1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim
;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup
*target_mem_cgroup
;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage
:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap
:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap
:1;
91 /* e.g. boosted watermark reclaim leaves slabs alone */
92 unsigned int may_shrinkslab
:1;
95 * Cgroups are not reclaimed below their configured memory.low,
96 * unless we threaten to OOM. If any cgroups are skipped due to
97 * memory.low and nothing was reclaimed, go back for memory.low.
99 unsigned int memcg_low_reclaim
:1;
100 unsigned int memcg_low_skipped
:1;
102 unsigned int hibernation_mode
:1;
104 /* One of the zones is ready for compaction */
105 unsigned int compaction_ready
:1;
107 /* Allocation order */
110 /* Scan (total_size >> priority) pages at once */
113 /* The highest zone to isolate pages for reclaim from */
116 /* This context's GFP mask */
119 /* Incremented by the number of inactive pages that were scanned */
120 unsigned long nr_scanned
;
122 /* Number of pages freed so far during a call to shrink_zones() */
123 unsigned long nr_reclaimed
;
127 unsigned int unqueued_dirty
;
128 unsigned int congested
;
129 unsigned int writeback
;
130 unsigned int immediate
;
131 unsigned int file_taken
;
136 #ifdef ARCH_HAS_PREFETCH
137 #define prefetch_prev_lru_page(_page, _base, _field) \
139 if ((_page)->lru.prev != _base) { \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetch(&prev->_field); \
147 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
150 #ifdef ARCH_HAS_PREFETCHW
151 #define prefetchw_prev_lru_page(_page, _base, _field) \
153 if ((_page)->lru.prev != _base) { \
156 prev = lru_to_page(&(_page->lru)); \
157 prefetchw(&prev->_field); \
161 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
165 * From 0 .. 100. Higher means more swappy.
167 int vm_swappiness
= 60;
169 * The total number of pages which are beyond the high watermark within all
172 unsigned long vm_total_pages
;
174 static LIST_HEAD(shrinker_list
);
175 static DECLARE_RWSEM(shrinker_rwsem
);
177 #ifdef CONFIG_MEMCG_KMEM
180 * We allow subsystems to populate their shrinker-related
181 * LRU lists before register_shrinker_prepared() is called
182 * for the shrinker, since we don't want to impose
183 * restrictions on their internal registration order.
184 * In this case shrink_slab_memcg() may find corresponding
185 * bit is set in the shrinkers map.
187 * This value is used by the function to detect registering
188 * shrinkers and to skip do_shrink_slab() calls for them.
190 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
192 static DEFINE_IDR(shrinker_idr
);
193 static int shrinker_nr_max
;
195 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
197 int id
, ret
= -ENOMEM
;
199 down_write(&shrinker_rwsem
);
200 /* This may call shrinker, so it must use down_read_trylock() */
201 id
= idr_alloc(&shrinker_idr
, SHRINKER_REGISTERING
, 0, 0, GFP_KERNEL
);
205 if (id
>= shrinker_nr_max
) {
206 if (memcg_expand_shrinker_maps(id
)) {
207 idr_remove(&shrinker_idr
, id
);
211 shrinker_nr_max
= id
+ 1;
216 up_write(&shrinker_rwsem
);
220 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
222 int id
= shrinker
->id
;
226 down_write(&shrinker_rwsem
);
227 idr_remove(&shrinker_idr
, id
);
228 up_write(&shrinker_rwsem
);
230 #else /* CONFIG_MEMCG_KMEM */
231 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
236 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
239 #endif /* CONFIG_MEMCG_KMEM */
242 static bool global_reclaim(struct scan_control
*sc
)
244 return !sc
->target_mem_cgroup
;
248 * sane_reclaim - is the usual dirty throttling mechanism operational?
249 * @sc: scan_control in question
251 * The normal page dirty throttling mechanism in balance_dirty_pages() is
252 * completely broken with the legacy memcg and direct stalling in
253 * shrink_page_list() is used for throttling instead, which lacks all the
254 * niceties such as fairness, adaptive pausing, bandwidth proportional
255 * allocation and configurability.
257 * This function tests whether the vmscan currently in progress can assume
258 * that the normal dirty throttling mechanism is operational.
260 static bool sane_reclaim(struct scan_control
*sc
)
262 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
266 #ifdef CONFIG_CGROUP_WRITEBACK
267 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
273 static void set_memcg_congestion(pg_data_t
*pgdat
,
274 struct mem_cgroup
*memcg
,
277 struct mem_cgroup_per_node
*mn
;
282 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
283 WRITE_ONCE(mn
->congested
, congested
);
286 static bool memcg_congested(pg_data_t
*pgdat
,
287 struct mem_cgroup
*memcg
)
289 struct mem_cgroup_per_node
*mn
;
291 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
292 return READ_ONCE(mn
->congested
);
296 static bool global_reclaim(struct scan_control
*sc
)
301 static bool sane_reclaim(struct scan_control
*sc
)
306 static inline void set_memcg_congestion(struct pglist_data
*pgdat
,
307 struct mem_cgroup
*memcg
, bool congested
)
311 static inline bool memcg_congested(struct pglist_data
*pgdat
,
312 struct mem_cgroup
*memcg
)
320 * This misses isolated pages which are not accounted for to save counters.
321 * As the data only determines if reclaim or compaction continues, it is
322 * not expected that isolated pages will be a dominating factor.
324 unsigned long zone_reclaimable_pages(struct zone
*zone
)
328 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
329 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
330 if (get_nr_swap_pages() > 0)
331 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
332 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
338 * lruvec_lru_size - Returns the number of pages on the given LRU list.
339 * @lruvec: lru vector
341 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
343 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
345 unsigned long lru_size
;
348 if (!mem_cgroup_disabled())
349 lru_size
= lruvec_page_state_local(lruvec
, NR_LRU_BASE
+ lru
);
351 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
353 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
354 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
357 if (!managed_zone(zone
))
360 if (!mem_cgroup_disabled())
361 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
363 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
364 NR_ZONE_LRU_BASE
+ lru
);
365 lru_size
-= min(size
, lru_size
);
373 * Add a shrinker callback to be called from the vm.
375 int prealloc_shrinker(struct shrinker
*shrinker
)
377 unsigned int size
= sizeof(*shrinker
->nr_deferred
);
379 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
382 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
383 if (!shrinker
->nr_deferred
)
386 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
) {
387 if (prealloc_memcg_shrinker(shrinker
))
394 kfree(shrinker
->nr_deferred
);
395 shrinker
->nr_deferred
= NULL
;
399 void free_prealloced_shrinker(struct shrinker
*shrinker
)
401 if (!shrinker
->nr_deferred
)
404 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
405 unregister_memcg_shrinker(shrinker
);
407 kfree(shrinker
->nr_deferred
);
408 shrinker
->nr_deferred
= NULL
;
411 void register_shrinker_prepared(struct shrinker
*shrinker
)
413 down_write(&shrinker_rwsem
);
414 list_add_tail(&shrinker
->list
, &shrinker_list
);
415 #ifdef CONFIG_MEMCG_KMEM
416 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
417 idr_replace(&shrinker_idr
, shrinker
, shrinker
->id
);
419 up_write(&shrinker_rwsem
);
422 int register_shrinker(struct shrinker
*shrinker
)
424 int err
= prealloc_shrinker(shrinker
);
428 register_shrinker_prepared(shrinker
);
431 EXPORT_SYMBOL(register_shrinker
);
436 void unregister_shrinker(struct shrinker
*shrinker
)
438 if (!shrinker
->nr_deferred
)
440 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
441 unregister_memcg_shrinker(shrinker
);
442 down_write(&shrinker_rwsem
);
443 list_del(&shrinker
->list
);
444 up_write(&shrinker_rwsem
);
445 kfree(shrinker
->nr_deferred
);
446 shrinker
->nr_deferred
= NULL
;
448 EXPORT_SYMBOL(unregister_shrinker
);
450 #define SHRINK_BATCH 128
452 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
453 struct shrinker
*shrinker
, int priority
)
455 unsigned long freed
= 0;
456 unsigned long long delta
;
461 int nid
= shrinkctl
->nid
;
462 long batch_size
= shrinker
->batch
? shrinker
->batch
464 long scanned
= 0, next_deferred
;
466 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
469 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
470 if (freeable
== 0 || freeable
== SHRINK_EMPTY
)
474 * copy the current shrinker scan count into a local variable
475 * and zero it so that other concurrent shrinker invocations
476 * don't also do this scanning work.
478 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
481 if (shrinker
->seeks
) {
482 delta
= freeable
>> priority
;
484 do_div(delta
, shrinker
->seeks
);
487 * These objects don't require any IO to create. Trim
488 * them aggressively under memory pressure to keep
489 * them from causing refetches in the IO caches.
491 delta
= freeable
/ 2;
495 if (total_scan
< 0) {
496 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
497 shrinker
->scan_objects
, total_scan
);
498 total_scan
= freeable
;
501 next_deferred
= total_scan
;
504 * We need to avoid excessive windup on filesystem shrinkers
505 * due to large numbers of GFP_NOFS allocations causing the
506 * shrinkers to return -1 all the time. This results in a large
507 * nr being built up so when a shrink that can do some work
508 * comes along it empties the entire cache due to nr >>>
509 * freeable. This is bad for sustaining a working set in
512 * Hence only allow the shrinker to scan the entire cache when
513 * a large delta change is calculated directly.
515 if (delta
< freeable
/ 4)
516 total_scan
= min(total_scan
, freeable
/ 2);
519 * Avoid risking looping forever due to too large nr value:
520 * never try to free more than twice the estimate number of
523 if (total_scan
> freeable
* 2)
524 total_scan
= freeable
* 2;
526 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
527 freeable
, delta
, total_scan
, priority
);
530 * Normally, we should not scan less than batch_size objects in one
531 * pass to avoid too frequent shrinker calls, but if the slab has less
532 * than batch_size objects in total and we are really tight on memory,
533 * we will try to reclaim all available objects, otherwise we can end
534 * up failing allocations although there are plenty of reclaimable
535 * objects spread over several slabs with usage less than the
538 * We detect the "tight on memory" situations by looking at the total
539 * number of objects we want to scan (total_scan). If it is greater
540 * than the total number of objects on slab (freeable), we must be
541 * scanning at high prio and therefore should try to reclaim as much as
544 while (total_scan
>= batch_size
||
545 total_scan
>= freeable
) {
547 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
549 shrinkctl
->nr_to_scan
= nr_to_scan
;
550 shrinkctl
->nr_scanned
= nr_to_scan
;
551 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
552 if (ret
== SHRINK_STOP
)
556 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
557 total_scan
-= shrinkctl
->nr_scanned
;
558 scanned
+= shrinkctl
->nr_scanned
;
563 if (next_deferred
>= scanned
)
564 next_deferred
-= scanned
;
568 * move the unused scan count back into the shrinker in a
569 * manner that handles concurrent updates. If we exhausted the
570 * scan, there is no need to do an update.
572 if (next_deferred
> 0)
573 new_nr
= atomic_long_add_return(next_deferred
,
574 &shrinker
->nr_deferred
[nid
]);
576 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
578 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
582 #ifdef CONFIG_MEMCG_KMEM
583 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
584 struct mem_cgroup
*memcg
, int priority
)
586 struct memcg_shrinker_map
*map
;
587 unsigned long ret
, freed
= 0;
590 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
))
593 if (!down_read_trylock(&shrinker_rwsem
))
596 map
= rcu_dereference_protected(memcg
->nodeinfo
[nid
]->shrinker_map
,
601 for_each_set_bit(i
, map
->map
, shrinker_nr_max
) {
602 struct shrink_control sc
= {
603 .gfp_mask
= gfp_mask
,
607 struct shrinker
*shrinker
;
609 shrinker
= idr_find(&shrinker_idr
, i
);
610 if (unlikely(!shrinker
|| shrinker
== SHRINKER_REGISTERING
)) {
612 clear_bit(i
, map
->map
);
616 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
617 if (ret
== SHRINK_EMPTY
) {
618 clear_bit(i
, map
->map
);
620 * After the shrinker reported that it had no objects to
621 * free, but before we cleared the corresponding bit in
622 * the memcg shrinker map, a new object might have been
623 * added. To make sure, we have the bit set in this
624 * case, we invoke the shrinker one more time and reset
625 * the bit if it reports that it is not empty anymore.
626 * The memory barrier here pairs with the barrier in
627 * memcg_set_shrinker_bit():
629 * list_lru_add() shrink_slab_memcg()
630 * list_add_tail() clear_bit()
632 * set_bit() do_shrink_slab()
634 smp_mb__after_atomic();
635 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
636 if (ret
== SHRINK_EMPTY
)
639 memcg_set_shrinker_bit(memcg
, nid
, i
);
643 if (rwsem_is_contended(&shrinker_rwsem
)) {
649 up_read(&shrinker_rwsem
);
652 #else /* CONFIG_MEMCG_KMEM */
653 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
654 struct mem_cgroup
*memcg
, int priority
)
658 #endif /* CONFIG_MEMCG_KMEM */
661 * shrink_slab - shrink slab caches
662 * @gfp_mask: allocation context
663 * @nid: node whose slab caches to target
664 * @memcg: memory cgroup whose slab caches to target
665 * @priority: the reclaim priority
667 * Call the shrink functions to age shrinkable caches.
