4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
65 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
66 unsigned int core_pipe_limit
;
67 int suid_dumpable
= 0;
73 static atomic_t call_count
= ATOMIC_INIT(1);
75 /* The maximal length of core_pattern is also specified in sysctl.c */
77 static LIST_HEAD(formats
);
78 static DEFINE_RWLOCK(binfmt_lock
);
80 int __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
84 write_lock(&binfmt_lock
);
85 insert
? list_add(&fmt
->lh
, &formats
) :
86 list_add_tail(&fmt
->lh
, &formats
);
87 write_unlock(&binfmt_lock
);
91 EXPORT_SYMBOL(__register_binfmt
);
93 void unregister_binfmt(struct linux_binfmt
* fmt
)
95 write_lock(&binfmt_lock
);
97 write_unlock(&binfmt_lock
);
100 EXPORT_SYMBOL(unregister_binfmt
);
102 static inline void put_binfmt(struct linux_binfmt
* fmt
)
104 module_put(fmt
->module
);
108 * Note that a shared library must be both readable and executable due to
111 * Also note that we take the address to load from from the file itself.
113 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
116 char *tmp
= getname(library
);
117 int error
= PTR_ERR(tmp
);
118 static const struct open_flags uselib_flags
= {
119 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
120 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
121 .intent
= LOOKUP_OPEN
127 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
, LOOKUP_FOLLOW
);
129 error
= PTR_ERR(file
);
134 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
138 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
145 struct linux_binfmt
* fmt
;
147 read_lock(&binfmt_lock
);
148 list_for_each_entry(fmt
, &formats
, lh
) {
149 if (!fmt
->load_shlib
)
151 if (!try_module_get(fmt
->module
))
153 read_unlock(&binfmt_lock
);
154 error
= fmt
->load_shlib(file
);
155 read_lock(&binfmt_lock
);
157 if (error
!= -ENOEXEC
)
160 read_unlock(&binfmt_lock
);
170 * The nascent bprm->mm is not visible until exec_mmap() but it can
171 * use a lot of memory, account these pages in current->mm temporary
172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173 * change the counter back via acct_arg_size(0).
175 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
177 struct mm_struct
*mm
= current
->mm
;
178 long diff
= (long)(pages
- bprm
->vma_pages
);
183 bprm
->vma_pages
= pages
;
185 #ifdef SPLIT_RSS_COUNTING
186 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
188 spin_lock(&mm
->page_table_lock
);
189 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
190 spin_unlock(&mm
->page_table_lock
);
194 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
200 #ifdef CONFIG_STACK_GROWSUP
202 ret
= expand_downwards(bprm
->vma
, pos
);
207 ret
= get_user_pages(current
, bprm
->mm
, pos
,
208 1, write
, 1, &page
, NULL
);
213 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
216 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
219 * We've historically supported up to 32 pages (ARG_MAX)
220 * of argument strings even with small stacks
226 * Limit to 1/4-th the stack size for the argv+env strings.
228 * - the remaining binfmt code will not run out of stack space,
229 * - the program will have a reasonable amount of stack left
232 rlim
= current
->signal
->rlim
;
233 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4) {
242 static void put_arg_page(struct page
*page
)
247 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
251 static void free_arg_pages(struct linux_binprm
*bprm
)
255 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
258 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
261 static int __bprm_mm_init(struct linux_binprm
*bprm
)
264 struct vm_area_struct
*vma
= NULL
;
265 struct mm_struct
*mm
= bprm
->mm
;
267 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
271 down_write(&mm
->mmap_sem
);
275 * Place the stack at the largest stack address the architecture
276 * supports. Later, we'll move this to an appropriate place. We don't
277 * use STACK_TOP because that can depend on attributes which aren't
280 BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
281 vma
->vm_end
= STACK_TOP_MAX
;
282 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
283 vma
->vm_flags
= VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
284 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
285 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
287 err
= security_file_mmap(NULL
, 0, 0, 0, vma
->vm_start
, 1);
291 err
= insert_vm_struct(mm
, vma
);
295 mm
->stack_vm
= mm
->total_vm
= 1;
296 up_write(&mm
->mmap_sem
);
297 bprm
->p
= vma
->vm_end
- sizeof(void *);
300 up_write(&mm
->mmap_sem
);
302 kmem_cache_free(vm_area_cachep
, vma
);
306 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
308 return len
<= MAX_ARG_STRLEN
;
313 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
317 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
322 page
= bprm
->page
[pos
/ PAGE_SIZE
];
323 if (!page
&& write
) {
324 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
327 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
333 static void put_arg_page(struct page
*page
)
337 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
340 __free_page(bprm
->page
[i
]);
341 bprm
->page
[i
] = NULL
;
345 static void free_arg_pages(struct linux_binprm
*bprm
)
349 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
350 free_arg_page(bprm
, i
);
353 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
358 static int __bprm_mm_init(struct linux_binprm
*bprm
)
360 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
364 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
366 return len
<= bprm
->p
;
369 #endif /* CONFIG_MMU */
372 * Create a new mm_struct and populate it with a temporary stack
373 * vm_area_struct. We don't have enough context at this point to set the stack
374 * flags, permissions, and offset, so we use temporary values. We'll update
375 * them later in setup_arg_pages().
377 int bprm_mm_init(struct linux_binprm
*bprm
)
380 struct mm_struct
*mm
= NULL
;
382 bprm
->mm
= mm
= mm_alloc();
387 err
= init_new_context(current
, mm
);
391 err
= __bprm_mm_init(bprm
);
406 struct user_arg_ptr
{
411 const char __user
*const __user
*native
;
413 compat_uptr_t __user
*compat
;
418 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
420 const char __user
*native
;
423 if (unlikely(argv
.is_compat
)) {
424 compat_uptr_t compat
;
426 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
427 return ERR_PTR(-EFAULT
);
429 return compat_ptr(compat
);
433 if (get_user(native
, argv
.ptr
.native
+ nr
))
434 return ERR_PTR(-EFAULT
);
440 * count() counts the number of strings in array ARGV.
