2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
38 #include <asm/fixmap.h>
44 * empty_zero_page is a special page that is used for
45 * zero-initialized data and COW.
47 struct page
*empty_zero_page
;
48 EXPORT_SYMBOL(empty_zero_page
);
51 * The pmd table for the upper-most set of pages.
55 #define CPOLICY_UNCACHED 0
56 #define CPOLICY_BUFFERED 1
57 #define CPOLICY_WRITETHROUGH 2
58 #define CPOLICY_WRITEBACK 3
59 #define CPOLICY_WRITEALLOC 4
61 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
62 static unsigned int ecc_mask __initdata
= 0;
64 pgprot_t pgprot_kernel
;
65 pgprot_t pgprot_hyp_device
;
67 pgprot_t pgprot_s2_device
;
69 EXPORT_SYMBOL(pgprot_user
);
70 EXPORT_SYMBOL(pgprot_kernel
);
73 const char policy
[16];
80 #ifdef CONFIG_ARM_LPAE
81 #define s2_policy(policy) policy
83 #define s2_policy(policy) 0
86 static struct cachepolicy cache_policies
[] __initdata
= {
90 .pmd
= PMD_SECT_UNCACHED
,
91 .pte
= L_PTE_MT_UNCACHED
,
92 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
96 .pmd
= PMD_SECT_BUFFERED
,
97 .pte
= L_PTE_MT_BUFFERABLE
,
98 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
100 .policy
= "writethrough",
103 .pte
= L_PTE_MT_WRITETHROUGH
,
104 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITETHROUGH
),
106 .policy
= "writeback",
109 .pte
= L_PTE_MT_WRITEBACK
,
110 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
112 .policy
= "writealloc",
114 .pmd
= PMD_SECT_WBWA
,
115 .pte
= L_PTE_MT_WRITEALLOC
,
116 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
120 #ifdef CONFIG_CPU_CP15
121 static unsigned long initial_pmd_value __initdata
= 0;
124 * Initialise the cache_policy variable with the initial state specified
125 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
126 * the C code sets the page tables up with the same policy as the head
127 * assembly code, which avoids an illegal state where the TLBs can get
128 * confused. See comments in early_cachepolicy() for more information.
130 void __init
init_default_cache_policy(unsigned long pmd
)
134 initial_pmd_value
= pmd
;
136 pmd
&= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE
| PMD_SECT_CACHEABLE
;
138 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++)
139 if (cache_policies
[i
].pmd
== pmd
) {
144 if (i
== ARRAY_SIZE(cache_policies
))
145 pr_err("ERROR: could not find cache policy\n");
149 * These are useful for identifying cache coherency problems by allowing
150 * the cache or the cache and writebuffer to be turned off. (Note: the
151 * write buffer should not be on and the cache off).
153 static int __init
early_cachepolicy(char *p
)
155 int i
, selected
= -1;
157 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
158 int len
= strlen(cache_policies
[i
].policy
);
160 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
167 pr_err("ERROR: unknown or unsupported cache policy\n");
170 * This restriction is partly to do with the way we boot; it is
171 * unpredictable to have memory mapped using two different sets of
172 * memory attributes (shared, type, and cache attribs). We can not
173 * change these attributes once the initial assembly has setup the
176 if (cpu_architecture() >= CPU_ARCH_ARMv6
&& selected
!= cachepolicy
) {
177 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
178 cache_policies
[cachepolicy
].policy
);
182 if (selected
!= cachepolicy
) {
183 unsigned long cr
= __clear_cr(cache_policies
[selected
].cr_mask
);
184 cachepolicy
= selected
;
190 early_param("cachepolicy", early_cachepolicy
);
192 static int __init
early_nocache(char *__unused
)
194 char *p
= "buffered";
195 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
196 early_cachepolicy(p
);
199 early_param("nocache", early_nocache
);
201 static int __init
early_nowrite(char *__unused
)
203 char *p
= "uncached";
204 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
205 early_cachepolicy(p
);
208 early_param("nowb", early_nowrite
);
210 #ifndef CONFIG_ARM_LPAE
211 static int __init
early_ecc(char *p
)
213 if (memcmp(p
, "on", 2) == 0)
214 ecc_mask
= PMD_PROTECTION
;
215 else if (memcmp(p
, "off", 3) == 0)
219 early_param("ecc", early_ecc
);
222 #else /* ifdef CONFIG_CPU_CP15 */
224 static int __init
early_cachepolicy(char *p
)
226 pr_warn("cachepolicy kernel parameter not supported without cp15\n");
228 early_param("cachepolicy", early_cachepolicy
);
230 static int __init
noalign_setup(char *__unused
