MIPS: config: Remove left-over BACKLIGHT_LCD_SUPPORT
[linux/fpc-iii.git] / mm / hugetlb.c
blobac843d32b0193924bd90dc96afc5aae6d35b4102
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
31 #include <asm/page.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlb.h>
35 #include <linux/io.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/node.h>
39 #include <linux/userfaultfd_k.h>
40 #include <linux/page_owner.h>
41 #include "internal.h"
43 int hugetlb_max_hstate __read_mostly;
44 unsigned int default_hstate_idx;
45 struct hstate hstates[HUGE_MAX_HSTATE];
47 * Minimum page order among possible hugepage sizes, set to a proper value
48 * at boot time.
50 static unsigned int minimum_order __read_mostly = UINT_MAX;
52 __initdata LIST_HEAD(huge_boot_pages);
54 /* for command line parsing */
55 static struct hstate * __initdata parsed_hstate;
56 static unsigned long __initdata default_hstate_max_huge_pages;
57 static unsigned long __initdata default_hstate_size;
58 static bool __initdata parsed_valid_hugepagesz = true;
61 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
62 * free_huge_pages, and surplus_huge_pages.
64 DEFINE_SPINLOCK(hugetlb_lock);
67 * Serializes faults on the same logical page. This is used to
68 * prevent spurious OOMs when the hugepage pool is fully utilized.
70 static int num_fault_mutexes;
71 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
73 /* Forward declaration */
74 static int hugetlb_acct_memory(struct hstate *h, long delta);
76 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
78 bool free = (spool->count == 0) && (spool->used_hpages == 0);
80 spin_unlock(&spool->lock);
82 /* If no pages are used, and no other handles to the subpool
83 * remain, give up any reservations mased on minimum size and
84 * free the subpool */
85 if (free) {
86 if (spool->min_hpages != -1)
87 hugetlb_acct_memory(spool->hstate,
88 -spool->min_hpages);
89 kfree(spool);
93 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
94 long min_hpages)
96 struct hugepage_subpool *spool;
98 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
99 if (!spool)
100 return NULL;
102 spin_lock_init(&spool->lock);
103 spool->count = 1;
104 spool->max_hpages = max_hpages;
105 spool->hstate = h;
106 spool->min_hpages = min_hpages;
108 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
109 kfree(spool);
110 return NULL;
112 spool->rsv_hpages = min_hpages;
114 return spool;
117 void hugepage_put_subpool(struct hugepage_subpool *spool)
119 spin_lock(&spool->lock);
120 BUG_ON(!spool->count);
121 spool->count--;
122 unlock_or_release_subpool(spool);
126 * Subpool accounting for allocating and reserving pages.
127 * Return -ENOMEM if there are not enough resources to satisfy the
128 * the request. Otherwise, return the number of pages by which the
129 * global pools must be adjusted (upward). The returned value may
130 * only be different than the passed value (delta) in the case where
131 * a subpool minimum size must be manitained.
133 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
134 long delta)
136 long ret = delta;
138 if (!spool)
139 return ret;
141 spin_lock(&spool->lock);
143 if (spool->max_hpages != -1) { /* maximum size accounting */
144 if ((spool->used_hpages + delta) <= spool->max_hpages)
145 spool->used_hpages += delta;
146 else {
147 ret = -ENOMEM;
148 goto unlock_ret;
152 /* minimum size accounting */
153 if (spool->min_hpages != -1 && spool->rsv_hpages) {
154 if (delta > spool->rsv_hpages) {
156 * Asking for more reserves than those already taken on
157 * behalf of subpool. Return difference.
159 ret = delta - spool->rsv_hpages;
160 spool->rsv_hpages = 0;
161 } else {
162 ret = 0; /* reserves already accounted for */
163 spool->rsv_hpages -= delta;
167 unlock_ret:
168 spin_unlock(&spool->lock);
169 return ret;
173 * Subpool accounting for freeing and unreserving pages.
174 * Return the number of global page reservations that must be dropped.
175 * The return value may only be different than the passed value (delta)
176 * in the case where a subpool minimum size must be maintained.
178 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
179 long delta)
181 long ret = delta;
183 if (!spool)
184 return delta;
186 spin_lock(&spool->lock);
188 if (spool->max_hpages != -1) /* maximum size accounting */
189 spool->used_hpages -= delta;
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
193 if (spool->rsv_hpages + delta <= spool->min_hpages)
194 ret = 0;
195 else
196 ret = spool->rsv_hpages + delta - spool->min_hpages;
198 spool->rsv_hpages += delta;
199 if (spool->rsv_hpages > spool->min_hpages)
200 spool->rsv_hpages = spool->min_hpages;
204 * If hugetlbfs_put_super couldn't free spool due to an outstanding
205 * quota reference, free it now.
207 unlock_or_release_subpool(spool);
209 return ret;
212 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
214 return HUGETLBFS_SB(inode->i_sb)->spool;
217 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
219 return subpool_inode(file_inode(vma->vm_file));
223 * Region tracking -- allows tracking of reservations and instantiated pages
224 * across the pages in a mapping.
226 * The region data structures are embedded into a resv_map and protected
227 * by a resv_map's lock. The set of regions within the resv_map represent
228 * reservations for huge pages, or huge pages that have already been
229 * instantiated within the map. The from and to elements are huge page
230 * indicies into the associated mapping. from indicates the starting index
231 * of the region. to represents the first index past the end of the region.
233 * For example, a file region structure with from == 0 and to == 4 represents
234 * four huge pages in a mapping. It is important to note that the to element
235 * represents the first element past the end of the region. This is used in
236 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
238 * Interval notation of the form [from, to) will be used to indicate that
239 * the endpoint from is inclusive and to is exclusive.
241 struct file_region {
242 struct list_head link;
243 long from;
244 long to;
248 * Add the huge page range represented by [f, t) to the reserve
249 * map. In the normal case, existing regions will be expanded
250 * to accommodate the specified range. Sufficient regions should
251 * exist for expansion due to the previous call to region_chg
252 * with the same range. However, it is possible that region_del
253 * could have been called after region_chg and modifed the map
254 * in such a way that no region exists to be expanded. In this
255 * case, pull a region descriptor from the cache associated with
256 * the map and use that for the new range.
258 * Return the number of new huge pages added to the map. This
259 * number is greater than or equal to zero.
261 static long region_add(struct resv_map *resv, long f, long t)
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *nrg, *trg;
265 long add = 0;
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (f <= rg->to)
271 break;
274 * If no region exists which can be expanded to include the
275 * specified range, the list must have been modified by an
276 * interleving call to region_del(). Pull a region descriptor
277 * from the cache and use it for this range.
279 if (&rg->link == head || t < rg->from) {
280 VM_BUG_ON(resv->region_cache_count <= 0);
282 resv->region_cache_count--;
283 nrg = list_first_entry(&resv->region_cache, struct file_region,
284 link);
285 list_del(&nrg->link);
287 nrg->from = f;
288 nrg->to = t;
289 list_add(&nrg->link, rg->link.prev);
291 add += t - f;
292 goto out_locked;
295 /* Round our left edge to the current segment if it encloses us. */
296 if (f > rg->from)
297 f = rg->from;
299 /* Check for and consume any regions we now overlap with. */
300 nrg = rg;
301 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
302 if (&rg->link == head)
303 break;
304 if (rg->from > t)
305 break;
307 /* If this area reaches higher then extend our area to
308 * include it completely. If this is not the first area
309 * which we intend to reuse, free it. */
310 if (rg->to > t)
311 t = rg->to;
312 if (rg != nrg) {
313 /* Decrement return value by the deleted range.
314 * Another range will span this area so that by
315 * end of routine add will be >= zero
317 add -= (rg->to - rg->from);
318 list_del(&rg->link);
319 kfree(rg);
323 add += (nrg->from - f); /* Added to beginning of region */
324 nrg->from = f;
325 add += t - nrg->to; /* Added to end of region */
326 nrg->to = t;
328 out_locked:
329 resv->adds_in_progress--;
330 spin_unlock(&resv->lock);
331 VM_BUG_ON(add < 0);
332 return add;
336 * Examine the existing reserve map and determine how many
337 * huge pages in the specified range [f, t) are NOT currently
338 * represented. This routine is called before a subsequent
339 * call to region_add that will actually modify the reserve
340 * map to add the specified range [f, t). region_chg does
341 * not change the number of huge pages represented by the
342 * map. However, if the existing regions in the map can not
343 * be expanded to represent the new range, a new file_region
344 * structure is added to the map as a placeholder. This is
345 * so that the subsequent region_add call will have all the
346 * regions it needs and will not fail.
348 * Upon entry, region_chg will also examine the cache of region descriptors
349 * associated with the map. If there are not enough descriptors cached, one
350 * will be allocated for the in progress add operation.
352 * Returns the number of huge pages that need to be added to the existing
353 * reservation map for the range [f, t). This number is greater or equal to
354 * zero. -ENOMEM is returned if a new file_region structure or cache entry
355 * is needed and can not be allocated.
357 static long region_chg(struct resv_map *resv, long f, long t)
359 struct list_head *head = &resv->regions;
360 struct file_region *rg, *nrg = NULL;
361 long chg = 0;
363 retry:
364 spin_lock(&resv->lock);
365 retry_locked:
366 resv->adds_in_progress++;
369 * Check for sufficient descriptors in the cache to accommodate
370 * the number of in progress add operations.
372 if (resv->adds_in_progress > resv->region_cache_count) {
373 struct file_region *trg;
375 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
376 /* Must drop lock to allocate a new descriptor. */
377 resv->adds_in_progress--;
378 spin_unlock(&resv->lock);
380 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
381 if (!trg) {
382 kfree(nrg);
383 return -ENOMEM;
386 spin_lock(&resv->lock);
387 list_add(&trg->link, &resv->region_cache);
388 resv->region_cache_count++;
389 goto retry_locked;
392 /* Locate the region we are before or in. */
393 list_for_each_entry(rg, head, link)
394 if (f <= rg->to)
395 break;
397 /* If we are below the current region then a new region is required.
398 * Subtle, allocate a new region at the position but make it zero
399 * size such that we can guarantee to record the reservation. */
400 if (&rg->link == head || t < rg->from) {
401 if (!nrg) {
402 resv->adds_in_progress--;
403 spin_unlock(&resv->lock);
404 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
405 if (!nrg)
406 return -ENOMEM;
408 nrg->from = f;
409 nrg->to = f;
410 INIT_LIST_HEAD(&nrg->link);
411 goto retry;
414 list_add(&nrg->link, rg->link.prev);
415 chg = t - f;
416 goto out_nrg;
419 /* Round our left edge to the current segment if it encloses us. */
420 if (f > rg->from)
421 f = rg->from;
422 chg = t - f;
424 /* Check for and consume any regions we now overlap with. */
425 list_for_each_entry(rg, rg->link.prev, link) {
426 if (&rg->link == head)
427 break;
428 if (rg->from > t)
429 goto out;
431 /* We overlap with this area, if it extends further than
432 * us then we must extend ourselves. Account for its
433 * existing reservation. */
434 if (rg->to > t) {
435 chg += rg->to - t;
436 t = rg->to;
438 chg -= rg->to - rg->from;
441 out:
442 spin_unlock(&resv->lock);
443 /* We already know we raced and no longer need the new region */
444 kfree(nrg);
445 return chg;
446 out_nrg:
447 spin_unlock(&resv->lock);
448 return chg;
452 * Abort the in progress add operation. The adds_in_progress field
453 * of the resv_map keeps track of the operations in progress between
454 * calls to region_chg and region_add. Operations are sometimes
455 * aborted after the call to region_chg. In such cases, region_abort
456 * is called to decrement the adds_in_progress counter.
458 * NOTE: The range arguments [f, t) are not needed or used in this
459 * routine. They are kept to make reading the calling code easier as
460 * arguments will match the associated region_chg call.
462 static void region_abort(struct resv_map *resv, long f, long t)
464 spin_lock(&resv->lock);
465 VM_BUG_ON(!resv->region_cache_count);
466 resv->adds_in_progress--;
467 spin_unlock(&resv->lock);
471 * Delete the specified range [f, t) from the reserve map. If the
472 * t parameter is LONG_MAX, this indicates that ALL regions after f
473 * should be deleted. Locate the regions which intersect [f, t)
474 * and either trim, delete or split the existing regions.
476 * Returns the number of huge pages deleted from the reserve map.
477 * In the normal case, the return value is zero or more. In the
478 * case where a region must be split, a new region descriptor must
479 * be allocated. If the allocation fails, -ENOMEM will be returned.
480 * NOTE: If the parameter t == LONG_MAX, then we will never split
481 * a region and possibly return -ENOMEM. Callers specifying
482 * t == LONG_MAX do not need to check for -ENOMEM error.
484 static long region_del(struct resv_map *resv, long f, long t)
486 struct list_head *head = &resv->regions;
487 struct file_region *rg, *trg;
488 struct file_region *nrg = NULL;
489 long del = 0;
491 retry:
492 spin_lock(&resv->lock);
493 list_for_each_entry_safe(rg, trg, head, link) {
495 * Skip regions before the range to be deleted. file_region
496 * ranges are normally of the form [from, to). However, there
497 * may be a "placeholder" entry in the map which is of the form
498 * (from, to) with from == to. Check for placeholder entries
499 * at the beginning of the range to be deleted.
501 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
502 continue;
504 if (rg->from >= t)
505 break;
507 if (f > rg->from && t < rg->to) { /* Must split region */
509 * Check for an entry in the cache before dropping
510 * lock and attempting allocation.
512 if (!nrg &&
513 resv->region_cache_count > resv->adds_in_progress) {
514 nrg = list_first_entry(&resv->region_cache,
515 struct file_region,
516 link);
517 list_del(&nrg->link);
518 resv->region_cache_count--;
521 if (!nrg) {
522 spin_unlock(&resv->lock);
523 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
524 if (!nrg)
525 return -ENOMEM;
526 goto retry;
529 del += t - f;
531 /* New entry for end of split region */
532 nrg->from = t;
533 nrg->to = rg->to;
534 INIT_LIST_HEAD(&nrg->link);
536 /* Original entry is trimmed */
537 rg->to = f;
539 list_add(&nrg->link, &rg->link);
540 nrg = NULL;
541 break;
544 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
545 del += rg->to - rg->from;
546 list_del(&rg->link);
547 kfree(rg);
548 continue;
551 if (f <= rg->from) { /* Trim beginning of region */
552 del += t - rg->from;
553 rg->from = t;
554 } else { /* Trim end of region */
555 del += rg->to - f;
556 rg->to = f;
560 spin_unlock(&resv->lock);
561 kfree(nrg);
562 return del;
566 * A rare out of memory error was encountered which prevented removal of
567 * the reserve map region for a page. The huge page itself was free'ed
568 * and removed from the page cache. This routine will adjust the subpool
569 * usage count, and the global reserve count if needed. By incrementing
570 * these counts, the reserve map entry which could not be deleted will
571 * appear as a "reserved" entry instead of simply dangling with incorrect
572 * counts.
574 void hugetlb_fix_reserve_counts(struct inode *inode)
576 struct hugepage_subpool *spool = subpool_inode(inode);
577 long rsv_adjust;
579 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
580 if (rsv_adjust) {
581 struct hstate *h = hstate_inode(inode);
583 hugetlb_acct_memory(h, 1);
588 * Count and return the number of huge pages in the reserve map
589 * that intersect with the range [f, t).
591 static long region_count(struct resv_map *resv, long f, long t)
593 struct list_head *head = &resv->regions;
594 struct file_region *rg;
595 long chg = 0;
597 spin_lock(&resv->lock);
598 /* Locate each segment we overlap with, and count that overlap. */
599 list_for_each_entry(rg, head, link) {
600 long seg_from;
601 long seg_to;
603 if (rg->to <= f)
604 continue;
605 if (rg->from >= t)
606 break;
608 seg_from = max(rg->from, f);
609 seg_to = min(rg->to, t);
611 chg += seg_to - seg_from;
613 spin_unlock(&resv->lock);
615 return chg;
619 * Convert the address within this vma to the page offset within
620 * the mapping, in pagecache page units; huge pages here.
622 static pgoff_t vma_hugecache_offset(struct hstate *h,
623 struct vm_area_struct *vma, unsigned long address)
625 return ((address - vma->vm_start) >> huge_page_shift(h)) +
626 (vma->vm_pgoff >> huge_page_order(h));
629 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
630 unsigned long address)
632 return vma_hugecache_offset(hstate_vma(vma), vma, address);
634 EXPORT_SYMBOL_GPL(linear_hugepage_index);
637 * Return the size of the pages allocated when backing a VMA. In the majority
638 * cases this will be same size as used by the page table entries.
640 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
642 if (vma->vm_ops && vma->vm_ops->pagesize)
643 return vma->vm_ops->pagesize(vma);
644 return PAGE_SIZE;
646 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649 * Return the page size being used by the MMU to back a VMA. In the majority
650 * of cases, the page size used by the kernel matches the MMU size. On
651 * architectures where it differs, an architecture-specific 'strong'
652 * version of this symbol is required.