442 static int count(struct user_arg_ptr argv
, int max
)
446 if (argv
.ptr
.native
!= NULL
) {
448 const char __user
*p
= get_user_arg_ptr(argv
, i
);
459 if (fatal_signal_pending(current
))
460 return -ERESTARTNOHAND
;
468 * 'copy_strings()' copies argument/environment strings from the old
469 * processes's memory to the new process's stack. The call to get_user_pages()
470 * ensures the destination page is created and not swapped out.
472 static int copy_strings(int argc
, struct user_arg_ptr argv
,
473 struct linux_binprm
*bprm
)
475 struct page
*kmapped_page
= NULL
;
477 unsigned long kpos
= 0;
481 const char __user
*str
;
486 str
= get_user_arg_ptr(argv
, argc
);
490 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
495 if (!valid_arg_len(bprm
, len
))
498 /* We're going to work our way backwords. */
504 int offset
, bytes_to_copy
;
506 if (fatal_signal_pending(current
)) {
507 ret
= -ERESTARTNOHAND
;
512 offset
= pos
% PAGE_SIZE
;
516 bytes_to_copy
= offset
;
517 if (bytes_to_copy
> len
)
520 offset
-= bytes_to_copy
;
521 pos
-= bytes_to_copy
;
522 str
-= bytes_to_copy
;
523 len
-= bytes_to_copy
;
525 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
528 page
= get_arg_page(bprm
, pos
, 1);
535 flush_kernel_dcache_page(kmapped_page
);
536 kunmap(kmapped_page
);
537 put_arg_page(kmapped_page
);
540 kaddr
= kmap(kmapped_page
);
541 kpos
= pos
& PAGE_MASK
;
542 flush_arg_page(bprm
, kpos
, kmapped_page
);
544 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
553 flush_kernel_dcache_page(kmapped_page
);
554 kunmap(kmapped_page
);
555 put_arg_page(kmapped_page
);
561 * Like copy_strings, but get argv and its values from kernel memory.
563 int copy_strings_kernel(int argc
, const char *const *__argv
,
564 struct linux_binprm
*bprm
)
567 mm_segment_t oldfs
= get_fs();
568 struct user_arg_ptr argv
= {
569 .ptr
.native
= (const char __user
*const __user
*)__argv
,
573 r
= copy_strings(argc
, argv
, bprm
);
578 EXPORT_SYMBOL(copy_strings_kernel
);
583 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
584 * the binfmt code determines where the new stack should reside, we shift it to
585 * its final location. The process proceeds as follows:
587 * 1) Use shift to calculate the new vma endpoints.
588 * 2) Extend vma to cover both the old and new ranges. This ensures the
589 * arguments passed to subsequent functions are consistent.
590 * 3) Move vma's page tables to the new range.
591 * 4) Free up any cleared pgd range.
592 * 5) Shrink the vma to cover only the new range.
594 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
596 struct mm_struct
*mm
= vma
->vm_mm
;
597 unsigned long old_start
= vma
->vm_start
;
598 unsigned long old_end
= vma
->vm_end
;
599 unsigned long length
= old_end
- old_start
;
600 unsigned long new_start
= old_start
- shift
;
601 unsigned long new_end
= old_end
- shift
;
602 struct mmu_gather tlb
;
604 BUG_ON(new_start
> new_end
);
607 * ensure there are no vmas between where we want to go
610 if (vma
!= find_vma(mm
, new_start
))
614 * cover the whole range: [new_start, old_end)
616 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
620 * move the page tables downwards, on failure we rely on
621 * process cleanup to remove whatever mess we made.
623 if (length
!= move_page_tables(vma
, old_start
,
624 vma
, new_start
, length
))
628 tlb_gather_mmu(&tlb
, mm
, 0);
629 if (new_end
> old_start
) {
631 * when the old and new regions overlap clear from new_end.
633 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
634 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
637 * otherwise, clean from old_start; this is done to not touch
638 * the address space in [new_end, old_start) some architectures
639 * have constraints on va-space that make this illegal (IA64) -
640 * for the others its just a little faster.
642 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
643 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
645 tlb_finish_mmu(&tlb
, new_end
, old_end
);
648 * Shrink the vma to just the new range. Always succeeds.
650 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
656 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657 * the stack is optionally relocated, and some extra space is added.
659 int setup_arg_pages(struct linux_binprm
*bprm
,
660 unsigned long stack_top
,
661 int executable_stack
)
664 unsigned long stack_shift
;
665 struct mm_struct
*mm
= current
->mm
;
666 struct vm_area_struct
*vma
= bprm
->vma
;
667 struct vm_area_struct
*prev
= NULL
;
668 unsigned long vm_flags
;
669 unsigned long stack_base
;
670 unsigned long stack_size
;
671 unsigned long stack_expand
;
672 unsigned long rlim_stack
;
674 #ifdef CONFIG_STACK_GROWSUP
675 /* Limit stack size to 1GB */
676 stack_base
= rlimit_max(RLIMIT_STACK
);
677 if (stack_base
> (1 << 30))
678 stack_base
= 1 << 30;
680 /* Make sure we didn't let the argument array grow too large. */
681 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
684 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
686 stack_shift
= vma
->vm_start
- stack_base
;
687 mm
->arg_start
= bprm
->p
- stack_shift
;
688 bprm
->p
= vma
->vm_end
- stack_shift
;
690 stack_top
= arch_align_stack(stack_top
);
691 stack_top
= PAGE_ALIGN(stack_top
);
693 if (unlikely(stack_top
< mmap_min_addr
) ||
694 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
697 stack_shift
= vma
->vm_end
- stack_top
;
699 bprm
->p
-= stack_shift
;
700 mm
->arg_start
= bprm
->p
;
704 bprm
->loader
-= stack_shift
;
705 bprm
->exec
-= stack_shift
;
707 down_write(&mm
->mmap_sem
);
708 vm_flags
= VM_STACK_FLAGS
;
711 * Adjust stack execute permissions; explicitly enable for
712 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
713 * (arch default) otherwise.