)
232 pr_warn("noalign kernel parameter not supported without cp15\n");
234 __setup("noalign", noalign_setup
);
236 #endif /* ifdef CONFIG_CPU_CP15 / else */
238 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
239 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
240 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
242 static struct mem_type mem_types
[] = {
243 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
244 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
246 .prot_pte_s2
= s2_policy(PROT_PTE_S2_DEVICE
) |
247 s2_policy(L_PTE_S2_MT_DEV_SHARED
) |
249 .prot_l1
= PMD_TYPE_TABLE
,
250 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
253 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
254 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
255 .prot_l1
= PMD_TYPE_TABLE
,
256 .prot_sect
= PROT_SECT_DEVICE
,
259 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
260 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
261 .prot_l1
= PMD_TYPE_TABLE
,
262 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
265 [MT_DEVICE_WC
] = { /* ioremap_wc */
266 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
267 .prot_l1
= PMD_TYPE_TABLE
,
268 .prot_sect
= PROT_SECT_DEVICE
,
272 .prot_pte
= PROT_PTE_DEVICE
,
273 .prot_l1
= PMD_TYPE_TABLE
,
274 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
278 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
279 .domain
= DOMAIN_KERNEL
,
281 #ifndef CONFIG_ARM_LPAE
283 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
284 .domain
= DOMAIN_KERNEL
,
288 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
290 .prot_l1
= PMD_TYPE_TABLE
,
291 .domain
= DOMAIN_USER
,
293 [MT_HIGH_VECTORS
] = {
294 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
295 L_PTE_USER
| L_PTE_RDONLY
,
296 .prot_l1
= PMD_TYPE_TABLE
,
297 .domain
= DOMAIN_USER
,
300 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
301 .prot_l1
= PMD_TYPE_TABLE
,
302 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
303 .domain
= DOMAIN_KERNEL
,
306 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
308 .prot_l1
= PMD_TYPE_TABLE
,
309 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
310 .domain
= DOMAIN_KERNEL
,
313 .prot_sect
= PMD_TYPE_SECT
,
314 .domain
= DOMAIN_KERNEL
,
316 [MT_MEMORY_RWX_NONCACHED
] = {
317 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
319 .prot_l1
= PMD_TYPE_TABLE
,
320 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
321 .domain
= DOMAIN_KERNEL
,
323 [MT_MEMORY_RW_DTCM
] = {
324 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
326 .prot_l1
= PMD_TYPE_TABLE
,
327 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
328 .domain
= DOMAIN_KERNEL
,
330 [MT_MEMORY_RWX_ITCM
] = {
331 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
332 .prot_l1
= PMD_TYPE_TABLE
,
333 .domain
= DOMAIN_KERNEL
,
335 [MT_MEMORY_RW_SO
] = {
336 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
337 L_PTE_MT_UNCACHED
| L_PTE_XN
,
338 .prot_l1
= PMD_TYPE_TABLE
,
339 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
340 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
341 .domain
= DOMAIN_KERNEL
,
343 [MT_MEMORY_DMA_READY
] = {
344 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
346 .prot_l1
= PMD_TYPE_TABLE
,
347 .domain
= DOMAIN_KERNEL
,
351 const struct mem_type
*get_mem_type(unsigned int type
)
353 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
355 EXPORT_SYMBOL(get_mem_type
);
357 #define PTE_SET_FN(_name, pteop) \
358 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
361 pte_t pte = pteop(*ptep); \
363 set_pte_ext(ptep, pte, 0); \
367 #define SET_MEMORY_FN(_name, callback) \
368 int set_memory_##_name(unsigned long addr, int numpages) \
370 unsigned long start = addr; \
371 unsigned long size = PAGE_SIZE*numpages; \
372 unsigned end = start + size; \
374 if (start < MODULES_VADDR || start >= MODULES_END) \
377 if (end < MODULES_VADDR || end >= MODULES_END) \
380 apply_to_page_range(&init_mm, start, size, callback, NULL); \
381 flush_tlb_kernel_range(start, end); \
385 PTE_SET_FN(ro
, pte_wrprotect
)
386 PTE_SET_FN(rw
, pte_mkwrite
)
387 PTE_SET_FN(x
, pte_mkexec
)
388 PTE_SET_FN(nx
, pte_mknexec
)
390 SET_MEMORY_FN(ro
, pte_set_ro
)
391 SET_MEMORY_FN(rw
, pte_set_rw
)
392 SET_MEMORY_FN(x
, pte_set_x
)
393 SET_MEMORY_FN(nx
, pte_set_nx
)
396 * Adjust the PMD section entries according to the CPU in use.