654 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
656 return vma_kernel_pagesize(vma);
660 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
661 * bits of the reservation map pointer, which are always clear due to
662 * alignment.
664 #define HPAGE_RESV_OWNER (1UL << 0)
665 #define HPAGE_RESV_UNMAPPED (1UL << 1)
666 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
669 * These helpers are used to track how many pages are reserved for
670 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
671 * is guaranteed to have their future faults succeed.
673 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
674 * the reserve counters are updated with the hugetlb_lock held. It is safe
675 * to reset the VMA at fork() time as it is not in use yet and there is no
676 * chance of the global counters getting corrupted as a result of the values.
678 * The private mapping reservation is represented in a subtly different
679 * manner to a shared mapping. A shared mapping has a region map associated
680 * with the underlying file, this region map represents the backing file
681 * pages which have ever had a reservation assigned which this persists even
682 * after the page is instantiated. A private mapping has a region map
683 * associated with the original mmap which is attached to all VMAs which
684 * reference it, this region map represents those offsets which have consumed
685 * reservation ie. where pages have been instantiated.
687 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
689 return (unsigned long)vma->vm_private_data;
692 static void set_vma_private_data(struct vm_area_struct *vma,
693 unsigned long value)
695 vma->vm_private_data = (void *)value;
698 struct resv_map *resv_map_alloc(void)
700 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
703 if (!resv_map || !rg) {
704 kfree(resv_map);
705 kfree(rg);
706 return NULL;
709 kref_init(&resv_map->refs);
710 spin_lock_init(&resv_map->lock);
711 INIT_LIST_HEAD(&resv_map->regions);
713 resv_map->adds_in_progress = 0;
715 INIT_LIST_HEAD(&resv_map->region_cache);
716 list_add(&rg->link, &resv_map->region_cache);
717 resv_map->region_cache_count = 1;
719 return resv_map;
722 void resv_map_release(struct kref *ref)
724 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 struct list_head *head = &resv_map->region_cache;
726 struct file_region *rg, *trg;
728 /* Clear out any active regions before we release the map. */
729 region_del(resv_map, 0, LONG_MAX);
731 /* ... and any entries left in the cache */
732 list_for_each_entry_safe(rg, trg, head, link) {
733 list_del(&rg->link);
734 kfree(rg);
737 VM_BUG_ON(resv_map->adds_in_progress);
739 kfree(resv_map);
742 static inline struct resv_map *inode_resv_map(struct inode *inode)
745 * At inode evict time, i_mapping may not point to the original
746 * address space within the inode. This original address space
747 * contains the pointer to the resv_map. So, always use the
748 * address space embedded within the inode.
749 * The VERY common case is inode->mapping == &inode->i_data but,
750 * this may not be true for device special inodes.
752 return (struct resv_map *)(&inode->i_data)->private_data;
755 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
757 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
758 if (vma->vm_flags & VM_MAYSHARE) {
759 struct address_space *mapping = vma->vm_file->f_mapping;
760 struct inode *inode = mapping->host;
762 return inode_resv_map(inode);
764 } else {
765 return (struct resv_map *)(get_vma_private_data(vma) &
766 ~HPAGE_RESV_MASK);
770 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775 set_vma_private_data(vma, (get_vma_private_data(vma) &
776 HPAGE_RESV_MASK) | (unsigned long)map);
779 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
781 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
784 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
787 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
789 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
791 return (get_vma_private_data(vma) & flag) != 0;
794 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
795 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
797 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
798 if (!(vma->vm_flags & VM_MAYSHARE))
799 vma->vm_private_data = (void *)0;
802 /* Returns true if the VMA has associated reserve pages */
803 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
805 if (vma->vm_flags & VM_NORESERVE) {
807 * This address is already reserved by other process(chg == 0),
808 * so, we should decrement reserved count. Without decrementing,
809 * reserve count remains after releasing inode, because this
810 * allocated page will go into page cache and is regarded as
811 * coming from reserved pool in releasing step. Currently, we
812 * don't have any other solution to deal with this situation
813 * properly, so add work-around here.
815 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
816 return true;
817 else
818 return false;
821 /* Shared mappings always use reserves */
822 if (vma->vm_flags & VM_MAYSHARE) {
824 * We know VM_NORESERVE is not set. Therefore, there SHOULD
825 * be a region map for all pages. The only situation where
826 * there is no region map is if a hole was punched via
827 * fallocate. In this case, there really are no reverves to
828 * use. This situation is indicated if chg != 0.
830 if (chg)
831 return false;
832 else
833 return true;
837 * Only the process that called mmap() has reserves for
838 * private mappings.
840 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
842 * Like the shared case above, a hole punch or truncate
843 * could have been performed on the private mapping.
844 * Examine the value of chg to determine if reserves
845 * actually exist or were previously consumed.
846 * Very Subtle - The value of chg comes from a previous
847 * call to vma_needs_reserves(). The reserve map for
848 * private mappings has different (opposite) semantics
849 * than that of shared mappings. vma_needs_reserves()
850 * has already taken this difference in semantics into
851 * account. Therefore, the meaning of chg is the same
852 * as in the shared case above. Code could easily be
853 * combined, but keeping it separate draws attention to
854 * subtle differences.
856 if (chg)
857 return false;
858 else
859 return true;
862 return false;
865 static void enqueue_huge_page(struct hstate *h, struct page *page)
867 int nid = page_to_nid(page);
868 list_move(&page->lru, &h->hugepage_freelists[nid]);
869 h->free_huge_pages++;
870 h->free_huge_pages_node[nid]++;
873 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
875 struct page *page;
877 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
878 if (!PageHWPoison(page))
879 break;
881 * if 'non-isolated free hugepage' not found on the list,
882 * the allocation fails.
884 if (&h->hugepage_freelists[nid] == &page->lru)
885 return NULL;
886 list_move(&page->lru, &h->hugepage_activelist);
887 set_page_refcounted(page);
888 h->free_huge_pages--;
889 h->free_huge_pages_node[nid]--;
890 return page;
893 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
894 nodemask_t *nmask)
896 unsigned int cpuset_mems_cookie;
897 struct zonelist *zonelist;
898 struct zone *zone;
899 struct zoneref *z;
900 int node = NUMA_NO_NODE;
902 zonelist = node_zonelist(nid, gfp_mask);
904 retry_cpuset:
905 cpuset_mems_cookie = read_mems_allowed_begin();
906 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
907 struct page *page;
909 if (!cpuset_zone_allowed(zone, gfp_mask))
910 continue;
912 * no need to ask again on the same node. Pool is node rather than
913 * zone aware
915 if (zone_to_nid(zone) == node)
916 continue;
917 node = zone_to_nid(zone);
919 page = dequeue_huge_page_node_exact(h, node);
920 if (page)
921 return page;
923 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
924 goto retry_cpuset;
926 return NULL;
929 /* Movability of hugepages depends on migration support. */
930 static inline gfp_t htlb_alloc_mask(struct hstate *h)
932 if (hugepage_movable_supported(h))
933 return GFP_HIGHUSER_MOVABLE;
934 else
935 return GFP_HIGHUSER;
938 static struct page *dequeue_huge_page_vma(struct hstate *h,
939 struct vm_area_struct *vma,
940 unsigned long address, int avoid_reserve,
941 long chg)
943 struct page *page;
944 struct mempolicy *mpol;
945 gfp_t gfp_mask;
946 nodemask_t *nodemask;
947 int nid;
950 * A child process with MAP_PRIVATE mappings created by their parent
951 * have no page reserves. This check ensures that reservations are
952 * not "stolen". The child may still get SIGKILLed
954 if (!vma_has_reserves(vma, chg) &&
955 h->free_huge_pages - h->resv_huge_pages == 0)
956 goto err;
958 /* If reserves cannot be used, ensure enough pages are in the pool */
959 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
960 goto err;
962 gfp_mask = htlb_alloc_mask(h);
963 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
964 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
965 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
966 SetPagePrivate(page);
967 h->resv_huge_pages--;
970 mpol_cond_put(mpol);
971 return page;
973 err:
974 return NULL;
978 * common helper functions for hstate_next_node_to_{alloc|free}.
979 * We may have allocated or freed a huge page based on a different
980 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
981 * be outside of *nodes_allowed. Ensure that we use an allowed
982 * node for alloc or free.
984 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
986 nid = next_node_in(nid, *nodes_allowed);
987 VM_BUG_ON(nid >= MAX_NUMNODES);
989 return nid;
992 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
994 if (!node_isset(nid, *nodes_allowed))
995 nid = next_node_allowed(nid, nodes_allowed);
996 return nid;
1000 * returns the previously saved node ["this node"] from which to
1001 * allocate a persistent huge page for the pool and advance the
1002 * next node from which to allocate, handling wrap at end of node
1003 * mask.
1005 static int hstate_next_node_to_alloc(struct hstate *h,
1006 nodemask_t *nodes_allowed)
1008 int nid;
1010 VM_BUG_ON(!nodes_allowed);
1012 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1013 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1015 return nid;
1019 * helper for free_pool_huge_page() - return the previously saved
1020 * node ["this node"] from which to free a huge page. Advance the
1021 * next node id whether or not we find a free huge page to free so
1022 * that the next attempt to free addresses the next node.
1024 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1026 int nid;
1028 VM_BUG_ON(!nodes_allowed);
1030 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1031 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1033 return nid;
1036 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1037 for (nr_nodes = nodes_weight(*mask); \
1038 nr_nodes > 0 && \
1039 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1040 nr_nodes--)
1042 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1043 for (nr_nodes = nodes_weight(*mask); \
1044 nr_nodes > 0 && \
1045 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1046 nr_nodes--)
1048 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1049 static void destroy_compound_gigantic_page(struct page *page,
1050 unsigned int order)
1052 int i;
1053 int nr_pages = 1 << order;
1054 struct page *p = page + 1;
1056 atomic_set(compound_mapcount_ptr(page), 0);
1057 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1058 clear_compound_head(p);
1059 set_page_refcounted(p);
1062 set_compound_order(page, 0);
1063 __ClearPageHead(page);
1066 static void free_gigantic_page(struct page *page, unsigned int order)
1068 free_contig_range(page_to_pfn(page), 1 << order);
1071 #ifdef CONFIG_CONTIG_ALLOC
1072 static int __alloc_gigantic_page(unsigned long start_pfn,
1073 unsigned long nr_pages, gfp_t gfp_mask)
1075 unsigned long end_pfn = start_pfn + nr_pages;
1076 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1077 gfp_mask);
1080 static bool pfn_range_valid_gigantic(struct zone *z,
1081 unsigned long start_pfn, unsigned long nr_pages)
1083 unsigned long i, end_pfn = start_pfn + nr_pages;
1084 struct page *page;
1086 for (i = start_pfn; i < end_pfn; i++) {
1087 if (!pfn_valid(i))
1088 return false;
1090 page = pfn_to_page(i);
1092 if (page_zone(page) != z)
1093 return false;
1095 if (PageReserved(page))
1096 return false;
1098 if (page_count(page) > 0)
1099 return false;
1101 if (PageHuge(page))
1102 return false;
1105 return true;
1108 static bool zone_spans_last_pfn(const struct zone *zone,
1109 unsigned long start_pfn, unsigned long nr_pages)
1111 unsigned long last_pfn = start_pfn + nr_pages - 1;
1112 return zone_spans_pfn(zone, last_pfn);
1115 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1116 int nid, nodemask_t *nodemask)
1118 unsigned int order = huge_page_order(h);
1119 unsigned long nr_pages = 1 << order;
1120 unsigned long ret, pfn, flags;
1121 struct zonelist *zonelist;
1122 struct zone *zone;
1123 struct zoneref *z;
1125 zonelist = node_zonelist(nid, gfp_mask);
1126 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
1127 spin_lock_irqsave(&zone->lock, flags);
1129 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1130 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1131 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
1133 * We release the zone lock here because
1134 * alloc_contig_range() will also lock the zone
1135 * at some point. If there's an allocation
1136 * spinning on this lock, it may win the race
1137 * and cause alloc_contig_range() to fail...
1139 spin_unlock_irqrestore(&zone->lock, flags);
1140 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
1141 if (!ret)
1142 return pfn_to_page(pfn);
1143 spin_lock_irqsave(&zone->lock, flags);
1145 pfn += nr_pages;
1148 spin_unlock_irqrestore(&zone->lock, flags);
1151 return NULL;
1154 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1155 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1156 #else /* !CONFIG_CONTIG_ALLOC */
1157 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1158 int nid, nodemask_t *nodemask)
1160 return NULL;
1162 #endif /* CONFIG_CONTIG_ALLOC */
1164 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1165 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1166 int nid, nodemask_t *nodemask)
1168 return NULL;
1170 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1171 static inline void destroy_compound_gigantic_page(struct page *page,
1172 unsigned int order) { }
1173 #endif
1175 static void update_and_free_page(struct hstate *h, struct page *page)
1177 int i;
1179 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1180 return;
1182 h->nr_huge_pages--;
1183 h->nr_huge_pages_node[page_to_nid(page)]--;
1184 for (i = 0; i < pages_per_huge_page(h); i++) {
1185 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1186 1 << PG_referenced | 1 << PG_dirty |
1187 1 << PG_active | 1 << PG_private |
1188 1 << PG_writeback);
1190 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1191 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1192 set_page_refcounted(page);
1193 if (hstate_is_gigantic(h)) {
1194 destroy_compound_gigantic_page(page, huge_page_order(h));
1195 free_gigantic_page(page, huge_page_order(h));
1196 } else {
1197 __free_pages(page, huge_page_order(h));
1201 struct hstate *size_to_hstate(unsigned long size)
1203 struct hstate *h;
1205 for_each_hstate(h) {
1206 if (huge_page_size(h) == size)
1207 return h;
1209 return NULL;
1213 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1214 * to hstate->hugepage_activelist.)
1216 * This function can be called for tail pages, but never returns true for them.
1218 bool page_huge_active(struct page *page)
1220 VM_BUG_ON_PAGE(!PageHuge(page), page);
1221 return PageHead(page) && PagePrivate(&page[1]);
1224 /* never called for tail page */
1225 static void set_page_huge_active(struct page *page)
1227 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1228 SetPagePrivate(&page[1]);
1231 static void clear_page_huge_active(struct page *page)
1233 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1234 ClearPagePrivate(&page[1]);
1238 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1239 * code
1241 static inline bool PageHugeTemporary(struct page *page)
1243 if (!PageHuge(page))
1244 return false;
1246 return (unsigned long)page[2].mapping == -1U;
1249 static inline void SetPageHugeTemporary(struct page *page)
1251 page[2].mapping = (void *)-1U;
1254 static inline void ClearPageHugeTemporary(struct page *page)
1256 page[2].mapping = NULL;
1259 void free_huge_page(struct page *page)
1262 * Can't pass hstate in here because it is called from the
1263 * compound page destructor.
1265 struct hstate *h = page_hstate(page);
1266 int nid = page_to_nid(page);
1267 struct hugepage_subpool *spool =
1268 (struct hugepage_subpool *)page_private(page);
1269 bool restore_reserve;
1271 VM_BUG_ON_PAGE(page_count(page), page);
1272 VM_BUG_ON_PAGE(page_mapcount(page), page);
1274 set_page_private(page, 0);
1275 page->mapping = NULL;
1276 restore_reserve = PagePrivate(page);
1277 ClearPagePrivate(page);
1280 * If PagePrivate() was set on page, page allocation consumed a
1281 * reservation. If the page was associated with a subpool, there
1282 * would have been a page reserved in the subpool before allocation
1283 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1284 * reservtion, do not call hugepage_subpool_put_pages() as this will
1285 * remove the reserved page from the subpool.
1287 if (!restore_reserve) {
1289 * A return code of zero implies that the subpool will be
1290 * under its minimum size if the reservation is not restored
1291 * after page is free. Therefore, force restore_reserve
1292 * operation.