715 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
717 else if (executable_stack
== EXSTACK_DISABLE_X
)
718 vm_flags
&= ~VM_EXEC
;
719 vm_flags
|= mm
->def_flags
;
720 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
722 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
728 /* Move stack pages down in memory. */
730 ret
= shift_arg_pages(vma
, stack_shift
);
735 /* mprotect_fixup is overkill to remove the temporary stack flags */
736 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
738 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
739 stack_size
= vma
->vm_end
- vma
->vm_start
;
741 * Align this down to a page boundary as expand_stack
744 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
745 #ifdef CONFIG_STACK_GROWSUP
746 if (stack_size
+ stack_expand
> rlim_stack
)
747 stack_base
= vma
->vm_start
+ rlim_stack
;
749 stack_base
= vma
->vm_end
+ stack_expand
;
751 if (stack_size
+ stack_expand
> rlim_stack
)
752 stack_base
= vma
->vm_end
- rlim_stack
;
754 stack_base
= vma
->vm_start
- stack_expand
;
756 current
->mm
->start_stack
= bprm
->p
;
757 ret
= expand_stack(vma
, stack_base
);
762 up_write(&mm
->mmap_sem
);
765 EXPORT_SYMBOL(setup_arg_pages
);
767 #endif /* CONFIG_MMU */
769 struct file
*open_exec(const char *name
)
773 static const struct open_flags open_exec_flags
= {
774 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
775 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
776 .intent
= LOOKUP_OPEN
779 file
= do_filp_open(AT_FDCWD
, name
, &open_exec_flags
, LOOKUP_FOLLOW
);
784 if (!S_ISREG(file
->f_path
.dentry
->d_inode
->i_mode
))
787 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
792 err
= deny_write_access(file
);
803 EXPORT_SYMBOL(open_exec
);
805 int kernel_read(struct file
*file
, loff_t offset
,
806 char *addr
, unsigned long count
)
814 /* The cast to a user pointer is valid due to the set_fs() */
815 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
820 EXPORT_SYMBOL(kernel_read
);
822 static int exec_mmap(struct mm_struct
*mm
)
824 struct task_struct
*tsk
;
825 struct mm_struct
* old_mm
, *active_mm
;
827 /* Notify parent that we're no longer interested in the old VM */
829 old_mm
= current
->mm
;
830 sync_mm_rss(tsk
, old_mm
);
831 mm_release(tsk
, old_mm
);
835 * Make sure that if there is a core dump in progress
836 * for the old mm, we get out and die instead of going
837 * through with the exec. We must hold mmap_sem around
838 * checking core_state and changing tsk->mm.
840 down_read(&old_mm
->mmap_sem
);
841 if (unlikely(old_mm
->core_state
)) {
842 up_read(&old_mm
->mmap_sem
);
847 active_mm
= tsk
->active_mm
;
850 activate_mm(active_mm
, mm
);
851 if (old_mm
&& tsk
->signal
->oom_score_adj
== OOM_SCORE_ADJ_MIN
) {
852 atomic_dec(&old_mm
->oom_disable_count
);
853 atomic_inc(&tsk
->mm
->oom_disable_count
);
856 arch_pick_mmap_layout(mm
);
858 up_read(&old_mm
->mmap_sem
);
859 BUG_ON(active_mm
!= old_mm
);
860 mm_update_next_owner(old_mm
);
869 * This function makes sure the current process has its own signal table,
870 * so that flush_signal_handlers can later reset the handlers without
871 * disturbing other processes. (Other processes might share the signal
872 * table via the CLONE_SIGHAND option to clone().)
874 static int de_thread(struct task_struct
*tsk
)
876 struct signal_struct
*sig
= tsk
->signal
;
877 struct sighand_struct
*oldsighand
= tsk
->sighand
;
878 spinlock_t
*lock
= &oldsighand
->siglock
;
880 if (thread_group_empty(tsk
))
881 goto no_thread_group
;
884 * Kill all other threads in the thread group.
887 if (signal_group_exit(sig
)) {
889 * Another group action in progress, just
890 * return so that the signal is processed.
892 spin_unlock_irq(lock
);
896 sig
->group_exit_task
= tsk
;
897 sig
->notify_count
= zap_other_threads(tsk
);
898 if (!thread_group_leader(tsk
))
901 while (sig
->notify_count
) {
902 __set_current_state(TASK_UNINTERRUPTIBLE
);
903 spin_unlock_irq(lock
);
907 spin_unlock_irq(lock
);
910 * At this point all other threads have exited, all we have to
911 * do is to wait for the thread group leader to become inactive,
912 * and to assume its PID:
914 if (!thread_group_leader(tsk
)) {
915 struct task_struct
*leader
= tsk
->group_leader
;
917 sig
->notify_count
= -1; /* for exit_notify() */
919 write_lock_irq(&tasklist_lock
);
920 if (likely(leader
->exit_state
))
922 __set_current_state(TASK_UNINTERRUPTIBLE
);
923 write_unlock_irq(&tasklist_lock
);
928 * The only record we have of the real-time age of a
929 * process, regardless of execs it's done, is start_time.
930 * All the past CPU time is accumulated in signal_struct
931 * from sister threads now dead. But in this non-leader
932 * exec, nothing survives from the original leader thread,
933 * whose birth marks the true age of this process now.