669 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
670 * unaware shrinkers will receive a node id of 0 instead.
672 * @memcg specifies the memory cgroup to target. Unaware shrinkers
673 * are called only if it is the root cgroup.
675 * @priority is sc->priority, we take the number of objects and >> by priority
676 * in order to get the scan target.
678 * Returns the number of reclaimed slab objects.
680 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
681 struct mem_cgroup
*memcg
,
684 unsigned long ret
, freed
= 0;
685 struct shrinker
*shrinker
;
687 if (!mem_cgroup_is_root(memcg
))
688 return shrink_slab_memcg(gfp_mask
, nid
, memcg
, priority
);
690 if (!down_read_trylock(&shrinker_rwsem
))
693 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
694 struct shrink_control sc
= {
695 .gfp_mask
= gfp_mask
,
700 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
701 if (ret
== SHRINK_EMPTY
)
705 * Bail out if someone want to register a new shrinker to
706 * prevent the regsitration from being stalled for long periods
707 * by parallel ongoing shrinking.
709 if (rwsem_is_contended(&shrinker_rwsem
)) {
715 up_read(&shrinker_rwsem
);
721 void drop_slab_node(int nid
)
726 struct mem_cgroup
*memcg
= NULL
;
729 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
731 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
732 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
733 } while (freed
> 10);
740 for_each_online_node(nid
)
744 static inline int is_page_cache_freeable(struct page
*page
)
747 * A freeable page cache page is referenced only by the caller
748 * that isolated the page, the page cache and optional buffer
749 * heads at page->private.
751 int page_cache_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
753 return page_count(page
) - page_has_private(page
) == 1 + page_cache_pins
;
756 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
758 if (current
->flags
& PF_SWAPWRITE
)
760 if (!inode_write_congested(inode
))
762 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
768 * We detected a synchronous write error writing a page out. Probably
769 * -ENOSPC. We need to propagate that into the address_space for a subsequent
770 * fsync(), msync() or close().
772 * The tricky part is that after writepage we cannot touch the mapping: nothing
773 * prevents it from being freed up. But we have a ref on the page and once
774 * that page is locked, the mapping is pinned.
776 * We're allowed to run sleeping lock_page() here because we know the caller has
779 static void handle_write_error(struct address_space
*mapping
,
780 struct page
*page
, int error
)
783 if (page_mapping(page
) == mapping
)
784 mapping_set_error(mapping
, error
);
788 /* possible outcome of pageout() */
790 /* failed to write page out, page is locked */
792 /* move page to the active list, page is locked */
794 /* page has been sent to the disk successfully, page is unlocked */
796 /* page is clean and locked */
801 * pageout is called by shrink_page_list() for each dirty page.
802 * Calls ->writepage().
804 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
805 struct scan_control
*sc
)
808 * If the page is dirty, only perform writeback if that write
809 * will be non-blocking. To prevent this allocation from being
810 * stalled by pagecache activity. But note that there may be
811 * stalls if we need to run get_block(). We could test
812 * PagePrivate for that.
814 * If this process is currently in __generic_file_write_iter() against
815 * this page's queue, we can perform writeback even if that
818 * If the page is swapcache, write it back even if that would
819 * block, for some throttling. This happens by accident, because
820 * swap_backing_dev_info is bust: it doesn't reflect the
821 * congestion state of the swapdevs. Easy to fix, if needed.
823 if (!is_page_cache_freeable(page
))
827 * Some data journaling orphaned pages can have
828 * page->mapping == NULL while being dirty with clean buffers.
830 if (page_has_private(page
)) {
831 if (try_to_free_buffers(page
)) {
832 ClearPageDirty(page
);
833 pr_info("%s: orphaned page\n", __func__
);
839 if (mapping
->a_ops
->writepage
== NULL
)
840 return PAGE_ACTIVATE
;
841 if (!may_write_to_inode(mapping
->host
, sc
))
844 if (clear_page_dirty_for_io(page
)) {
846 struct writeback_control wbc
= {
847 .sync_mode
= WB_SYNC_NONE
,
848 .nr_to_write
= SWAP_CLUSTER_MAX
,
850 .range_end
= LLONG_MAX
,
854 SetPageReclaim(page
);
855 res
= mapping
->a_ops
->writepage(page
, &wbc
);
857 handle_write_error(mapping
, page
, res
);
858 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
859 ClearPageReclaim(page
);
860 return PAGE_ACTIVATE
;
863 if (!PageWriteback(page
)) {
864 /* synchronous write or broken a_ops? */
865 ClearPageReclaim(page
);
867 trace_mm_vmscan_writepage(page
);
868 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
876 * Same as remove_mapping, but if the page is removed from the mapping, it
877 * gets returned with a refcount of 0.
879 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
885 BUG_ON(!PageLocked(page
));
886 BUG_ON(mapping
!= page_mapping(page
));
888 xa_lock_irqsave(&mapping
->i_pages
, flags
);
890 * The non racy check for a busy page.
892 * Must be careful with the order of the tests. When someone has
893 * a ref to the page, it may be possible that they dirty it then
894 * drop the reference. So if PageDirty is tested before page_count
895 * here, then the following race may occur:
897 * get_user_pages(&page);
898 * [user mapping goes away]
900 * !PageDirty(page) [good]
901 * SetPageDirty(page);
903 * !page_count(page) [good, discard it]
905 * [oops, our write_to data is lost]
907 * Reversing the order of the tests ensures such a situation cannot
908 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
909 * load is not satisfied before that of page->_refcount.
911 * Note that if SetPageDirty is always performed via set_page_dirty,
912 * and thus under the i_pages lock, then this ordering is not required.
914 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
915 refcount
= 1 + HPAGE_PMD_NR
;
918 if (!page_ref_freeze(page
, refcount
))
920 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
921 if (unlikely(PageDirty(page
))) {
922 page_ref_unfreeze(page
, refcount
);
926 if (PageSwapCache(page
)) {
927 swp_entry_t swap
= { .val
= page_private(page
) };
928 mem_cgroup_swapout(page
, swap
);
929 __delete_from_swap_cache(page
, swap
);
930 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
931 put_swap_page(page
, swap
);
933 void (*freepage
)(struct page
*);
936 freepage
= mapping
->a_ops
->freepage
;
938 * Remember a shadow entry for reclaimed file cache in
939 * order to detect refaults, thus thrashing, later on.
941 * But don't store shadows in an address space that is
942 * already exiting. This is not just an optizimation,
943 * inode reclaim needs to empty out the radix tree or
944 * the nodes are lost. Don't plant shadows behind its
947 * We also don't store shadows for DAX mappings because the
948 * only page cache pages found in these are zero pages
949 * covering holes, and because we don't want to mix DAX
950 * exceptional entries and shadow exceptional entries in the
951 * same address_space.
953 if (reclaimed
&& page_is_file_cache(page
) &&
954 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
955 shadow
= workingset_eviction(page
);
956 __delete_from_page_cache(page
, shadow
);
957 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
959 if (freepage
!= NULL
)
966 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
971 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
972 * someone else has a ref on the page, abort and return 0. If it was
973 * successfully detached, return 1. Assumes the caller has a single ref on
976 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
978 if (__remove_mapping(mapping
, page
, false)) {
980 * Unfreezing the refcount with 1 rather than 2 effectively
981 * drops the pagecache ref for us without requiring another
984 page_ref_unfreeze(page
, 1);
991 * putback_lru_page - put previously isolated page onto appropriate LRU list
992 * @page: page to be put back to appropriate lru list
994 * Add previously isolated @page to appropriate LRU list.
995 * Page may still be unevictable for other reasons.
997 * lru_lock must not be held, interrupts must be enabled.
999 void putback_lru_page(struct page
*page
)
1001 lru_cache_add(page
);
1002 put_page(page
); /* drop ref from isolate */
1005 enum page_references
{
1007 PAGEREF_RECLAIM_CLEAN
,
1012 static enum page_references
page_check_references(struct page
*page
,
1013 struct scan_control
*sc
)
1015 int referenced_ptes
, referenced_page
;
1016 unsigned long vm_flags
;
1018 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
1020 referenced_page
= TestClearPageReferenced(page
);
1023 * Mlock lost the isolation race with us. Let try_to_unmap()
1024 * move the page to the unevictable list.
1026 if (vm_flags
& VM_LOCKED
)
1027 return PAGEREF_RECLAIM
;
1029 if (referenced_ptes
) {
1030 if (PageSwapBacked(page
))
1031 return PAGEREF_ACTIVATE
;
1033 * All mapped pages start out with page table
1034 * references from the instantiating fault, so we need
1035 * to look twice if a mapped file page is used more
1038 * Mark it and spare it for another trip around the
1039 * inactive list. Another page table reference will
1040 * lead to its activation.
1042 * Note: the mark is set for activated pages as well
1043 * so that recently deactivated but used pages are
1044 * quickly recovered.
1046 SetPageReferenced(page
);
1048 if (referenced_page
|| referenced_ptes
> 1)
1049 return PAGEREF_ACTIVATE
;
1052 * Activate file-backed executable pages after first usage.
1054 if (vm_flags
& VM_EXEC
)
1055 return PAGEREF_ACTIVATE
;
1057 return PAGEREF_KEEP
;
1060 /* Reclaim if clean, defer dirty pages to writeback */
1061 if (referenced_page
&& !PageSwapBacked(page
))
1062 return PAGEREF_RECLAIM_CLEAN
;
1064 return PAGEREF_RECLAIM
;
1067 /* Check if a page is dirty or under writeback */
1068 static void page_check_dirty_writeback(struct page
*page
,
1069 bool *dirty
, bool *writeback
)
1071 struct address_space
*mapping
;
1074 * Anonymous pages are not handled by flushers and must be written
1075 * from reclaim context. Do not stall reclaim based on them
1077 if (!page_is_file_cache(page
) ||
1078 (PageAnon(page
) && !PageSwapBacked(page
))) {
1084 /* By default assume that the page flags are accurate */
1085 *dirty
= PageDirty(page
);
1086 *writeback
= PageWriteback(page
);
1088 /* Verify dirty/writeback state if the filesystem supports it */
1089 if (!page_has_private(page
))
1092 mapping
= page_mapping(page
);
1093 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
1094 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
1098 * shrink_page_list() returns the number of reclaimed pages
1100 static unsigned long shrink_page_list(struct list_head
*page_list
,
1101 struct pglist_data
*pgdat
,
1102 struct scan_control
*sc
,
1103 enum ttu_flags ttu_flags
,
1104 struct reclaim_stat
*stat
,
1107 LIST_HEAD(ret_pages
);
1108 LIST_HEAD(free_pages
);
1109 unsigned nr_reclaimed
= 0;
1110 unsigned pgactivate
= 0;
1112 memset(stat
, 0, sizeof(*stat
));
1115 while (!list_empty(page_list
)) {
1116 struct address_space
*mapping
;
1119 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
1120 bool dirty
, writeback
;
1124 page
= lru_to_page(page_list
);
1125 list_del(&page
->lru
);
1127 if (!trylock_page(page
))
1130 VM_BUG_ON_PAGE(PageActive(page
), page
);
1134 if (unlikely(!page_evictable(page
)))
1135 goto activate_locked
;
1137 if (!sc
->may_unmap
&& page_mapped(page
))
1140 /* Double the slab pressure for mapped and swapcache pages */
1141 if ((page_mapped(page
) || PageSwapCache(page
)) &&
1142 !(PageAnon(page
) && !PageSwapBacked(page
)))
1145 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1146 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1149 * The number of dirty pages determines if a node is marked
1150 * reclaim_congested which affects wait_iff_congested. kswapd
1151 * will stall and start writing pages if the tail of the LRU
1152 * is all dirty unqueued pages.
1154 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1155 if (dirty
|| writeback
)
1158 if (dirty
&& !writeback
)
1159 stat
->nr_unqueued_dirty
++;
1162 * Treat this page as congested if the underlying BDI is or if
1163 * pages are cycling through the LRU so quickly that the
1164 * pages marked for immediate reclaim are making it to the
1165 * end of the LRU a second time.
1167 mapping
= page_mapping(page
);
1168 if (((dirty
|| writeback
) && mapping
&&
1169 inode_write_congested(mapping
->host
)) ||
1170 (writeback
&& PageReclaim(page
)))
1171 stat
->nr_congested
++;
1174 * If a page at the tail of the LRU is under writeback, there
1175 * are three cases to consider.
1177 * 1) If reclaim is encountering an excessive number of pages
1178 * under writeback and this page is both under writeback and
1179 * PageReclaim then it indicates that pages are being queued
1180 * for IO but are being recycled through the LRU before the
1181 * IO can complete. Waiting on the page itself risks an
1182 * indefinite stall if it is impossible to writeback the
1183 * page due to IO error or disconnected storage so instead
1184 * note that the LRU is being scanned too quickly and the
1185 * caller can stall after page list has been processed.