398 static void __init
build_mem_type_table(void)
400 struct cachepolicy
*cp
;
401 unsigned int cr
= get_cr();
402 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
403 pteval_t hyp_device_pgprot
, s2_pgprot
, s2_device_pgprot
;
404 int cpu_arch
= cpu_architecture();
407 if (cpu_arch
< CPU_ARCH_ARMv6
) {
408 #if defined(CONFIG_CPU_DCACHE_DISABLE)
409 if (cachepolicy
> CPOLICY_BUFFERED
)
410 cachepolicy
= CPOLICY_BUFFERED
;
411 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
412 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
413 cachepolicy
= CPOLICY_WRITETHROUGH
;
416 if (cpu_arch
< CPU_ARCH_ARMv5
) {
417 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
418 cachepolicy
= CPOLICY_WRITEBACK
;
423 if (cachepolicy
!= CPOLICY_WRITEALLOC
) {
424 pr_warn("Forcing write-allocate cache policy for SMP\n");
425 cachepolicy
= CPOLICY_WRITEALLOC
;
427 if (!(initial_pmd_value
& PMD_SECT_S
)) {
428 pr_warn("Forcing shared mappings for SMP\n");
429 initial_pmd_value
|= PMD_SECT_S
;
434 * Strip out features not present on earlier architectures.
435 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
436 * without extended page tables don't have the 'Shared' bit.
438 if (cpu_arch
< CPU_ARCH_ARMv5
)
439 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
440 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
441 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
442 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
443 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
446 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
447 * "update-able on write" bit on ARM610). However, Xscale and
448 * Xscale3 require this bit to be cleared.
450 if (cpu_is_xscale() || cpu_is_xsc3()) {
451 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
452 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
453 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
455 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
456 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
457 if (mem_types
[i
].prot_l1
)
458 mem_types
[i
].prot_l1
|= PMD_BIT4
;
459 if (mem_types
[i
].prot_sect
)
460 mem_types
[i
].prot_sect
|= PMD_BIT4
;
465 * Mark the device areas according to the CPU/architecture.
467 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
468 if (!cpu_is_xsc3()) {
470 * Mark device regions on ARMv6+ as execute-never
471 * to prevent speculative instruction fetches.
473 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
474 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
475 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
476 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
478 /* Also setup NX memory mapping */
479 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
481 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
483 * For ARMv7 with TEX remapping,
484 * - shared device is SXCB=1100
485 * - nonshared device is SXCB=0100
486 * - write combine device mem is SXCB=0001
487 * (Uncached Normal memory)
489 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
490 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
491 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
492 } else if (cpu_is_xsc3()) {
495 * - shared device is TEXCB=00101
496 * - nonshared device is TEXCB=01000
497 * - write combine device mem is TEXCB=00100
498 * (Inner/Outer Uncacheable in xsc3 parlance)
500 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
501 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
502 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
505 * For ARMv6 and ARMv7 without TEX remapping,
506 * - shared device is TEXCB=00001
507 * - nonshared device is TEXCB=01000
508 * - write combine device mem is TEXCB=00100
509 * (Uncached Normal in ARMv6 parlance).
511 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
512 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
513 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
517 * On others, write combining is "Uncached/Buffered"
519 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
523 * Now deal with the memory-type mappings
525 cp
= &cache_policies
[cachepolicy
];
526 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
527 s2_pgprot
= cp
->pte_s2
;
528 hyp_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte
;
529 s2_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte_s2
;
532 * We don't use domains on ARMv6 (since this causes problems with
533 * v6/v7 kernels), so we must use a separate memory type for user
534 * r/o, kernel r/w to map the vectors page.
536 #ifndef CONFIG_ARM_LPAE
537 if (cpu_arch
== CPU_ARCH_ARMv6
)
538 vecs_pgprot
|= L_PTE_MT_VECTORS
;
542 * ARMv6 and above have extended page tables.
544 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
545 #ifndef CONFIG_ARM_LPAE
547 * Mark cache clean areas and XIP ROM read only
548 * from SVC mode and no access from userspace.
550 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
551 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
552 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
556 * If the initial page tables were created with the S bit
557 * set, then we need to do the same here for the same
558 * reasons given in early_cachepolicy().
560 if (initial_pmd_value
& PMD_SECT_S
) {
561 user_pgprot
|= L_PTE_SHARED
;
562 kern_pgprot
|= L_PTE_SHARED
;
563 vecs_pgprot
|= L_PTE_SHARED
;
564 s2_pgprot
|= L_PTE_SHARED
;
565 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
566 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
567 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
568 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
569 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
570 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
571 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
572 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
573 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
574 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
575 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
580 * Non-cacheable Normal - intended for memory areas that must
581 * not cause dirty cache line writebacks when used
583 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
584 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
585 /* Non-cacheable Normal is XCB = 001 */
586 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
589 /* For both ARMv6 and non-TEX-remapping ARMv7 */
590 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
594 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
597 #ifdef CONFIG_ARM_LPAE
599 * Do not generate access flag faults for the kernel mappings.
