end);
895 alloc_init_pud(pgd, addr, next, phys, type);
897 phys += next - addr;
898 addr = next;
899 } while (pgd++, addr != end);
903 * Create the architecture specific mappings
905 void __init iotable_init(struct map_desc *io_desc, int nr)
907 struct map_desc *md;
908 struct vm_struct *vm;
909 struct static_vm *svm;
911 if (!nr)
912 return;
914 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
916 for (md = io_desc; nr; md++, nr--) {
917 create_mapping(md);
919 vm = &svm->vm;
920 vm->addr = (void *)(md->virtual & PAGE_MASK);
921 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
922 vm->phys_addr = __pfn_to_phys(md->pfn);
923 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
924 vm->flags |= VM_ARM_MTYPE(md->type);
925 vm->caller = iotable_init;
926 add_static_vm_early(svm++);
930 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
931 void *caller)
933 struct vm_struct *vm;
934 struct static_vm *svm;
936 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
938 vm = &svm->vm;
939 vm->addr = (void *)addr;
940 vm->size = size;
941 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
942 vm->caller = caller;
943 add_static_vm_early(svm);
946 #ifndef CONFIG_ARM_LPAE
949 * The Linux PMD is made of two consecutive section entries covering 2MB
950 * (see definition in include/asm/pgtable-2level.h). However a call to
951 * create_mapping() may optimize static mappings by using individual
952 * 1MB section mappings. This leaves the actual PMD potentially half
953 * initialized if the top or bottom section entry isn't used, leaving it
954 * open to problems if a subsequent ioremap() or vmalloc() tries to use
955 * the virtual space left free by that unused section entry.
957 * Let's avoid the issue by inserting dummy vm entries covering the unused
958 * PMD halves once the static mappings are in place.
961 static void __init pmd_empty_section_gap(unsigned long addr)
963 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
966 static void __init fill_pmd_gaps(void)
968 struct static_vm *svm;
969 struct vm_struct *vm;
970 unsigned long addr, next = 0;
971 pmd_t *pmd;
973 list_for_each_entry(svm, &static_vmlist, list) {
974 vm = &svm->vm;
975 addr = (unsigned long)vm->addr;
976 if (addr < next)
977 continue;
980 * Check if this vm starts on an odd section boundary.
981 * If so and the first section entry for this PMD is free
982 * then we block the corresponding virtual address.
984 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
985 pmd = pmd_off_k(addr);
986 if (pmd_none(*pmd))
987 pmd_empty_section_gap(addr & PMD_MASK);
991 * Then check if this vm ends on an odd section boundary.
992 * If so and the second section entry for this PMD is empty
993 * then we block the corresponding virtual address.
995 addr += vm->size;
996 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
997 pmd = pmd_off_k(addr) + 1;
998 if (pmd_none(*pmd))
999 pmd_empty_section_gap(addr);
1002 /* no need to look at any vm entry until we hit the next PMD */
1003 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1007 #else
1008 #define fill_pmd_gaps() do { } while (0)
1009 #endif
1011 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1012 static void __init pci_reserve_io(void)
1014 struct static_vm *svm;
1016 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1017 if (svm)
1018 return;
1020 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1022 #else
1023 #define pci_reserve_io() do { } while (0)
1024 #endif
1026 #ifdef CONFIG_DEBUG_LL
1027 void __init debug_ll_io_init(void)
1029 struct map_desc map;
1031 debug_ll_addr(&map.pfn, &map.virtual);
1032 if (!map.pfn || !map.virtual)
1033 return;
1034 map.pfn = __phys_to_pfn(map.pfn);
1035 map.virtual &= PAGE_MASK;
1036 map.length = PAGE_SIZE;
1037 map.type = MT_DEVICE;
1038 iotable_init(&map, 1);
1040 #endif
1042 static void * __initdata vmalloc_min =
1043 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1046 * vmalloc=size forces the vmalloc area to be exactly 'size'
1047 * bytes. This can be used to increase (or decrease) the vmalloc
1048 * area - the default is 240m.