1187 * 2) Global or new memcg reclaim encounters a page that is
1188 * not marked for immediate reclaim, or the caller does not
1189 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1190 * not to fs). In this case mark the page for immediate
1191 * reclaim and continue scanning.
1193 * Require may_enter_fs because we would wait on fs, which
1194 * may not have submitted IO yet. And the loop driver might
1195 * enter reclaim, and deadlock if it waits on a page for
1196 * which it is needed to do the write (loop masks off
1197 * __GFP_IO|__GFP_FS for this reason); but more thought
1198 * would probably show more reasons.
1200 * 3) Legacy memcg encounters a page that is already marked
1201 * PageReclaim. memcg does not have any dirty pages
1202 * throttling so we could easily OOM just because too many
1203 * pages are in writeback and there is nothing else to
1204 * reclaim. Wait for the writeback to complete.
1206 * In cases 1) and 2) we activate the pages to get them out of
1207 * the way while we continue scanning for clean pages on the
1208 * inactive list and refilling from the active list. The
1209 * observation here is that waiting for disk writes is more
1210 * expensive than potentially causing reloads down the line.
1211 * Since they're marked for immediate reclaim, they won't put
1212 * memory pressure on the cache working set any longer than it
1213 * takes to write them to disk.
1215 if (PageWriteback(page
)) {
1217 if (current_is_kswapd() &&
1218 PageReclaim(page
) &&
1219 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1220 stat
->nr_immediate
++;
1221 goto activate_locked
;
1224 } else if (sane_reclaim(sc
) ||
1225 !PageReclaim(page
) || !may_enter_fs
) {
1227 * This is slightly racy - end_page_writeback()
1228 * might have just cleared PageReclaim, then
1229 * setting PageReclaim here end up interpreted
1230 * as PageReadahead - but that does not matter
1231 * enough to care. What we do want is for this
1232 * page to have PageReclaim set next time memcg
1233 * reclaim reaches the tests above, so it will
1234 * then wait_on_page_writeback() to avoid OOM;
1235 * and it's also appropriate in global reclaim.
1237 SetPageReclaim(page
);
1238 stat
->nr_writeback
++;
1239 goto activate_locked
;
1244 wait_on_page_writeback(page
);
1245 /* then go back and try same page again */
1246 list_add_tail(&page
->lru
, page_list
);
1252 references
= page_check_references(page
, sc
);
1254 switch (references
) {
1255 case PAGEREF_ACTIVATE
:
1256 goto activate_locked
;
1258 stat
->nr_ref_keep
++;
1260 case PAGEREF_RECLAIM
:
1261 case PAGEREF_RECLAIM_CLEAN
:
1262 ; /* try to reclaim the page below */
1266 * Anonymous process memory has backing store?
1267 * Try to allocate it some swap space here.
1268 * Lazyfree page could be freed directly
1270 if (PageAnon(page
) && PageSwapBacked(page
)) {
1271 if (!PageSwapCache(page
)) {
1272 if (!(sc
->gfp_mask
& __GFP_IO
))
1274 if (PageTransHuge(page
)) {
1275 /* cannot split THP, skip it */
1276 if (!can_split_huge_page(page
, NULL
))
1277 goto activate_locked
;
1279 * Split pages without a PMD map right
1280 * away. Chances are some or all of the
1281 * tail pages can be freed without IO.
1283 if (!compound_mapcount(page
) &&
1284 split_huge_page_to_list(page
,
1286 goto activate_locked
;
1288 if (!add_to_swap(page
)) {
1289 if (!PageTransHuge(page
))
1290 goto activate_locked
;
1291 /* Fallback to swap normal pages */
1292 if (split_huge_page_to_list(page
,
1294 goto activate_locked
;
1295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1296 count_vm_event(THP_SWPOUT_FALLBACK
);
1298 if (!add_to_swap(page
))
1299 goto activate_locked
;
1304 /* Adding to swap updated mapping */
1305 mapping
= page_mapping(page
);
1307 } else if (unlikely(PageTransHuge(page
))) {
1308 /* Split file THP */
1309 if (split_huge_page_to_list(page
, page_list
))
1314 * The page is mapped into the page tables of one or more
1315 * processes. Try to unmap it here.
1317 if (page_mapped(page
)) {
1318 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1320 if (unlikely(PageTransHuge(page
)))
1321 flags
|= TTU_SPLIT_HUGE_PMD
;
1322 if (!try_to_unmap(page
, flags
)) {
1323 stat
->nr_unmap_fail
++;
1324 goto activate_locked
;
1328 if (PageDirty(page
)) {
1330 * Only kswapd can writeback filesystem pages
1331 * to avoid risk of stack overflow. But avoid
1332 * injecting inefficient single-page IO into
1333 * flusher writeback as much as possible: only
1334 * write pages when we've encountered many
1335 * dirty pages, and when we've already scanned
1336 * the rest of the LRU for clean pages and see
1337 * the same dirty pages again (PageReclaim).
1339 if (page_is_file_cache(page
) &&
1340 (!current_is_kswapd() || !PageReclaim(page
) ||
1341 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1343 * Immediately reclaim when written back.
1344 * Similar in principal to deactivate_page()
1345 * except we already have the page isolated
1346 * and know it's dirty
1348 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1349 SetPageReclaim(page
);
1351 goto activate_locked
;
1354 if (references
== PAGEREF_RECLAIM_CLEAN
)
1358 if (!sc
->may_writepage
)
1362 * Page is dirty. Flush the TLB if a writable entry
1363 * potentially exists to avoid CPU writes after IO
1364 * starts and then write it out here.
1366 try_to_unmap_flush_dirty();
1367 switch (pageout(page
, mapping
, sc
)) {
1371 goto activate_locked
;
1373 if (PageWriteback(page
))
1375 if (PageDirty(page
))
1379 * A synchronous write - probably a ramdisk. Go
1380 * ahead and try to reclaim the page.
1382 if (!trylock_page(page
))
1384 if (PageDirty(page
) || PageWriteback(page
))
1386 mapping
= page_mapping(page
);
1388 ; /* try to free the page below */
1393 * If the page has buffers, try to free the buffer mappings
1394 * associated with this page. If we succeed we try to free
1397 * We do this even if the page is PageDirty().
1398 * try_to_release_page() does not perform I/O, but it is
1399 * possible for a page to have PageDirty set, but it is actually
1400 * clean (all its buffers are clean). This happens if the
1401 * buffers were written out directly, with submit_bh(). ext3
1402 * will do this, as well as the blockdev mapping.
1403 * try_to_release_page() will discover that cleanness and will
1404 * drop the buffers and mark the page clean - it can be freed.
1406 * Rarely, pages can have buffers and no ->mapping. These are
1407 * the pages which were not successfully invalidated in
1408 * truncate_complete_page(). We try to drop those buffers here
1409 * and if that worked, and the page is no longer mapped into
1410 * process address space (page_count == 1) it can be freed.
1411 * Otherwise, leave the page on the LRU so it is swappable.
1413 if (page_has_private(page
)) {
1414 if (!try_to_release_page(page
, sc
->gfp_mask
))
1415 goto activate_locked
;
1416 if (!mapping
&& page_count(page
) == 1) {
1418 if (put_page_testzero(page
))
1422 * rare race with speculative reference.
1423 * the speculative reference will free
1424 * this page shortly, so we may
1425 * increment nr_reclaimed here (and
1426 * leave it off the LRU).
1434 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1435 /* follow __remove_mapping for reference */
1436 if (!page_ref_freeze(page
, 1))
1438 if (PageDirty(page
)) {
1439 page_ref_unfreeze(page
, 1);
1443 count_vm_event(PGLAZYFREED
);
1444 count_memcg_page_event(page
, PGLAZYFREED
);
1445 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1453 * Is there need to periodically free_page_list? It would
1454 * appear not as the counts should be low
1456 if (unlikely(PageTransHuge(page
))) {
1457 mem_cgroup_uncharge(page
);
1458 (*get_compound_page_dtor(page
))(page
);
1460 list_add(&page
->lru
, &free_pages
);
1464 /* Not a candidate for swapping, so reclaim swap space. */
1465 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1467 try_to_free_swap(page
);
1468 VM_BUG_ON_PAGE(PageActive(page
), page
);
1469 if (!PageMlocked(page
)) {
1470 int type
= page_is_file_cache(page
);
1471 SetPageActive(page
);
1473 stat
->nr_activate
[type
] += hpage_nr_pages(page
);
1474 count_memcg_page_event(page
, PGACTIVATE
);
1479 list_add(&page
->lru
, &ret_pages
);
1480 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1483 mem_cgroup_uncharge_list(&free_pages
);
1484 try_to_unmap_flush();
1485 free_unref_page_list(&free_pages
);
1487 list_splice(&ret_pages
, page_list
);
1488 count_vm_events(PGACTIVATE
, pgactivate
);
1490 return nr_reclaimed
;
1493 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1494 struct list_head
*page_list
)
1496 struct scan_control sc
= {
1497 .gfp_mask
= GFP_KERNEL
,
1498 .priority
= DEF_PRIORITY
,
1501 struct reclaim_stat dummy_stat
;
1503 struct page
*page
, *next
;
1504 LIST_HEAD(clean_pages
);
1506 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1507 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1508 !__PageMovable(page
)) {
1509 ClearPageActive(page
);
1510 list_move(&page
->lru
, &clean_pages
);
1514 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1515 TTU_IGNORE_ACCESS
, &dummy_stat
, true);
1516 list_splice(&clean_pages
, page_list
);
1517 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1522 * Attempt to remove the specified page from its LRU. Only take this page
1523 * if it is of the appropriate PageActive status. Pages which are being
1524 * freed elsewhere are also ignored.
1526 * page: page to consider
1527 * mode: one of the LRU isolation modes defined above
1529 * returns 0 on success, -ve errno on failure.
1531 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1535 /* Only take pages on the LRU. */
1539 /* Compaction should not handle unevictable pages but CMA can do so */
1540 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1546 * To minimise LRU disruption, the caller can indicate that it only
1547 * wants to isolate pages it will be able to operate on without
1548 * blocking - clean pages for the most part.
1550 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1551 * that it is possible to migrate without blocking
1553 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1554 /* All the caller can do on PageWriteback is block */
1555 if (PageWriteback(page
))
1558 if (PageDirty(page
)) {
1559 struct address_space
*mapping
;
1563 * Only pages without mappings or that have a
1564 * ->migratepage callback are possible to migrate
1565 * without blocking. However, we can be racing with
1566 * truncation so it's necessary to lock the page
1567 * to stabilise the mapping as truncation holds
1568 * the page lock until after the page is removed
1569 * from the page cache.
1571 if (!trylock_page(page
))
1574 mapping
= page_mapping(page
);
1575 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1582 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1585 if (likely(get_page_unless_zero(page
))) {
1587 * Be careful not to clear PageLRU until after we're
1588 * sure the page is not being freed elsewhere -- the
1589 * page release code relies on it.
1600 * Update LRU sizes after isolating pages. The LRU size updates must
1601 * be complete before mem_cgroup_update_lru_size due to a santity check.
1603 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1604 enum lru_list lru
, unsigned long *nr_zone_taken
)
1608 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1609 if (!nr_zone_taken
[zid
])
1612 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1614 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1621 * pgdat->lru_lock is heavily contended. Some of the functions that
1622 * shrink the lists perform better by taking out a batch of pages
1623 * and working on them outside the LRU lock.
1625 * For pagecache intensive workloads, this function is the hottest
1626 * spot in the kernel (apart from copy_*_user functions).
1628 * Appropriate locks must be held before calling this function.
1630 * @nr_to_scan: The number of eligible pages to look through on the list.
1631 * @lruvec: The LRU vector to pull pages from.
1632 * @dst: The temp list to put pages on to.
1633 * @nr_scanned: The number of pages that were scanned.
1634 * @sc: The scan_control struct for this reclaim session
1635 * @mode: One of the LRU isolation modes
1636 * @lru: LRU list id for isolating
1638 * returns how many pages were moved onto *@dst.
1640 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1641 struct lruvec
*lruvec
, struct list_head
*dst
,
1642 unsigned long *nr_scanned
, struct scan_control
*sc
,
1645 struct list_head
*src
= &lruvec
->lists
[lru
];
1646 unsigned long nr_taken
= 0;
1647 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1648 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1649 unsigned long skipped
= 0;
1650 unsigned long scan
, total_scan
, nr_pages
;
1651 LIST_HEAD(pages_skipped
);
1652 isolate_mode_t mode
= (sc
->may_unmap
? 0 : ISOLATE_UNMAPPED
);
1655 for (total_scan
= 0;
1656 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1660 page
= lru_to_page(src
);
1661 prefetchw_prev_lru_page(page
, src
, flags
);
1663 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1665 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1666 list_move(&page
->lru
, &pages_skipped
);
1667 nr_skipped
[page_zonenum(page
)]++;
1672 * Do not count skipped pages because that makes the function
1673 * return with no isolated pages if the LRU mostly contains
1674 * ineligible pages. This causes the VM to not reclaim any
1675 * pages, triggering a premature OOM.