934 * When we take on its identity by switching to its PID, we
935 * also take its birthdate (always earlier than our own).
937 tsk
->start_time
= leader
->start_time
;
939 BUG_ON(!same_thread_group(leader
, tsk
));
940 BUG_ON(has_group_leader_pid(tsk
));
942 * An exec() starts a new thread group with the
943 * TGID of the previous thread group. Rehash the
944 * two threads with a switched PID, and release
945 * the former thread group leader:
948 /* Become a process group leader with the old leader's pid.
949 * The old leader becomes a thread of the this thread group.
950 * Note: The old leader also uses this pid until release_task
951 * is called. Odd but simple and correct.
953 detach_pid(tsk
, PIDTYPE_PID
);
954 tsk
->pid
= leader
->pid
;
955 attach_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
956 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
957 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
959 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
960 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
962 tsk
->group_leader
= tsk
;
963 leader
->group_leader
= tsk
;
965 tsk
->exit_signal
= SIGCHLD
;
967 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
968 leader
->exit_state
= EXIT_DEAD
;
969 write_unlock_irq(&tasklist_lock
);
971 release_task(leader
);
974 sig
->group_exit_task
= NULL
;
975 sig
->notify_count
= 0;
979 setmax_mm_hiwater_rss(&sig
->maxrss
, current
->mm
);
982 flush_itimer_signals();
984 if (atomic_read(&oldsighand
->count
) != 1) {
985 struct sighand_struct
*newsighand
;
987 * This ->sighand is shared with the CLONE_SIGHAND
988 * but not CLONE_THREAD task, switch to the new one.
990 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
994 atomic_set(&newsighand
->count
, 1);
995 memcpy(newsighand
->action
, oldsighand
->action
,
996 sizeof(newsighand
->action
));
998 write_lock_irq(&tasklist_lock
);
999 spin_lock(&oldsighand
->siglock
);
1000 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1001 spin_unlock(&oldsighand
->siglock
);
1002 write_unlock_irq(&tasklist_lock
);
1004 __cleanup_sighand(oldsighand
);
1007 BUG_ON(!thread_group_leader(tsk
));
1012 * These functions flushes out all traces of the currently running executable
1013 * so that a new one can be started
1015 static void flush_old_files(struct files_struct
* files
)
1018 struct fdtable
*fdt
;
1020 spin_lock(&files
->file_lock
);
1022 unsigned long set
, i
;
1026 fdt
= files_fdtable(files
);
1027 if (i
>= fdt
->max_fds
)
1029 set
= fdt
->close_on_exec
->fds_bits
[j
];
1032 fdt
->close_on_exec
->fds_bits
[j
] = 0;
1033 spin_unlock(&files
->file_lock
);
1034 for ( ; set
; i
++,set
>>= 1) {
1039 spin_lock(&files
->file_lock
);
1042 spin_unlock(&files
->file_lock
);
1045 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1047 /* buf must be at least sizeof(tsk->comm) in size */
1049 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1053 EXPORT_SYMBOL_GPL(get_task_comm
);
1055 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1060 * Threads may access current->comm without holding
1061 * the task lock, so write the string carefully.
1062 * Readers without a lock may see incomplete new
1063 * names but are safe from non-terminating string reads.
1065 memset(tsk
->comm
, 0, TASK_COMM_LEN
);
1067 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1069 perf_event_comm(tsk
);
1072 int flush_old_exec(struct linux_binprm
* bprm
)
1077 * Make sure we have a private signal table and that
1078 * we are unassociated from the previous thread group.
1080 retval
= de_thread(current
);
1084 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1087 * Release all of the old mmap stuff
1089 acct_arg_size(bprm
, 0);
1090 retval
= exec_mmap(bprm
->mm
);
1094 bprm
->mm
= NULL
; /* We're using it now */
1097 current
->flags
&= ~(PF_RANDOMIZE
| PF_KTHREAD
);
1099 current
->personality
&= ~bprm
->per_clear
;
1106 EXPORT_SYMBOL(flush_old_exec
);
1108 void setup_new_exec(struct linux_binprm
* bprm
)
1112 char tcomm
[sizeof(current
->comm
)];
1114 arch_pick_mmap_layout(current
->mm
);
1116 /* This is the point of no return */
1117 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1119 if (current_euid() == current_uid() && current_egid() == current_gid())
1120 set_dumpable(current
->mm
, 1);
1122 set_dumpable(current
->mm
, suid_dumpable
);
1124 name
= bprm
->filename
;
1126 /* Copies the binary name from after last slash */
1127 for (i
=0; (ch
= *(name
++)) != '\0';) {
1129 i
= 0; /* overwrite what we wrote */
1131 if (i
< (sizeof(tcomm
) - 1))
1135 set_task_comm(current
, tcomm
);
1137 /* Set the new mm task size. We have to do that late because it may
1138 * depend on TIF_32BIT which is only updated in flush_thread() on
1139 * some architectures like powerpc
1141 current
->mm
->task_size
= TASK_SIZE
;
1143 /* install the new credentials */
1144 if (bprm
->cred
->uid
!= current_euid() ||
1145 bprm
->cred
->gid
!= current_egid()) {
1146 current
->pdeath_signal
= 0;
1147 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1148 bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
) {
1149 set_dumpable(current
->mm
, suid_dumpable
);
1153 * Flush performance counters when crossing a
1156 if (!get_dumpable(current
->mm
))
1157 perf_event_exit_task(current
);
1159 /* An exec changes our domain. We are no longer part of the thread
1162 current
->self_exec_id
++;
1164 flush_signal_handlers(current
, 0);
1165 flush_old_files(current
->files
);
1167 EXPORT_SYMBOL(setup_new_exec
);
1170 * Prepare credentials and lock ->cred_guard_mutex.