1050 static int __init early_vmalloc(char *arg)
1052 unsigned long vmalloc_reserve = memparse(arg, NULL);
1054 if (vmalloc_reserve < SZ_16M) {
1055 vmalloc_reserve = SZ_16M;
1056 printk(KERN_WARNING
1057 "vmalloc area too small, limiting to %luMB\n",
1058 vmalloc_reserve >> 20);
1061 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1062 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1063 printk(KERN_WARNING
1064 "vmalloc area is too big, limiting to %luMB\n",
1065 vmalloc_reserve >> 20);
1068 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1069 return 0;
1071 early_param("vmalloc", early_vmalloc);
1073 phys_addr_t arm_lowmem_limit __initdata = 0;
1075 void __init sanity_check_meminfo(void)
1077 phys_addr_t memblock_limit = 0;
1078 int highmem = 0;
1079 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1080 struct memblock_region *reg;
1082 for_each_memblock(memory, reg) {
1083 phys_addr_t block_start = reg->base;
1084 phys_addr_t block_end = reg->base + reg->size;
1085 phys_addr_t size_limit = reg->size;
1087 if (reg->base >= vmalloc_limit)
1088 highmem = 1;
1089 else
1090 size_limit = vmalloc_limit - reg->base;
1093 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1095 if (highmem) {
1096 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1097 &block_start, &block_end);
1098 memblock_remove(reg->base, reg->size);
1099 continue;
1102 if (reg->size > size_limit) {
1103 phys_addr_t overlap_size = reg->size - size_limit;
1105 pr_notice("Truncating RAM at %pa-%pa to -%pa",
1106 &block_start, &block_end, &vmalloc_limit);
1107 memblock_remove(vmalloc_limit, overlap_size);
1108 block_end = vmalloc_limit;
1112 if (!highmem) {
1113 if (block_end > arm_lowmem_limit) {
1114 if (reg->size > size_limit)
1115 arm_lowmem_limit = vmalloc_limit;
1116 else
1117 arm_lowmem_limit = block_end;
1121 * Find the first non-section-aligned page, and point
1122 * memblock_limit at it. This relies on rounding the
1123 * limit down to be section-aligned, which happens at
1124 * the end of this function.
1126 * With this algorithm, the start or end of almost any
1127 * bank can be non-section-aligned. The only exception
1128 * is that the start of the bank 0 must be section-
1129 * aligned, since otherwise memory would need to be
1130 * allocated when mapping the start of bank 0, which
1131 * occurs before any free memory is mapped.
1133 if (!memblock_limit) {
1134 if (!IS_ALIGNED(block_start, SECTION_SIZE))
1135 memblock_limit = block_start;
1136 else if (!IS_ALIGNED(block_end, SECTION_SIZE))
1137 memblock_limit = arm_lowmem_limit;
1143 high_memory = __va(arm_lowmem_limit - 1) + 1;
1146 * Round the memblock limit down to a section size. This
1147 * helps to ensure that we will allocate memory from the
1148 * last full section, which should be mapped.
1150 if (memblock_limit)
1151 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1152 if (!memblock_limit)
1153 memblock_limit = arm_lowmem_limit;
1155 memblock_set_current_limit(memblock_limit);
1158 static inline void prepare_page_table(void)
1160 unsigned long addr;
1161 phys_addr_t end;
1164 * Clear out all the mappings below the kernel image.
1166 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1167 pmd_clear(pmd_off_k(addr));
1169 #ifdef CONFIG_XIP_KERNEL
1170 /* The XIP kernel is mapped in the module area -- skip over it */
1171 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1172 #endif
1173 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1174 pmd_clear(pmd_off_k(addr));
1177 * Find the end of the first block of lowmem.
1179 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1180 if (end >= arm_lowmem_limit)
1181 end = arm_lowmem_limit;
1184 * Clear out all the kernel space mappings, except for the first
1185 * memory bank, up to the vmalloc region.
1187 for (addr = __phys_to_virt(end);
1188 addr < VMALLOC_START; addr += PMD_SIZE)
1189 pmd_clear(pmd_off_k(addr));
1192 #ifdef CONFIG_ARM_LPAE
1193 /* the first page is reserved for pgd */
1194 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1195 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1196 #else
1197 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1198 #endif
1201 * Reserve the special regions of memory
1203 void __init arm_mm_memblock_reserve(void)
1206 * Reserve the page tables. These are already in use,
1207 * and can only be in node 0.
1209 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1211 #ifdef CONFIG_SA1111
1213 * Because of the SA1111 DMA bug, we want to preserve our
1214 * precious DMA-able memory...
1216 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1217 #endif
1221 * Set up the device mappings. Since we clear out the page tables for all
1222 * mappings above VMALLOC_START, we will remove any debug device mappings.
1223 * This means you have to be careful how you debug this function, or any
1224 * called function. This means you can't use any function or debugging
1225 * method which may touch any device, otherwise the kernel _will_ crash.
1227 static void __init devicemaps_init(const struct machine_desc *mdesc)
1229 struct map_desc map;
1230 unsigned long addr;
1231 void *vectors;
1234 * Allocate the vector page early.