1678 switch (__isolate_lru_page(page
, mode
)) {
1680 nr_pages
= hpage_nr_pages(page
);
1681 nr_taken
+= nr_pages
;
1682 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1683 list_move(&page
->lru
, dst
);
1687 /* else it is being freed elsewhere */
1688 list_move(&page
->lru
, src
);
1697 * Splice any skipped pages to the start of the LRU list. Note that
1698 * this disrupts the LRU order when reclaiming for lower zones but
1699 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1700 * scanning would soon rescan the same pages to skip and put the
1701 * system at risk of premature OOM.
1703 if (!list_empty(&pages_skipped
)) {
1706 list_splice(&pages_skipped
, src
);
1707 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1708 if (!nr_skipped
[zid
])
1711 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1712 skipped
+= nr_skipped
[zid
];
1715 *nr_scanned
= total_scan
;
1716 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1717 total_scan
, skipped
, nr_taken
, mode
, lru
);
1718 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1723 * isolate_lru_page - tries to isolate a page from its LRU list
1724 * @page: page to isolate from its LRU list
1726 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1727 * vmstat statistic corresponding to whatever LRU list the page was on.
1729 * Returns 0 if the page was removed from an LRU list.
1730 * Returns -EBUSY if the page was not on an LRU list.
1732 * The returned page will have PageLRU() cleared. If it was found on
1733 * the active list, it will have PageActive set. If it was found on
1734 * the unevictable list, it will have the PageUnevictable bit set. That flag
1735 * may need to be cleared by the caller before letting the page go.
1737 * The vmstat statistic corresponding to the list on which the page was
1738 * found will be decremented.
1742 * (1) Must be called with an elevated refcount on the page. This is a
1743 * fundamentnal difference from isolate_lru_pages (which is called
1744 * without a stable reference).
1745 * (2) the lru_lock must not be held.
1746 * (3) interrupts must be enabled.
1748 int isolate_lru_page(struct page
*page
)
1752 VM_BUG_ON_PAGE(!page_count(page
), page
);
1753 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1755 if (PageLRU(page
)) {
1756 pg_data_t
*pgdat
= page_pgdat(page
);
1757 struct lruvec
*lruvec
;
1759 spin_lock_irq(&pgdat
->lru_lock
);
1760 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1761 if (PageLRU(page
)) {
1762 int lru
= page_lru(page
);
1765 del_page_from_lru_list(page
, lruvec
, lru
);
1768 spin_unlock_irq(&pgdat
->lru_lock
);
1774 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1775 * then get resheduled. When there are massive number of tasks doing page
1776 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1777 * the LRU list will go small and be scanned faster than necessary, leading to
1778 * unnecessary swapping, thrashing and OOM.
1780 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1781 struct scan_control
*sc
)
1783 unsigned long inactive
, isolated
;
1785 if (current_is_kswapd())
1788 if (!sane_reclaim(sc
))
1792 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1793 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1795 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1796 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1800 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1801 * won't get blocked by normal direct-reclaimers, forming a circular
1804 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1807 return isolated
> inactive
;
1811 * This moves pages from @list to corresponding LRU list.
1813 * We move them the other way if the page is referenced by one or more
1814 * processes, from rmap.
1816 * If the pages are mostly unmapped, the processing is fast and it is
1817 * appropriate to hold zone_lru_lock across the whole operation. But if
1818 * the pages are mapped, the processing is slow (page_referenced()) so we
1819 * should drop zone_lru_lock around each page. It's impossible to balance
1820 * this, so instead we remove the pages from the LRU while processing them.
1821 * It is safe to rely on PG_active against the non-LRU pages in here because
1822 * nobody will play with that bit on a non-LRU page.
1824 * The downside is that we have to touch page->_refcount against each page.
1825 * But we had to alter page->flags anyway.
1827 * Returns the number of pages moved to the given lruvec.
1830 static unsigned noinline_for_stack
move_pages_to_lru(struct lruvec
*lruvec
,
1831 struct list_head
*list
)
1833 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1834 int nr_pages
, nr_moved
= 0;
1835 LIST_HEAD(pages_to_free
);
1839 while (!list_empty(list
)) {
1840 page
= lru_to_page(list
);
1841 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1842 if (unlikely(!page_evictable(page
))) {
1843 list_del(&page
->lru
);
1844 spin_unlock_irq(&pgdat
->lru_lock
);
1845 putback_lru_page(page
);
1846 spin_lock_irq(&pgdat
->lru_lock
);
1849 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1852 lru
= page_lru(page
);
1854 nr_pages
= hpage_nr_pages(page
);
1855 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1856 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1858 if (put_page_testzero(page
)) {
1859 __ClearPageLRU(page
);
1860 __ClearPageActive(page
);
1861 del_page_from_lru_list(page
, lruvec
, lru
);
1863 if (unlikely(PageCompound(page
))) {
1864 spin_unlock_irq(&pgdat
->lru_lock
);
1865 mem_cgroup_uncharge(page
);
1866 (*get_compound_page_dtor(page
))(page
);
1867 spin_lock_irq(&pgdat
->lru_lock
);
1869 list_add(&page
->lru
, &pages_to_free
);
1871 nr_moved
+= nr_pages
;
1876 * To save our caller's stack, now use input list for pages to free.
1878 list_splice(&pages_to_free
, list
);
1884 * If a kernel thread (such as nfsd for loop-back mounts) services
1885 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1886 * In that case we should only throttle if the backing device it is
1887 * writing to is congested. In other cases it is safe to throttle.
1889 static int current_may_throttle(void)
1891 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1892 current
->backing_dev_info
== NULL
||
1893 bdi_write_congested(current
->backing_dev_info
);
1897 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1898 * of reclaimed pages
1900 static noinline_for_stack
unsigned long
1901 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1902 struct scan_control
*sc
, enum lru_list lru
)
1904 LIST_HEAD(page_list
);
1905 unsigned long nr_scanned
;
1906 unsigned long nr_reclaimed
= 0;
1907 unsigned long nr_taken
;
1908 struct reclaim_stat stat
;
1909 int file
= is_file_lru(lru
);
1910 enum vm_event_item item
;
1911 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1912 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1913 bool stalled
= false;
1915 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1919 /* wait a bit for the reclaimer. */
1923 /* We are about to die and free our memory. Return now. */
1924 if (fatal_signal_pending(current
))
1925 return SWAP_CLUSTER_MAX
;
1930 spin_lock_irq(&pgdat
->lru_lock
);
1932 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1933 &nr_scanned
, sc
, lru
);
1935 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1936 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1938 item
= current_is_kswapd() ? PGSCAN_KSWAPD
: PGSCAN_DIRECT
;
1939 if (global_reclaim(sc
))
1940 __count_vm_events(item
, nr_scanned
);
1941 __count_memcg_events(lruvec_memcg(lruvec
), item
, nr_scanned
);
1942 spin_unlock_irq(&pgdat
->lru_lock
);
1947 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1950 spin_lock_irq(&pgdat
->lru_lock
);
1952 item
= current_is_kswapd() ? PGSTEAL_KSWAPD
: PGSTEAL_DIRECT
;
1953 if (global_reclaim(sc
))
1954 __count_vm_events(item
, nr_reclaimed
);
1955 __count_memcg_events(lruvec_memcg(lruvec
), item
, nr_reclaimed
);
1956 reclaim_stat
->recent_rotated
[0] = stat
.nr_activate
[0];
1957 reclaim_stat
->recent_rotated
[1] = stat
.nr_activate
[1];
1959 move_pages_to_lru(lruvec
, &page_list
);
1961 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1963 spin_unlock_irq(&pgdat
->lru_lock
);
1965 mem_cgroup_uncharge_list(&page_list
);
1966 free_unref_page_list(&page_list
);
1969 * If dirty pages are scanned that are not queued for IO, it
1970 * implies that flushers are not doing their job. This can
1971 * happen when memory pressure pushes dirty pages to the end of
1972 * the LRU before the dirty limits are breached and the dirty
1973 * data has expired. It can also happen when the proportion of
1974 * dirty pages grows not through writes but through memory
1975 * pressure reclaiming all the clean cache. And in some cases,
1976 * the flushers simply cannot keep up with the allocation
1977 * rate. Nudge the flusher threads in case they are asleep.
1979 if (stat
.nr_unqueued_dirty
== nr_taken
)
1980 wakeup_flusher_threads(WB_REASON_VMSCAN
);
1982 sc
->nr
.dirty
+= stat
.nr_dirty
;
1983 sc
->nr
.congested
+= stat
.nr_congested
;
1984 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
1985 sc
->nr
.writeback
+= stat
.nr_writeback
;
1986 sc
->nr
.immediate
+= stat
.nr_immediate
;
1987 sc
->nr
.taken
+= nr_taken
;
1989 sc
->nr
.file_taken
+= nr_taken
;
1991 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1992 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
1993 return nr_reclaimed
;
1996 static void shrink_active_list(unsigned long nr_to_scan
,
1997 struct lruvec
*lruvec
,
1998 struct scan_control
*sc
,
2001 unsigned long nr_taken
;
2002 unsigned long nr_scanned
;
2003 unsigned long vm_flags
;
2004 LIST_HEAD(l_hold
); /* The pages which were snipped off */
2005 LIST_HEAD(l_active
);
2006 LIST_HEAD(l_inactive
);
2008 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2009 unsigned nr_deactivate
, nr_activate
;
2010 unsigned nr_rotated
= 0;
2011 int file
= is_file_lru(lru
);
2012 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2016 spin_lock_irq(&pgdat
->lru_lock
);
2018 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2019 &nr_scanned
, sc
, lru
);
2021 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2022 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2024 __count_vm_events(PGREFILL
, nr_scanned
);
2025 __count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2027 spin_unlock_irq(&pgdat
->lru_lock
);
2029 while (!list_empty(&l_hold
)) {
2031 page
= lru_to_page(&l_hold
);
2032 list_del(&page
->lru
);
2034 if (unlikely(!page_evictable(page
))) {
2035 putback_lru_page(page
);
2039 if (unlikely(buffer_heads_over_limit
)) {
2040 if (page_has_private(page
) && trylock_page(page
)) {
2041 if (page_has_private(page
))
2042 try_to_release_page(page
, 0);
2047 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2049 nr_rotated
+= hpage_nr_pages(page
);
2051 * Identify referenced, file-backed active pages and
2052 * give them one more trip around the active list. So
2053 * that executable code get better chances to stay in
2054 * memory under moderate memory pressure. Anon pages
2055 * are not likely to be evicted by use-once streaming
2056 * IO, plus JVM can create lots of anon VM_EXEC pages,
2057 * so we ignore them here.
2059 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2060 list_add(&page
->lru
, &l_active
);
2065 ClearPageActive(page
); /* we are de-activating */
2066 SetPageWorkingset(page
);
2067 list_add(&page
->lru
, &l_inactive
);
2071 * Move pages back to the lru list.
2073 spin_lock_irq(&pgdat
->lru_lock
);
2075 * Count referenced pages from currently used mappings as rotated,
2076 * even though only some of them are actually re-activated. This
2077 * helps balance scan pressure between file and anonymous pages in
2080 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2082 nr_activate
= move_pages_to_lru(lruvec
, &l_active
);
2083 nr_deactivate
= move_pages_to_lru(lruvec
, &l_inactive
);
2084 /* Keep all free pages in l_active list */
2085 list_splice(&l_inactive
, &l_active
);
2087 __count_vm_events(PGDEACTIVATE
, nr_deactivate
);
2088 __count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
, nr_deactivate
);
2090 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2091 spin_unlock_irq(&pgdat
->lru_lock
);
2093 mem_cgroup_uncharge_list(&l_active
);
2094 free_unref_page_list(&l_active
);
2095 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2096 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2100 * The inactive anon list should be small enough that the VM never has
2101 * to do too much work.
2103 * The inactive file list should be small enough to leave most memory
2104 * to the established workingset on the scan-resistant active list,
2105 * but large enough to avoid thrashing the aggregate readahead window.
2107 * Both inactive lists should also be large enough that each inactive
2108 * page has a chance to be referenced again before it is reclaimed.
2110 * If that fails and refaulting is observed, the inactive list grows.
2112 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2113 * on this LRU, maintained by the pageout code. An inactive_ratio
2114 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2117 * memory ratio inactive
2118 * -------------------------------------
2127 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2128 struct scan_control
*sc
, bool actual_reclaim
)
2130 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2131 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2132 enum lru_list inactive_lru
= file
* LRU_FILE
;
2133 unsigned long inactive
, active
;
2134 unsigned long inactive_ratio
;
2135 unsigned long refaults
;
2139 * If we don't have swap space, anonymous page deactivation
2142 if (!file
&& !total_swap_pages
)
2145 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2146 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2149 * When refaults are being observed, it means a new workingset
2150 * is being established. Disable active list protection to get
2151 * rid of the stale workingset quickly.