1294 if (hugepage_subpool_put_pages(spool, 1) == 0)
1295 restore_reserve = true;
1298 spin_lock(&hugetlb_lock);
1299 clear_page_huge_active(page);
1300 hugetlb_cgroup_uncharge_page(hstate_index(h),
1301 pages_per_huge_page(h), page);
1302 if (restore_reserve)
1303 h->resv_huge_pages++;
1305 if (PageHugeTemporary(page)) {
1306 list_del(&page->lru);
1307 ClearPageHugeTemporary(page);
1308 update_and_free_page(h, page);
1309 } else if (h->surplus_huge_pages_node[nid]) {
1310 /* remove the page from active list */
1311 list_del(&page->lru);
1312 update_and_free_page(h, page);
1313 h->surplus_huge_pages--;
1314 h->surplus_huge_pages_node[nid]--;
1315 } else {
1316 arch_clear_hugepage_flags(page);
1317 enqueue_huge_page(h, page);
1319 spin_unlock(&hugetlb_lock);
1322 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1324 INIT_LIST_HEAD(&page->lru);
1325 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1326 spin_lock(&hugetlb_lock);
1327 set_hugetlb_cgroup(page, NULL);
1328 h->nr_huge_pages++;
1329 h->nr_huge_pages_node[nid]++;
1330 spin_unlock(&hugetlb_lock);
1333 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1335 int i;
1336 int nr_pages = 1 << order;
1337 struct page *p = page + 1;
1339 /* we rely on prep_new_huge_page to set the destructor */
1340 set_compound_order(page, order);
1341 __ClearPageReserved(page);
1342 __SetPageHead(page);
1343 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1345 * For gigantic hugepages allocated through bootmem at
1346 * boot, it's safer to be consistent with the not-gigantic
1347 * hugepages and clear the PG_reserved bit from all tail pages
1348 * too. Otherwse drivers using get_user_pages() to access tail
1349 * pages may get the reference counting wrong if they see
1350 * PG_reserved set on a tail page (despite the head page not
1351 * having PG_reserved set). Enforcing this consistency between
1352 * head and tail pages allows drivers to optimize away a check
1353 * on the head page when they need know if put_page() is needed
1354 * after get_user_pages().
1356 __ClearPageReserved(p);
1357 set_page_count(p, 0);
1358 set_compound_head(p, page);
1360 atomic_set(compound_mapcount_ptr(page), -1);
1364 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1365 * transparent huge pages. See the PageTransHuge() documentation for more
1366 * details.
1368 int PageHuge(struct page *page)
1370 if (!PageCompound(page))
1371 return 0;
1373 page = compound_head(page);
1374 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1376 EXPORT_SYMBOL_GPL(PageHuge);
1379 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1380 * normal or transparent huge pages.
1382 int PageHeadHuge(struct page *page_head)
1384 if (!PageHead(page_head))
1385 return 0;
1387 return get_compound_page_dtor(page_head) == free_huge_page;
1390 pgoff_t __basepage_index(struct page *page)
1392 struct page *page_head = compound_head(page);
1393 pgoff_t index = page_index(page_head);
1394 unsigned long compound_idx;
1396 if (!PageHuge(page_head))
1397 return page_index(page);
1399 if (compound_order(page_head) >= MAX_ORDER)
1400 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1401 else
1402 compound_idx = page - page_head;
1404 return (index << compound_order(page_head)) + compound_idx;
1407 static struct page *alloc_buddy_huge_page(struct hstate *h,
1408 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1410 int order = huge_page_order(h);
1411 struct page *page;
1413 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1414 if (nid == NUMA_NO_NODE)
1415 nid = numa_mem_id();
1416 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1417 if (page)
1418 __count_vm_event(HTLB_BUDDY_PGALLOC);
1419 else
1420 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1422 return page;
1426 * Common helper to allocate a fresh hugetlb page. All specific allocators
1427 * should use this function to get new hugetlb pages
1429 static struct page *alloc_fresh_huge_page(struct hstate *h,
1430 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1432 struct page *page;
1434 if (hstate_is_gigantic(h))
1435 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1436 else
1437 page = alloc_buddy_huge_page(h, gfp_mask,
1438 nid, nmask);
1439 if (!page)
1440 return NULL;
1442 if (hstate_is_gigantic(h))
1443 prep_compound_gigantic_page(page, huge_page_order(h));
1444 prep_new_huge_page(h, page, page_to_nid(page));
1446 return page;
1450 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1451 * manner.
1453 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1455 struct page *page;
1456 int nr_nodes, node;
1457 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1459 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1460 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
1461 if (page)
1462 break;
1465 if (!page)
1466 return 0;
1468 put_page(page); /* free it into the hugepage allocator */
1470 return 1;
1474 * Free huge page from pool from next node to free.
1475 * Attempt to keep persistent huge pages more or less
1476 * balanced over allowed nodes.
1477 * Called with hugetlb_lock locked.
1479 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1480 bool acct_surplus)
1482 int nr_nodes, node;
1483 int ret = 0;
1485 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1487 * If we're returning unused surplus pages, only examine
1488 * nodes with surplus pages.
1490 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1491 !list_empty(&h->hugepage_freelists[node])) {
1492 struct page *page =
1493 list_entry(h->hugepage_freelists[node].next,
1494 struct page, lru);
1495 list_del(&page->lru);
1496 h->free_huge_pages--;
1497 h->free_huge_pages_node[node]--;
1498 if (acct_surplus) {
1499 h->surplus_huge_pages--;
1500 h->surplus_huge_pages_node[node]--;
1502 update_and_free_page(h, page);
1503 ret = 1;
1504 break;
1508 return ret;
1512 * Dissolve a given free hugepage into free buddy pages. This function does
1513 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1514 * dissolution fails because a give page is not a free hugepage, or because
1515 * free hugepages are fully reserved.
1517 int dissolve_free_huge_page(struct page *page)
1519 int rc = -EBUSY;
1521 spin_lock(&hugetlb_lock);
1522 if (PageHuge(page) && !page_count(page)) {
1523 struct page *head = compound_head(page);
1524 struct hstate *h = page_hstate(head);
1525 int nid = page_to_nid(head);
1526 if (h->free_huge_pages - h->resv_huge_pages == 0)
1527 goto out;
1529 * Move PageHWPoison flag from head page to the raw error page,
1530 * which makes any subpages rather than the error page reusable.
1532 if (PageHWPoison(head) && page != head) {
1533 SetPageHWPoison(page);
1534 ClearPageHWPoison(head);
1536 list_del(&head->lru);
1537 h->free_huge_pages--;
1538 h->free_huge_pages_node[nid]--;
1539 h->max_huge_pages--;
1540 update_and_free_page(h, head);
1541 rc = 0;
1543 out:
1544 spin_unlock(&hugetlb_lock);
1545 return rc;
1549 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1550 * make specified memory blocks removable from the system.
1551 * Note that this will dissolve a free gigantic hugepage completely, if any
1552 * part of it lies within the given range.
1553 * Also note that if dissolve_free_huge_page() returns with an error, all
1554 * free hugepages that were dissolved before that error are lost.
1556 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1558 unsigned long pfn;
1559 struct page *page;
1560 int rc = 0;
1562 if (!hugepages_supported())
1563 return rc;
1565 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1566 page = pfn_to_page(pfn);
1567 if (PageHuge(page) && !page_count(page)) {
1568 rc = dissolve_free_huge_page(page);
1569 if (rc)
1570 break;
1574 return rc;
1578 * Allocates a fresh surplus page from the page allocator.
1580 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1581 int nid, nodemask_t *nmask)
1583 struct page *page = NULL;
1585 if (hstate_is_gigantic(h))
1586 return NULL;
1588 spin_lock(&hugetlb_lock);
1589 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1590 goto out_unlock;
1591 spin_unlock(&hugetlb_lock);
1593 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1594 if (!page)
1595 return NULL;
1597 spin_lock(&hugetlb_lock);
1599 * We could have raced with the pool size change.
1600 * Double check that and simply deallocate the new page
1601 * if we would end up overcommiting the surpluses. Abuse
1602 * temporary page to workaround the nasty free_huge_page
1603 * codeflow
1605 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1606 SetPageHugeTemporary(page);
1607 spin_unlock(&hugetlb_lock);
1608 put_page(page);
1609 return NULL;
1610 } else {
1611 h->surplus_huge_pages++;
1612 h->surplus_huge_pages_node[page_to_nid(page)]++;
1615 out_unlock:
1616 spin_unlock(&hugetlb_lock);
1618 return page;
1621 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1622 int nid, nodemask_t *nmask)
1624 struct page *page;
1626 if (hstate_is_gigantic(h))
1627 return NULL;
1629 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
1630 if (!page)
1631 return NULL;
1634 * We do not account these pages as surplus because they are only
1635 * temporary and will be released properly on the last reference
1637 SetPageHugeTemporary(page);
1639 return page;
1643 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1645 static
1646 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1647 struct vm_area_struct *vma, unsigned long addr)
1649 struct page *page;
1650 struct mempolicy *mpol;
1651 gfp_t gfp_mask = htlb_alloc_mask(h);
1652 int nid;
1653 nodemask_t *nodemask;
1655 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1656 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1657 mpol_cond_put(mpol);
1659 return page;
1662 /* page migration callback function */
1663 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1665 gfp_t gfp_mask = htlb_alloc_mask(h);
1666 struct page *page = NULL;
1668 if (nid != NUMA_NO_NODE)
1669 gfp_mask |= __GFP_THISNODE;
1671 spin_lock(&hugetlb_lock);
1672 if (h->free_huge_pages - h->resv_huge_pages > 0)
1673 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1674 spin_unlock(&hugetlb_lock);
1676 if (!page)
1677 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1679 return page;
1682 /* page migration callback function */
1683 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1684 nodemask_t *nmask)
1686 gfp_t gfp_mask = htlb_alloc_mask(h);
1688 spin_lock(&hugetlb_lock);
1689 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1690 struct page *page;
1692 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1693 if (page) {
1694 spin_unlock(&hugetlb_lock);
1695 return page;
1698 spin_unlock(&hugetlb_lock);
1700 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1703 /* mempolicy aware migration callback */
1704 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1705 unsigned long address)
1707 struct mempolicy *mpol;
1708 nodemask_t *nodemask;
1709 struct page *page;
1710 gfp_t gfp_mask;
1711 int node;
1713 gfp_mask = htlb_alloc_mask(h);
1714 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1715 page = alloc_huge_page_nodemask(h, node, nodemask);
1716 mpol_cond_put(mpol);
1718 return page;
1722 * Increase the hugetlb pool such that it can accommodate a reservation
1723 * of size 'delta'.
1725 static int gather_surplus_pages(struct hstate *h, int delta)
1727 struct list_head surplus_list;
1728 struct page *page, *tmp;
1729 int ret, i;
1730 int needed, allocated;
1731 bool alloc_ok = true;
1733 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1734 if (needed <= 0) {
1735 h->resv_huge_pages += delta;
1736 return 0;
1739 allocated = 0;
1740 INIT_LIST_HEAD(&surplus_list);
1742 ret = -ENOMEM;
1743 retry:
1744 spin_unlock(&hugetlb_lock);
1745 for (i = 0; i < needed; i++) {
1746 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1747 NUMA_NO_NODE, NULL);
1748 if (!page) {
1749 alloc_ok = false;
1750 break;
1752 list_add(&page->lru, &surplus_list);
1753 cond_resched();
1755 allocated += i;
1758 * After retaking hugetlb_lock, we need to recalculate 'needed'
1759 * because either resv_huge_pages or free_huge_pages may have changed.
1761 spin_lock(&hugetlb_lock);
1762 needed = (h->resv_huge_pages + delta) -
1763 (h->free_huge_pages + allocated);
1764 if (needed > 0) {
1765 if (alloc_ok)
1766 goto retry;
1768 * We were not able to allocate enough pages to
1769 * satisfy the entire reservation so we free what
1770 * we've allocated so far.
1772 goto free;
1775 * The surplus_list now contains _at_least_ the number of extra pages
1776 * needed to accommodate the reservation. Add the appropriate number
1777 * of pages to the hugetlb pool and free the extras back to the buddy
1778 * allocator. Commit the entire reservation here to prevent another
1779 * process from stealing the pages as they are added to the pool but
1780 * before they are reserved.
1782 needed += allocated;
1783 h->resv_huge_pages += delta;
1784 ret = 0;
1786 /* Free the needed pages to the hugetlb pool */
1787 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1788 if ((--needed) < 0)
1789 break;
1791 * This page is now managed by the hugetlb allocator and has
1792 * no users -- drop the buddy allocator's reference.
1794 put_page_testzero(page);
1795 VM_BUG_ON_PAGE(page_count(page), page);
1796 enqueue_huge_page(h, page);
1798 free:
1799 spin_unlock(&hugetlb_lock);
1801 /* Free unnecessary surplus pages to the buddy allocator */
1802 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1803 put_page(page);
1804 spin_lock(&hugetlb_lock);
1806 return ret;
1810 * This routine has two main purposes:
1811 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1812 * in unused_resv_pages. This corresponds to the prior adjustments made
1813 * to the associated reservation map.
1814 * 2) Free any unused surplus pages that may have been allocated to satisfy
1815 * the reservation. As many as unused_resv_pages may be freed.
1817 * Called with hugetlb_lock held. However, the lock could be dropped (and
1818 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1819 * we must make sure nobody else can claim pages we are in the process of
1820 * freeing. Do this by ensuring resv_huge_page always is greater than the
1821 * number of huge pages we plan to free when dropping the lock.
1823 static void return_unused_surplus_pages(struct hstate *h,
1824 unsigned long unused_resv_pages)
1826 unsigned long nr_pages;
1828 /* Cannot return gigantic pages currently */
1829 if (hstate_is_gigantic(h))
1830 goto out;
1833 * Part (or even all) of the reservation could have been backed
1834 * by pre-allocated pages. Only free surplus pages.
1836 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1839 * We want to release as many surplus pages as possible, spread
1840 * evenly across all nodes with memory. Iterate across these nodes
1841 * until we can no longer free unreserved surplus pages. This occurs
1842 * when the nodes with surplus pages have no free pages.
1843 * free_pool_huge_page() will balance the the freed pages across the
1844 * on-line nodes with memory and will handle the hstate accounting.
1846 * Note that we decrement resv_huge_pages as we free the pages. If
1847 * we drop the lock, resv_huge_pages will still be sufficiently large
1848 * to cover subsequent pages we may free.
1850 while (nr_pages--) {
1851 h->resv_huge_pages--;
1852 unused_resv_pages--;
1853 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1854 goto out;
1855 cond_resched_lock(&hugetlb_lock);
1858 out:
1859 /* Fully uncommit the reservation */
1860 h->resv_huge_pages -= unused_resv_pages;
1865 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1866 * are used by the huge page allocation routines to manage reservations.
1868 * vma_needs_reservation is called to determine if the huge page at addr
1869 * within the vma has an associated reservation. If a reservation is
1870 * needed, the value 1 is returned. The caller is then responsible for
1871 * managing the global reservation and subpool usage counts. After
1872 * the huge page has been allocated, vma_commit_reservation is called
1873 * to add the page to the reservation map. If the page allocation fails,
1874 * the reservation must be ended instead of committed. vma_end_reservation
1875 * is called in such cases.
1877 * In the normal case, vma_commit_reservation returns the same value
1878 * as the preceding vma_needs_reservation call. The only time this
1879 * is not the case is if a reserve map was changed between calls. It
1880 * is the responsibility of the caller to notice the difference and
1881 * take appropriate action.
1883 * vma_add_reservation is used in error paths where a reservation must
1884 * be restored when a newly allocated huge page must be freed. It is
1885 * to be called after calling vma_needs_reservation to determine if a
1886 * reservation exists.
1888 enum vma_resv_mode {
1889 VMA_NEEDS_RESV,
1890 VMA_COMMIT_RESV,
1891 VMA_END_RESV,
1892 VMA_ADD_RESV,
1894 static long __vma_reservation_common(struct hstate *h,
1895 struct vm_area_struct *vma, unsigned long addr,
1896 enum vma_resv_mode mode)
1898 struct resv_map *resv;
1899 pgoff_t idx;
1900 long ret;
1902 resv = vma_resv_map(vma);
1903 if (!resv)
1904 return 1;
1906 idx = vma_hugecache_offset(h, vma, addr);
1907 switch (mode) {
1908 case VMA_NEEDS_RESV:
1909 ret = region_chg(resv, idx, idx + 1);
1910 break;
1911 case VMA_COMMIT_RESV:
1912 ret = region_add(resv, idx, idx + 1);
1913 break;
1914 case VMA_END_RESV:
1915 region_abort(resv, idx, idx + 1);
1916 ret = 0;
1917 break;
1918 case VMA_ADD_RESV:
1919 if (vma->vm_flags & VM_MAYSHARE)
1920 ret = region_add(resv, idx, idx + 1);
1921 else {
1922 region_abort(resv, idx, idx + 1);
1923 ret = region_del(resv, idx, idx + 1);
1925 break;
1926 default:
1927 BUG();
1930 if (vma->vm_flags & VM_MAYSHARE)
1931 return ret;
1932 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1934 * In most cases, reserves always exist for private mappings.
1935 * However, a file associated with mapping could have been
1936 * hole punched or truncated after reserves were consumed.
1937 * As subsequent fault on such a range will not use reserves.
1938 * Subtle - The reserve map for private mappings has the
1939 * opposite meaning than that of shared mappings. If NO
1940 * entry is in the reserve map, it means a reservation exists.
1941 * If an entry exists in the reserve map, it means the
1942 * reservation has already been consumed. As a result, the
1943 * return value of this routine is the opposite of the
1944 * value returned from reserve map manipulation routines above.