1171 * install_exec_creds() commits the new creds and drops the lock.
1172 * Or, if exec fails before, free_bprm() should release ->cred and
1175 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1177 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1178 return -ERESTARTNOINTR
;
1180 bprm
->cred
= prepare_exec_creds();
1181 if (likely(bprm
->cred
))
1184 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1188 void free_bprm(struct linux_binprm
*bprm
)
1190 free_arg_pages(bprm
);
1192 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1193 abort_creds(bprm
->cred
);
1195 /* If a binfmt changed the interp, free it. */
1196 if (bprm
->interp
!= bprm
->filename
)
1197 kfree(bprm
->interp
);
1201 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1203 /* If a binfmt changed the interp, free it first. */
1204 if (bprm
->interp
!= bprm
->filename
)
1205 kfree(bprm
->interp
);
1206 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1211 EXPORT_SYMBOL(bprm_change_interp
);
1214 * install the new credentials for this executable
1216 void install_exec_creds(struct linux_binprm
*bprm
)
1218 security_bprm_committing_creds(bprm
);
1220 commit_creds(bprm
->cred
);
1223 * cred_guard_mutex must be held at least to this point to prevent
1224 * ptrace_attach() from altering our determination of the task's
1225 * credentials; any time after this it may be unlocked.
1227 security_bprm_committed_creds(bprm
);
1228 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1230 EXPORT_SYMBOL(install_exec_creds
);
1233 * determine how safe it is to execute the proposed program
1234 * - the caller must hold ->cred_guard_mutex to protect against
1237 int check_unsafe_exec(struct linux_binprm
*bprm
)
1239 struct task_struct
*p
= current
, *t
;
1243 bprm
->unsafe
= tracehook_unsafe_exec(p
);
1246 spin_lock(&p
->fs
->lock
);
1248 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
1254 if (p
->fs
->users
> n_fs
) {
1255 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1258 if (!p
->fs
->in_exec
) {
1263 spin_unlock(&p
->fs
->lock
);
1269 * Fill the binprm structure from the inode.
1270 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1272 * This may be called multiple times for binary chains (scripts for example).
1274 int prepare_binprm(struct linux_binprm
*bprm
)
1277 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1280 mode
= inode
->i_mode
;
1281 if (bprm
->file
->f_op
== NULL
)
1284 /* clear any previous set[ug]id data from a previous binary */
1285 bprm
->cred
->euid
= current_euid();
1286 bprm
->cred
->egid
= current_egid();
1288 if (!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1290 if (mode
& S_ISUID
) {
1291 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1292 bprm
->cred
->euid
= inode
->i_uid
;
1297 * If setgid is set but no group execute bit then this
1298 * is a candidate for mandatory locking, not a setgid
1301 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1302 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1303 bprm
->cred
->egid
= inode
->i_gid
;
1307 /* fill in binprm security blob */
1308 retval
= security_bprm_set_creds(bprm
);
1311 bprm
->cred_prepared
= 1;
1313 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1314 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1317 EXPORT_SYMBOL(prepare_binprm
);
1320 * Arguments are '\0' separated strings found at the location bprm->p
1321 * points to; chop off the first by relocating brpm->p to right after
1322 * the first '\0' encountered.
1324 int remove_arg_zero(struct linux_binprm
*bprm
)
1327 unsigned long offset
;
1335 offset
= bprm
->p
& ~PAGE_MASK
;
1336 page
= get_arg_page(bprm
, bprm
->p
, 0);
1341 kaddr
= kmap_atomic(page
, KM_USER0
);
1343 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1344 offset
++, bprm
->p
++)
1347 kunmap_atomic(kaddr
, KM_USER0
);
1350 if (offset
== PAGE_SIZE
)
1351 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1352 } while (offset
== PAGE_SIZE
);
1361 EXPORT_SYMBOL(remove_arg_zero
);
1364 * cycle the list of binary formats handler, until one recognizes the image
1366 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1368 unsigned int depth
= bprm
->recursion_depth
;
1370 struct linux_binfmt
*fmt
;
1372 retval
= security_bprm_check(bprm
);
1376 retval
= audit_bprm(bprm
);
1381 for (try=0; try<2; try++) {
1382 read_lock(&binfmt_lock
);
1383 list_for_each_entry(fmt
, &formats
, lh
) {
1384 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1387 if (!try_module_get(fmt
->module
))
1389 read_unlock(&binfmt_lock
);
1390 retval
= fn(bprm
, regs
);
1392 * Restore the depth counter to its starting value
1393 * in this call, so we don't have to rely on every
1394 * load_binary function to restore it on return.
1396 bprm
->recursion_depth
= depth
;
1399 tracehook_report_exec(fmt
, bprm
, regs
);
1401 allow_write_access(bprm
->file
);
1405 current
->did_exec
= 1;
1406 proc_exec_connector(current
);
1409 read_lock(&binfmt_lock
);
1411 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1414 read_unlock(&binfmt_lock
);
1418 read_unlock(&binfmt_lock
);
1419 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1421 #ifdef CONFIG_MODULES
1423 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1424 if (printable(bprm
->buf
[0]) &&
1425 printable(bprm
->buf
[1]) &&
1426 printable(bprm
->buf
[2]) &&
1427 printable(bprm
->buf
[3]))
1428 break; /* -ENOEXEC */
1430 break; /* -ENOEXEC */
1431 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1438 EXPORT_SYMBOL(search_binary_handler
);
1441 * sys_execve() executes a new program.