2153 refaults
= lruvec_page_state_local(lruvec
, WORKINGSET_ACTIVATE
);
2154 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2157 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2159 inactive_ratio
= int_sqrt(10 * gb
);
2165 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2166 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2167 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2168 inactive_ratio
, file
);
2170 return inactive
* inactive_ratio
< active
;
2173 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2174 struct lruvec
*lruvec
, struct scan_control
*sc
)
2176 if (is_active_lru(lru
)) {
2177 if (inactive_list_is_low(lruvec
, is_file_lru(lru
), sc
, true))
2178 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2182 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2193 * Determine how aggressively the anon and file LRU lists should be
2194 * scanned. The relative value of each set of LRU lists is determined
2195 * by looking at the fraction of the pages scanned we did rotate back
2196 * onto the active list instead of evict.
2198 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2199 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2201 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2202 struct scan_control
*sc
, unsigned long *nr
,
2203 unsigned long *lru_pages
)
2205 int swappiness
= mem_cgroup_swappiness(memcg
);
2206 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2208 u64 denominator
= 0; /* gcc */
2209 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2210 unsigned long anon_prio
, file_prio
;
2211 enum scan_balance scan_balance
;
2212 unsigned long anon
, file
;
2213 unsigned long ap
, fp
;
2216 /* If we have no swap space, do not bother scanning anon pages. */
2217 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2218 scan_balance
= SCAN_FILE
;
2223 * Global reclaim will swap to prevent OOM even with no
2224 * swappiness, but memcg users want to use this knob to
2225 * disable swapping for individual groups completely when
2226 * using the memory controller's swap limit feature would be
2229 if (!global_reclaim(sc
) && !swappiness
) {
2230 scan_balance
= SCAN_FILE
;
2235 * Do not apply any pressure balancing cleverness when the
2236 * system is close to OOM, scan both anon and file equally
2237 * (unless the swappiness setting disagrees with swapping).
2239 if (!sc
->priority
&& swappiness
) {
2240 scan_balance
= SCAN_EQUAL
;
2245 * Prevent the reclaimer from falling into the cache trap: as
2246 * cache pages start out inactive, every cache fault will tip
2247 * the scan balance towards the file LRU. And as the file LRU
2248 * shrinks, so does the window for rotation from references.
2249 * This means we have a runaway feedback loop where a tiny
2250 * thrashing file LRU becomes infinitely more attractive than
2251 * anon pages. Try to detect this based on file LRU size.
2253 if (global_reclaim(sc
)) {
2254 unsigned long pgdatfile
;
2255 unsigned long pgdatfree
;
2257 unsigned long total_high_wmark
= 0;
2259 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2260 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2261 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2263 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2264 struct zone
*zone
= &pgdat
->node_zones
[z
];
2265 if (!managed_zone(zone
))
2268 total_high_wmark
+= high_wmark_pages(zone
);
2271 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2273 * Force SCAN_ANON if there are enough inactive
2274 * anonymous pages on the LRU in eligible zones.
2275 * Otherwise, the small LRU gets thrashed.
2277 if (!inactive_list_is_low(lruvec
, false, sc
, false) &&
2278 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2280 scan_balance
= SCAN_ANON
;
2287 * If there is enough inactive page cache, i.e. if the size of the
2288 * inactive list is greater than that of the active list *and* the
2289 * inactive list actually has some pages to scan on this priority, we
2290 * do not reclaim anything from the anonymous working set right now.
2291 * Without the second condition we could end up never scanning an
2292 * lruvec even if it has plenty of old anonymous pages unless the
2293 * system is under heavy pressure.
2295 if (!inactive_list_is_low(lruvec
, true, sc
, false) &&
2296 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2297 scan_balance
= SCAN_FILE
;
2301 scan_balance
= SCAN_FRACT
;
2304 * With swappiness at 100, anonymous and file have the same priority.
2305 * This scanning priority is essentially the inverse of IO cost.
2307 anon_prio
= swappiness
;
2308 file_prio
= 200 - anon_prio
;
2311 * OK, so we have swap space and a fair amount of page cache
2312 * pages. We use the recently rotated / recently scanned
2313 * ratios to determine how valuable each cache is.
2315 * Because workloads change over time (and to avoid overflow)
2316 * we keep these statistics as a floating average, which ends
2317 * up weighing recent references more than old ones.
2319 * anon in [0], file in [1]
2322 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2323 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2324 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2325 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2327 spin_lock_irq(&pgdat
->lru_lock
);
2328 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2329 reclaim_stat
->recent_scanned
[0] /= 2;
2330 reclaim_stat
->recent_rotated
[0] /= 2;
2333 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2334 reclaim_stat
->recent_scanned
[1] /= 2;
2335 reclaim_stat
->recent_rotated
[1] /= 2;
2339 * The amount of pressure on anon vs file pages is inversely
2340 * proportional to the fraction of recently scanned pages on
2341 * each list that were recently referenced and in active use.
2343 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2344 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2346 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2347 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2348 spin_unlock_irq(&pgdat
->lru_lock
);
2352 denominator
= ap
+ fp
+ 1;
2355 for_each_evictable_lru(lru
) {
2356 int file
= is_file_lru(lru
);
2360 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2361 scan
= size
>> sc
->priority
;
2363 * If the cgroup's already been deleted, make sure to
2364 * scrape out the remaining cache.
2366 if (!scan
&& !mem_cgroup_online(memcg
))
2367 scan
= min(size
, SWAP_CLUSTER_MAX
);
2369 switch (scan_balance
) {
2371 /* Scan lists relative to size */
2375 * Scan types proportional to swappiness and
2376 * their relative recent reclaim efficiency.
2377 * Make sure we don't miss the last page
2378 * because of a round-off error.
2380 scan
= DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2385 /* Scan one type exclusively */
2386 if ((scan_balance
== SCAN_FILE
) != file
) {
2392 /* Look ma, no brain */
2402 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2404 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2405 struct scan_control
*sc
, unsigned long *lru_pages
)
2407 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2408 unsigned long nr
[NR_LRU_LISTS
];
2409 unsigned long targets
[NR_LRU_LISTS
];
2410 unsigned long nr_to_scan
;
2412 unsigned long nr_reclaimed
= 0;
2413 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2414 struct blk_plug plug
;
2417 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2419 /* Record the original scan target for proportional adjustments later */
2420 memcpy(targets
, nr
, sizeof(nr
));
2423 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2424 * event that can occur when there is little memory pressure e.g.
2425 * multiple streaming readers/writers. Hence, we do not abort scanning
2426 * when the requested number of pages are reclaimed when scanning at
2427 * DEF_PRIORITY on the assumption that the fact we are direct
2428 * reclaiming implies that kswapd is not keeping up and it is best to
2429 * do a batch of work at once. For memcg reclaim one check is made to
2430 * abort proportional reclaim if either the file or anon lru has already
2431 * dropped to zero at the first pass.
2433 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2434 sc
->priority
== DEF_PRIORITY
);
2436 blk_start_plug(&plug
);
2437 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2438 nr
[LRU_INACTIVE_FILE
]) {
2439 unsigned long nr_anon
, nr_file
, percentage
;
2440 unsigned long nr_scanned
;
2442 for_each_evictable_lru(lru
) {
2444 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2445 nr
[lru
] -= nr_to_scan
;
2447 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2454 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2458 * For kswapd and memcg, reclaim at least the number of pages
2459 * requested. Ensure that the anon and file LRUs are scanned
2460 * proportionally what was requested by get_scan_count(). We
2461 * stop reclaiming one LRU and reduce the amount scanning
2462 * proportional to the original scan target.
2464 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2465 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2468 * It's just vindictive to attack the larger once the smaller
2469 * has gone to zero. And given the way we stop scanning the
2470 * smaller below, this makes sure that we only make one nudge
2471 * towards proportionality once we've got nr_to_reclaim.
2473 if (!nr_file
|| !nr_anon
)
2476 if (nr_file
> nr_anon
) {
2477 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2478 targets
[LRU_ACTIVE_ANON
] + 1;
2480 percentage
= nr_anon
* 100 / scan_target
;
2482 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2483 targets
[LRU_ACTIVE_FILE
] + 1;
2485 percentage
= nr_file
* 100 / scan_target
;
2488 /* Stop scanning the smaller of the LRU */
2490 nr
[lru
+ LRU_ACTIVE
] = 0;
2493 * Recalculate the other LRU scan count based on its original
2494 * scan target and the percentage scanning already complete
2496 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2497 nr_scanned
= targets
[lru
] - nr
[lru
];
2498 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2499 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2502 nr_scanned
= targets
[lru
] - nr
[lru
];
2503 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2504 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2506 scan_adjusted
= true;
2508 blk_finish_plug(&plug
);
2509 sc
->nr_reclaimed
+= nr_reclaimed
;
2512 * Even if we did not try to evict anon pages at all, we want to
2513 * rebalance the anon lru active/inactive ratio.
2515 if (inactive_list_is_low(lruvec
, false, sc
, true))
2516 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2517 sc
, LRU_ACTIVE_ANON
);
2520 /* Use reclaim/compaction for costly allocs or under memory pressure */
2521 static bool in_reclaim_compaction(struct scan_control
*sc
)
2523 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2524 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2525 sc
->priority
< DEF_PRIORITY
- 2))
2532 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2533 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2534 * true if more pages should be reclaimed such that when the page allocator
2535 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2536 * It will give up earlier than that if there is difficulty reclaiming pages.
2538 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2539 unsigned long nr_reclaimed
,
2540 unsigned long nr_scanned
,
2541 struct scan_control
*sc
)
2543 unsigned long pages_for_compaction
;
2544 unsigned long inactive_lru_pages
;
2547 /* If not in reclaim/compaction mode, stop */
2548 if (!in_reclaim_compaction(sc
))
2551 /* Consider stopping depending on scan and reclaim activity */
2552 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2554 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2555 * full LRU list has been scanned and we are still failing
2556 * to reclaim pages. This full LRU scan is potentially
2557 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2559 if (!nr_reclaimed
&& !nr_scanned
)
2563 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2564 * fail without consequence, stop if we failed to reclaim
2565 * any pages from the last SWAP_CLUSTER_MAX number of
2566 * pages that were scanned. This will return to the
2567 * caller faster at the risk reclaim/compaction and
2568 * the resulting allocation attempt fails
2575 * If we have not reclaimed enough pages for compaction and the
2576 * inactive lists are large enough, continue reclaiming
2578 pages_for_compaction
= compact_gap(sc
->order
);
2579 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2580 if (get_nr_swap_pages() > 0)
2581 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2582 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2583 inactive_lru_pages
> pages_for_compaction
)
2586 /* If compaction would go ahead or the allocation would succeed, stop */
2587 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2588 struct zone
*zone
= &pgdat
->node_zones
[z
];
2589 if (!managed_zone(zone
))
2592 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2593 case COMPACT_SUCCESS
:
2594 case COMPACT_CONTINUE
:
2597 /* check next zone */
2604 static bool pgdat_memcg_congested(pg_data_t
*pgdat
, struct mem_cgroup
*memcg
)
2606 return test_bit(PGDAT_CONGESTED
, &pgdat
->flags
) ||
2607 (memcg
&& memcg_congested(pgdat
, memcg
));
2610 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2612 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2613 unsigned long nr_reclaimed
, nr_scanned
;
2614 bool reclaimable
= false;
2617 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2618 struct mem_cgroup_reclaim_cookie reclaim
= {
2620 .priority
= sc
->priority
,
2622 unsigned long node_lru_pages
= 0;
2623 struct mem_cgroup
*memcg
;
2625 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
2627 nr_reclaimed
= sc
->nr_reclaimed
;
2628 nr_scanned
= sc
->nr_scanned
;
2630 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2632 unsigned long lru_pages
;
2633 unsigned long reclaimed
;
2634 unsigned long scanned
;
2636 switch (mem_cgroup_protected(root
, memcg
)) {
2637 case MEMCG_PROT_MIN
:
2640 * If there is no reclaimable memory, OOM.
2643 case MEMCG_PROT_LOW
:
2646 * Respect the protection only as long as
2647 * there is an unprotected supply
2648 * of reclaimable memory from other cgroups.
2650 if (!sc
->memcg_low_reclaim
) {
2651 sc
->memcg_low_skipped
= 1;
2654 memcg_memory_event(memcg
, MEMCG_LOW
);
2656 case MEMCG_PROT_NONE
:
2660 reclaimed
= sc
->nr_reclaimed
;
2661 scanned
= sc
->nr_scanned
;
2662 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2663 node_lru_pages
+= lru_pages
;
2665 if (sc
->may_shrinkslab
) {
2666 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2667 memcg
, sc
->priority
);
2670 /* Record the group's reclaim efficiency */
2671 vmpressure(sc
->gfp_mask
, memcg
, false,
2672 sc
->nr_scanned
- scanned
,
2673 sc
->nr_reclaimed
- reclaimed
);
2676 * Kswapd have to scan all memory cgroups to fulfill
2677 * the overall scan target for the node.
2679 * Limit reclaim, on the other hand, only cares about
2680 * nr_to_reclaim pages to be reclaimed and it will
2681 * retry with decreasing priority if one round over the
2682 * whole hierarchy is not sufficient.