1946 if (ret)
1947 return 0;
1948 else
1949 return 1;
1951 else
1952 return ret < 0 ? ret : 0;
1955 static long vma_needs_reservation(struct hstate *h,
1956 struct vm_area_struct *vma, unsigned long addr)
1958 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1961 static long vma_commit_reservation(struct hstate *h,
1962 struct vm_area_struct *vma, unsigned long addr)
1964 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1967 static void vma_end_reservation(struct hstate *h,
1968 struct vm_area_struct *vma, unsigned long addr)
1970 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1973 static long vma_add_reservation(struct hstate *h,
1974 struct vm_area_struct *vma, unsigned long addr)
1976 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1980 * This routine is called to restore a reservation on error paths. In the
1981 * specific error paths, a huge page was allocated (via alloc_huge_page)
1982 * and is about to be freed. If a reservation for the page existed,
1983 * alloc_huge_page would have consumed the reservation and set PagePrivate
1984 * in the newly allocated page. When the page is freed via free_huge_page,
1985 * the global reservation count will be incremented if PagePrivate is set.
1986 * However, free_huge_page can not adjust the reserve map. Adjust the
1987 * reserve map here to be consistent with global reserve count adjustments
1988 * to be made by free_huge_page.
1990 static void restore_reserve_on_error(struct hstate *h,
1991 struct vm_area_struct *vma, unsigned long address,
1992 struct page *page)
1994 if (unlikely(PagePrivate(page))) {
1995 long rc = vma_needs_reservation(h, vma, address);
1997 if (unlikely(rc < 0)) {
1999 * Rare out of memory condition in reserve map
2000 * manipulation. Clear PagePrivate so that
2001 * global reserve count will not be incremented
2002 * by free_huge_page. This will make it appear
2003 * as though the reservation for this page was
2004 * consumed. This may prevent the task from
2005 * faulting in the page at a later time. This
2006 * is better than inconsistent global huge page
2007 * accounting of reserve counts.
2009 ClearPagePrivate(page);
2010 } else if (rc) {
2011 rc = vma_add_reservation(h, vma, address);
2012 if (unlikely(rc < 0))
2014 * See above comment about rare out of
2015 * memory condition.
2017 ClearPagePrivate(page);
2018 } else
2019 vma_end_reservation(h, vma, address);
2023 struct page *alloc_huge_page(struct vm_area_struct *vma,
2024 unsigned long addr, int avoid_reserve)
2026 struct hugepage_subpool *spool = subpool_vma(vma);
2027 struct hstate *h = hstate_vma(vma);
2028 struct page *page;
2029 long map_chg, map_commit;
2030 long gbl_chg;
2031 int ret, idx;
2032 struct hugetlb_cgroup *h_cg;
2034 idx = hstate_index(h);
2036 * Examine the region/reserve map to determine if the process
2037 * has a reservation for the page to be allocated. A return
2038 * code of zero indicates a reservation exists (no change).
2040 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2041 if (map_chg < 0)
2042 return ERR_PTR(-ENOMEM);
2045 * Processes that did not create the mapping will have no
2046 * reserves as indicated by the region/reserve map. Check
2047 * that the allocation will not exceed the subpool limit.
2048 * Allocations for MAP_NORESERVE mappings also need to be
2049 * checked against any subpool limit.
2051 if (map_chg || avoid_reserve) {
2052 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2053 if (gbl_chg < 0) {
2054 vma_end_reservation(h, vma, addr);
2055 return ERR_PTR(-ENOSPC);
2059 * Even though there was no reservation in the region/reserve
2060 * map, there could be reservations associated with the
2061 * subpool that can be used. This would be indicated if the
2062 * return value of hugepage_subpool_get_pages() is zero.
2063 * However, if avoid_reserve is specified we still avoid even
2064 * the subpool reservations.
2066 if (avoid_reserve)
2067 gbl_chg = 1;
2070 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2071 if (ret)
2072 goto out_subpool_put;
2074 spin_lock(&hugetlb_lock);
2076 * glb_chg is passed to indicate whether or not a page must be taken
2077 * from the global free pool (global change). gbl_chg == 0 indicates
2078 * a reservation exists for the allocation.
2080 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2081 if (!page) {
2082 spin_unlock(&hugetlb_lock);
2083 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2084 if (!page)
2085 goto out_uncharge_cgroup;
2086 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2087 SetPagePrivate(page);
2088 h->resv_huge_pages--;
2090 spin_lock(&hugetlb_lock);
2091 list_move(&page->lru, &h->hugepage_activelist);
2092 /* Fall through */
2094 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2095 spin_unlock(&hugetlb_lock);
2097 set_page_private(page, (unsigned long)spool);
2099 map_commit = vma_commit_reservation(h, vma, addr);
2100 if (unlikely(map_chg > map_commit)) {
2102 * The page was added to the reservation map between
2103 * vma_needs_reservation and vma_commit_reservation.
2104 * This indicates a race with hugetlb_reserve_pages.
2105 * Adjust for the subpool count incremented above AND
2106 * in hugetlb_reserve_pages for the same page. Also,
2107 * the reservation count added in hugetlb_reserve_pages
2108 * no longer applies.
2110 long rsv_adjust;
2112 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2113 hugetlb_acct_memory(h, -rsv_adjust);
2115 return page;
2117 out_uncharge_cgroup:
2118 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2119 out_subpool_put:
2120 if (map_chg || avoid_reserve)
2121 hugepage_subpool_put_pages(spool, 1);
2122 vma_end_reservation(h, vma, addr);
2123 return ERR_PTR(-ENOSPC);
2126 int alloc_bootmem_huge_page(struct hstate *h)
2127 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2128 int __alloc_bootmem_huge_page(struct hstate *h)
2130 struct huge_bootmem_page *m;
2131 int nr_nodes, node;
2133 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2134 void *addr;
2136 addr = memblock_alloc_try_nid_raw(
2137 huge_page_size(h), huge_page_size(h),
2138 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2139 if (addr) {
2141 * Use the beginning of the huge page to store the
2142 * huge_bootmem_page struct (until gather_bootmem
2143 * puts them into the mem_map).
2145 m = addr;
2146 goto found;
2149 return 0;
2151 found:
2152 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2153 /* Put them into a private list first because mem_map is not up yet */
2154 INIT_LIST_HEAD(&m->list);
2155 list_add(&m->list, &huge_boot_pages);
2156 m->hstate = h;
2157 return 1;
2160 static void __init prep_compound_huge_page(struct page *page,
2161 unsigned int order)
2163 if (unlikely(order > (MAX_ORDER - 1)))
2164 prep_compound_gigantic_page(page, order);
2165 else
2166 prep_compound_page(page, order);
2169 /* Put bootmem huge pages into the standard lists after mem_map is up */
2170 static void __init gather_bootmem_prealloc(void)
2172 struct huge_bootmem_page *m;
2174 list_for_each_entry(m, &huge_boot_pages, list) {
2175 struct page *page = virt_to_page(m);
2176 struct hstate *h = m->hstate;
2178 WARN_ON(page_count(page) != 1);
2179 prep_compound_huge_page(page, h->order);
2180 WARN_ON(PageReserved(page));
2181 prep_new_huge_page(h, page, page_to_nid(page));
2182 put_page(page); /* free it into the hugepage allocator */
2185 * If we had gigantic hugepages allocated at boot time, we need
2186 * to restore the 'stolen' pages to totalram_pages in order to
2187 * fix confusing memory reports from free(1) and another
2188 * side-effects, like CommitLimit going negative.
2190 if (hstate_is_gigantic(h))
2191 adjust_managed_page_count(page, 1 << h->order);
2192 cond_resched();
2196 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2198 unsigned long i;
2200 for (i = 0; i < h->max_huge_pages; ++i) {
2201 if (hstate_is_gigantic(h)) {
2202 if (!alloc_bootmem_huge_page(h))
2203 break;
2204 } else if (!alloc_pool_huge_page(h,
2205 &node_states[N_MEMORY]))
2206 break;
2207 cond_resched();
2209 if (i < h->max_huge_pages) {
2210 char buf[32];
2212 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2213 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2214 h->max_huge_pages, buf, i);
2215 h->max_huge_pages = i;
2219 static void __init hugetlb_init_hstates(void)
2221 struct hstate *h;
2223 for_each_hstate(h) {
2224 if (minimum_order > huge_page_order(h))
2225 minimum_order = huge_page_order(h);
2227 /* oversize hugepages were init'ed in early boot */
2228 if (!hstate_is_gigantic(h))
2229 hugetlb_hstate_alloc_pages(h);
2231 VM_BUG_ON(minimum_order == UINT_MAX);
2234 static void __init report_hugepages(void)
2236 struct hstate *h;
2238 for_each_hstate(h) {
2239 char buf[32];
2241 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2242 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2243 buf, h->free_huge_pages);
2247 #ifdef CONFIG_HIGHMEM
2248 static void try_to_free_low(struct hstate *h, unsigned long count,
2249 nodemask_t *nodes_allowed)
2251 int i;
2253 if (hstate_is_gigantic(h))
2254 return;
2256 for_each_node_mask(i, *nodes_allowed) {
2257 struct page *page, *next;
2258 struct list_head *freel = &h->hugepage_freelists[i];
2259 list_for_each_entry_safe(page, next, freel, lru) {
2260 if (count >= h->nr_huge_pages)
2261 return;
2262 if (PageHighMem(page))
2263 continue;
2264 list_del(&page->lru);
2265 update_and_free_page(h, page);
2266 h->free_huge_pages--;
2267 h->free_huge_pages_node[page_to_nid(page)]--;
2271 #else
2272 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2273 nodemask_t *nodes_allowed)
2276 #endif
2279 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2280 * balanced by operating on them in a round-robin fashion.
2281 * Returns 1 if an adjustment was made.
2283 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2284 int delta)
2286 int nr_nodes, node;
2288 VM_BUG_ON(delta != -1 && delta != 1);
2290 if (delta < 0) {
2291 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2292 if (h->surplus_huge_pages_node[node])
2293 goto found;
2295 } else {
2296 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2297 if (h->surplus_huge_pages_node[node] <
2298 h->nr_huge_pages_node[node])
2299 goto found;
2302 return 0;
2304 found:
2305 h->surplus_huge_pages += delta;
2306 h->surplus_huge_pages_node[node] += delta;
2307 return 1;
2310 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2311 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2312 nodemask_t *nodes_allowed)
2314 unsigned long min_count, ret;
2316 spin_lock(&hugetlb_lock);
2319 * Check for a node specific request.
2320 * Changing node specific huge page count may require a corresponding
2321 * change to the global count. In any case, the passed node mask
2322 * (nodes_allowed) will restrict alloc/free to the specified node.
2324 if (nid != NUMA_NO_NODE) {
2325 unsigned long old_count = count;
2327 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2329 * User may have specified a large count value which caused the
2330 * above calculation to overflow. In this case, they wanted
2331 * to allocate as many huge pages as possible. Set count to
2332 * largest possible value to align with their intention.
2334 if (count < old_count)
2335 count = ULONG_MAX;
2339 * Gigantic pages runtime allocation depend on the capability for large
2340 * page range allocation.
2341 * If the system does not provide this feature, return an error when
2342 * the user tries to allocate gigantic pages but let the user free the
2343 * boottime allocated gigantic pages.
2345 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2346 if (count > persistent_huge_pages(h)) {
2347 spin_unlock(&hugetlb_lock);
2348 return -EINVAL;
2350 /* Fall through to decrease pool */
2354 * Increase the pool size
2355 * First take pages out of surplus state. Then make up the
2356 * remaining difference by allocating fresh huge pages.
2358 * We might race with alloc_surplus_huge_page() here and be unable
2359 * to convert a surplus huge page to a normal huge page. That is
2360 * not critical, though, it just means the overall size of the
2361 * pool might be one hugepage larger than it needs to be, but
2362 * within all the constraints specified by the sysctls.
2364 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2365 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2366 break;
2369 while (count > persistent_huge_pages(h)) {
2371 * If this allocation races such that we no longer need the
2372 * page, free_huge_page will handle it by freeing the page
2373 * and reducing the surplus.
2375 spin_unlock(&hugetlb_lock);
2377 /* yield cpu to avoid soft lockup */
2378 cond_resched();
2380 ret = alloc_pool_huge_page(h, nodes_allowed);
2381 spin_lock(&hugetlb_lock);
2382 if (!ret)
2383 goto out;
2385 /* Bail for signals. Probably ctrl-c from user */
2386 if (signal_pending(current))
2387 goto out;
2391 * Decrease the pool size
2392 * First return free pages to the buddy allocator (being careful
2393 * to keep enough around to satisfy reservations). Then place
2394 * pages into surplus state as needed so the pool will shrink
2395 * to the desired size as pages become free.
2397 * By placing pages into the surplus state independent of the
2398 * overcommit value, we are allowing the surplus pool size to
2399 * exceed overcommit. There are few sane options here. Since
2400 * alloc_surplus_huge_page() is checking the global counter,
2401 * though, we'll note that we're not allowed to exceed surplus
2402 * and won't grow the pool anywhere else. Not until one of the
2403 * sysctls are changed, or the surplus pages go out of use.
2405 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2406 min_count = max(count, min_count);
2407 try_to_free_low(h, min_count, nodes_allowed);
2408 while (min_count < persistent_huge_pages(h)) {
2409 if (!free_pool_huge_page(h, nodes_allowed, 0))
2410 break;
2411 cond_resched_lock(&hugetlb_lock);
2413 while (count < persistent_huge_pages(h)) {
2414 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2415 break;
2417 out:
2418 h->max_huge_pages = persistent_huge_pages(h);
2419 spin_unlock(&hugetlb_lock);
2421 return 0;
2424 #define HSTATE_ATTR_RO(_name) \
2425 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2427 #define HSTATE_ATTR(_name) \
2428 static struct kobj_attribute _name##_attr = \
2429 __ATTR(_name, 0644, _name##_show, _name##_store)
2431 static struct kobject *hugepages_kobj;
2432 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2434 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2436 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2438 int i;
2440 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2441 if (hstate_kobjs[i] == kobj) {
2442 if (nidp)
2443 *nidp = NUMA_NO_NODE;
2444 return &hstates[i];
2447 return kobj_to_node_hstate(kobj, nidp);
2450 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2451 struct kobj_attribute *attr, char *buf)
2453 struct hstate *h;
2454 unsigned long nr_huge_pages;
2455 int nid;
2457 h = kobj_to_hstate(kobj, &nid);
2458 if (nid == NUMA_NO_NODE)
2459 nr_huge_pages = h->nr_huge_pages;
2460 else
2461 nr_huge_pages = h->nr_huge_pages_node[nid];
2463 return sprintf(buf, "%lu\n", nr_huge_pages);
2466 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2467 struct hstate *h, int nid,
2468 unsigned long count, size_t len)
2470 int err;
2471 nodemask_t nodes_allowed, *n_mask;
2473 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2474 return -EINVAL;
2476 if (nid == NUMA_NO_NODE) {
2478 * global hstate attribute
2480 if (!(obey_mempolicy &&
2481 init_nodemask_of_mempolicy(&nodes_allowed)))
2482 n_mask = &node_states[N_MEMORY];
2483 else
2484 n_mask = &nodes_allowed;
2485 } else {
2487 * Node specific request. count adjustment happens in
2488 * set_max_huge_pages() after acquiring hugetlb_lock.
2490 init_nodemask_of_node(&nodes_allowed, nid);
2491 n_mask = &nodes_allowed;
2494 err = set_max_huge_pages(h, count, nid, n_mask);
2496 return err ? err : len;
2499 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2500 struct kobject *kobj, const char *buf,
2501 size_t len)
2503 struct hstate *h;
2504 unsigned long count;
2505 int nid;
2506 int err;
2508 err = kstrtoul(buf, 10, &count);
2509 if (err)
2510 return err;
2512 h = kobj_to_hstate(kobj, &nid);
2513 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2516 static ssize_t nr_hugepages_show(struct kobject *kobj,
2517 struct kobj_attribute *attr, char *buf)
2519 return nr_hugepages_show_common(kobj, attr, buf);
2522 static ssize_t nr_hugepages_store(struct kobject *kobj,
2523 struct kobj_attribute *attr, const char *buf, size_t len)
2525 return nr_hugepages_store_common(false, kobj, buf, len);
2527 HSTATE_ATTR(nr_hugepages);
2529 #ifdef CONFIG_NUMA
2532 * hstate attribute for optionally mempolicy-based constraint on persistent
2533 * huge page alloc/free.
