SMB2: Fix share type handling
[linux/fpc-iii.git] / net / vmw_vsock / af_vsock.c
blobee12e176256ca8034e33ae88591bd9fba238bd10
1 /*
2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Lock ordering for pending or accept queue sockets is:
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
91 #include <linux/io.h>
92 #include <linux/kernel.h>
93 #include <linux/kmod.h>
94 #include <linux/list.h>
95 #include <linux/miscdevice.h>
96 #include <linux/module.h>
97 #include <linux/mutex.h>
98 #include <linux/net.h>
99 #include <linux/poll.h>
100 #include <linux/skbuff.h>
101 #include <linux/smp.h>
102 #include <linux/socket.h>
103 #include <linux/stddef.h>
104 #include <linux/unistd.h>
105 #include <linux/wait.h>
106 #include <linux/workqueue.h>
107 #include <net/sock.h>
108 #include <net/af_vsock.h>
110 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
111 static void vsock_sk_destruct(struct sock *sk);
112 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
114 /* Protocol family. */
115 static struct proto vsock_proto = {
116 .name = "AF_VSOCK",
117 .owner = THIS_MODULE,
118 .obj_size = sizeof(struct vsock_sock),
121 /* The default peer timeout indicates how long we will wait for a peer response
122 * to a control message.
124 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
126 static const struct vsock_transport *transport;
127 static DEFINE_MUTEX(vsock_register_mutex);
129 /**** EXPORTS ****/
131 /* Get the ID of the local context. This is transport dependent. */
133 int vm_sockets_get_local_cid(void)
135 return transport->get_local_cid();
137 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
139 /**** UTILS ****/
141 /* Each bound VSocket is stored in the bind hash table and each connected
142 * VSocket is stored in the connected hash table.
144 * Unbound sockets are all put on the same list attached to the end of the hash
145 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
146 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
147 * represents the list that addr hashes to).
149 * Specifically, we initialize the vsock_bind_table array to a size of
150 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
151 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
152 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
153 * mods with VSOCK_HASH_SIZE to ensure this.
155 #define VSOCK_HASH_SIZE 251
156 #define MAX_PORT_RETRIES 24
158 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
159 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
160 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
162 /* XXX This can probably be implemented in a better way. */
163 #define VSOCK_CONN_HASH(src, dst) \
164 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
165 #define vsock_connected_sockets(src, dst) \
166 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
167 #define vsock_connected_sockets_vsk(vsk) \
168 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
170 static struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
171 static struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
172 static DEFINE_SPINLOCK(vsock_table_lock);
174 /* Autobind this socket to the local address if necessary. */
175 static int vsock_auto_bind(struct vsock_sock *vsk)
177 struct sock *sk = sk_vsock(vsk);
178 struct sockaddr_vm local_addr;
180 if (vsock_addr_bound(&vsk->local_addr))
181 return 0;
182 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
183 return __vsock_bind(sk, &local_addr);
186 static void vsock_init_tables(void)
188 int i;
190 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
191 INIT_LIST_HEAD(&vsock_bind_table[i]);
193 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
194 INIT_LIST_HEAD(&vsock_connected_table[i]);
197 static void __vsock_insert_bound(struct list_head *list,
198 struct vsock_sock *vsk)
200 sock_hold(&vsk->sk);
201 list_add(&vsk->bound_table, list);
204 static void __vsock_insert_connected(struct list_head *list,
205 struct vsock_sock *vsk)
207 sock_hold(&vsk->sk);
208 list_add(&vsk->connected_table, list);
211 static void __vsock_remove_bound(struct vsock_sock *vsk)
213 list_del_init(&vsk->bound_table);
214 sock_put(&vsk->sk);
217 static void __vsock_remove_connected(struct vsock_sock *vsk)
219 list_del_init(&vsk->connected_table);
220 sock_put(&vsk->sk);
223 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
225 struct vsock_sock *vsk;
227 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
228 if (addr->svm_port == vsk->local_addr.svm_port)
229 return sk_vsock(vsk);
231 return NULL;
234 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