2684 if (!current_is_kswapd() &&
2685 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2686 mem_cgroup_iter_break(root
, memcg
);
2689 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2691 if (reclaim_state
) {
2692 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2693 reclaim_state
->reclaimed_slab
= 0;
2696 /* Record the subtree's reclaim efficiency */
2697 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2698 sc
->nr_scanned
- nr_scanned
,
2699 sc
->nr_reclaimed
- nr_reclaimed
);
2701 if (sc
->nr_reclaimed
- nr_reclaimed
)
2704 if (current_is_kswapd()) {
2706 * If reclaim is isolating dirty pages under writeback,
2707 * it implies that the long-lived page allocation rate
2708 * is exceeding the page laundering rate. Either the
2709 * global limits are not being effective at throttling
2710 * processes due to the page distribution throughout
2711 * zones or there is heavy usage of a slow backing
2712 * device. The only option is to throttle from reclaim
2713 * context which is not ideal as there is no guarantee
2714 * the dirtying process is throttled in the same way
2715 * balance_dirty_pages() manages.
2717 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2718 * count the number of pages under pages flagged for
2719 * immediate reclaim and stall if any are encountered
2720 * in the nr_immediate check below.
2722 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
2723 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
2726 * Tag a node as congested if all the dirty pages
2727 * scanned were backed by a congested BDI and
2728 * wait_iff_congested will stall.
2730 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2731 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
2733 /* Allow kswapd to start writing pages during reclaim.*/
2734 if (sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
2735 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
2738 * If kswapd scans pages marked marked for immediate
2739 * reclaim and under writeback (nr_immediate), it
2740 * implies that pages are cycling through the LRU
2741 * faster than they are written so also forcibly stall.
2743 if (sc
->nr
.immediate
)
2744 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2748 * Legacy memcg will stall in page writeback so avoid forcibly
2749 * stalling in wait_iff_congested().
2751 if (!global_reclaim(sc
) && sane_reclaim(sc
) &&
2752 sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2753 set_memcg_congestion(pgdat
, root
, true);
2756 * Stall direct reclaim for IO completions if underlying BDIs
2757 * and node is congested. Allow kswapd to continue until it
2758 * starts encountering unqueued dirty pages or cycling through
2759 * the LRU too quickly.
2761 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
2762 current_may_throttle() && pgdat_memcg_congested(pgdat
, root
))
2763 wait_iff_congested(BLK_RW_ASYNC
, HZ
/10);
2765 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2766 sc
->nr_scanned
- nr_scanned
, sc
));
2769 * Kswapd gives up on balancing particular nodes after too
2770 * many failures to reclaim anything from them and goes to
2771 * sleep. On reclaim progress, reset the failure counter. A
2772 * successful direct reclaim run will revive a dormant kswapd.
2775 pgdat
->kswapd_failures
= 0;
2781 * Returns true if compaction should go ahead for a costly-order request, or
2782 * the allocation would already succeed without compaction. Return false if we
2783 * should reclaim first.
2785 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2787 unsigned long watermark
;
2788 enum compact_result suitable
;
2790 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2791 if (suitable
== COMPACT_SUCCESS
)
2792 /* Allocation should succeed already. Don't reclaim. */
2794 if (suitable
== COMPACT_SKIPPED
)
2795 /* Compaction cannot yet proceed. Do reclaim. */
2799 * Compaction is already possible, but it takes time to run and there
2800 * are potentially other callers using the pages just freed. So proceed
2801 * with reclaim to make a buffer of free pages available to give
2802 * compaction a reasonable chance of completing and allocating the page.
2803 * Note that we won't actually reclaim the whole buffer in one attempt
2804 * as the target watermark in should_continue_reclaim() is lower. But if
2805 * we are already above the high+gap watermark, don't reclaim at all.
2807 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2809 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2813 * This is the direct reclaim path, for page-allocating processes. We only
2814 * try to reclaim pages from zones which will satisfy the caller's allocation
2817 * If a zone is deemed to be full of pinned pages then just give it a light
2818 * scan then give up on it.
2820 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2824 unsigned long nr_soft_reclaimed
;
2825 unsigned long nr_soft_scanned
;
2827 pg_data_t
*last_pgdat
= NULL
;
2830 * If the number of buffer_heads in the machine exceeds the maximum
2831 * allowed level, force direct reclaim to scan the highmem zone as
2832 * highmem pages could be pinning lowmem pages storing buffer_heads
2834 orig_mask
= sc
->gfp_mask
;
2835 if (buffer_heads_over_limit
) {
2836 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2837 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2840 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2841 sc
->reclaim_idx
, sc
->nodemask
) {
2843 * Take care memory controller reclaiming has small influence
2846 if (global_reclaim(sc
)) {
2847 if (!cpuset_zone_allowed(zone
,
2848 GFP_KERNEL
| __GFP_HARDWALL
))
2852 * If we already have plenty of memory free for
2853 * compaction in this zone, don't free any more.
2854 * Even though compaction is invoked for any
2855 * non-zero order, only frequent costly order
2856 * reclamation is disruptive enough to become a
2857 * noticeable problem, like transparent huge
2860 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2861 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2862 compaction_ready(zone
, sc
)) {
2863 sc
->compaction_ready
= true;
2868 * Shrink each node in the zonelist once. If the
2869 * zonelist is ordered by zone (not the default) then a
2870 * node may be shrunk multiple times but in that case
2871 * the user prefers lower zones being preserved.
2873 if (zone
->zone_pgdat
== last_pgdat
)
2877 * This steals pages from memory cgroups over softlimit
2878 * and returns the number of reclaimed pages and
2879 * scanned pages. This works for global memory pressure
2880 * and balancing, not for a memcg's limit.
2882 nr_soft_scanned
= 0;
2883 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2884 sc
->order
, sc
->gfp_mask
,
2886 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2887 sc
->nr_scanned
+= nr_soft_scanned
;
2888 /* need some check for avoid more shrink_zone() */
2891 /* See comment about same check for global reclaim above */
2892 if (zone
->zone_pgdat
== last_pgdat
)
2894 last_pgdat
= zone
->zone_pgdat
;
2895 shrink_node(zone
->zone_pgdat
, sc
);
2899 * Restore to original mask to avoid the impact on the caller if we
2900 * promoted it to __GFP_HIGHMEM.
2902 sc
->gfp_mask
= orig_mask
;
2905 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
2907 struct mem_cgroup
*memcg
;
2909 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
2911 unsigned long refaults
;
2912 struct lruvec
*lruvec
;
2914 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2915 refaults
= lruvec_page_state_local(lruvec
, WORKINGSET_ACTIVATE
);
2916 lruvec
->refaults
= refaults
;
2917 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
2921 * This is the main entry point to direct page reclaim.
2923 * If a full scan of the inactive list fails to free enough memory then we
2924 * are "out of memory" and something needs to be killed.
2926 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2927 * high - the zone may be full of dirty or under-writeback pages, which this
2928 * caller can't do much about. We kick the writeback threads and take explicit
2929 * naps in the hope that some of these pages can be written. But if the
2930 * allocating task holds filesystem locks which prevent writeout this might not
2931 * work, and the allocation attempt will fail.
2933 * returns: 0, if no pages reclaimed
2934 * else, the number of pages reclaimed
2936 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2937 struct scan_control
*sc
)
2939 int initial_priority
= sc
->priority
;
2940 pg_data_t
*last_pgdat
;
2944 delayacct_freepages_start();
2946 if (global_reclaim(sc
))
2947 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
2950 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2953 shrink_zones(zonelist
, sc
);
2955 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2958 if (sc
->compaction_ready
)
2962 * If we're getting trouble reclaiming, start doing
2963 * writepage even in laptop mode.
2965 if (sc
->priority
< DEF_PRIORITY
- 2)
2966 sc
->may_writepage
= 1;
2967 } while (--sc
->priority
>= 0);
2970 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
2972 if (zone
->zone_pgdat
== last_pgdat
)
2974 last_pgdat
= zone
->zone_pgdat
;
2975 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
2976 set_memcg_congestion(last_pgdat
, sc
->target_mem_cgroup
, false);
2979 delayacct_freepages_end();
2981 if (sc
->nr_reclaimed
)
2982 return sc
->nr_reclaimed
;
2984 /* Aborted reclaim to try compaction? don't OOM, then */
2985 if (sc
->compaction_ready
)
2988 /* Untapped cgroup reserves? Don't OOM, retry. */
2989 if (sc
->memcg_low_skipped
) {
2990 sc
->priority
= initial_priority
;
2991 sc
->memcg_low_reclaim
= 1;
2992 sc
->memcg_low_skipped
= 0;
2999 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
3002 unsigned long pfmemalloc_reserve
= 0;
3003 unsigned long free_pages
= 0;
3007 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3010 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
3011 zone
= &pgdat
->node_zones
[i
];
3012 if (!managed_zone(zone
))
3015 if (!zone_reclaimable_pages(zone
))
3018 pfmemalloc_reserve
+= min_wmark_pages(zone
);
3019 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
3022 /* If there are no reserves (unexpected config) then do not throttle */
3023 if (!pfmemalloc_reserve
)
3026 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
3028 /* kswapd must be awake if processes are being throttled */
3029 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
3030 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
3031 (enum zone_type
)ZONE_NORMAL
);
3032 wake_up_interruptible(&pgdat
->kswapd_wait
);
3039 * Throttle direct reclaimers if backing storage is backed by the network
3040 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3041 * depleted. kswapd will continue to make progress and wake the processes
3042 * when the low watermark is reached.
3044 * Returns true if a fatal signal was delivered during throttling. If this
3045 * happens, the page allocator should not consider triggering the OOM killer.
3047 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
3048 nodemask_t
*nodemask
)
3052 pg_data_t
*pgdat
= NULL
;
3055 * Kernel threads should not be throttled as they may be indirectly
3056 * responsible for cleaning pages necessary for reclaim to make forward
3057 * progress. kjournald for example may enter direct reclaim while
3058 * committing a transaction where throttling it could forcing other
3059 * processes to block on log_wait_commit().
3061 if (current
->flags
& PF_KTHREAD
)
3065 * If a fatal signal is pending, this process should not throttle.
3066 * It should return quickly so it can exit and free its memory
3068 if (fatal_signal_pending(current
))
3072 * Check if the pfmemalloc reserves are ok by finding the first node
3073 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3074 * GFP_KERNEL will be required for allocating network buffers when
3075 * swapping over the network so ZONE_HIGHMEM is unusable.
3077 * Throttling is based on the first usable node and throttled processes
3078 * wait on a queue until kswapd makes progress and wakes them. There
3079 * is an affinity then between processes waking up and where reclaim
3080 * progress has been made assuming the process wakes on the same node.
3081 * More importantly, processes running on remote nodes will not compete
3082 * for remote pfmemalloc reserves and processes on different nodes
3083 * should make reasonable progress.
3085 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
3086 gfp_zone(gfp_mask
), nodemask
) {
3087 if (zone_idx(zone
) > ZONE_NORMAL
)
3090 /* Throttle based on the first usable node */
3091 pgdat
= zone
->zone_pgdat
;
3092 if (allow_direct_reclaim(pgdat
))
3097 /* If no zone was usable by the allocation flags then do not throttle */
3101 /* Account for the throttling */
3102 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3105 * If the caller cannot enter the filesystem, it's possible that it
3106 * is due to the caller holding an FS lock or performing a journal
3107 * transaction in the case of a filesystem like ext[3|4]. In this case,
3108 * it is not safe to block on pfmemalloc_wait as kswapd could be
3109 * blocked waiting on the same lock. Instead, throttle for up to a
3110 * second before continuing.
3112 if (!(gfp_mask
& __GFP_FS
)) {
3113 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3114 allow_direct_reclaim(pgdat
), HZ
);
3119 /* Throttle until kswapd wakes the process */
3120 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3121 allow_direct_reclaim(pgdat
));
3124 if (fatal_signal_pending(current
))
3131 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3132 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3134 unsigned long nr_reclaimed
;
3135 struct scan_control sc
= {
3136 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3137 .gfp_mask
= current_gfp_context(gfp_mask
),
3138 .reclaim_idx
= gfp_zone(gfp_mask
),
3140 .nodemask
= nodemask
,
3141 .priority
= DEF_PRIORITY
,
3142 .may_writepage
= !laptop_mode
,
3145 .may_shrinkslab
= 1,
3149 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3150 * Confirm they are large enough for max values.
3152 BUILD_BUG_ON(MAX_ORDER
> S8_MAX
);
3153 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
3154 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
3157 * Do not enter reclaim if fatal signal was delivered while throttled.
3158 * 1 is returned so that the page allocator does not OOM kill at this
3161 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3164 trace_mm_vmscan_direct_reclaim_begin(order
, sc
.gfp_mask
);
3166 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3168 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3170 return nr_reclaimed
;
3175 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3176 gfp_t gfp_mask
, bool noswap
,
3178 unsigned long *nr_scanned
)
3180 struct scan_control sc
= {
3181 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3182 .target_mem_cgroup
= memcg
,
3183 .may_writepage
= !laptop_mode
,
3185 .reclaim_idx
= MAX_NR_ZONES
- 1,
3186 .may_swap
= !noswap
,
3187 .may_shrinkslab
= 1,
3189 unsigned long lru_pages
;
3191 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3192 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3194 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3198 * NOTE: Although we can get the priority field, using it
3199 * here is not a good idea, since it limits the pages we can scan.