2535 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2536 struct kobj_attribute *attr, char *buf)
2538 return nr_hugepages_show_common(kobj, attr, buf);
2541 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2542 struct kobj_attribute *attr, const char *buf, size_t len)
2544 return nr_hugepages_store_common(true, kobj, buf, len);
2546 HSTATE_ATTR(nr_hugepages_mempolicy);
2547 #endif
2550 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2551 struct kobj_attribute *attr, char *buf)
2553 struct hstate *h = kobj_to_hstate(kobj, NULL);
2554 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2557 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2558 struct kobj_attribute *attr, const char *buf, size_t count)
2560 int err;
2561 unsigned long input;
2562 struct hstate *h = kobj_to_hstate(kobj, NULL);
2564 if (hstate_is_gigantic(h))
2565 return -EINVAL;
2567 err = kstrtoul(buf, 10, &input);
2568 if (err)
2569 return err;
2571 spin_lock(&hugetlb_lock);
2572 h->nr_overcommit_huge_pages = input;
2573 spin_unlock(&hugetlb_lock);
2575 return count;
2577 HSTATE_ATTR(nr_overcommit_hugepages);
2579 static ssize_t free_hugepages_show(struct kobject *kobj,
2580 struct kobj_attribute *attr, char *buf)
2582 struct hstate *h;
2583 unsigned long free_huge_pages;
2584 int nid;
2586 h = kobj_to_hstate(kobj, &nid);
2587 if (nid == NUMA_NO_NODE)
2588 free_huge_pages = h->free_huge_pages;
2589 else
2590 free_huge_pages = h->free_huge_pages_node[nid];
2592 return sprintf(buf, "%lu\n", free_huge_pages);
2594 HSTATE_ATTR_RO(free_hugepages);
2596 static ssize_t resv_hugepages_show(struct kobject *kobj,
2597 struct kobj_attribute *attr, char *buf)
2599 struct hstate *h = kobj_to_hstate(kobj, NULL);
2600 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2602 HSTATE_ATTR_RO(resv_hugepages);
2604 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2605 struct kobj_attribute *attr, char *buf)
2607 struct hstate *h;
2608 unsigned long surplus_huge_pages;
2609 int nid;
2611 h = kobj_to_hstate(kobj, &nid);
2612 if (nid == NUMA_NO_NODE)
2613 surplus_huge_pages = h->surplus_huge_pages;
2614 else
2615 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2617 return sprintf(buf, "%lu\n", surplus_huge_pages);
2619 HSTATE_ATTR_RO(surplus_hugepages);
2621 static struct attribute *hstate_attrs[] = {
2622 &nr_hugepages_attr.attr,
2623 &nr_overcommit_hugepages_attr.attr,
2624 &free_hugepages_attr.attr,
2625 &resv_hugepages_attr.attr,
2626 &surplus_hugepages_attr.attr,
2627 #ifdef CONFIG_NUMA
2628 &nr_hugepages_mempolicy_attr.attr,
2629 #endif
2630 NULL,
2633 static const struct attribute_group hstate_attr_group = {
2634 .attrs = hstate_attrs,
2637 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2638 struct kobject **hstate_kobjs,
2639 const struct attribute_group *hstate_attr_group)
2641 int retval;
2642 int hi = hstate_index(h);
2644 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2645 if (!hstate_kobjs[hi])
2646 return -ENOMEM;
2648 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2649 if (retval)
2650 kobject_put(hstate_kobjs[hi]);
2652 return retval;
2655 static void __init hugetlb_sysfs_init(void)
2657 struct hstate *h;
2658 int err;
2660 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2661 if (!hugepages_kobj)
2662 return;
2664 for_each_hstate(h) {
2665 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2666 hstate_kobjs, &hstate_attr_group);
2667 if (err)
2668 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2672 #ifdef CONFIG_NUMA
2675 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2676 * with node devices in node_devices[] using a parallel array. The array
2677 * index of a node device or _hstate == node id.
2678 * This is here to avoid any static dependency of the node device driver, in
2679 * the base kernel, on the hugetlb module.
2681 struct node_hstate {
2682 struct kobject *hugepages_kobj;
2683 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2685 static struct node_hstate node_hstates[MAX_NUMNODES];
2688 * A subset of global hstate attributes for node devices
2690 static struct attribute *per_node_hstate_attrs[] = {
2691 &nr_hugepages_attr.attr,
2692 &free_hugepages_attr.attr,
2693 &surplus_hugepages_attr.attr,
2694 NULL,
2697 static const struct attribute_group per_node_hstate_attr_group = {
2698 .attrs = per_node_hstate_attrs,
2702 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2703 * Returns node id via non-NULL nidp.
2705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2707 int nid;
2709 for (nid = 0; nid < nr_node_ids; nid++) {
2710 struct node_hstate *nhs = &node_hstates[nid];
2711 int i;
2712 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2713 if (nhs->hstate_kobjs[i] == kobj) {
2714 if (nidp)
2715 *nidp = nid;
2716 return &hstates[i];
2720 BUG();
2721 return NULL;
2725 * Unregister hstate attributes from a single node device.
2726 * No-op if no hstate attributes attached.
2728 static void hugetlb_unregister_node(struct node *node)
2730 struct hstate *h;
2731 struct node_hstate *nhs = &node_hstates[node->dev.id];
2733 if (!nhs->hugepages_kobj)
2734 return; /* no hstate attributes */
2736 for_each_hstate(h) {
2737 int idx = hstate_index(h);
2738 if (nhs->hstate_kobjs[idx]) {
2739 kobject_put(nhs->hstate_kobjs[idx]);
2740 nhs->hstate_kobjs[idx] = NULL;
2744 kobject_put(nhs->hugepages_kobj);
2745 nhs->hugepages_kobj = NULL;
2750 * Register hstate attributes for a single node device.
2751 * No-op if attributes already registered.
2753 static void hugetlb_register_node(struct node *node)
2755 struct hstate *h;
2756 struct node_hstate *nhs = &node_hstates[node->dev.id];
2757 int err;
2759 if (nhs->hugepages_kobj)
2760 return; /* already allocated */
2762 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2763 &node->dev.kobj);
2764 if (!nhs->hugepages_kobj)
2765 return;
2767 for_each_hstate(h) {
2768 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2769 nhs->hstate_kobjs,
2770 &per_node_hstate_attr_group);
2771 if (err) {
2772 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2773 h->name, node->dev.id);
2774 hugetlb_unregister_node(node);
2775 break;
2781 * hugetlb init time: register hstate attributes for all registered node
2782 * devices of nodes that have memory. All on-line nodes should have
2783 * registered their associated device by this time.
2785 static void __init hugetlb_register_all_nodes(void)
2787 int nid;
2789 for_each_node_state(nid, N_MEMORY) {
2790 struct node *node = node_devices[nid];
2791 if (node->dev.id == nid)
2792 hugetlb_register_node(node);
2796 * Let the node device driver know we're here so it can
2797 * [un]register hstate attributes on node hotplug.
2799 register_hugetlbfs_with_node(hugetlb_register_node,
2800 hugetlb_unregister_node);
2802 #else /* !CONFIG_NUMA */
2804 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2806 BUG();
2807 if (nidp)
2808 *nidp = -1;
2809 return NULL;
2812 static void hugetlb_register_all_nodes(void) { }
2814 #endif
2816 static int __init hugetlb_init(void)
2818 int i;
2820 if (!hugepages_supported())
2821 return 0;
2823 if (!size_to_hstate(default_hstate_size)) {
2824 if (default_hstate_size != 0) {
2825 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2826 default_hstate_size, HPAGE_SIZE);
2829 default_hstate_size = HPAGE_SIZE;
2830 if (!size_to_hstate(default_hstate_size))
2831 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2833 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2834 if (default_hstate_max_huge_pages) {
2835 if (!default_hstate.max_huge_pages)
2836 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2839 hugetlb_init_hstates();
2840 gather_bootmem_prealloc();
2841 report_hugepages();
2843 hugetlb_sysfs_init();
2844 hugetlb_register_all_nodes();
2845 hugetlb_cgroup_file_init();
2847 #ifdef CONFIG_SMP
2848 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2849 #else
2850 num_fault_mutexes = 1;
2851 #endif
2852 hugetlb_fault_mutex_table =
2853 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2854 GFP_KERNEL);
2855 BUG_ON(!hugetlb_fault_mutex_table);
2857 for (i = 0; i < num_fault_mutexes; i++)
2858 mutex_init(&hugetlb_fault_mutex_table[i]);
2859 return 0;
2861 subsys_initcall(hugetlb_init);
2863 /* Should be called on processing a hugepagesz=... option */
2864 void __init hugetlb_bad_size(void)
2866 parsed_valid_hugepagesz = false;
2869 void __init hugetlb_add_hstate(unsigned int order)
2871 struct hstate *h;
2872 unsigned long i;
2874 if (size_to_hstate(PAGE_SIZE << order)) {
2875 pr_warn("hugepagesz= specified twice, ignoring\n");
2876 return;
2878 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2879 BUG_ON(order == 0);
2880 h = &hstates[hugetlb_max_hstate++];
2881 h->order = order;
2882 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2883 h->nr_huge_pages = 0;
2884 h->free_huge_pages = 0;
2885 for (i = 0; i < MAX_NUMNODES; ++i)
2886 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2887 INIT_LIST_HEAD(&h->hugepage_activelist);
2888 h->next_nid_to_alloc = first_memory_node;
2889 h->next_nid_to_free = first_memory_node;
2890 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2891 huge_page_size(h)/1024);
2893 parsed_hstate = h;
2896 static int __init hugetlb_nrpages_setup(char *s)
2898 unsigned long *mhp;
2899 static unsigned long *last_mhp;
2901 if (!parsed_valid_hugepagesz) {
2902 pr_warn("hugepages = %s preceded by "
2903 "an unsupported hugepagesz, ignoring\n", s);
2904 parsed_valid_hugepagesz = true;
2905 return 1;
2908 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2909 * so this hugepages= parameter goes to the "default hstate".
2911 else if (!hugetlb_max_hstate)
2912 mhp = &default_hstate_max_huge_pages;
2913 else
2914 mhp = &parsed_hstate->max_huge_pages;
2916 if (mhp == last_mhp) {
2917 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2918 return 1;
2921 if (sscanf(s, "%lu", mhp) <= 0)
2922 *mhp = 0;
2925 * Global state is always initialized later in hugetlb_init.
2926 * But we need to allocate >= MAX_ORDER hstates here early to still
2927 * use the bootmem allocator.
2929 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2930 hugetlb_hstate_alloc_pages(parsed_hstate);
2932 last_mhp = mhp;
2934 return 1;
2936 __setup("hugepages=", hugetlb_nrpages_setup);
2938 static int __init hugetlb_default_setup(char *s)
2940 default_hstate_size = memparse(s, &s);
2941 return 1;
2943 __setup("default_hugepagesz=", hugetlb_default_setup);
2945 static unsigned int cpuset_mems_nr(unsigned int *array)
2947 int node;
2948 unsigned int nr = 0;
2950 for_each_node_mask(node, cpuset_current_mems_allowed)
2951 nr += array[node];
2953 return nr;
2956 #ifdef CONFIG_SYSCTL
2957 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2958 struct ctl_table *table, int write,
2959 void __user *buffer, size_t *length, loff_t *ppos)
2961 struct hstate *h = &default_hstate;
2962 unsigned long tmp = h->max_huge_pages;
2963 int ret;
2965 if (!hugepages_supported())
2966 return -EOPNOTSUPP;
2968 table->data = &tmp;
2969 table->maxlen = sizeof(unsigned long);
2970 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2971 if (ret)
2972 goto out;
2974 if (write)
2975 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2976 NUMA_NO_NODE, tmp, *length);
2977 out:
2978 return ret;
2981 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2982 void __user *buffer, size_t *length, loff_t *ppos)
2985 return hugetlb_sysctl_handler_common(false, table, write,
2986 buffer, length, ppos);
2989 #ifdef CONFIG_NUMA
2990 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2991 void __user *buffer, size_t *length, loff_t *ppos)
2993 return hugetlb_sysctl_handler_common(true, table, write,
2994 buffer, length, ppos);
2996 #endif /* CONFIG_NUMA */
2998 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2999 void __user *buffer,
3000 size_t *length, loff_t *ppos)
3002 struct hstate *h = &default_hstate;
3003 unsigned long tmp;
3004 int ret;
3006 if (!hugepages_supported())
3007 return -EOPNOTSUPP;
3009 tmp = h->nr_overcommit_huge_pages;
3011 if (write && hstate_is_gigantic(h))
3012 return -EINVAL;
3014 table->data = &tmp;
3015 table->maxlen = sizeof(unsigned long);
3016 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3017 if (ret)
3018 goto out;
3020 if (write) {
3021 spin_lock(&hugetlb_lock);
3022 h->nr_overcommit_huge_pages = tmp;
3023 spin_unlock(&hugetlb_lock);
3025 out:
3026 return ret;
3029 #endif /* CONFIG_SYSCTL */
3031 void hugetlb_report_meminfo(struct seq_file *m)
3033 struct hstate *h;
3034 unsigned long total = 0;
3036 if (!hugepages_supported())
3037 return;
3039 for_each_hstate(h) {
3040 unsigned long count = h->nr_huge_pages;
3042 total += (PAGE_SIZE << huge_page_order(h)) * count;
3044 if (h == &default_hstate)
3045 seq_printf(m,
3046 "HugePages_Total: %5lu\n"
3047 "HugePages_Free: %5lu\n"
3048 "HugePages_Rsvd: %5lu\n"
3049 "HugePages_Surp: %5lu\n"
3050 "Hugepagesize: %8lu kB\n",
3051 count,
3052 h->free_huge_pages,
3053 h->resv_huge_pages,
3054 h->surplus_huge_pages,
3055 (PAGE_SIZE << huge_page_order(h)) / 1024);
3058 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3061 int hugetlb_report_node_meminfo(int nid, char *buf)
3063 struct hstate *h = &default_hstate;
3064 if (!hugepages_supported())
3065 return 0;
3066 return sprintf(buf,
3067 "Node %d HugePages_Total: %5u\n"
3068 "Node %d HugePages_Free: %5u\n"
3069 "Node %d HugePages_Surp: %5u\n",
3070 nid, h->nr_huge_pages_node[nid],
3071 nid, h->free_huge_pages_node[nid],
3072 nid, h->surplus_huge_pages_node[nid]);
3075 void hugetlb_show_meminfo(void)
3077 struct hstate *h;
3078 int nid;
3080 if (!hugepages_supported())
3081 return;
3083 for_each_node_state(nid, N_MEMORY)
3084 for_each_hstate(h)
3085 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3086 nid,
3087 h->nr_huge_pages_node[nid],
3088 h->free_huge_pages_node[nid],
3089 h->surplus_huge_pages_node[nid],
3090 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3093 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3095 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3096 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3099 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3100 unsigned long hugetlb_total_pages(void)
3102 struct hstate *h;
3103 unsigned long nr_total_pages = 0;
3105 for_each_hstate(h)
3106 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3107 return nr_total_pages;
3110 static int hugetlb_acct_memory(struct hstate *h, long delta)
3112 int ret = -ENOMEM;
3114 spin_lock(&hugetlb_lock);
3116 * When cpuset is configured, it breaks the strict hugetlb page
3117 * reservation as the accounting is done on a global variable. Such
3118 * reservation is completely rubbish in the presence of cpuset because
3119 * the reservation is not checked against page availability for the
3120 * current cpuset. Application can still potentially OOM'ed by kernel
3121 * with lack of free htlb page in cpuset that the task is in.
3122 * Attempt to enforce strict accounting with cpuset is almost
3123 * impossible (or too ugly) because cpuset is too fluid that
3124 * task or memory node can be dynamically moved between cpusets.
3126 * The change of semantics for shared hugetlb mapping with cpuset is
3127 * undesirable. However, in order to preserve some of the semantics,
3128 * we fall back to check against current free page availability as
3129 * a best attempt and hopefully to minimize the impact of changing
3130 * semantics that cpuset has.
3132 if (delta > 0) {
3133 if (gather_surplus_pages(h, delta) < 0)
3134 goto out;
3136 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3137 return_unused_surplus_pages(h, delta);
3138 goto out;
3142 ret = 0;
3143 if (delta < 0)
3144 return_unused_surplus_pages(h, (unsigned long) -delta);
3146 out:
3147 spin_unlock(&hugetlb_lock);
3148 return ret;
3151 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3153 struct resv_map *resv = vma_resv_map(vma);
3156 * This new VMA should share its siblings reservation map if present.
3157 * The VMA will only ever have a valid reservation map pointer where
3158 * it is being copied for another still existing VMA. As that VMA
3159 * has a reference to the reservation map it cannot disappear until
3160 * after this open call completes. It is therefore safe to take a
3161 * new reference here without additional locking.
3163 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3164 kref_get(&resv->refs);
3167 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3169 struct hstate *h = hstate_vma(vma);
3170 struct resv_map *resv = vma_resv_map(vma);
3171 struct hugepage_subpool *spool = subpool_vma(vma);
3172 unsigned long reserve, start, end;
3173 long gbl_reserve;
3175 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3176 return;
3178 start = vma_hugecache_offset(h, vma, vma->vm_start);
3179 end = vma_hugecache_offset(h, vma, vma->vm_end);
3181 reserve = (end - start) - region_count(resv, start, end);
3183 kref_put(&resv->refs, resv_map_release);
3185 if (reserve) {
3187 * Decrement reserve counts. The global reserve count may be
3188 * adjusted if the subpool has a minimum size.