1443 static int do_execve_common(const char *filename
,
1444 struct user_arg_ptr argv
,
1445 struct user_arg_ptr envp
,
1446 struct pt_regs
*regs
)
1448 struct linux_binprm
*bprm
;
1450 struct files_struct
*displaced
;
1454 retval
= unshare_files(&displaced
);
1459 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1463 retval
= prepare_bprm_creds(bprm
);
1467 retval
= check_unsafe_exec(bprm
);
1470 clear_in_exec
= retval
;
1471 current
->in_execve
= 1;
1473 file
= open_exec(filename
);
1474 retval
= PTR_ERR(file
);
1481 bprm
->filename
= filename
;
1482 bprm
->interp
= filename
;
1484 retval
= bprm_mm_init(bprm
);
1488 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1489 if ((retval
= bprm
->argc
) < 0)
1492 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1493 if ((retval
= bprm
->envc
) < 0)
1496 retval
= prepare_binprm(bprm
);
1500 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1504 bprm
->exec
= bprm
->p
;
1505 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1509 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1513 retval
= search_binary_handler(bprm
,regs
);
1517 /* execve succeeded */
1518 current
->fs
->in_exec
= 0;
1519 current
->in_execve
= 0;
1520 acct_update_integrals(current
);
1523 put_files_struct(displaced
);
1528 acct_arg_size(bprm
, 0);
1534 allow_write_access(bprm
->file
);
1540 current
->fs
->in_exec
= 0;
1541 current
->in_execve
= 0;
1548 reset_files_struct(displaced
);
1553 int do_execve(const char *filename
,
1554 const char __user
*const __user
*__argv
,
1555 const char __user
*const __user
*__envp
,
1556 struct pt_regs
*regs
)
1558 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1559 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1560 return do_execve_common(filename
, argv
, envp
, regs
);
1563 #ifdef CONFIG_COMPAT
1564 int compat_do_execve(char *filename
,
1565 compat_uptr_t __user
*__argv
,
1566 compat_uptr_t __user
*__envp
,
1567 struct pt_regs
*regs
)
1569 struct user_arg_ptr argv
= {
1571 .ptr
.compat
= __argv
,
1573 struct user_arg_ptr envp
= {
1575 .ptr
.compat
= __envp
,
1577 return do_execve_common(filename
, argv
, envp
, regs
);
1581 void set_binfmt(struct linux_binfmt
*new)
1583 struct mm_struct
*mm
= current
->mm
;
1586 module_put(mm
->binfmt
->module
);
1590 __module_get(new->module
);
1593 EXPORT_SYMBOL(set_binfmt
);
1595 static int expand_corename(struct core_name
*cn
)
1597 char *old_corename
= cn
->corename
;
1599 cn
->size
= CORENAME_MAX_SIZE
* atomic_inc_return(&call_count
);
1600 cn
->corename
= krealloc(old_corename
, cn
->size
, GFP_KERNEL
);
1602 if (!cn
->corename
) {
1603 kfree(old_corename
);
1610 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
1618 need
= vsnprintf(NULL
, 0, fmt
, arg
);
1621 if (likely(need
< cn
->size
- cn
->used
- 1))
1624 ret
= expand_corename(cn
);
1629 cur
= cn
->corename
+ cn
->used
;
1631 vsnprintf(cur
, need
+ 1, fmt
, arg
);
1640 static int cn_print_exe_file(struct core_name
*cn
)
1642 struct file
*exe_file
;
1643 char *pathbuf
, *path
, *p
;
1646 exe_file
= get_mm_exe_file(current
->mm
);
1648 return cn_printf(cn
, "(unknown)");
1650 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
1656 path
= d_path(&exe_file
->f_path
, pathbuf
, PATH_MAX
);
1658 ret
= PTR_ERR(path
);
1662 for (p
= path
; *p
; p
++)
1666 ret
= cn_printf(cn
, "%s", path
);
1675 /* format_corename will inspect the pattern parameter, and output a
1676 * name into corename, which must have space for at least
1677 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1679 static int format_corename(struct core_name
*cn
, long signr
)
1681 const struct cred
*cred
= current_cred();
1682 const char *pat_ptr
= core_pattern
;
1683 int ispipe
= (*pat_ptr
== '|');
1684 int pid_in_pattern
= 0;
1687 cn
->size
= CORENAME_MAX_SIZE
* atomic_read(&call_count
);
1688 cn
->corename
= kmalloc(cn
->size
, GFP_KERNEL
);
1694 /* Repeat as long as we have more pattern to process and more output
1697 if (*pat_ptr
!= '%') {
1700 err
= cn_printf(cn
, "%c", *pat_ptr
++);
1702 switch (*++pat_ptr
) {
1703 /* single % at the end, drop that */
1706 /* Double percent, output one percent */
1708 err
= cn_printf(cn
, "%c", '%');
1713 err
= cn_printf(cn
, "%d",
1714 task_tgid_vnr(current
));
1718 err
= cn_printf(cn
, "%d", cred
->uid
);
1722 err
= cn_printf(cn
, "%d", cred
->gid
);
1724 /* signal that caused the coredump */
1726 err
= cn_printf(cn
, "%ld", signr
);
1728 /* UNIX time of coredump */
1731 do_gettimeofday(&tv
);
1732 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
1737 down_read(&uts_sem
);
1738 err
= cn_printf(cn
, "%s",
1739 utsname()->nodename
);
1744 err
= cn_printf(cn
, "%s", current
->comm
);
1747 err
= cn_print_exe_file(cn
);
1749 /* core limit size */
1751 err
= cn_printf(cn
, "%lu",
1752 rlimit(RLIMIT_CORE
));
1764 /* Backward compatibility with core_uses_pid:
1766 * If core_pattern does not include a %p (as is the default)
1767 * and core_uses_pid is set, then .%pid will be appended to
1768 * the filename. Do not do this for piped commands. */
1769 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
1770 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
1778 static int zap_process(struct task_struct
*start
, int exit_code
)
1780 struct task_struct
*t
;
1783 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1784 start
->signal
->group_exit_code
= exit_code
;
1785 start
->signal
->group_stop_count
= 0;
1789 task_clear_group_stop_pending(t
);
1790 if (t
!= current
&& t
->mm
) {
1791 sigaddset(&t
->pending
.signal
, SIGKILL
);
1792 signal_wake_up(t
, 1);
1795 } while_each_thread(start
, t
);
1800 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1801 struct core_state
*core_state
, int exit_code
)
1803 struct task_struct
*g
, *p
;
1804 unsigned long flags
;
1807 spin_lock_irq(&tsk
->sighand
->siglock
);
1808 if (!signal_group_exit(tsk
->signal
)) {
1809 mm
->core_state
= core_state
;
1810 nr
= zap_process(tsk
, exit_code
);
1812 spin_unlock_irq(&tsk
->sighand
->siglock
);
1813 if (unlikely(nr
< 0))
1816 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
1819 * We should find and kill all tasks which use this mm, and we should
1820 * count them correctly into ->nr_threads. We don't take tasklist
1821 * lock, but this is safe wrt:
1824 * None of sub-threads can fork after zap_process(leader). All
1825 * processes which were created before this point should be
1826 * visible to zap_threads() because copy_process() adds the new
1827 * process to the tail of init_task.tasks list, and lock/unlock
1828 * of ->siglock provides a memory barrier.