3200 * if we don't reclaim here, the shrink_node from balance_pgdat
3201 * will pick up pages from other mem cgroup's as well. We hack
3202 * the priority and make it zero.
3204 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3206 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3208 *nr_scanned
= sc
.nr_scanned
;
3209 return sc
.nr_reclaimed
;
3212 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3213 unsigned long nr_pages
,
3217 struct zonelist
*zonelist
;
3218 unsigned long nr_reclaimed
;
3219 unsigned long pflags
;
3221 unsigned int noreclaim_flag
;
3222 struct scan_control sc
= {
3223 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3224 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3225 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3226 .reclaim_idx
= MAX_NR_ZONES
- 1,
3227 .target_mem_cgroup
= memcg
,
3228 .priority
= DEF_PRIORITY
,
3229 .may_writepage
= !laptop_mode
,
3231 .may_swap
= may_swap
,
3232 .may_shrinkslab
= 1,
3236 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3237 * take care of from where we get pages. So the node where we start the
3238 * scan does not need to be the current node.
3240 nid
= mem_cgroup_select_victim_node(memcg
);
3242 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3244 trace_mm_vmscan_memcg_reclaim_begin(0, sc
.gfp_mask
);
3246 psi_memstall_enter(&pflags
);
3247 noreclaim_flag
= memalloc_noreclaim_save();
3249 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3251 memalloc_noreclaim_restore(noreclaim_flag
);
3252 psi_memstall_leave(&pflags
);
3254 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3256 return nr_reclaimed
;
3260 static void age_active_anon(struct pglist_data
*pgdat
,
3261 struct scan_control
*sc
)
3263 struct mem_cgroup
*memcg
;
3265 if (!total_swap_pages
)
3268 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3270 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3272 if (inactive_list_is_low(lruvec
, false, sc
, true))
3273 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3274 sc
, LRU_ACTIVE_ANON
);
3276 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3280 static bool pgdat_watermark_boosted(pg_data_t
*pgdat
, int classzone_idx
)
3286 * Check for watermark boosts top-down as the higher zones
3287 * are more likely to be boosted. Both watermarks and boosts
3288 * should not be checked at the time time as reclaim would
3289 * start prematurely when there is no boosting and a lower
3292 for (i
= classzone_idx
; i
>= 0; i
--) {
3293 zone
= pgdat
->node_zones
+ i
;
3294 if (!managed_zone(zone
))
3297 if (zone
->watermark_boost
)
3305 * Returns true if there is an eligible zone balanced for the request order
3308 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3311 unsigned long mark
= -1;
3315 * Check watermarks bottom-up as lower zones are more likely to
3318 for (i
= 0; i
<= classzone_idx
; i
++) {
3319 zone
= pgdat
->node_zones
+ i
;
3321 if (!managed_zone(zone
))
3324 mark
= high_wmark_pages(zone
);
3325 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3330 * If a node has no populated zone within classzone_idx, it does not
3331 * need balancing by definition. This can happen if a zone-restricted
3332 * allocation tries to wake a remote kswapd.
3340 /* Clear pgdat state for congested, dirty or under writeback. */
3341 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3343 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3344 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3345 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3349 * Prepare kswapd for sleeping. This verifies that there are no processes
3350 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3352 * Returns true if kswapd is ready to sleep
3354 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3357 * The throttled processes are normally woken up in balance_pgdat() as
3358 * soon as allow_direct_reclaim() is true. But there is a potential
3359 * race between when kswapd checks the watermarks and a process gets
3360 * throttled. There is also a potential race if processes get
3361 * throttled, kswapd wakes, a large process exits thereby balancing the
3362 * zones, which causes kswapd to exit balance_pgdat() before reaching
3363 * the wake up checks. If kswapd is going to sleep, no process should
3364 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3365 * the wake up is premature, processes will wake kswapd and get
3366 * throttled again. The difference from wake ups in balance_pgdat() is
3367 * that here we are under prepare_to_wait().
3369 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3370 wake_up_all(&pgdat
->pfmemalloc_wait
);
3372 /* Hopeless node, leave it to direct reclaim */
3373 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3376 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3377 clear_pgdat_congested(pgdat
);
3385 * kswapd shrinks a node of pages that are at or below the highest usable
3386 * zone that is currently unbalanced.
3388 * Returns true if kswapd scanned at least the requested number of pages to
3389 * reclaim or if the lack of progress was due to pages under writeback.
3390 * This is used to determine if the scanning priority needs to be raised.
3392 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3393 struct scan_control
*sc
)
3398 /* Reclaim a number of pages proportional to the number of zones */
3399 sc
->nr_to_reclaim
= 0;
3400 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3401 zone
= pgdat
->node_zones
+ z
;
3402 if (!managed_zone(zone
))
3405 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3409 * Historically care was taken to put equal pressure on all zones but
3410 * now pressure is applied based on node LRU order.
3412 shrink_node(pgdat
, sc
);
3415 * Fragmentation may mean that the system cannot be rebalanced for
3416 * high-order allocations. If twice the allocation size has been
3417 * reclaimed then recheck watermarks only at order-0 to prevent
3418 * excessive reclaim. Assume that a process requested a high-order
3419 * can direct reclaim/compact.
3421 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3424 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3428 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3429 * that are eligible for use by the caller until at least one zone is
3432 * Returns the order kswapd finished reclaiming at.
3434 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3435 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3436 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3437 * or lower is eligible for reclaim until at least one usable zone is
3440 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3443 unsigned long nr_soft_reclaimed
;
3444 unsigned long nr_soft_scanned
;
3445 unsigned long pflags
;
3446 unsigned long nr_boost_reclaim
;
3447 unsigned long zone_boosts
[MAX_NR_ZONES
] = { 0, };
3450 struct scan_control sc
= {
3451 .gfp_mask
= GFP_KERNEL
,
3456 psi_memstall_enter(&pflags
);
3457 __fs_reclaim_acquire();
3459 count_vm_event(PAGEOUTRUN
);
3462 * Account for the reclaim boost. Note that the zone boost is left in
3463 * place so that parallel allocations that are near the watermark will
3464 * stall or direct reclaim until kswapd is finished.
3466 nr_boost_reclaim
= 0;
3467 for (i
= 0; i
<= classzone_idx
; i
++) {
3468 zone
= pgdat
->node_zones
+ i
;
3469 if (!managed_zone(zone
))
3472 nr_boost_reclaim
+= zone
->watermark_boost
;
3473 zone_boosts
[i
] = zone
->watermark_boost
;
3475 boosted
= nr_boost_reclaim
;
3478 sc
.priority
= DEF_PRIORITY
;
3480 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3481 bool raise_priority
= true;
3485 sc
.reclaim_idx
= classzone_idx
;
3488 * If the number of buffer_heads exceeds the maximum allowed
3489 * then consider reclaiming from all zones. This has a dual
3490 * purpose -- on 64-bit systems it is expected that
3491 * buffer_heads are stripped during active rotation. On 32-bit
3492 * systems, highmem pages can pin lowmem memory and shrinking
3493 * buffers can relieve lowmem pressure. Reclaim may still not
3494 * go ahead if all eligible zones for the original allocation
3495 * request are balanced to avoid excessive reclaim from kswapd.
3497 if (buffer_heads_over_limit
) {
3498 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3499 zone
= pgdat
->node_zones
+ i
;
3500 if (!managed_zone(zone
))
3509 * If the pgdat is imbalanced then ignore boosting and preserve
3510 * the watermarks for a later time and restart. Note that the
3511 * zone watermarks will be still reset at the end of balancing
3512 * on the grounds that the normal reclaim should be enough to
3513 * re-evaluate if boosting is required when kswapd next wakes.
3515 balanced
= pgdat_balanced(pgdat
, sc
.order
, classzone_idx
);
3516 if (!balanced
&& nr_boost_reclaim
) {
3517 nr_boost_reclaim
= 0;
3522 * If boosting is not active then only reclaim if there are no
3523 * eligible zones. Note that sc.reclaim_idx is not used as
3524 * buffer_heads_over_limit may have adjusted it.
3526 if (!nr_boost_reclaim
&& balanced
)
3529 /* Limit the priority of boosting to avoid reclaim writeback */
3530 if (nr_boost_reclaim
&& sc
.priority
== DEF_PRIORITY
- 2)
3531 raise_priority
= false;
3534 * Do not writeback or swap pages for boosted reclaim. The
3535 * intent is to relieve pressure not issue sub-optimal IO
3536 * from reclaim context. If no pages are reclaimed, the
3537 * reclaim will be aborted.
3539 sc
.may_writepage
= !laptop_mode
&& !nr_boost_reclaim
;
3540 sc
.may_swap
= !nr_boost_reclaim
;
3541 sc
.may_shrinkslab
= !nr_boost_reclaim
;
3544 * Do some background aging of the anon list, to give
3545 * pages a chance to be referenced before reclaiming. All
3546 * pages are rotated regardless of classzone as this is
3547 * about consistent aging.
3549 age_active_anon(pgdat
, &sc
);
3552 * If we're getting trouble reclaiming, start doing writepage
3553 * even in laptop mode.
3555 if (sc
.priority
< DEF_PRIORITY
- 2)
3556 sc
.may_writepage
= 1;
3558 /* Call soft limit reclaim before calling shrink_node. */
3560 nr_soft_scanned
= 0;
3561 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3562 sc
.gfp_mask
, &nr_soft_scanned
);
3563 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3566 * There should be no need to raise the scanning priority if
3567 * enough pages are already being scanned that that high
3568 * watermark would be met at 100% efficiency.
3570 if (kswapd_shrink_node(pgdat
, &sc
))
3571 raise_priority
= false;
3574 * If the low watermark is met there is no need for processes
3575 * to be throttled on pfmemalloc_wait as they should not be
3576 * able to safely make forward progress. Wake them
3578 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3579 allow_direct_reclaim(pgdat
))
3580 wake_up_all(&pgdat
->pfmemalloc_wait
);
3582 /* Check if kswapd should be suspending */
3583 __fs_reclaim_release();
3584 ret
= try_to_freeze();
3585 __fs_reclaim_acquire();
3586 if (ret
|| kthread_should_stop())
3590 * Raise priority if scanning rate is too low or there was no
3591 * progress in reclaiming pages
3593 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3594 nr_boost_reclaim
-= min(nr_boost_reclaim
, nr_reclaimed
);
3597 * If reclaim made no progress for a boost, stop reclaim as
3598 * IO cannot be queued and it could be an infinite loop in
3599 * extreme circumstances.
3601 if (nr_boost_reclaim
&& !nr_reclaimed
)
3604 if (raise_priority
|| !nr_reclaimed
)
3606 } while (sc
.priority
>= 1);
3608 if (!sc
.nr_reclaimed
)
3609 pgdat
->kswapd_failures
++;
3612 /* If reclaim was boosted, account for the reclaim done in this pass */
3614 unsigned long flags
;
3616 for (i
= 0; i
<= classzone_idx
; i
++) {
3617 if (!zone_boosts
[i
])
3620 /* Increments are under the zone lock */
3621 zone
= pgdat
->node_zones
+ i
;
3622 spin_lock_irqsave(&zone
->lock
, flags
);
3623 zone
->watermark_boost
-= min(zone
->watermark_boost
, zone_boosts
[i
]);
3624 spin_unlock_irqrestore(&zone
->lock
, flags
);
3628 * As there is now likely space, wakeup kcompact to defragment
3631 wakeup_kcompactd(pgdat
, pageblock_order
, classzone_idx
);
3634 snapshot_refaults(NULL
, pgdat
);
3635 __fs_reclaim_release();
3636 psi_memstall_leave(&pflags
);
3638 * Return the order kswapd stopped reclaiming at as
3639 * prepare_kswapd_sleep() takes it into account. If another caller
3640 * entered the allocator slow path while kswapd was awake, order will
3641 * remain at the higher level.
3647 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3648 * allocation request woke kswapd for. When kswapd has not woken recently,
3649 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3650 * given classzone and returns it or the highest classzone index kswapd
3651 * was recently woke for.
3653 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3654 enum zone_type classzone_idx
)
3656 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3657 return classzone_idx
;
3659 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3662 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3663 unsigned int classzone_idx
)
3668 if (freezing(current
) || kthread_should_stop())
3671 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3674 * Try to sleep for a short interval. Note that kcompactd will only be
3675 * woken if it is possible to sleep for a short interval. This is
3676 * deliberate on the assumption that if reclaim cannot keep an
3677 * eligible zone balanced that it's also unlikely that compaction will
3680 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3682 * Compaction records what page blocks it recently failed to
3683 * isolate pages from and skips them in the future scanning.
3684 * When kswapd is going to sleep, it is reasonable to assume
3685 * that pages and compaction may succeed so reset the cache.
3687 reset_isolation_suitable(pgdat
);
3690 * We have freed the memory, now we should compact it to make
3691 * allocation of the requested order possible.
3693 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3695 remaining
= schedule_timeout(HZ
/10);
3698 * If woken prematurely then reset kswapd_classzone_idx and
3699 * order. The values will either be from a wakeup request or
3700 * the previous request that slept prematurely.