3190 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3191 hugetlb_acct_memory(h, -gbl_reserve);
3195 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3197 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3198 return -EINVAL;
3199 return 0;
3202 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3204 struct hstate *hstate = hstate_vma(vma);
3206 return 1UL << huge_page_shift(hstate);
3210 * We cannot handle pagefaults against hugetlb pages at all. They cause
3211 * handle_mm_fault() to try to instantiate regular-sized pages in the
3212 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3213 * this far.
3215 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3217 BUG();
3218 return 0;
3222 * When a new function is introduced to vm_operations_struct and added
3223 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3224 * This is because under System V memory model, mappings created via
3225 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3226 * their original vm_ops are overwritten with shm_vm_ops.
3228 const struct vm_operations_struct hugetlb_vm_ops = {
3229 .fault = hugetlb_vm_op_fault,
3230 .open = hugetlb_vm_op_open,
3231 .close = hugetlb_vm_op_close,
3232 .split = hugetlb_vm_op_split,
3233 .pagesize = hugetlb_vm_op_pagesize,
3236 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3237 int writable)
3239 pte_t entry;
3241 if (writable) {
3242 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3243 vma->vm_page_prot)));
3244 } else {
3245 entry = huge_pte_wrprotect(mk_huge_pte(page,
3246 vma->vm_page_prot));
3248 entry = pte_mkyoung(entry);
3249 entry = pte_mkhuge(entry);
3250 entry = arch_make_huge_pte(entry, vma, page, writable);
3252 return entry;
3255 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3256 unsigned long address, pte_t *ptep)
3258 pte_t entry;
3260 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3261 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3262 update_mmu_cache(vma, address, ptep);
3265 bool is_hugetlb_entry_migration(pte_t pte)
3267 swp_entry_t swp;
3269 if (huge_pte_none(pte) || pte_present(pte))
3270 return false;
3271 swp = pte_to_swp_entry(pte);
3272 if (non_swap_entry(swp) && is_migration_entry(swp))
3273 return true;
3274 else
3275 return false;
3278 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3280 swp_entry_t swp;
3282 if (huge_pte_none(pte) || pte_present(pte))
3283 return 0;
3284 swp = pte_to_swp_entry(pte);
3285 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3286 return 1;
3287 else
3288 return 0;
3291 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3292 struct vm_area_struct *vma)
3294 pte_t *src_pte, *dst_pte, entry, dst_entry;
3295 struct page *ptepage;
3296 unsigned long addr;
3297 int cow;
3298 struct hstate *h = hstate_vma(vma);
3299 unsigned long sz = huge_page_size(h);
3300 struct mmu_notifier_range range;
3301 int ret = 0;
3303 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3305 if (cow) {
3306 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3307 vma->vm_start,
3308 vma->vm_end);
3309 mmu_notifier_invalidate_range_start(&range);
3312 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3313 spinlock_t *src_ptl, *dst_ptl;
3314 src_pte = huge_pte_offset(src, addr, sz);
3315 if (!src_pte)
3316 continue;
3317 dst_pte = huge_pte_alloc(dst, addr, sz);
3318 if (!dst_pte) {
3319 ret = -ENOMEM;
3320 break;
3324 * If the pagetables are shared don't copy or take references.
3325 * dst_pte == src_pte is the common case of src/dest sharing.
3327 * However, src could have 'unshared' and dst shares with
3328 * another vma. If dst_pte !none, this implies sharing.
3329 * Check here before taking page table lock, and once again
3330 * after taking the lock below.
3332 dst_entry = huge_ptep_get(dst_pte);
3333 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3334 continue;
3336 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3337 src_ptl = huge_pte_lockptr(h, src, src_pte);
3338 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3339 entry = huge_ptep_get(src_pte);
3340 dst_entry = huge_ptep_get(dst_pte);
3341 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3343 * Skip if src entry none. Also, skip in the
3344 * unlikely case dst entry !none as this implies
3345 * sharing with another vma.
3348 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3349 is_hugetlb_entry_hwpoisoned(entry))) {
3350 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3352 if (is_write_migration_entry(swp_entry) && cow) {
3354 * COW mappings require pages in both
3355 * parent and child to be set to read.
3357 make_migration_entry_read(&swp_entry);
3358 entry = swp_entry_to_pte(swp_entry);
3359 set_huge_swap_pte_at(src, addr, src_pte,
3360 entry, sz);
3362 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3363 } else {
3364 if (cow) {
3366 * No need to notify as we are downgrading page
3367 * table protection not changing it to point
3368 * to a new page.
3370 * See Documentation/vm/mmu_notifier.rst
3372 huge_ptep_set_wrprotect(src, addr, src_pte);
3374 entry = huge_ptep_get(src_pte);
3375 ptepage = pte_page(entry);
3376 get_page(ptepage);
3377 page_dup_rmap(ptepage, true);
3378 set_huge_pte_at(dst, addr, dst_pte, entry);
3379 hugetlb_count_add(pages_per_huge_page(h), dst);
3381 spin_unlock(src_ptl);
3382 spin_unlock(dst_ptl);
3385 if (cow)
3386 mmu_notifier_invalidate_range_end(&range);
3388 return ret;
3391 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3392 unsigned long start, unsigned long end,
3393 struct page *ref_page)
3395 struct mm_struct *mm = vma->vm_mm;
3396 unsigned long address;
3397 pte_t *ptep;
3398 pte_t pte;
3399 spinlock_t *ptl;
3400 struct page *page;
3401 struct hstate *h = hstate_vma(vma);
3402 unsigned long sz = huge_page_size(h);
3403 struct mmu_notifier_range range;
3405 WARN_ON(!is_vm_hugetlb_page(vma));
3406 BUG_ON(start & ~huge_page_mask(h));
3407 BUG_ON(end & ~huge_page_mask(h));
3410 * This is a hugetlb vma, all the pte entries should point
3411 * to huge page.
3413 tlb_change_page_size(tlb, sz);
3414 tlb_start_vma(tlb, vma);
3417 * If sharing possible, alert mmu notifiers of worst case.
3419 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3420 end);
3421 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3422 mmu_notifier_invalidate_range_start(&range);
3423 address = start;
3424 for (; address < end; address += sz) {
3425 ptep = huge_pte_offset(mm, address, sz);
3426 if (!ptep)
3427 continue;
3429 ptl = huge_pte_lock(h, mm, ptep);
3430 if (huge_pmd_unshare(mm, &address, ptep)) {
3431 spin_unlock(ptl);
3433 * We just unmapped a page of PMDs by clearing a PUD.
3434 * The caller's TLB flush range should cover this area.
3436 continue;
3439 pte = huge_ptep_get(ptep);
3440 if (huge_pte_none(pte)) {
3441 spin_unlock(ptl);
3442 continue;
3446 * Migrating hugepage or HWPoisoned hugepage is already
3447 * unmapped and its refcount is dropped, so just clear pte here.
3449 if (unlikely(!pte_present(pte))) {
3450 huge_pte_clear(mm, address, ptep, sz);
3451 spin_unlock(ptl);
3452 continue;
3455 page = pte_page(pte);
3457 * If a reference page is supplied, it is because a specific
3458 * page is being unmapped, not a range. Ensure the page we
3459 * are about to unmap is the actual page of interest.
3461 if (ref_page) {
3462 if (page != ref_page) {
3463 spin_unlock(ptl);
3464 continue;
3467 * Mark the VMA as having unmapped its page so that
3468 * future faults in this VMA will fail rather than
3469 * looking like data was lost
3471 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3474 pte = huge_ptep_get_and_clear(mm, address, ptep);
3475 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3476 if (huge_pte_dirty(pte))
3477 set_page_dirty(page);
3479 hugetlb_count_sub(pages_per_huge_page(h), mm);
3480 page_remove_rmap(page, true);
3482 spin_unlock(ptl);
3483 tlb_remove_page_size(tlb, page, huge_page_size(h));
3485 * Bail out after unmapping reference page if supplied
3487 if (ref_page)
3488 break;
3490 mmu_notifier_invalidate_range_end(&range);
3491 tlb_end_vma(tlb, vma);
3494 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3495 struct vm_area_struct *vma, unsigned long start,
3496 unsigned long end, struct page *ref_page)
3498 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3501 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3502 * test will fail on a vma being torn down, and not grab a page table
3503 * on its way out. We're lucky that the flag has such an appropriate
3504 * name, and can in fact be safely cleared here. We could clear it
3505 * before the __unmap_hugepage_range above, but all that's necessary
3506 * is to clear it before releasing the i_mmap_rwsem. This works
3507 * because in the context this is called, the VMA is about to be
3508 * destroyed and the i_mmap_rwsem is held.
3510 vma->vm_flags &= ~VM_MAYSHARE;
3513 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3514 unsigned long end, struct page *ref_page)
3516 struct mm_struct *mm;
3517 struct mmu_gather tlb;
3518 unsigned long tlb_start = start;
3519 unsigned long tlb_end = end;
3522 * If shared PMDs were possibly used within this vma range, adjust
3523 * start/end for worst case tlb flushing.
3524 * Note that we can not be sure if PMDs are shared until we try to
3525 * unmap pages. However, we want to make sure TLB flushing covers
3526 * the largest possible range.
3528 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3530 mm = vma->vm_mm;
3532 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3533 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3534 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3538 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3539 * mappping it owns the reserve page for. The intention is to unmap the page
3540 * from other VMAs and let the children be SIGKILLed if they are faulting the
3541 * same region.
3543 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3544 struct page *page, unsigned long address)
3546 struct hstate *h = hstate_vma(vma);
3547 struct vm_area_struct *iter_vma;
3548 struct address_space *mapping;
3549 pgoff_t pgoff;
3552 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3553 * from page cache lookup which is in HPAGE_SIZE units.
3555 address = address & huge_page_mask(h);
3556 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3557 vma->vm_pgoff;
3558 mapping = vma->vm_file->f_mapping;
3561 * Take the mapping lock for the duration of the table walk. As
3562 * this mapping should be shared between all the VMAs,
3563 * __unmap_hugepage_range() is called as the lock is already held
3565 i_mmap_lock_write(mapping);
3566 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3567 /* Do not unmap the current VMA */
3568 if (iter_vma == vma)
3569 continue;
3572 * Shared VMAs have their own reserves and do not affect
3573 * MAP_PRIVATE accounting but it is possible that a shared
3574 * VMA is using the same page so check and skip such VMAs.
3576 if (iter_vma->vm_flags & VM_MAYSHARE)
3577 continue;
3580 * Unmap the page from other VMAs without their own reserves.
3581 * They get marked to be SIGKILLed if they fault in these
3582 * areas. This is because a future no-page fault on this VMA
3583 * could insert a zeroed page instead of the data existing
3584 * from the time of fork. This would look like data corruption
3586 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3587 unmap_hugepage_range(iter_vma, address,
3588 address + huge_page_size(h), page);
3590 i_mmap_unlock_write(mapping);
3594 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3595 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3596 * cannot race with other handlers or page migration.
3597 * Keep the pte_same checks anyway to make transition from the mutex easier.
3599 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3600 unsigned long address, pte_t *ptep,
3601 struct page *pagecache_page, spinlock_t *ptl)
3603 pte_t pte;
3604 struct hstate *h = hstate_vma(vma);
3605 struct page *old_page, *new_page;
3606 int outside_reserve = 0;
3607 vm_fault_t ret = 0;
3608 unsigned long haddr = address & huge_page_mask(h);
3609 struct mmu_notifier_range range;
3611 pte = huge_ptep_get(ptep);
3612 old_page = pte_page(pte);
3614 retry_avoidcopy:
3615 /* If no-one else is actually using this page, avoid the copy
3616 * and just make the page writable */
3617 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3618 page_move_anon_rmap(old_page, vma);
3619 set_huge_ptep_writable(vma, haddr, ptep);
3620 return 0;
3624 * If the process that created a MAP_PRIVATE mapping is about to
3625 * perform a COW due to a shared page count, attempt to satisfy
3626 * the allocation without using the existing reserves. The pagecache
3627 * page is used to determine if the reserve at this address was
3628 * consumed or not. If reserves were used, a partial faulted mapping
3629 * at the time of fork() could consume its reserves on COW instead
3630 * of the full address range.
3632 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3633 old_page != pagecache_page)
3634 outside_reserve = 1;
3636 get_page(old_page);
3639 * Drop page table lock as buddy allocator may be called. It will
3640 * be acquired again before returning to the caller, as expected.
3642 spin_unlock(ptl);
3643 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3645 if (IS_ERR(new_page)) {
3647 * If a process owning a MAP_PRIVATE mapping fails to COW,
3648 * it is due to references held by a child and an insufficient
3649 * huge page pool. To guarantee the original mappers
3650 * reliability, unmap the page from child processes. The child
3651 * may get SIGKILLed if it later faults.
3653 if (outside_reserve) {
3654 put_page(old_page);
3655 BUG_ON(huge_pte_none(pte));
3656 unmap_ref_private(mm, vma, old_page, haddr);
3657 BUG_ON(huge_pte_none(pte));
3658 spin_lock(ptl);
3659 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3660 if (likely(ptep &&
3661 pte_same(huge_ptep_get(ptep), pte)))
3662 goto retry_avoidcopy;
3664 * race occurs while re-acquiring page table
3665 * lock, and our job is done.
3667 return 0;
3670 ret = vmf_error(PTR_ERR(new_page));
3671 goto out_release_old;
3675 * When the original hugepage is shared one, it does not have
3676 * anon_vma prepared.
3678 if (unlikely(anon_vma_prepare(vma))) {
3679 ret = VM_FAULT_OOM;
3680 goto out_release_all;
3683 copy_user_huge_page(new_page, old_page, address, vma,
3684 pages_per_huge_page(h));
3685 __SetPageUptodate(new_page);
3687 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3688 haddr + huge_page_size(h));
3689 mmu_notifier_invalidate_range_start(&range);
3692 * Retake the page table lock to check for racing updates
3693 * before the page tables are altered
3695 spin_lock(ptl);
3696 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3697 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3698 ClearPagePrivate(new_page);
3700 /* Break COW */
3701 huge_ptep_clear_flush(vma, haddr, ptep);
3702 mmu_notifier_invalidate_range(mm, range.start, range.end);
3703 set_huge_pte_at(mm, haddr, ptep,
3704 make_huge_pte(vma, new_page, 1));
3705 page_remove_rmap(old_page, true);
3706 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3707 set_page_huge_active(new_page);
3708 /* Make the old page be freed below */
3709 new_page = old_page;
3711 spin_unlock(ptl);
3712 mmu_notifier_invalidate_range_end(&range);
3713 out_release_all:
3714 restore_reserve_on_error(h, vma, haddr, new_page);
3715 put_page(new_page);
3716 out_release_old:
3717 put_page(old_page);
3719 spin_lock(ptl); /* Caller expects lock to be held */
3720 return ret;
3723 /* Return the pagecache page at a given address within a VMA */
3724 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3725 struct vm_area_struct *vma, unsigned long address)
3727 struct address_space *mapping;
3728 pgoff_t idx;
3730 mapping = vma->vm_file->f_mapping;
3731 idx = vma_hugecache_offset(h, vma, address);
3733 return find_lock_page(mapping, idx);
3737 * Return whether there is a pagecache page to back given address within VMA.
3738 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3740 static bool hugetlbfs_pagecache_present(struct hstate *h,
3741 struct vm_area_struct *vma, unsigned long address)
3743 struct address_space *mapping;
3744 pgoff_t idx;
3745 struct page *page;
3747 mapping = vma->vm_file->f_mapping;
3748 idx = vma_hugecache_offset(h, vma, address);
3750 page = find_get_page(mapping, idx);
3751 if (page)
3752 put_page(page);
3753 return page != NULL;
3756 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3757 pgoff_t idx)
3759 struct inode *inode = mapping->host;
3760 struct hstate *h = hstate_inode(inode);
3761 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3763 if (err)
3764 return err;
3765 ClearPagePrivate(page);
3768 * set page dirty so that it will not be removed from cache/file
3769 * by non-hugetlbfs specific code paths.
3771 set_page_dirty(page);
3773 spin_lock(&inode->i_lock);
3774 inode->i_blocks += blocks_per_huge_page(h);
3775 spin_unlock(&inode->i_lock);
3776 return 0;
3779 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3780 struct vm_area_struct *vma,
3781 struct address_space *mapping, pgoff_t idx,
3782 unsigned long address, pte_t *ptep, unsigned int flags)
3784 struct hstate *h = hstate_vma(vma);
3785 vm_fault_t ret = VM_FAULT_SIGBUS;
3786 int anon_rmap = 0;
3787 unsigned long size;
3788 struct page *page;
3789 pte_t new_pte;
3790 spinlock_t *ptl;
3791 unsigned long haddr = address & huge_page_mask(h);
3792 bool new_page = false;
3795 * Currently, we are forced to kill the process in the event the
3796 * original mapper has unmapped pages from the child due to a failed
3797 * COW. Warn that such a situation has occurred as it may not be obvious
3799 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3800 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3801 current->pid);
3802 return ret;
3806 * Use page lock to guard against racing truncation
3807 * before we get page_table_lock.