601 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
602 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
603 if (mem_types
[i
].prot_sect
)
604 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
606 kern_pgprot
|= PTE_EXT_AF
;
607 vecs_pgprot
|= PTE_EXT_AF
;
610 for (i
= 0; i
< 16; i
++) {
611 pteval_t v
= pgprot_val(protection_map
[i
]);
612 protection_map
[i
] = __pgprot(v
| user_pgprot
);
615 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
616 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
618 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
619 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
620 L_PTE_DIRTY
| kern_pgprot
);
621 pgprot_s2
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| s2_pgprot
);
622 pgprot_s2_device
= __pgprot(s2_device_pgprot
);
623 pgprot_hyp_device
= __pgprot(hyp_device_pgprot
);
625 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
626 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
627 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
628 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
629 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
630 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
631 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
632 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
633 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
637 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
641 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
644 pr_info("Memory policy: %sData cache %s\n",
645 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
647 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
648 struct mem_type
*t
= &mem_types
[i
];
650 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
652 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
656 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
657 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
658 unsigned long size
, pgprot_t vma_prot
)
661 return pgprot_noncached(vma_prot
);
662 else if (file
->f_flags
& O_SYNC
)
663 return pgprot_writecombine(vma_prot
);
666 EXPORT_SYMBOL(phys_mem_access_prot
);
669 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
671 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
673 void *ptr
= __va(memblock_alloc(sz
, align
));
678 static void __init
*early_alloc(unsigned long sz
)
680 return early_alloc_aligned(sz
, sz
);
683 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
685 if (pmd_none(*pmd
)) {
686 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
687 __pmd_populate(pmd
, __pa(pte
), prot
);
689 BUG_ON(pmd_bad(*pmd
));
690 return pte_offset_kernel(pmd
, addr
);
693 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
694 unsigned long end
, unsigned long pfn
,
695 const struct mem_type
*type
)
697 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
699 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
701 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
704 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
705 unsigned long end
, phys_addr_t phys
,
706 const struct mem_type
*type
)
710 #ifndef CONFIG_ARM_LPAE
712 * In classic MMU format, puds and pmds are folded in to
713 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
714 * group of L1 entries making up one logical pointer to
715 * an L2 table (2MB), where as PMDs refer to the individual
716 * L1 entries (1MB). Hence increment to get the correct
717 * offset for odd 1MB sections.
718 * (See arch/arm/include/asm/pgtable-2level.h)
720 if (addr
& SECTION_SIZE
)
724 *pmd
= __pmd(phys
| type
->prot_sect
);
725 phys
+= SECTION_SIZE
;
726 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
731 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
732 unsigned long end
, phys_addr_t phys
,
733 const struct mem_type
*type
)
735 pmd_t
*pmd
= pmd_offset(pud
, addr
);
740 * With LPAE, we must loop over to map
741 * all the pmds for the given range.
743 next
= pmd_addr_end(addr
, end
);
746 * Try a section mapping - addr, next and phys must all be
747 * aligned to a section boundary.
749 if (type
->prot_sect
&&
750 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
751 __map_init_section(pmd
, addr
, next
, phys
, type
);
753 alloc_init_pte(pmd
, addr
, next
,
754 __phys_to_pfn(phys
), type
);
759 } while (pmd
++, addr
= next
, addr
!= end
);
762 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
763 unsigned long end
, phys_addr_t phys
,
764 const struct mem_type
*type
)
766 pud_t
*pud
= pud_offset(pgd
, addr
);
770 next
= pud_addr_end(addr
, end
);
771 alloc_init_pmd(pud
, addr
, next
, phys
, type
);
773 } while (pud
++, addr
= next
, addr
!= end
);
776 #ifndef CONFIG_ARM_LPAE
777 static void __init
create_36bit_mapping(struct map_desc
*md
,
778 const struct mem_type
*type
)
780 unsigned long addr
, length
, end
;
785 phys
= __pfn_to_phys(md
->pfn
);
786 length
= PAGE_ALIGN(md
->length
);
788 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
789 printk(KERN_ERR
"MM: CPU does not support supersection "
790 "mapping for 0x%08llx at 0x%08lx\n",
791 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
795 /* N.B. ARMv6 supersections are only defined to work with domain 0.
796 * Since domain assignments can in fact be arbitrary, the
797 * 'domain == 0' check below is required to insure that ARMv6
798 * supersections are only allocated for domain 0 regardless
799 * of the actual domain assignments in use.