1831 * The caller holds mm->mmap_sem. This means that the task which
1832 * uses this mm can't pass exit_mm(), so it can't exit or clear
1836 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
1837 * we must see either old or new leader, this does not matter.
1838 * However, it can change p->sighand, so lock_task_sighand(p)
1839 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1842 * Note also that "g" can be the old leader with ->mm == NULL
1843 * and already unhashed and thus removed from ->thread_group.
1844 * This is OK, __unhash_process()->list_del_rcu() does not
1845 * clear the ->next pointer, we will find the new leader via
1849 for_each_process(g
) {
1850 if (g
== tsk
->group_leader
)
1852 if (g
->flags
& PF_KTHREAD
)
1857 if (unlikely(p
->mm
== mm
)) {
1858 lock_task_sighand(p
, &flags
);
1859 nr
+= zap_process(p
, exit_code
);
1860 unlock_task_sighand(p
, &flags
);
1864 } while_each_thread(g
, p
);
1868 atomic_set(&core_state
->nr_threads
, nr
);
1872 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
1874 struct task_struct
*tsk
= current
;
1875 struct mm_struct
*mm
= tsk
->mm
;
1876 struct completion
*vfork_done
;
1877 int core_waiters
= -EBUSY
;
1879 init_completion(&core_state
->startup
);
1880 core_state
->dumper
.task
= tsk
;
1881 core_state
->dumper
.next
= NULL
;
1883 down_write(&mm
->mmap_sem
);
1884 if (!mm
->core_state
)
1885 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
1886 up_write(&mm
->mmap_sem
);
1888 if (unlikely(core_waiters
< 0))
1892 * Make sure nobody is waiting for us to release the VM,
1893 * otherwise we can deadlock when we wait on each other
1895 vfork_done
= tsk
->vfork_done
;
1897 tsk
->vfork_done
= NULL
;
1898 complete(vfork_done
);
1902 wait_for_completion(&core_state
->startup
);
1904 return core_waiters
;
1907 static void coredump_finish(struct mm_struct
*mm
)
1909 struct core_thread
*curr
, *next
;
1910 struct task_struct
*task
;
1912 next
= mm
->core_state
->dumper
.next
;
1913 while ((curr
= next
) != NULL
) {
1917 * see exit_mm(), curr->task must not see
1918 * ->task == NULL before we read ->next.
1922 wake_up_process(task
);
1925 mm
->core_state
= NULL
;
1929 * set_dumpable converts traditional three-value dumpable to two flags and
1930 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1931 * these bits are not changed atomically. So get_dumpable can observe the
1932 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1933 * return either old dumpable or new one by paying attention to the order of
1934 * modifying the bits.
1936 * dumpable | mm->flags (binary)
1937 * old new | initial interim final
1938 * ---------+-----------------------
1946 * (*) get_dumpable regards interim value of 10 as 11.
1948 void set_dumpable(struct mm_struct
*mm
, int value
)
1952 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1954 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1957 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1959 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1962 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1964 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1969 static int __get_dumpable(unsigned long mm_flags
)
1973 ret
= mm_flags
& MMF_DUMPABLE_MASK
;
1974 return (ret
>= 2) ? 2 : ret
;
1977 int get_dumpable(struct mm_struct
*mm
)
1979 return __get_dumpable(mm
->flags
);
1982 static void wait_for_dump_helpers(struct file
*file
)
1984 struct pipe_inode_info
*pipe
;
1986 pipe
= file
->f_path
.dentry
->d_inode
->i_pipe
;
1992 while ((pipe
->readers
> 1) && (!signal_pending(current
))) {
1993 wake_up_interruptible_sync(&pipe
->wait
);
1994 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
2007 * helper function to customize the process used
2008 * to collect the core in userspace. Specifically
2009 * it sets up a pipe and installs it as fd 0 (stdin)
2010 * for the process. Returns 0 on success, or
2011 * PTR_ERR on failure.