3809 retry:
3810 page = find_lock_page(mapping, idx);
3811 if (!page) {
3812 size = i_size_read(mapping->host) >> huge_page_shift(h);
3813 if (idx >= size)
3814 goto out;
3817 * Check for page in userfault range
3819 if (userfaultfd_missing(vma)) {
3820 u32 hash;
3821 struct vm_fault vmf = {
3822 .vma = vma,
3823 .address = haddr,
3824 .flags = flags,
3826 * Hard to debug if it ends up being
3827 * used by a callee that assumes
3828 * something about the other
3829 * uninitialized fields... same as in
3830 * memory.c
3835 * hugetlb_fault_mutex must be dropped before
3836 * handling userfault. Reacquire after handling
3837 * fault to make calling code simpler.
3839 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
3840 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3841 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3842 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3843 goto out;
3846 page = alloc_huge_page(vma, haddr, 0);
3847 if (IS_ERR(page)) {
3848 ret = vmf_error(PTR_ERR(page));
3849 goto out;
3851 clear_huge_page(page, address, pages_per_huge_page(h));
3852 __SetPageUptodate(page);
3853 new_page = true;
3855 if (vma->vm_flags & VM_MAYSHARE) {
3856 int err = huge_add_to_page_cache(page, mapping, idx);
3857 if (err) {
3858 put_page(page);
3859 if (err == -EEXIST)
3860 goto retry;
3861 goto out;
3863 } else {
3864 lock_page(page);
3865 if (unlikely(anon_vma_prepare(vma))) {
3866 ret = VM_FAULT_OOM;
3867 goto backout_unlocked;
3869 anon_rmap = 1;
3871 } else {
3873 * If memory error occurs between mmap() and fault, some process
3874 * don't have hwpoisoned swap entry for errored virtual address.
3875 * So we need to block hugepage fault by PG_hwpoison bit check.
3877 if (unlikely(PageHWPoison(page))) {
3878 ret = VM_FAULT_HWPOISON |
3879 VM_FAULT_SET_HINDEX(hstate_index(h));
3880 goto backout_unlocked;
3885 * If we are going to COW a private mapping later, we examine the
3886 * pending reservations for this page now. This will ensure that
3887 * any allocations necessary to record that reservation occur outside
3888 * the spinlock.
3890 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3891 if (vma_needs_reservation(h, vma, haddr) < 0) {
3892 ret = VM_FAULT_OOM;
3893 goto backout_unlocked;
3895 /* Just decrements count, does not deallocate */
3896 vma_end_reservation(h, vma, haddr);
3899 ptl = huge_pte_lock(h, mm, ptep);
3900 size = i_size_read(mapping->host) >> huge_page_shift(h);
3901 if (idx >= size)
3902 goto backout;
3904 ret = 0;
3905 if (!huge_pte_none(huge_ptep_get(ptep)))
3906 goto backout;
3908 if (anon_rmap) {
3909 ClearPagePrivate(page);
3910 hugepage_add_new_anon_rmap(page, vma, haddr);
3911 } else
3912 page_dup_rmap(page, true);
3913 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3914 && (vma->vm_flags & VM_SHARED)));
3915 set_huge_pte_at(mm, haddr, ptep, new_pte);
3917 hugetlb_count_add(pages_per_huge_page(h), mm);
3918 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3919 /* Optimization, do the COW without a second fault */
3920 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3923 spin_unlock(ptl);
3926 * Only make newly allocated pages active. Existing pages found
3927 * in the pagecache could be !page_huge_active() if they have been
3928 * isolated for migration.
3930 if (new_page)
3931 set_page_huge_active(page);
3933 unlock_page(page);
3934 out:
3935 return ret;
3937 backout:
3938 spin_unlock(ptl);
3939 backout_unlocked:
3940 unlock_page(page);
3941 restore_reserve_on_error(h, vma, haddr, page);
3942 put_page(page);
3943 goto out;
3946 #ifdef CONFIG_SMP
3947 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3948 pgoff_t idx, unsigned long address)
3950 unsigned long key[2];
3951 u32 hash;
3953 key[0] = (unsigned long) mapping;
3954 key[1] = idx;
3956 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3958 return hash & (num_fault_mutexes - 1);
3960 #else
3962 * For uniprocesor systems we always use a single mutex, so just
3963 * return 0 and avoid the hashing overhead.
3965 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
3966 pgoff_t idx, unsigned long address)
3968 return 0;
3970 #endif
3972 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3973 unsigned long address, unsigned int flags)
3975 pte_t *ptep, entry;
3976 spinlock_t *ptl;
3977 vm_fault_t ret;
3978 u32 hash;
3979 pgoff_t idx;
3980 struct page *page = NULL;
3981 struct page *pagecache_page = NULL;
3982 struct hstate *h = hstate_vma(vma);
3983 struct address_space *mapping;
3984 int need_wait_lock = 0;
3985 unsigned long haddr = address & huge_page_mask(h);
3987 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3988 if (ptep) {
3989 entry = huge_ptep_get(ptep);
3990 if (unlikely(is_hugetlb_entry_migration(entry))) {
3991 migration_entry_wait_huge(vma, mm, ptep);
3992 return 0;
3993 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3994 return VM_FAULT_HWPOISON_LARGE |
3995 VM_FAULT_SET_HINDEX(hstate_index(h));
3996 } else {
3997 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
3998 if (!ptep)
3999 return VM_FAULT_OOM;
4002 mapping = vma->vm_file->f_mapping;
4003 idx = vma_hugecache_offset(h, vma, haddr);
4006 * Serialize hugepage allocation and instantiation, so that we don't
4007 * get spurious allocation failures if two CPUs race to instantiate
4008 * the same page in the page cache.
4010 hash = hugetlb_fault_mutex_hash(h, mapping, idx, haddr);
4011 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4013 entry = huge_ptep_get(ptep);
4014 if (huge_pte_none(entry)) {
4015 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4016 goto out_mutex;
4019 ret = 0;
4022 * entry could be a migration/hwpoison entry at this point, so this
4023 * check prevents the kernel from going below assuming that we have
4024 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4025 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4026 * handle it.
4028 if (!pte_present(entry))
4029 goto out_mutex;
4032 * If we are going to COW the mapping later, we examine the pending
4033 * reservations for this page now. This will ensure that any
4034 * allocations necessary to record that reservation occur outside the
4035 * spinlock. For private mappings, we also lookup the pagecache
4036 * page now as it is used to determine if a reservation has been
4037 * consumed.
4039 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4040 if (vma_needs_reservation(h, vma, haddr) < 0) {
4041 ret = VM_FAULT_OOM;
4042 goto out_mutex;
4044 /* Just decrements count, does not deallocate */
4045 vma_end_reservation(h, vma, haddr);
4047 if (!(vma->vm_flags & VM_MAYSHARE))
4048 pagecache_page = hugetlbfs_pagecache_page(h,
4049 vma, haddr);
4052 ptl = huge_pte_lock(h, mm, ptep);
4054 /* Check for a racing update before calling hugetlb_cow */
4055 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4056 goto out_ptl;
4059 * hugetlb_cow() requires page locks of pte_page(entry) and
4060 * pagecache_page, so here we need take the former one
4061 * when page != pagecache_page or !pagecache_page.
4063 page = pte_page(entry);
4064 if (page != pagecache_page)
4065 if (!trylock_page(page)) {
4066 need_wait_lock = 1;
4067 goto out_ptl;
4070 get_page(page);
4072 if (flags & FAULT_FLAG_WRITE) {
4073 if (!huge_pte_write(entry)) {
4074 ret = hugetlb_cow(mm, vma, address, ptep,
4075 pagecache_page, ptl);
4076 goto out_put_page;
4078 entry = huge_pte_mkdirty(entry);
4080 entry = pte_mkyoung(entry);
4081 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4082 flags & FAULT_FLAG_WRITE))
4083 update_mmu_cache(vma, haddr, ptep);
4084 out_put_page:
4085 if (page != pagecache_page)
4086 unlock_page(page);
4087 put_page(page);
4088 out_ptl:
4089 spin_unlock(ptl);
4091 if (pagecache_page) {
4092 unlock_page(pagecache_page);
4093 put_page(pagecache_page);
4095 out_mutex:
4096 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4098 * Generally it's safe to hold refcount during waiting page lock. But
4099 * here we just wait to defer the next page fault to avoid busy loop and
4100 * the page is not used after unlocked before returning from the current
4101 * page fault. So we are safe from accessing freed page, even if we wait
4102 * here without taking refcount.
4104 if (need_wait_lock)
4105 wait_on_page_locked(page);
4106 return ret;
4110 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4111 * modifications for huge pages.
4113 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4114 pte_t *dst_pte,
4115 struct vm_area_struct *dst_vma,
4116 unsigned long dst_addr,
4117 unsigned long src_addr,
4118 struct page **pagep)
4120 struct address_space *mapping;
4121 pgoff_t idx;
4122 unsigned long size;
4123 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4124 struct hstate *h = hstate_vma(dst_vma);
4125 pte_t _dst_pte;
4126 spinlock_t *ptl;
4127 int ret;
4128 struct page *page;
4130 if (!*pagep) {
4131 ret = -ENOMEM;
4132 page = alloc_huge_page(dst_vma, dst_addr, 0);
4133 if (IS_ERR(page))
4134 goto out;
4136 ret = copy_huge_page_from_user(page,
4137 (const void __user *) src_addr,
4138 pages_per_huge_page(h), false);
4140 /* fallback to copy_from_user outside mmap_sem */
4141 if (unlikely(ret)) {
4142 ret = -ENOENT;
4143 *pagep = page;
4144 /* don't free the page */
4145 goto out;
4147 } else {
4148 page = *pagep;
4149 *pagep = NULL;
4153 * The memory barrier inside __SetPageUptodate makes sure that
4154 * preceding stores to the page contents become visible before
4155 * the set_pte_at() write.
4157 __SetPageUptodate(page);
4159 mapping = dst_vma->vm_file->f_mapping;
4160 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4163 * If shared, add to page cache
4165 if (vm_shared) {
4166 size = i_size_read(mapping->host) >> huge_page_shift(h);
4167 ret = -EFAULT;
4168 if (idx >= size)
4169 goto out_release_nounlock;
4172 * Serialization between remove_inode_hugepages() and
4173 * huge_add_to_page_cache() below happens through the
4174 * hugetlb_fault_mutex_table that here must be hold by
4175 * the caller.
4177 ret = huge_add_to_page_cache(page, mapping, idx);
4178 if (ret)
4179 goto out_release_nounlock;
4182 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4183 spin_lock(ptl);
4186 * Recheck the i_size after holding PT lock to make sure not
4187 * to leave any page mapped (as page_mapped()) beyond the end
4188 * of the i_size (remove_inode_hugepages() is strict about
4189 * enforcing that). If we bail out here, we'll also leave a
4190 * page in the radix tree in the vm_shared case beyond the end
4191 * of the i_size, but remove_inode_hugepages() will take care
4192 * of it as soon as we drop the hugetlb_fault_mutex_table.
4194 size = i_size_read(mapping->host) >> huge_page_shift(h);
4195 ret = -EFAULT;
4196 if (idx >= size)
4197 goto out_release_unlock;
4199 ret = -EEXIST;
4200 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4201 goto out_release_unlock;
4203 if (vm_shared) {
4204 page_dup_rmap(page, true);
4205 } else {
4206 ClearPagePrivate(page);
4207 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4210 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4211 if (dst_vma->vm_flags & VM_WRITE)
4212 _dst_pte = huge_pte_mkdirty(_dst_pte);
4213 _dst_pte = pte_mkyoung(_dst_pte);
4215 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4217 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4218 dst_vma->vm_flags & VM_WRITE);
4219 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4221 /* No need to invalidate - it was non-present before */
4222 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4224 spin_unlock(ptl);
4225 set_page_huge_active(page);
4226 if (vm_shared)
4227 unlock_page(page);
4228 ret = 0;
4229 out:
4230 return ret;
4231 out_release_unlock:
4232 spin_unlock(ptl);
4233 if (vm_shared)
4234 unlock_page(page);
4235 out_release_nounlock:
4236 put_page(page);
4237 goto out;
4240 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4241 struct page **pages, struct vm_area_struct **vmas,
4242 unsigned long *position, unsigned long *nr_pages,
4243 long i, unsigned int flags, int *nonblocking)
4245 unsigned long pfn_offset;
4246 unsigned long vaddr = *position;
4247 unsigned long remainder = *nr_pages;
4248 struct hstate *h = hstate_vma(vma);
4249 int err = -EFAULT;
4251 while (vaddr < vma->vm_end && remainder) {
4252 pte_t *pte;
4253 spinlock_t *ptl = NULL;
4254 int absent;
4255 struct page *page;
4258 * If we have a pending SIGKILL, don't keep faulting pages and
4259 * potentially allocating memory.
4261 if (fatal_signal_pending(current)) {
4262 remainder = 0;
4263 break;
4267 * Some archs (sparc64, sh*) have multiple pte_ts to
4268 * each hugepage. We have to make sure we get the
4269 * first, for the page indexing below to work.
4271 * Note that page table lock is not held when pte is null.
4273 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4274 huge_page_size(h));
4275 if (pte)
4276 ptl = huge_pte_lock(h, mm, pte);
4277 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4280 * When coredumping, it suits get_dump_page if we just return
4281 * an error where there's an empty slot with no huge pagecache
4282 * to back it. This way, we avoid allocating a hugepage, and
4283 * the sparse dumpfile avoids allocating disk blocks, but its
4284 * huge holes still show up with zeroes where they need to be.
4286 if (absent && (flags & FOLL_DUMP) &&
4287 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4288 if (pte)
4289 spin_unlock(ptl);
4290 remainder = 0;
4291 break;
4295 * We need call hugetlb_fault for both hugepages under migration
4296 * (in which case hugetlb_fault waits for the migration,) and
4297 * hwpoisoned hugepages (in which case we need to prevent the
4298 * caller from accessing to them.) In order to do this, we use
4299 * here is_swap_pte instead of is_hugetlb_entry_migration and
4300 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4301 * both cases, and because we can't follow correct pages
4302 * directly from any kind of swap entries.
4304 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4305 ((flags & FOLL_WRITE) &&
4306 !huge_pte_write(huge_ptep_get(pte)))) {
4307 vm_fault_t ret;
4308 unsigned int fault_flags = 0;
4310 if (pte)
4311 spin_unlock(ptl);
4312 if (flags & FOLL_WRITE)
4313 fault_flags |= FAULT_FLAG_WRITE;
4314 if (nonblocking)
4315 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4316 if (flags & FOLL_NOWAIT)
4317 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4318 FAULT_FLAG_RETRY_NOWAIT;
4319 if (flags & FOLL_TRIED) {
4320 VM_WARN_ON_ONCE(fault_flags &
4321 FAULT_FLAG_ALLOW_RETRY);
4322 fault_flags |= FAULT_FLAG_TRIED;
4324 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4325 if (ret & VM_FAULT_ERROR) {
4326 err = vm_fault_to_errno(ret, flags);
4327 remainder = 0;
4328 break;
4330 if (ret & VM_FAULT_RETRY) {
4331 if (nonblocking &&
4332 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4333 *nonblocking = 0;
4334 *nr_pages = 0;
4336 * VM_FAULT_RETRY must not return an
4337 * error, it will return zero
4338 * instead.
4340 * No need to update "position" as the
4341 * caller will not check it after
4342 * *nr_pages is set to 0.
4344 return i;
4346 continue;
4349 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4350 page = pte_page(huge_ptep_get(pte));
4353 * Instead of doing 'try_get_page()' below in the same_page
4354 * loop, just check the count once here.
4356 if (unlikely(page_count(page) <= 0)) {
4357 if (pages) {
4358 spin_unlock(ptl);
4359 remainder = 0;
4360 err = -ENOMEM;
4361 break;
4364 same_page:
4365 if (pages) {
4366 pages[i] = mem_map_offset(page, pfn_offset);
4367 get_page(pages[i]);
4370 if (vmas)
4371 vmas[i] = vma;
4373 vaddr += PAGE_SIZE;
4374 ++pfn_offset;
4375 --remainder;
4376 ++i;
4377 if (vaddr < vma->vm_end && remainder &&
4378 pfn_offset < pages_per_huge_page(h)) {
4380 * We use pfn_offset to avoid touching the pageframes
4381 * of this compound page.
4383 goto same_page;
4385 spin_unlock(ptl);
4387 *nr_pages = remainder;
4389 * setting position is actually required only if remainder is
4390 * not zero but it's faster not to add a "if (remainder)"
4391 * branch.
4393 *position = vaddr;
4395 return i ? i : err;
4398 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4400 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4401 * implement this.