235 struct sockaddr_vm *dst)
237 struct vsock_sock *vsk;
239 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
240 connected_table) {
241 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
242 dst->svm_port == vsk->local_addr.svm_port) {
243 return sk_vsock(vsk);
247 return NULL;
250 static bool __vsock_in_bound_table(struct vsock_sock *vsk)
252 return !list_empty(&vsk->bound_table);
255 static bool __vsock_in_connected_table(struct vsock_sock *vsk)
257 return !list_empty(&vsk->connected_table);
260 static void vsock_insert_unbound(struct vsock_sock *vsk)
262 spin_lock_bh(&vsock_table_lock);
263 __vsock_insert_bound(vsock_unbound_sockets, vsk);
264 spin_unlock_bh(&vsock_table_lock);
267 void vsock_insert_connected(struct vsock_sock *vsk)
269 struct list_head *list = vsock_connected_sockets(
270 &vsk->remote_addr, &vsk->local_addr);
272 spin_lock_bh(&vsock_table_lock);
273 __vsock_insert_connected(list, vsk);
274 spin_unlock_bh(&vsock_table_lock);
276 EXPORT_SYMBOL_GPL(vsock_insert_connected);
278 void vsock_remove_bound(struct vsock_sock *vsk)
280 spin_lock_bh(&vsock_table_lock);
281 __vsock_remove_bound(vsk);
282 spin_unlock_bh(&vsock_table_lock);
284 EXPORT_SYMBOL_GPL(vsock_remove_bound);
286 void vsock_remove_connected(struct vsock_sock *vsk)
288 spin_lock_bh(&vsock_table_lock);
289 __vsock_remove_connected(vsk);
290 spin_unlock_bh(&vsock_table_lock);
292 EXPORT_SYMBOL_GPL(vsock_remove_connected);
294 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
296 struct sock *sk;
298 spin_lock_bh(&vsock_table_lock);
299 sk = __vsock_find_bound_socket(addr);
300 if (sk)
301 sock_hold(sk);
303 spin_unlock_bh(&vsock_table_lock);
305 return sk;
307 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
309 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
310 struct sockaddr_vm *dst)
312 struct sock *sk;
314 spin_lock_bh(&vsock_table_lock);
315 sk = __vsock_find_connected_socket(src, dst);
316 if (sk)
317 sock_hold(sk);
319 spin_unlock_bh(&vsock_table_lock);
321 return sk;
323 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
325 static bool vsock_in_bound_table(struct vsock_sock *vsk)
327 bool ret;
329 spin_lock_bh(&vsock_table_lock);
330 ret = __vsock_in_bound_table(vsk);
331 spin_unlock_bh(&vsock_table_lock);
333 return ret;
336 static bool vsock_in_connected_table(struct vsock_sock *vsk)
338 bool ret;
340 spin_lock_bh(&vsock_table_lock);
341 ret = __vsock_in_connected_table(vsk);
342 spin_unlock_bh(&vsock_table_lock);
344 return ret;
347 void vsock_remove_sock(struct vsock_sock *vsk)
349 if (vsock_in_bound_table(vsk))
350 vsock_remove_bound(vsk);
352 if (vsock_in_connected_table(vsk))
353 vsock_remove_connected(vsk);
355 EXPORT_SYMBOL_GPL(vsock_remove_sock);
357 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
359 int i;
361 spin_lock_bh(&vsock_table_lock);
363 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
364 struct vsock_sock *vsk;
365 list_for_each_entry(vsk, &vsock_connected_table[i],
366 connected_table)
367 fn(sk_vsock(vsk));
370 spin_unlock_bh(&vsock_table_lock);
372 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
374 void vsock_add_pending(struct sock *listener, struct sock *pending)
376 struct vsock_sock *vlistener;
377 struct vsock_sock *vpending;
379 vlistener = vsock_sk(listener);
380 vpending = vsock_sk(pending);
382 sock_hold(pending);
383 sock_hold(listener);
384 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
386 EXPORT_SYMBOL_GPL(vsock_add_pending);
388 void vsock_remove_pending(struct sock *listener, struct sock *pending)
390 struct vsock_sock *vpending = vsock_sk(pending);
392 list_del_init(&vpending->pending_links);
393 sock_put(listener);
394 sock_put(pending);
396 EXPORT_SYMBOL_GPL(vsock_remove_pending);
398 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
400 struct vsock_sock *vlistener;
401 struct vsock_sock *vconnected;
403 vlistener = vsock_sk(listener);
404 vconnected = vsock_sk(connected);
406 sock_hold(connected);
407 sock_hold(listener);
408 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
410 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
412 static struct sock *vsock_dequeue_accept(struct sock *listener)
414 struct vsock_sock *vlistener;
415 struct vsock_sock *vconnected;
417 vlistener = vsock_sk(listener);
419 if (list_empty(&vlistener->accept_queue))
420 return NULL;
422 vconnected = list_entry(vlistener->accept_queue.next,
423 struct vsock_sock, accept_queue);
425 list_del_init(&vconnected->accept_queue);
426 sock_put(listener);
427 /* The caller will need a reference on the connected socket so we let
428 * it call sock_put().