802 printk(KERN_ERR
"MM: invalid domain in supersection "
803 "mapping for 0x%08llx at 0x%08lx\n",
804 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
808 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
809 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
810 " at 0x%08lx invalid alignment\n",
811 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
816 * Shift bits [35:32] of address into bits [23:20] of PMD
819 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
821 pgd
= pgd_offset_k(addr
);
824 pud_t
*pud
= pud_offset(pgd
, addr
);
825 pmd_t
*pmd
= pmd_offset(pud
, addr
);
828 for (i
= 0; i
< 16; i
++)
829 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
831 addr
+= SUPERSECTION_SIZE
;
832 phys
+= SUPERSECTION_SIZE
;
833 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
834 } while (addr
!= end
);
836 #endif /* !CONFIG_ARM_LPAE */
839 * Create the page directory entries and any necessary
840 * page tables for the mapping specified by `md'. We
841 * are able to cope here with varying sizes and address
842 * offsets, and we take full advantage of sections and
845 static void __init
create_mapping(struct map_desc
*md
)
847 unsigned long addr
, length
, end
;
849 const struct mem_type
*type
;
852 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
853 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
854 " at 0x%08lx in user region\n",
855 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
859 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
860 md
->virtual >= PAGE_OFFSET
&&
861 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
862 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
863 " at 0x%08lx out of vmalloc space\n",
864 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
867 type
= &mem_types
[md
->type
];
869 #ifndef CONFIG_ARM_LPAE
871 * Catch 36-bit addresses
873 if (md
->pfn
>= 0x100000) {
874 create_36bit_mapping(md
, type
);
879 addr
= md
->virtual & PAGE_MASK
;
880 phys
= __pfn_to_phys(md
->pfn
);
881 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
883 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
884 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
885 "be mapped using pages, ignoring.\n",
886 (long long)__pfn_to_phys(md
->pfn
), addr
);
890 pgd
= pgd_offset_k(addr
);
893 unsigned long next
= pgd_addr_end(addr
, end
);
895 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
899 } while (pgd
++, addr
!= end
);
903 * Create the architecture specific mappings
905 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
908 struct vm_struct
*vm
;
909 struct static_vm
*svm
;
914 svm
= early_alloc_aligned(sizeof(*svm
) * nr
, __alignof__(*svm
));
916 for (md
= io_desc
; nr
; md
++, nr
--) {
920 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
921 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
922 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
923 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
924 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
925 vm
->caller
= iotable_init
;
926 add_static_vm_early(svm
++);
930 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
933 struct vm_struct
*vm
;
934 struct static_vm
*svm
;
936 svm
= early_alloc_aligned(sizeof(*svm
), __alignof__(*svm
));
939 vm
->addr
= (void *)addr
;
941 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
943 add_static_vm_early(svm
);
946 #ifndef CONFIG_ARM_LPAE
949 * The Linux PMD is made of two consecutive section entries covering 2MB
950 * (see definition in include/asm/pgtable-2level.h). However a call to
951 * create_mapping() may optimize static mappings by using individual
952 * 1MB section mappings. This leaves the actual PMD potentially half
953 * initialized if the top or bottom section entry isn't used, leaving it
954 * open to problems if a subsequent ioremap() or vmalloc() tries to use
955 * the virtual space left free by that unused section entry.
957 * Let's avoid the issue by inserting dummy vm entries covering the unused
958 * PMD halves once the static mappings are in place.
961 static void __init
pmd_empty_section_gap(unsigned long addr
)
963 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
966 static void __init
fill_pmd_gaps(void)
968 struct static_vm
*svm
;
969 struct vm_struct
*vm
;
970 unsigned long addr
, next
= 0;
973 list_for_each_entry(svm
, &static_vmlist
, list
) {
975 addr
= (unsigned long)vm
->addr
;
980 * Check if this vm starts on an odd section boundary.
981 * If so and the first section entry for this PMD is free
982 * then we block the corresponding virtual address.
984 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
985 pmd
= pmd_off_k(addr
);
987 pmd_empty_section_gap(addr
& PMD_MASK
);
991 * Then check if this vm ends on an odd section boundary.
992 * If so and the second section entry for this PMD is empty
993 * then we block the corresponding virtual address.
996 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
997 pmd
= pmd_off_k(addr
) + 1;
999 pmd_empty_section_gap(addr
);
1002 /* no need to look at any vm entry until we hit the next PMD */
1003 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
1008 #define fill_pmd_gaps() do { } while (0)
1011 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1012 static void __init
pci_reserve_io(void)
1014 struct static_vm
*svm
;
1016 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
1020 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
1023 #define pci_reserve_io() do { } while (0)
1026 #ifdef CONFIG_DEBUG_LL
1027 void __init
debug_ll_io_init(void)
1029 struct map_desc map
;
1031 debug_ll_addr(&map
.pfn
, &map
.virtual);
1032 if (!map
.pfn
|| !map
.virtual)
1034 map
.pfn
= __phys_to_pfn(map
.pfn
);
1035 map
.virtual &= PAGE_MASK
;
1036 map
.length
= PAGE_SIZE
;
1037 map
.type
= MT_DEVICE
;
1038 iotable_init(&map
, 1);
1042 static void * __initdata vmalloc_min
=
1043 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1046 * vmalloc=size forces the vmalloc area to be exactly 'size'
1047 * bytes. This can be used to increase (or decrease) the vmalloc
1048 * area - the default is 240m.