4403 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4404 #endif
4406 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4407 unsigned long address, unsigned long end, pgprot_t newprot)
4409 struct mm_struct *mm = vma->vm_mm;
4410 unsigned long start = address;
4411 pte_t *ptep;
4412 pte_t pte;
4413 struct hstate *h = hstate_vma(vma);
4414 unsigned long pages = 0;
4415 bool shared_pmd = false;
4416 struct mmu_notifier_range range;
4419 * In the case of shared PMDs, the area to flush could be beyond
4420 * start/end. Set range.start/range.end to cover the maximum possible
4421 * range if PMD sharing is possible.
4423 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4424 0, vma, mm, start, end);
4425 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4427 BUG_ON(address >= end);
4428 flush_cache_range(vma, range.start, range.end);
4430 mmu_notifier_invalidate_range_start(&range);
4431 i_mmap_lock_write(vma->vm_file->f_mapping);
4432 for (; address < end; address += huge_page_size(h)) {
4433 spinlock_t *ptl;
4434 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4435 if (!ptep)
4436 continue;
4437 ptl = huge_pte_lock(h, mm, ptep);
4438 if (huge_pmd_unshare(mm, &address, ptep)) {
4439 pages++;
4440 spin_unlock(ptl);
4441 shared_pmd = true;
4442 continue;
4444 pte = huge_ptep_get(ptep);
4445 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4446 spin_unlock(ptl);
4447 continue;
4449 if (unlikely(is_hugetlb_entry_migration(pte))) {
4450 swp_entry_t entry = pte_to_swp_entry(pte);
4452 if (is_write_migration_entry(entry)) {
4453 pte_t newpte;
4455 make_migration_entry_read(&entry);
4456 newpte = swp_entry_to_pte(entry);
4457 set_huge_swap_pte_at(mm, address, ptep,
4458 newpte, huge_page_size(h));
4459 pages++;
4461 spin_unlock(ptl);
4462 continue;
4464 if (!huge_pte_none(pte)) {
4465 pte_t old_pte;
4467 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4468 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4469 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4470 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4471 pages++;
4473 spin_unlock(ptl);
4476 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4477 * may have cleared our pud entry and done put_page on the page table:
4478 * once we release i_mmap_rwsem, another task can do the final put_page
4479 * and that page table be reused and filled with junk. If we actually
4480 * did unshare a page of pmds, flush the range corresponding to the pud.
4482 if (shared_pmd)
4483 flush_hugetlb_tlb_range(vma, range.start, range.end);
4484 else
4485 flush_hugetlb_tlb_range(vma, start, end);
4487 * No need to call mmu_notifier_invalidate_range() we are downgrading
4488 * page table protection not changing it to point to a new page.
4490 * See Documentation/vm/mmu_notifier.rst
4492 i_mmap_unlock_write(vma->vm_file->f_mapping);
4493 mmu_notifier_invalidate_range_end(&range);
4495 return pages << h->order;
4498 int hugetlb_reserve_pages(struct inode *inode,
4499 long from, long to,
4500 struct vm_area_struct *vma,
4501 vm_flags_t vm_flags)
4503 long ret, chg;
4504 struct hstate *h = hstate_inode(inode);
4505 struct hugepage_subpool *spool = subpool_inode(inode);
4506 struct resv_map *resv_map;
4507 long gbl_reserve;
4509 /* This should never happen */
4510 if (from > to) {
4511 VM_WARN(1, "%s called with a negative range\n", __func__);
4512 return -EINVAL;
4516 * Only apply hugepage reservation if asked. At fault time, an
4517 * attempt will be made for VM_NORESERVE to allocate a page
4518 * without using reserves
4520 if (vm_flags & VM_NORESERVE)
4521 return 0;
4524 * Shared mappings base their reservation on the number of pages that
4525 * are already allocated on behalf of the file. Private mappings need
4526 * to reserve the full area even if read-only as mprotect() may be
4527 * called to make the mapping read-write. Assume !vma is a shm mapping
4529 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4531 * resv_map can not be NULL as hugetlb_reserve_pages is only
4532 * called for inodes for which resv_maps were created (see
4533 * hugetlbfs_get_inode).
4535 resv_map = inode_resv_map(inode);
4537 chg = region_chg(resv_map, from, to);
4539 } else {
4540 resv_map = resv_map_alloc();
4541 if (!resv_map)
4542 return -ENOMEM;
4544 chg = to - from;
4546 set_vma_resv_map(vma, resv_map);
4547 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4550 if (chg < 0) {
4551 ret = chg;
4552 goto out_err;
4556 * There must be enough pages in the subpool for the mapping. If
4557 * the subpool has a minimum size, there may be some global
4558 * reservations already in place (gbl_reserve).
4560 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4561 if (gbl_reserve < 0) {
4562 ret = -ENOSPC;
4563 goto out_err;
4567 * Check enough hugepages are available for the reservation.
4568 * Hand the pages back to the subpool if there are not
4570 ret = hugetlb_acct_memory(h, gbl_reserve);
4571 if (ret < 0) {
4572 /* put back original number of pages, chg */
4573 (void)hugepage_subpool_put_pages(spool, chg);
4574 goto out_err;
4578 * Account for the reservations made. Shared mappings record regions
4579 * that have reservations as they are shared by multiple VMAs.
4580 * When the last VMA disappears, the region map says how much
4581 * the reservation was and the page cache tells how much of
4582 * the reservation was consumed. Private mappings are per-VMA and
4583 * only the consumed reservations are tracked. When the VMA
4584 * disappears, the original reservation is the VMA size and the
4585 * consumed reservations are stored in the map. Hence, nothing
4586 * else has to be done for private mappings here
4588 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4589 long add = region_add(resv_map, from, to);
4591 if (unlikely(chg > add)) {
4593 * pages in this range were added to the reserve
4594 * map between region_chg and region_add. This
4595 * indicates a race with alloc_huge_page. Adjust
4596 * the subpool and reserve counts modified above
4597 * based on the difference.
4599 long rsv_adjust;
4601 rsv_adjust = hugepage_subpool_put_pages(spool,
4602 chg - add);
4603 hugetlb_acct_memory(h, -rsv_adjust);
4606 return 0;
4607 out_err:
4608 if (!vma || vma->vm_flags & VM_MAYSHARE)
4609 /* Don't call region_abort if region_chg failed */
4610 if (chg >= 0)
4611 region_abort(resv_map, from, to);
4612 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4613 kref_put(&resv_map->refs, resv_map_release);
4614 return ret;
4617 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4618 long freed)
4620 struct hstate *h = hstate_inode(inode);
4621 struct resv_map *resv_map = inode_resv_map(inode);
4622 long chg = 0;
4623 struct hugepage_subpool *spool = subpool_inode(inode);
4624 long gbl_reserve;
4627 * Since this routine can be called in the evict inode path for all
4628 * hugetlbfs inodes, resv_map could be NULL.
4630 if (resv_map) {
4631 chg = region_del(resv_map, start, end);
4633 * region_del() can fail in the rare case where a region
4634 * must be split and another region descriptor can not be
4635 * allocated. If end == LONG_MAX, it will not fail.
4637 if (chg < 0)
4638 return chg;
4641 spin_lock(&inode->i_lock);
4642 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4643 spin_unlock(&inode->i_lock);
4646 * If the subpool has a minimum size, the number of global
4647 * reservations to be released may be adjusted.
4649 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4650 hugetlb_acct_memory(h, -gbl_reserve);
4652 return 0;
4655 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4656 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4657 struct vm_area_struct *vma,
4658 unsigned long addr, pgoff_t idx)
4660 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4661 svma->vm_start;
4662 unsigned long sbase = saddr & PUD_MASK;
4663 unsigned long s_end = sbase + PUD_SIZE;
4665 /* Allow segments to share if only one is marked locked */
4666 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4667 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4670 * match the virtual addresses, permission and the alignment of the
4671 * page table page.
4673 if (pmd_index(addr) != pmd_index(saddr) ||
4674 vm_flags != svm_flags ||
4675 sbase < svma->vm_start || svma->vm_end < s_end)
4676 return 0;
4678 return saddr;
4681 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4683 unsigned long base = addr & PUD_MASK;
4684 unsigned long end = base + PUD_SIZE;
4687 * check on proper vm_flags and page table alignment
4689 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4690 return true;
4691 return false;
4695 * Determine if start,end range within vma could be mapped by shared pmd.
4696 * If yes, adjust start and end to cover range associated with possible
4697 * shared pmd mappings.
4699 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4700 unsigned long *start, unsigned long *end)
4702 unsigned long check_addr = *start;
4704 if (!(vma->vm_flags & VM_MAYSHARE))
4705 return;
4707 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4708 unsigned long a_start = check_addr & PUD_MASK;
4709 unsigned long a_end = a_start + PUD_SIZE;
4712 * If sharing is possible, adjust start/end if necessary.
4714 if (range_in_vma(vma, a_start, a_end)) {
4715 if (a_start < *start)
4716 *start = a_start;
4717 if (a_end > *end)
4718 *end = a_end;
4724 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4725 * and returns the corresponding pte. While this is not necessary for the
4726 * !shared pmd case because we can allocate the pmd later as well, it makes the
4727 * code much cleaner. pmd allocation is essential for the shared case because
4728 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4729 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4730 * bad pmd for sharing.
4732 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4734 struct vm_area_struct *vma = find_vma(mm, addr);
4735 struct address_space *mapping = vma->vm_file->f_mapping;
4736 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4737 vma->vm_pgoff;
4738 struct vm_area_struct *svma;
4739 unsigned long saddr;
4740 pte_t *spte = NULL;
4741 pte_t *pte;
4742 spinlock_t *ptl;
4744 if (!vma_shareable(vma, addr))
4745 return (pte_t *)pmd_alloc(mm, pud, addr);
4747 i_mmap_lock_write(mapping);
4748 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4749 if (svma == vma)
4750 continue;
4752 saddr = page_table_shareable(svma, vma, addr, idx);
4753 if (saddr) {
4754 spte = huge_pte_offset(svma->vm_mm, saddr,
4755 vma_mmu_pagesize(svma));
4756 if (spte) {
4757 get_page(virt_to_page(spte));
4758 break;
4763 if (!spte)
4764 goto out;
4766 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4767 if (pud_none(*pud)) {
4768 pud_populate(mm, pud,
4769 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4770 mm_inc_nr_pmds(mm);
4771 } else {
4772 put_page(virt_to_page(spte));
4774 spin_unlock(ptl);
4775 out:
4776 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4777 i_mmap_unlock_write(mapping);
4778 return pte;
4782 * unmap huge page backed by shared pte.
4784 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4785 * indicated by page_count > 1, unmap is achieved by clearing pud and
4786 * decrementing the ref count. If count == 1, the pte page is not shared.
4788 * called with page table lock held.
4790 * returns: 1 successfully unmapped a shared pte page
4791 * 0 the underlying pte page is not shared, or it is the last user
4793 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4795 pgd_t *pgd = pgd_offset(mm, *addr);
4796 p4d_t *p4d = p4d_offset(pgd, *addr);
4797 pud_t *pud = pud_offset(p4d, *addr);
4799 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4800 if (page_count(virt_to_page(ptep)) == 1)
4801 return 0;
4803 pud_clear(pud);
4804 put_page(virt_to_page(ptep));
4805 mm_dec_nr_pmds(mm);
4806 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4807 return 1;
4809 #define want_pmd_share() (1)
4810 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4811 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4813 return NULL;
4816 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4818 return 0;
4821 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4822 unsigned long *start, unsigned long *end)
4825 #define want_pmd_share() (0)
4826 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4828 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4829 pte_t *huge_pte_alloc(struct mm_struct *mm,
4830 unsigned long addr, unsigned long sz)
4832 pgd_t *pgd;
4833 p4d_t *p4d;
4834 pud_t *pud;
4835 pte_t *pte = NULL;
4837 pgd = pgd_offset(mm, addr);
4838 p4d = p4d_alloc(mm, pgd, addr);
4839 if (!p4d)
4840 return NULL;
4841 pud = pud_alloc(mm, p4d, addr);
4842 if (pud) {
4843 if (sz == PUD_SIZE) {
4844 pte = (pte_t *)pud;
4845 } else {
4846 BUG_ON(sz != PMD_SIZE);
4847 if (want_pmd_share() && pud_none(*pud))
4848 pte = huge_pmd_share(mm, addr, pud);
4849 else
4850 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4853 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4855 return pte;
4859 * huge_pte_offset() - Walk the page table to resolve the hugepage
4860 * entry at address @addr
4862 * Return: Pointer to page table or swap entry (PUD or PMD) for
4863 * address @addr, or NULL if a p*d_none() entry is encountered and the
4864 * size @sz doesn't match the hugepage size at this level of the page
4865 * table.
4867 pte_t *huge_pte_offset(struct mm_struct *mm,
4868 unsigned long addr, unsigned long sz)
4870 pgd_t *pgd;
4871 p4d_t *p4d;
4872 pud_t *pud;
4873 pmd_t *pmd;
4875 pgd = pgd_offset(mm, addr);
4876 if (!pgd_present(*pgd))
4877 return NULL;
4878 p4d = p4d_offset(pgd, addr);
4879 if (!p4d_present(*p4d))
4880 return NULL;
4882 pud = pud_offset(p4d, addr);
4883 if (sz != PUD_SIZE && pud_none(*pud))
4884 return NULL;
4885 /* hugepage or swap? */
4886 if (pud_huge(*pud) || !pud_present(*pud))
4887 return (pte_t *)pud;
4889 pmd = pmd_offset(pud, addr);
4890 if (sz != PMD_SIZE && pmd_none(*pmd))
4891 return NULL;
4892 /* hugepage or swap? */
4893 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4894 return (pte_t *)pmd;
4896 return NULL;
4899 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4902 * These functions are overwritable if your architecture needs its own
4903 * behavior.
4905 struct page * __weak
4906 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4907 int write)
4909 return ERR_PTR(-EINVAL);
4912 struct page * __weak
4913 follow_huge_pd(struct vm_area_struct *vma,
4914 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4916 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4917 return NULL;
4920 struct page * __weak
4921 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4922 pmd_t *pmd, int flags)
4924 struct page *page = NULL;
4925 spinlock_t *ptl;
4926 pte_t pte;
4927 retry:
4928 ptl = pmd_lockptr(mm, pmd);
4929 spin_lock(ptl);
4931 * make sure that the address range covered by this pmd is not
4932 * unmapped from other threads.
4934 if (!pmd_huge(*pmd))
4935 goto out;
4936 pte = huge_ptep_get((pte_t *)pmd);
4937 if (pte_present(pte)) {
4938 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4939 if (flags & FOLL_GET)
4940 get_page(page);
4941 } else {
4942 if (is_hugetlb_entry_migration(pte)) {
4943 spin_unlock(ptl);
4944 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4945 goto retry;
4948 * hwpoisoned entry is treated as no_page_table in
4949 * follow_page_mask().
4952 out:
4953 spin_unlock(ptl);
4954 return page;
4957 struct page * __weak
4958 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4959 pud_t *pud, int flags)
4961 if (flags & FOLL_GET)
4962 return NULL;
4964 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4967 struct page * __weak
4968 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4970 if (flags & FOLL_GET)
4971 return NULL;
4973 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4976 bool isolate_huge_page(struct page *page, struct list_head *list)
4978 bool ret = true;
4980 VM_BUG_ON_PAGE(!PageHead(page), page);
4981 spin_lock(&hugetlb_lock);
4982 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4983 ret = false;
4984 goto unlock;
4986 clear_page_huge_active(page);
4987 list_move_tail(&page->lru, list);
4988 unlock:
4989 spin_unlock(&hugetlb_lock);
4990 return ret;
4993 void putback_active_hugepage(struct page *page)
4995 VM_BUG_ON_PAGE(!PageHead(page), page);
4996 spin_lock(&hugetlb_lock);
4997 set_page_huge_active(page);
4998 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4999 spin_unlock(&hugetlb_lock);
5000 put_page(page);
5003 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5005 struct hstate *h = page_hstate(oldpage);
5007 hugetlb_cgroup_migrate(oldpage, newpage);
5008 set_page_owner_migrate_reason(newpage, reason);
5011 * transfer temporary state of the new huge page. This is
5012 * reverse to other transitions because the newpage is going to
5013 * be final while the old one will be freed so it takes over
5014 * the temporary status.
5016 * Also note that we have to transfer the per-node surplus state
5017 * here as well otherwise the global surplus count will not match
5018 * the per-node's.
5020 if (PageHugeTemporary(newpage)) {
5021 int old_nid = page_to_nid(oldpage);
5022 int new_nid = page_to_nid(newpage);
5024 SetPageHugeTemporary(oldpage);
5025 ClearPageHugeTemporary(newpage);
5027 spin_lock(&hugetlb_lock);
5028 if (h->surplus_huge_pages_node[old_nid]) {
5029 h->surplus_huge_pages_node[old_nid]--;
5030 h->surplus_huge_pages_node[new_nid]++;
5032 spin_unlock(&hugetlb_lock);