1236 vectors = early_alloc(PAGE_SIZE * 2);
1238 early_trap_init(vectors);
1240 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1241 pmd_clear(pmd_off_k(addr));
1244 * Map the kernel if it is XIP.
1245 * It is always first in the modulearea.
1247 #ifdef CONFIG_XIP_KERNEL
1248 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1249 map.virtual = MODULES_VADDR;
1250 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1251 map.type = MT_ROM;
1252 create_mapping(&map);
1253 #endif
1256 * Map the cache flushing regions.
1258 #ifdef FLUSH_BASE
1259 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1260 map.virtual = FLUSH_BASE;
1261 map.length = SZ_1M;
1262 map.type = MT_CACHECLEAN;
1263 create_mapping(&map);
1264 #endif
1265 #ifdef FLUSH_BASE_MINICACHE
1266 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1267 map.virtual = FLUSH_BASE_MINICACHE;
1268 map.length = SZ_1M;
1269 map.type = MT_MINICLEAN;
1270 create_mapping(&map);
1271 #endif
1274 * Create a mapping for the machine vectors at the high-vectors
1275 * location (0xffff0000). If we aren't using high-vectors, also
1276 * create a mapping at the low-vectors virtual address.
1278 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1279 map.virtual = 0xffff0000;
1280 map.length = PAGE_SIZE;
1281 #ifdef CONFIG_KUSER_HELPERS
1282 map.type = MT_HIGH_VECTORS;
1283 #else
1284 map.type = MT_LOW_VECTORS;
1285 #endif
1286 create_mapping(&map);
1288 if (!vectors_high()) {
1289 map.virtual = 0;
1290 map.length = PAGE_SIZE * 2;
1291 map.type = MT_LOW_VECTORS;
1292 create_mapping(&map);
1295 /* Now create a kernel read-only mapping */
1296 map.pfn += 1;
1297 map.virtual = 0xffff0000 + PAGE_SIZE;
1298 map.length = PAGE_SIZE;
1299 map.type = MT_LOW_VECTORS;
1300 create_mapping(&map);
1303 * Ask the machine support to map in the statically mapped devices.
1305 if (mdesc->map_io)
1306 mdesc->map_io();
1307 else
1308 debug_ll_io_init();
1309 fill_pmd_gaps();
1311 /* Reserve fixed i/o space in VMALLOC region */
1312 pci_reserve_io();
1315 * Finally flush the caches and tlb to ensure that we're in a
1316 * consistent state wrt the writebuffer. This also ensures that
1317 * any write-allocated cache lines in the vector page are written
1318 * back. After this point, we can start to touch devices again.
1320 local_flush_tlb_all();
1321 flush_cache_all();
1324 static void __init kmap_init(void)
1326 #ifdef CONFIG_HIGHMEM
1327 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1328 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1330 fixmap_page_table = early_pte_alloc(pmd_off_k(FIXADDR_START),
1331 FIXADDR_START, _PAGE_KERNEL_TABLE);
1332 #endif
1335 static void __init map_lowmem(void)
1337 struct memblock_region *reg;
1338 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1339 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1341 /* Map all the lowmem memory banks. */
1342 for_each_memblock(memory, reg) {
1343 phys_addr_t start = reg->base;
1344 phys_addr_t end = start + reg->size;
1345 struct map_desc map;
1347 if (end > arm_lowmem_limit)
1348 end = arm_lowmem_limit;
1349 if (start >= end)
1350 break;
1352 if (end < kernel_x_start || start >= kernel_x_end) {
1353 map.pfn = __phys_to_pfn(start);
1354 map.virtual = __phys_to_virt(start);
1355 map.length = end - start;
1356 map.type = MT_MEMORY_RWX;
1358 create_mapping(&map);
1359 } else {
1360 /* This better cover the entire kernel */
1361 if (start < kernel_x_start) {
1362 map.pfn = __phys_to_pfn(start);
1363 map.virtual = __phys_to_virt(start);
1364 map.length = kernel_x_start - start;
1365 map.type = MT_MEMORY_RW;
1367 create_mapping(&map);
1370 map.pfn = __phys_to_pfn(kernel_x_start);
1371 map.virtual = __phys_to_virt(kernel_x_start);
1372 map.length = kernel_x_end - kernel_x_start;
1373 map.type = MT_MEMORY_RWX;
1375 create_mapping(&map);
1377 if (kernel_x_end < end) {
1378 map.pfn = __phys_to_pfn(kernel_x_end);
1379 map.virtual = __phys_to_virt(kernel_x_end);
1380 map.length = end - kernel_x_end;
1381 map.type = MT_MEMORY_RW;
1383 create_mapping(&map);
1389 #ifdef CONFIG_ARM_LPAE
1391 * early_paging_init() recreates boot time page table setup, allowing machines