1050 static int __init
early_vmalloc(char *arg
)
1052 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1054 if (vmalloc_reserve
< SZ_16M
) {
1055 vmalloc_reserve
= SZ_16M
;
1057 "vmalloc area too small, limiting to %luMB\n",
1058 vmalloc_reserve
>> 20);
1061 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1062 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1064 "vmalloc area is too big, limiting to %luMB\n",
1065 vmalloc_reserve
>> 20);
1068 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1071 early_param("vmalloc", early_vmalloc
);
1073 phys_addr_t arm_lowmem_limit __initdata
= 0;
1075 void __init
sanity_check_meminfo(void)
1077 phys_addr_t memblock_limit
= 0;
1079 phys_addr_t vmalloc_limit
= __pa(vmalloc_min
- 1) + 1;
1080 struct memblock_region
*reg
;
1082 for_each_memblock(memory
, reg
) {
1083 phys_addr_t block_start
= reg
->base
;
1084 phys_addr_t block_end
= reg
->base
+ reg
->size
;
1085 phys_addr_t size_limit
= reg
->size
;
1087 if (reg
->base
>= vmalloc_limit
)
1090 size_limit
= vmalloc_limit
- reg
->base
;
1093 if (!IS_ENABLED(CONFIG_HIGHMEM
) || cache_is_vipt_aliasing()) {
1096 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1097 &block_start
, &block_end
);
1098 memblock_remove(reg
->base
, reg
->size
);
1102 if (reg
->size
> size_limit
) {
1103 phys_addr_t overlap_size
= reg
->size
- size_limit
;
1105 pr_notice("Truncating RAM at %pa-%pa to -%pa",
1106 &block_start
, &block_end
, &vmalloc_limit
);
1107 memblock_remove(vmalloc_limit
, overlap_size
);
1108 block_end
= vmalloc_limit
;
1113 if (block_end
> arm_lowmem_limit
) {
1114 if (reg
->size
> size_limit
)
1115 arm_lowmem_limit
= vmalloc_limit
;
1117 arm_lowmem_limit
= block_end
;
1121 * Find the first non-section-aligned page, and point
1122 * memblock_limit at it. This relies on rounding the
1123 * limit down to be section-aligned, which happens at
1124 * the end of this function.
1126 * With this algorithm, the start or end of almost any
1127 * bank can be non-section-aligned. The only exception
1128 * is that the start of the bank 0 must be section-
1129 * aligned, since otherwise memory would need to be
1130 * allocated when mapping the start of bank 0, which
1131 * occurs before any free memory is mapped.
1133 if (!memblock_limit
) {
1134 if (!IS_ALIGNED(block_start
, SECTION_SIZE
))
1135 memblock_limit
= block_start
;
1136 else if (!IS_ALIGNED(block_end
, SECTION_SIZE
))
1137 memblock_limit
= arm_lowmem_limit
;
1143 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1146 * Round the memblock limit down to a section size. This
1147 * helps to ensure that we will allocate memory from the
1148 * last full section, which should be mapped.
1151 memblock_limit
= round_down(memblock_limit
, SECTION_SIZE
);
1152 if (!memblock_limit
)
1153 memblock_limit
= arm_lowmem_limit
;
1155 memblock_set_current_limit(memblock_limit
);
1158 static inline void prepare_page_table(void)
1164 * Clear out all the mappings below the kernel image.
1166 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1167 pmd_clear(pmd_off_k(addr
));
1169 #ifdef CONFIG_XIP_KERNEL
1170 /* The XIP kernel is mapped in the module area -- skip over it */
1171 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
1173 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1174 pmd_clear(pmd_off_k(addr
));
1177 * Find the end of the first block of lowmem.
1179 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1180 if (end
>= arm_lowmem_limit
)
1181 end
= arm_lowmem_limit
;
1184 * Clear out all the kernel space mappings, except for the first
1185 * memory bank, up to the vmalloc region.
1187 for (addr
= __phys_to_virt(end
);
1188 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1189 pmd_clear(pmd_off_k(addr
));
1192 #ifdef CONFIG_ARM_LPAE
1193 /* the first page is reserved for pgd */
1194 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1195 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1197 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1201 * Reserve the special regions of memory
1203 void __init
arm_mm_memblock_reserve(void)
1206 * Reserve the page tables. These are already in use,
1207 * and can only be in node 0.