431 return sk_vsock(vconnected);
434 static bool vsock_is_accept_queue_empty(struct sock *sk)
436 struct vsock_sock *vsk = vsock_sk(sk);
437 return list_empty(&vsk->accept_queue);
440 static bool vsock_is_pending(struct sock *sk)
442 struct vsock_sock *vsk = vsock_sk(sk);
443 return !list_empty(&vsk->pending_links);
446 static int vsock_send_shutdown(struct sock *sk, int mode)
448 return transport->shutdown(vsock_sk(sk), mode);
451 void vsock_pending_work(struct work_struct *work)
453 struct sock *sk;
454 struct sock *listener;
455 struct vsock_sock *vsk;
456 bool cleanup;
458 vsk = container_of(work, struct vsock_sock, dwork.work);
459 sk = sk_vsock(vsk);
460 listener = vsk->listener;
461 cleanup = true;
463 lock_sock(listener);
464 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
466 if (vsock_is_pending(sk)) {
467 vsock_remove_pending(listener, sk);
469 listener->sk_ack_backlog--;
470 } else if (!vsk->rejected) {
471 /* We are not on the pending list and accept() did not reject
472 * us, so we must have been accepted by our user process. We
473 * just need to drop our references to the sockets and be on
474 * our way.
476 cleanup = false;
477 goto out;
480 /* We need to remove ourself from the global connected sockets list so
481 * incoming packets can't find this socket, and to reduce the reference
482 * count.
484 if (vsock_in_connected_table(vsk))
485 vsock_remove_connected(vsk);
487 sk->sk_state = SS_FREE;
489 out:
490 release_sock(sk);
491 release_sock(listener);
492 if (cleanup)
493 sock_put(sk);
495 sock_put(sk);
496 sock_put(listener);
498 EXPORT_SYMBOL_GPL(vsock_pending_work);
500 /**** SOCKET OPERATIONS ****/
502 static int __vsock_bind_stream(struct vsock_sock *vsk,
503 struct sockaddr_vm *addr)
505 static u32 port = LAST_RESERVED_PORT + 1;
506 struct sockaddr_vm new_addr;
508 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
510 if (addr->svm_port == VMADDR_PORT_ANY) {
511 bool found = false;
512 unsigned int i;
514 for (i = 0; i < MAX_PORT_RETRIES; i++) {
515 if (port <= LAST_RESERVED_PORT)
516 port = LAST_RESERVED_PORT + 1;
518 new_addr.svm_port = port++;
520 if (!__vsock_find_bound_socket(&new_addr)) {
521 found = true;
522 break;
526 if (!found)
527 return -EADDRNOTAVAIL;
528 } else {
529 /* If port is in reserved range, ensure caller
530 * has necessary privileges.
532 if (addr->svm_port <= LAST_RESERVED_PORT &&
533 !capable(CAP_NET_BIND_SERVICE)) {
534 return -EACCES;
537 if (__vsock_find_bound_socket(&new_addr))
538 return -EADDRINUSE;
541 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
543 /* Remove stream sockets from the unbound list and add them to the hash
544 * table for easy lookup by its address. The unbound list is simply an
545 * extra entry at the end of the hash table, a trick used by AF_UNIX.
547 __vsock_remove_bound(vsk);
548 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
550 return 0;
553 static int __vsock_bind_dgram(struct vsock_sock *vsk,
554 struct sockaddr_vm *addr)
556 return transport->dgram_bind(vsk, addr);
559 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
561 struct vsock_sock *vsk = vsock_sk(sk);
562 u32 cid;
563 int retval;
565 /* First ensure this socket isn't already bound. */
566 if (vsock_addr_bound(&vsk->local_addr))
567 return -EINVAL;
569 /* Now bind to the provided address or select appropriate values if
570 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
571 * like AF_INET prevents binding to a non-local IP address (in most
572 * cases), we only allow binding to the local CID.
574 cid = transport->get_local_cid();
575 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
576 return -EADDRNOTAVAIL;
578 switch (sk->sk_socket->type) {
579 case SOCK_STREAM:
580 spin_lock_bh(&vsock_table_lock);
581 retval = __vsock_bind_stream(vsk, addr);
582 spin_unlock_bh(&vsock_table_lock);
583 break;
585 case SOCK_DGRAM:
586 retval = __vsock_bind_dgram(vsk, addr);
587 break;
589 default:
590 retval = -EINVAL;
591 break;
594 return retval;
597 struct sock *__vsock_create(struct net *net,
598 struct socket *sock,
599 struct sock *parent,
600 gfp_t priority,
601 unsigned short type,
602 int kern)
604 struct sock *sk;
605 struct vsock_sock *psk;
606 struct vsock_sock *vsk;
608 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
609 if (!sk)
610 return NULL;
612 sock_init_data(sock, sk);
614 /* sk->sk_type is normally set in sock_init_data, but only if sock is
615 * non-NULL. We make sure that our sockets always have a type by
616 * setting it here if needed.