1392 * to switch over to a high (>4G) address space on LPAE systems
1394 void __init early_paging_init(const struct machine_desc *mdesc,
1395 struct proc_info_list *procinfo)
1397 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1398 unsigned long map_start, map_end;
1399 pgd_t *pgd0, *pgdk;
1400 pud_t *pud0, *pudk, *pud_start;
1401 pmd_t *pmd0, *pmdk;
1402 phys_addr_t phys;
1403 int i;
1405 if (!(mdesc->init_meminfo))
1406 return;
1408 /* remap kernel code and data */
1409 map_start = init_mm.start_code & PMD_MASK;
1410 map_end = ALIGN(init_mm.brk, PMD_SIZE);
1412 /* get a handle on things... */
1413 pgd0 = pgd_offset_k(0);
1414 pud_start = pud0 = pud_offset(pgd0, 0);
1415 pmd0 = pmd_offset(pud0, 0);
1417 pgdk = pgd_offset_k(map_start);
1418 pudk = pud_offset(pgdk, map_start);
1419 pmdk = pmd_offset(pudk, map_start);
1421 mdesc->init_meminfo();
1423 /* Run the patch stub to update the constants */
1424 fixup_pv_table(&__pv_table_begin,
1425 (&__pv_table_end - &__pv_table_begin) << 2);
1428 * Cache cleaning operations for self-modifying code
1429 * We should clean the entries by MVA but running a
1430 * for loop over every pv_table entry pointer would
1431 * just complicate the code.
1433 flush_cache_louis();
1434 dsb(ishst);
1435 isb();
1438 * FIXME: This code is not architecturally compliant: we modify
1439 * the mappings in-place, indeed while they are in use by this
1440 * very same code. This may lead to unpredictable behaviour of
1441 * the CPU.
1443 * Even modifying the mappings in a separate page table does
1444 * not resolve this.
1446 * The architecture strongly recommends that when a mapping is
1447 * changed, that it is changed by first going via an invalid
1448 * mapping and back to the new mapping. This is to ensure that
1449 * no TLB conflicts (caused by the TLB having more than one TLB
1450 * entry match a translation) can occur. However, doing that
1451 * here will result in unmapping the code we are running.
1453 pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
1454 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1457 * Remap level 1 table. This changes the physical addresses
1458 * used to refer to the level 2 page tables to the high
1459 * physical address alias, leaving everything else the same.
1461 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1462 set_pud(pud0,
1463 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1464 pmd0 += PTRS_PER_PMD;
1468 * Remap the level 2 table, pointing the mappings at the high
1469 * physical address alias of these pages.
1471 phys = __pa(map_start);
1472 do {
1473 *pmdk++ = __pmd(phys | pmdprot);
1474 phys += PMD_SIZE;
1475 } while (phys < map_end);
1478 * Ensure that the above updates are flushed out of the cache.
1479 * This is not strictly correct; on a system where the caches
1480 * are coherent with each other, but the MMU page table walks
1481 * may not be coherent, flush_cache_all() may be a no-op, and
1482 * this will fail.
1484 flush_cache_all();
1487 * Re-write the TTBR values to point them at the high physical
1488 * alias of the page tables. We expect __va() will work on
1489 * cpu_get_pgd(), which returns the value of TTBR0.
1491 cpu_switch_mm(pgd0, &init_mm);
1492 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1494 /* Finally flush any stale TLB values. */
1495 local_flush_bp_all();
1496 local_flush_tlb_all();
1499 #else
1501 void __init early_paging_init(const struct machine_desc *mdesc,
1502 struct proc_info_list *procinfo)
1504 if (mdesc->init_meminfo)
1505 mdesc->init_meminfo();
1508 #endif
1511 * paging_init() sets up the page tables, initialises the zone memory
1512 * maps, and sets up the zero page, bad page and bad page tables.
1514 void __init paging_init(const struct machine_desc *mdesc)
1516 void *zero_page;
1518 build_mem_type_table();
1519 prepare_page_table();
1520 map_lowmem();
1521 dma_contiguous_remap();
1522 devicemaps_init(mdesc);
1523 kmap_init();
1524 tcm_init();
1526 top_pmd = pmd_off_k(0xffff0000);
1528 /* allocate the zero page. */
1529 zero_page = early_alloc(PAGE_SIZE);
1531 bootmem_init();
1533 empty_zero_page = virt_to_page(zero_page);
1534 __flush_dcache_page(NULL, empty_zero_page);