1209 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1211 #ifdef CONFIG_SA1111
1213 * Because of the SA1111 DMA bug, we want to preserve our
1214 * precious DMA-able memory...
1216 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1221 * Set up the device mappings. Since we clear out the page tables for all
1222 * mappings above VMALLOC_START, we will remove any debug device mappings.
1223 * This means you have to be careful how you debug this function, or any
1224 * called function. This means you can't use any function or debugging
1225 * method which may touch any device, otherwise the kernel _will_ crash.
1227 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1229 struct map_desc map
;
1234 * Allocate the vector page early.
1236 vectors
= early_alloc(PAGE_SIZE
* 2);
1238 early_trap_init(vectors
);
1240 for (addr
= VMALLOC_START
; addr
; addr
+= PMD_SIZE
)
1241 pmd_clear(pmd_off_k(addr
));
1244 * Map the kernel if it is XIP.
1245 * It is always first in the modulearea.
1247 #ifdef CONFIG_XIP_KERNEL
1248 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1249 map
.virtual = MODULES_VADDR
;
1250 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1252 create_mapping(&map
);
1256 * Map the cache flushing regions.
1259 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1260 map
.virtual = FLUSH_BASE
;
1262 map
.type
= MT_CACHECLEAN
;
1263 create_mapping(&map
);
1265 #ifdef FLUSH_BASE_MINICACHE
1266 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1267 map
.virtual = FLUSH_BASE_MINICACHE
;
1269 map
.type
= MT_MINICLEAN
;
1270 create_mapping(&map
);
1274 * Create a mapping for the machine vectors at the high-vectors
1275 * location (0xffff0000). If we aren't using high-vectors, also
1276 * create a mapping at the low-vectors virtual address.
1278 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1279 map
.virtual = 0xffff0000;
1280 map
.length
= PAGE_SIZE
;
1281 #ifdef CONFIG_KUSER_HELPERS
1282 map
.type
= MT_HIGH_VECTORS
;
1284 map
.type
= MT_LOW_VECTORS
;
1286 create_mapping(&map
);
1288 if (!vectors_high()) {
1290 map
.length
= PAGE_SIZE
* 2;
1291 map
.type
= MT_LOW_VECTORS
;
1292 create_mapping(&map
);
1295 /* Now create a kernel read-only mapping */
1297 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1298 map
.length
= PAGE_SIZE
;
1299 map
.type
= MT_LOW_VECTORS
;
1300 create_mapping(&map
);
1303 * Ask the machine support to map in the statically mapped devices.
1311 /* Reserve fixed i/o space in VMALLOC region */
1315 * Finally flush the caches and tlb to ensure that we're in a
1316 * consistent state wrt the writebuffer. This also ensures that
1317 * any write-allocated cache lines in the vector page are written
1318 * back. After this point, we can start to touch devices again.
1320 local_flush_tlb_all();
1324 static void __init
kmap_init(void)
1326 #ifdef CONFIG_HIGHMEM
1327 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1328 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1330 fixmap_page_table
= early_pte_alloc(pmd_off_k(FIXADDR_START
),
1331 FIXADDR_START
, _PAGE_KERNEL_TABLE
);
1335 static void __init
map_lowmem(void)
1337 struct memblock_region
*reg
;
1338 unsigned long kernel_x_start
= round_down(__pa(_stext
), SECTION_SIZE
);
1339 unsigned long kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1341 /* Map all the lowmem memory banks. */
1342 for_each_memblock(memory
, reg
) {
1343 phys_addr_t start
= reg
->base
;
1344 phys_addr_t end
= start
+ reg
->size
;
1345 struct map_desc map
;
1347 if (end
> arm_lowmem_limit
)
1348 end
= arm_lowmem_limit
;
1352 if (end
< kernel_x_start
|| start
>= kernel_x_end
) {
1353 map
.pfn
= __phys_to_pfn(start
);
1354 map
.virtual = __phys_to_virt(start
);
1355 map
.length
= end
- start
;
1356 map
.type
= MT_MEMORY_RWX
;
1358 create_mapping(&map
);
1360 /* This better cover the entire kernel */
1361 if (start
< kernel_x_start
) {
1362 map
.pfn
= __phys_to_pfn(start
);
1363 map
.virtual = __phys_to_virt(start
);
1364 map
.length
= kernel_x_start
- start
;
1365 map
.type
= MT_MEMORY_RW
;
1367 create_mapping(&map
);
1370 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1371 map
.virtual = __phys_to_virt(kernel_x_start
);
1372 map
.length
= kernel_x_end
- kernel_x_start
;
1373 map