3703 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3704 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3707 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3708 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3712 * After a short sleep, check if it was a premature sleep. If not, then
3713 * go fully to sleep until explicitly woken up.
3716 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3717 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3720 * vmstat counters are not perfectly accurate and the estimated
3721 * value for counters such as NR_FREE_PAGES can deviate from the
3722 * true value by nr_online_cpus * threshold. To avoid the zone
3723 * watermarks being breached while under pressure, we reduce the
3724 * per-cpu vmstat threshold while kswapd is awake and restore
3725 * them before going back to sleep.
3727 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3729 if (!kthread_should_stop())
3732 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3735 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3737 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3739 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3743 * The background pageout daemon, started as a kernel thread
3744 * from the init process.
3746 * This basically trickles out pages so that we have _some_
3747 * free memory available even if there is no other activity
3748 * that frees anything up. This is needed for things like routing
3749 * etc, where we otherwise might have all activity going on in
3750 * asynchronous contexts that cannot page things out.
3752 * If there are applications that are active memory-allocators
3753 * (most normal use), this basically shouldn't matter.
3755 static int kswapd(void *p
)
3757 unsigned int alloc_order
, reclaim_order
;
3758 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3759 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3760 struct task_struct
*tsk
= current
;
3762 struct reclaim_state reclaim_state
= {
3763 .reclaimed_slab
= 0,
3765 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3767 if (!cpumask_empty(cpumask
))
3768 set_cpus_allowed_ptr(tsk
, cpumask
);
3769 current
->reclaim_state
= &reclaim_state
;
3772 * Tell the memory management that we're a "memory allocator",
3773 * and that if we need more memory we should get access to it
3774 * regardless (see "__alloc_pages()"). "kswapd" should
3775 * never get caught in the normal page freeing logic.
3777 * (Kswapd normally doesn't need memory anyway, but sometimes
3778 * you need a small amount of memory in order to be able to
3779 * page out something else, and this flag essentially protects
3780 * us from recursively trying to free more memory as we're
3781 * trying to free the first piece of memory in the first place).
3783 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3786 pgdat
->kswapd_order
= 0;
3787 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3791 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3792 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3795 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3798 /* Read the new order and classzone_idx */
3799 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3800 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3801 pgdat
->kswapd_order
= 0;
3802 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3804 ret
= try_to_freeze();
3805 if (kthread_should_stop())
3809 * We can speed up thawing tasks if we don't call balance_pgdat
3810 * after returning from the refrigerator
3816 * Reclaim begins at the requested order but if a high-order
3817 * reclaim fails then kswapd falls back to reclaiming for
3818 * order-0. If that happens, kswapd will consider sleeping
3819 * for the order it finished reclaiming at (reclaim_order)
3820 * but kcompactd is woken to compact for the original
3821 * request (alloc_order).
3823 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3825 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3826 if (reclaim_order
< alloc_order
)
3827 goto kswapd_try_sleep
;
3830 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3831 current
->reclaim_state
= NULL
;
3837 * A zone is low on free memory or too fragmented for high-order memory. If
3838 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3839 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3840 * has failed or is not needed, still wake up kcompactd if only compaction is
3843 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
3844 enum zone_type classzone_idx
)
3848 if (!managed_zone(zone
))
3851 if (!cpuset_zone_allowed(zone
, gfp_flags
))
3853 pgdat
= zone
->zone_pgdat
;
3854 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3856 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3857 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3860 /* Hopeless node, leave it to direct reclaim if possible */
3861 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
3862 (pgdat_balanced(pgdat
, order
, classzone_idx
) &&
3863 !pgdat_watermark_boosted(pgdat
, classzone_idx
))) {
3865 * There may be plenty of free memory available, but it's too
3866 * fragmented for high-order allocations. Wake up kcompactd
3867 * and rely on compaction_suitable() to determine if it's
3868 * needed. If it fails, it will defer subsequent attempts to
3869 * ratelimit its work.
3871 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
3872 wakeup_kcompactd(pgdat
, order
, classzone_idx
);
3876 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
,
3878 wake_up_interruptible(&pgdat
->kswapd_wait
);
3881 #ifdef CONFIG_HIBERNATION
3883 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3886 * Rather than trying to age LRUs the aim is to preserve the overall
3887 * LRU order by reclaiming preferentially
3888 * inactive > active > active referenced > active mapped
3890 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3892 struct reclaim_state reclaim_state
;
3893 struct scan_control sc
= {
3894 .nr_to_reclaim
= nr_to_reclaim
,
3895 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3896 .reclaim_idx
= MAX_NR_ZONES
- 1,
3897 .priority
= DEF_PRIORITY
,
3901 .hibernation_mode
= 1,
3903 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3904 struct task_struct
*p
= current
;
3905 unsigned long nr_reclaimed
;
3906 unsigned int noreclaim_flag
;
3908 fs_reclaim_acquire(sc
.gfp_mask
);
3909 noreclaim_flag
= memalloc_noreclaim_save();
3910 reclaim_state
.reclaimed_slab
= 0;
3911 p
->reclaim_state
= &reclaim_state
;
3913 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3915 p
->reclaim_state
= NULL
;
3916 memalloc_noreclaim_restore(noreclaim_flag
);
3917 fs_reclaim_release(sc
.gfp_mask
);
3919 return nr_reclaimed
;
3921 #endif /* CONFIG_HIBERNATION */
3923 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3924 not required for correctness. So if the last cpu in a node goes
3925 away, we get changed to run anywhere: as the first one comes back,
3926 restore their cpu bindings. */
3927 static int kswapd_cpu_online(unsigned int cpu
)
3931 for_each_node_state(nid
, N_MEMORY
) {
3932 pg_data_t
*pgdat
= NODE_DATA(nid
);
3933 const struct cpumask
*mask
;
3935 mask
= cpumask_of_node(pgdat
->node_id
);
3937 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3938 /* One of our CPUs online: restore mask */
3939 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3945 * This kswapd start function will be called by init and node-hot-add.
3946 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3948 int kswapd_run(int nid
)
3950 pg_data_t
*pgdat
= NODE_DATA(nid
);
3956 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3957 if (IS_ERR(pgdat
->kswapd
)) {
3958 /* failure at boot is fatal */
3959 BUG_ON(system_state
< SYSTEM_RUNNING
);
3960 pr_err("Failed to start kswapd on node %d\n", nid
);
3961 ret
= PTR_ERR(pgdat
->kswapd
);
3962 pgdat
->kswapd
= NULL
;
3968 * Called by memory hotplug when all memory in a node is offlined. Caller must
3969 * hold mem_hotplug_begin/end().
3971 void kswapd_stop(int nid
)
3973 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3976 kthread_stop(kswapd
);
3977 NODE_DATA(nid
)->kswapd
= NULL
;
3981 static int __init
kswapd_init(void)
3986 for_each_node_state(nid
, N_MEMORY
)
3988 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3989 "mm/vmscan:online", kswapd_cpu_online
,
3995 module_init(kswapd_init
)
4001 * If non-zero call node_reclaim when the number of free pages falls below
4004 int node_reclaim_mode __read_mostly
;
4006 #define RECLAIM_OFF 0
4007 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4008 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4009 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4012 * Priority for NODE_RECLAIM. This determines the fraction of pages
4013 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4016 #define NODE_RECLAIM_PRIORITY 4
4019 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4022 int sysctl_min_unmapped_ratio
= 1;
4025 * If the number of slab pages in a zone grows beyond this percentage then
4026 * slab reclaim needs to occur.
4028 int sysctl_min_slab_ratio
= 5;
4030 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
4032 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
4033 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
4034 node_page_state(pgdat
, NR_ACTIVE_FILE
);
4037 * It's possible for there to be more file mapped pages than
4038 * accounted for by the pages on the file LRU lists because
4039 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4041 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
4044 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4045 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
4047 unsigned long nr_pagecache_reclaimable
;
4048 unsigned long delta
= 0;
4051 * If RECLAIM_UNMAP is set, then all file pages are considered
4052 * potentially reclaimable. Otherwise, we have to worry about
4053 * pages like swapcache and node_unmapped_file_pages() provides
4056 if (node_reclaim_mode
& RECLAIM_UNMAP
)
4057 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
4059 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
4061 /* If we can't clean pages, remove dirty pages from consideration */
4062 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
4063 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
4065 /* Watch for any possible underflows due to delta */
4066 if (unlikely(delta
> nr_pagecache_reclaimable
))
4067 delta
= nr_pagecache_reclaimable
;
4069 return nr_pagecache_reclaimable
- delta
;
4073 * Try to free up some pages from this node through reclaim.
4075 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4077 /* Minimum pages needed in order to stay on node */
4078 const unsigned long nr_pages
= 1 << order
;
4079 struct task_struct
*p
= current
;
4080 struct reclaim_state reclaim_state
;
4081 unsigned int noreclaim_flag
;
4082 struct scan_control sc
= {
4083 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
4084 .gfp_mask
= current_gfp_context(gfp_mask
),
4086 .priority
= NODE_RECLAIM_PRIORITY
,
4087 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
4088 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
4090 .reclaim_idx
= gfp_zone(gfp_mask
),
4093 trace_mm_vmscan_node_reclaim_begin(pgdat
->node_id
, order
,
4097 fs_reclaim_acquire(sc
.gfp_mask
);
4099 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4100 * and we also need to be able to write out pages for RECLAIM_WRITE
4101 * and RECLAIM_UNMAP.
4103 noreclaim_flag
= memalloc_noreclaim_save();
4104 p
->flags
|= PF_SWAPWRITE
;
4105 reclaim_state
.reclaimed_slab
= 0;
4106 p
->reclaim_state
= &reclaim_state
;
4108 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
4110 * Free memory by calling shrink node with increasing
4111 * priorities until we have enough memory freed.
4114 shrink_node(pgdat
, &sc
);
4115 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
4118 p
->reclaim_state
= NULL
;
4119 current
->flags
&= ~PF_SWAPWRITE
;
4120 memalloc_noreclaim_restore(noreclaim_flag
);
4121 fs_reclaim_release(sc
.gfp_mask
);
4123 trace_mm_vmscan_node_reclaim_end(sc
.nr_reclaimed
);
4125 return sc
.nr_reclaimed
>= nr_pages
;
4128 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4133 * Node reclaim reclaims unmapped file backed pages and
4134 * slab pages if we are over the defined limits.
4136 * A small portion of unmapped file backed pages is needed for
4137 * file I/O otherwise pages read by file I/O will be immediately
4138 * thrown out if the node is overallocated. So we do not reclaim
4139 * if less than a specified percentage of the node is used by
4140 * unmapped file backed pages.
4142 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
4143 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
4144 return NODE_RECLAIM_FULL
;
4147 * Do not scan if the allocation should not be delayed.
4149 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
4150 return NODE_RECLAIM_NOSCAN
;
4153 * Only run node reclaim on the local node or on nodes that do not
4154 * have associated processors. This will favor the local processor
4155 * over remote processors and spread off node memory allocations
4156 * as wide as possible.
4158 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
4159 return NODE_RECLAIM_NOSCAN
;
4161 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
4162 return NODE_RECLAIM_NOSCAN
;
4164 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
4165 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
4168 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
4175 * page_evictable - test whether a page is evictable
4176 * @page: the page to test
4178 * Test whether page is evictable--i.e., should be placed on active/inactive
4179 * lists vs unevictable list.
4181 * Reasons page might not be evictable:
4182 * (1) page's mapping marked unevictable
4183 * (2) page is part of an mlocked VMA
4186 int page_evictable(struct page
*page
)
4190 /* Prevent address_space of inode and swap cache from being freed */
4192 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
4198 * check_move_unevictable_pages - check pages for evictability and move to
4199 * appropriate zone lru list
4200 * @pvec: pagevec with lru pages to check
4202 * Checks pages for evictability, if an evictable page is in the unevictable
4203 * lru list, moves it to the appropriate evictable lru list. This function
4204 * should be only used for lru pages.
4206 void check_move_unevictable_pages(struct pagevec
*pvec
)
4208 struct lruvec
*lruvec
;
4209 struct pglist_data
*pgdat
= NULL
;
4214 for (i
= 0; i
< pvec
->nr
; i
++) {
4215 struct page
*page
= pvec
->pages
[i
];
4216 struct pglist_data
*pagepgdat
= page_pgdat(page
);
4219 if (pagepgdat
!= pgdat
) {
4221 spin_unlock_irq(&pgdat
->lru_lock
);
4223 spin_lock_irq(&pgdat
->lru_lock
);
4225 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
4227 if (!PageLRU(page
) || !PageUnevictable(page
))
4230 if (page_evictable(page
)) {
4231 enum lru_list lru
= page_lru_base_type(page
);
4233 VM_BUG_ON_PAGE(PageActive(page
), page
);
4234 ClearPageUnevictable(page
);
4235 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
4236 add_page_to_lru_list(page
, lruvec
, lru
);
4242 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4243 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4244 spin_unlock_irq(&pgdat
->lru_lock
);
4247 EXPORT_SYMBOL_GPL(check_move_unevictable_pages
);