2012 * Note that it also sets the core limit to 1. This
2013 * is a special value that we use to trap recursive
2016 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
2018 struct file
*rp
, *wp
;
2019 struct fdtable
*fdt
;
2020 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
2021 struct files_struct
*cf
= current
->files
;
2023 wp
= create_write_pipe(0);
2027 rp
= create_read_pipe(wp
, 0);
2029 free_write_pipe(wp
);
2037 spin_lock(&cf
->file_lock
);
2038 fdt
= files_fdtable(cf
);
2039 FD_SET(0, fdt
->open_fds
);
2040 FD_CLR(0, fdt
->close_on_exec
);
2041 spin_unlock(&cf
->file_lock
);
2043 /* and disallow core files too */
2044 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
2049 void do_coredump(long signr
, int exit_code
, struct pt_regs
*regs
)
2051 struct core_state core_state
;
2052 struct core_name cn
;
2053 struct mm_struct
*mm
= current
->mm
;
2054 struct linux_binfmt
* binfmt
;
2055 const struct cred
*old_cred
;
2060 static atomic_t core_dump_count
= ATOMIC_INIT(0);
2061 struct coredump_params cprm
= {
2064 .limit
= rlimit(RLIMIT_CORE
),
2066 * We must use the same mm->flags while dumping core to avoid
2067 * inconsistency of bit flags, since this flag is not protected
2070 .mm_flags
= mm
->flags
,
2073 audit_core_dumps(signr
);
2075 binfmt
= mm
->binfmt
;
2076 if (!binfmt
|| !binfmt
->core_dump
)
2078 if (!__get_dumpable(cprm
.mm_flags
))
2081 cred
= prepare_creds();
2085 * We cannot trust fsuid as being the "true" uid of the
2086 * process nor do we know its entire history. We only know it
2087 * was tainted so we dump it as root in mode 2.
2089 if (__get_dumpable(cprm
.mm_flags
) == 2) {
2090 /* Setuid core dump mode */
2091 flag
= O_EXCL
; /* Stop rewrite attacks */
2092 cred
->fsuid
= 0; /* Dump root private */
2095 retval
= coredump_wait(exit_code
, &core_state
);
2099 old_cred
= override_creds(cred
);
2102 * Clear any false indication of pending signals that might
2103 * be seen by the filesystem code called to write the core file.
2105 clear_thread_flag(TIF_SIGPENDING
);
2107 ispipe
= format_corename(&cn
, signr
);
2109 if (ispipe
== -ENOMEM
) {
2110 printk(KERN_WARNING
"format_corename failed\n");
2111 printk(KERN_WARNING
"Aborting core\n");
2119 if (cprm
.limit
== 1) {
2121 * Normally core limits are irrelevant to pipes, since
2122 * we're not writing to the file system, but we use
2123 * cprm.limit of 1 here as a speacial value. Any
2124 * non-1 limit gets set to RLIM_INFINITY below, but
2125 * a limit of 0 skips the dump. This is a consistent
2126 * way to catch recursive crashes. We can still crash
2127 * if the core_pattern binary sets RLIM_CORE = !1
2128 * but it runs as root, and can do lots of stupid things
2129 * Note that we use task_tgid_vnr here to grab the pid
2130 * of the process group leader. That way we get the
2131 * right pid if a thread in a multi-threaded
2132 * core_pattern process dies.
2135 "Process %d(%s) has RLIMIT_CORE set to 1\n",
2136 task_tgid_vnr(current
), current
->comm
);
2137 printk(KERN_WARNING
"Aborting core\n");
2140 cprm
.limit
= RLIM_INFINITY
;
2142 dump_count
= atomic_inc_return(&core_dump_count
);
2143 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
2144 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
2145 task_tgid_vnr(current
), current
->comm
);
2146 printk(KERN_WARNING
"Skipping core dump\n");
2147 goto fail_dropcount
;
2150 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
+1, NULL
);
2152 printk(KERN_WARNING
"%s failed to allocate memory\n",
2154 goto fail_dropcount
;
2157 retval
= call_usermodehelper_fns(helper_argv
[0], helper_argv
,
2158 NULL
, UMH_WAIT_EXEC
, umh_pipe_setup
,
2160 argv_free(helper_argv
);
2162 printk(KERN_INFO
"Core dump to %s pipe failed\n",
2167 struct inode
*inode
;
2169 if (cprm
.limit
< binfmt
->min_coredump
)
2172 cprm
.file
= filp_open(cn
.corename
,
2173 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
2175 if (IS_ERR(cprm
.file
))
2178 inode
= cprm
.file
->f_path
.dentry
->d_inode
;
2179 if (inode
->i_nlink
> 1)
2181 if (d_unhashed(cprm
.file
->f_path
.dentry
))
2184 * AK: actually i see no reason to not allow this for named
2185 * pipes etc, but keep the previous behaviour for now.
2187 if (!S_ISREG(inode
->i_mode
))
2190 * Dont allow local users get cute and trick others to coredump
2191 * into their pre-created files.
2193 if (inode
->i_uid
!= current_fsuid())
2195 if (!cprm
.file
->f_op
|| !cprm
.file
->f_op
->write
)
2197 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
2201 retval
= binfmt
->core_dump(&cprm
);
2203 current
->signal
->group_exit_code
|= 0x80;
2205 if (ispipe
&& core_pipe_limit
)
2206 wait_for_dump_helpers(cprm
.file
);
2209 filp_close(cprm
.file
, NULL
);
2212 atomic_dec(&core_dump_count
);
2216 coredump_finish(mm
);
2217 revert_creds(old_cred
);
2225 * Core dumping helper functions. These are the only things you should
2226 * do on a core-file: use only these functions to write out all the
2229 int dump_write(struct file
*file
, const void *addr
, int nr
)
2231 return access_ok(VERIFY_READ
, addr
, nr
) && file
->f_op
->write(file
, addr
, nr
, &file
->f_pos
) == nr
;
2233 EXPORT_SYMBOL(dump_write
);
2235 int dump_seek(struct file
*file
, loff_t off
)
2239 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
2240 if (file
->f_op
->llseek(file
, off
, SEEK_CUR
) < 0)
2243 char *buf
= (char *)get_zeroed_page(GFP_KERNEL
);
2248 unsigned long n
= off
;
2252 if (!dump_write(file
, buf
, n
)) {
2258 free_page((unsigned long)buf
);
2262 EXPORT_SYMBOL(dump_seek
);