.type
= MT_MEMORY_RWX
;
1375 create_mapping(&map
);
1377 if (kernel_x_end
< end
) {
1378 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1379 map
.virtual = __phys_to_virt(kernel_x_end
);
1380 map
.length
= end
- kernel_x_end
;
1381 map
.type
= MT_MEMORY_RW
;
1383 create_mapping(&map
);
1389 #ifdef CONFIG_ARM_LPAE
1391 * early_paging_init() recreates boot time page table setup, allowing machines
1392 * to switch over to a high (>4G) address space on LPAE systems
1394 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1395 struct proc_info_list
*procinfo
)
1397 pmdval_t pmdprot
= procinfo
->__cpu_mm_mmu_flags
;
1398 unsigned long map_start
, map_end
;
1400 pud_t
*pud0
, *pudk
, *pud_start
;
1405 if (!(mdesc
->init_meminfo
))
1408 /* remap kernel code and data */
1409 map_start
= init_mm
.start_code
& PMD_MASK
;
1410 map_end
= ALIGN(init_mm
.brk
, PMD_SIZE
);
1412 /* get a handle on things... */
1413 pgd0
= pgd_offset_k(0);
1414 pud_start
= pud0
= pud_offset(pgd0
, 0);
1415 pmd0
= pmd_offset(pud0
, 0);
1417 pgdk
= pgd_offset_k(map_start
);
1418 pudk
= pud_offset(pgdk
, map_start
);
1419 pmdk
= pmd_offset(pudk
, map_start
);
1421 mdesc
->init_meminfo();
1423 /* Run the patch stub to update the constants */
1424 fixup_pv_table(&__pv_table_begin
,
1425 (&__pv_table_end
- &__pv_table_begin
) << 2);
1428 * Cache cleaning operations for self-modifying code
1429 * We should clean the entries by MVA but running a
1430 * for loop over every pv_table entry pointer would
1431 * just complicate the code.
1433 flush_cache_louis();
1438 * FIXME: This code is not architecturally compliant: we modify
1439 * the mappings in-place, indeed while they are in use by this
1440 * very same code. This may lead to unpredictable behaviour of
1443 * Even modifying the mappings in a separate page table does
1446 * The architecture strongly recommends that when a mapping is
1447 * changed, that it is changed by first going via an invalid
1448 * mapping and back to the new mapping. This is to ensure that
1449 * no TLB conflicts (caused by the TLB having more than one TLB
1450 * entry match a translation) can occur. However, doing that
1451 * here will result in unmapping the code we are running.
1453 pr_warn("WARNING: unsafe modification of in-place page tables - tainting kernel\n");
1454 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
1457 * Remap level 1 table. This changes the physical addresses
1458 * used to refer to the level 2 page tables to the high
1459 * physical address alias, leaving everything else the same.
1461 for (i
= 0; i
< PTRS_PER_PGD
; pud0
++, i
++) {
1463 __pud(__pa(pmd0
) | PMD_TYPE_TABLE
| L_PGD_SWAPPER
));
1464 pmd0
+= PTRS_PER_PMD
;
1468 * Remap the level 2 table, pointing the mappings at the high
1469 * physical address alias of these pages.
1471 phys
= __pa(map_start
);
1473 *pmdk
++ = __pmd(phys
| pmdprot
);
1475 } while (phys
< map_end
);
1478 * Ensure that the above updates are flushed out of the cache.
1479 * This is not strictly correct; on a system where the caches
1480 * are coherent with each other, but the MMU page table walks
1481 * may not be coherent, flush_cache_all() may be a no-op, and
1487 * Re-write the TTBR values to point them at the high physical
1488 * alias of the page tables. We expect __va() will work on
1489 * cpu_get_pgd(), which returns the value of TTBR0.
1491 cpu_switch_mm(pgd0
, &init_mm
);
1492 cpu_set_ttbr(1, __pa(pgd0
) + TTBR1_OFFSET
);
1494 /* Finally flush any stale TLB values. */
1495 local_flush_bp_all();
1496 local_flush_tlb_all();
1501 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1502 struct proc_info_list
*procinfo
)
1504 if (mdesc
->init_meminfo
)
1505 mdesc
->init_meminfo();
1511 * paging_init() sets up the page tables, initialises the zone memory
1512 * maps, and sets up the zero page, bad page and bad page tables.
1514 void __init
paging_init(const struct machine_desc
*mdesc
)
1518 build_mem_type_table();
1519 prepare_page_table();
1521 dma_contiguous_remap();
1522 devicemaps_init(mdesc
);
1526 top_pmd
= pmd_off_k(0xffff0000);
1528 /* allocate the zero page. */
1529 zero_page
= early_alloc(PAGE_SIZE
);
1533 empty_zero_page
= virt_to_page(zero_page
);
1534 __flush_dcache_page(NULL
, empty_zero_page
);