618 if (!sock)
619 sk->sk_type = type;
621 vsk = vsock_sk(sk);
622 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
623 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
625 sk->sk_destruct = vsock_sk_destruct;
626 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
627 sk->sk_state = 0;
628 sock_reset_flag(sk, SOCK_DONE);
630 INIT_LIST_HEAD(&vsk->bound_table);
631 INIT_LIST_HEAD(&vsk->connected_table);
632 vsk->listener = NULL;
633 INIT_LIST_HEAD(&vsk->pending_links);
634 INIT_LIST_HEAD(&vsk->accept_queue);
635 vsk->rejected = false;
636 vsk->sent_request = false;
637 vsk->ignore_connecting_rst = false;
638 vsk->peer_shutdown = 0;
640 psk = parent ? vsock_sk(parent) : NULL;
641 if (parent) {
642 vsk->trusted = psk->trusted;
643 vsk->owner = get_cred(psk->owner);
644 vsk->connect_timeout = psk->connect_timeout;
645 } else {
646 vsk->trusted = capable(CAP_NET_ADMIN);
647 vsk->owner = get_current_cred();
648 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
651 if (transport->init(vsk, psk) < 0) {
652 sk_free(sk);
653 return NULL;
656 if (sock)
657 vsock_insert_unbound(vsk);
659 return sk;
661 EXPORT_SYMBOL_GPL(__vsock_create);
663 static void __vsock_release(struct sock *sk)
665 if (sk) {
666 struct sk_buff *skb;
667 struct sock *pending;
668 struct vsock_sock *vsk;
670 vsk = vsock_sk(sk);
671 pending = NULL; /* Compiler warning. */
673 transport->release(vsk);
675 lock_sock(sk);
676 sock_orphan(sk);
677 sk->sk_shutdown = SHUTDOWN_MASK;
679 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
680 kfree_skb(skb);
682 /* Clean up any sockets that never were accepted. */
683 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
684 __vsock_release(pending);
685 sock_put(pending);
688 release_sock(sk);
689 sock_put(sk);
693 static void vsock_sk_destruct(struct sock *sk)
695 struct vsock_sock *vsk = vsock_sk(sk);
697 transport->destruct(vsk);
699 /* When clearing these addresses, there's no need to set the family and
700 * possibly register the address family with the kernel.
702 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
703 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
705 put_cred(vsk->owner);
708 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
710 int err;
712 err = sock_queue_rcv_skb(sk, skb);
713 if (err)
714 kfree_skb(skb);
716 return err;
719 s64 vsock_stream_has_data(struct vsock_sock *vsk)
721 return transport->stream_has_data(vsk);
723 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
725 s64 vsock_stream_has_space(struct vsock_sock *vsk)
727 return transport->stream_has_space(vsk);
729 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
731 static int vsock_release(struct socket *sock)
733 __vsock_release(sock->sk);
734 sock->sk = NULL;
735 sock->state = SS_FREE;
737 return 0;
740 static int
741 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
743 int err;
744 struct sock *sk;
745 struct sockaddr_vm *vm_addr;
747 sk = sock->sk;
749 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
750 return -EINVAL;
752 lock_sock(sk);
753 err = __vsock_bind(sk, vm_addr);
754 release_sock(sk);
756 return err;
759 static int vsock_getname(struct socket *sock,
760 struct sockaddr *addr, int *addr_len, int peer)
762 int err;
763 struct sock *sk;
764 struct vsock_sock *vsk;
765 struct sockaddr_vm *vm_addr;
767 sk = sock->sk;
768 vsk = vsock_sk(sk);
769 err = 0;
771 lock_sock(sk);
773 if (peer) {
774 if (sock->state != SS_CONNECTED) {
775 err = -ENOTCONN;
776 goto out;
778 vm_addr = &vsk->remote_addr;
779 } else {
780 vm_addr = &vsk->local_addr;
783 if (!vm_addr) {
784 err = -EINVAL;
785 goto out;
788 /* sys_getsockname() and sys_getpeername() pass us a
789 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
790 * that macro is defined in socket.c instead of .h, so we hardcode its
791 * value here.
793 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
794 memcpy(addr, vm_addr, sizeof(*vm_addr));
795 *addr_len = sizeof(*vm_addr);
797 out:
798 release_sock(sk);
799 return err;
802 static int vsock_shutdown(struct socket *sock, int mode)
804 int err;
805 struct sock *sk;
807 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
808 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
809 * here like the other address families do. Note also that the
810 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
811 * which is what we want.
813 mode++;
815 if ((mode & ~SHUTDOWN_MASK) || !mode)
816 return -EINVAL;
818 /* If this is a STREAM socket and it is not connected then bail out
819 * immediately. If it is a DGRAM socket then we must first kick the
820 * socket so that it wakes up from any sleeping calls, for example
821 * recv(), and then afterwards return the error.
824 sk = sock->sk;
825 if (sock->state == SS_UNCONNECTED) {
826 err = -ENOTCONN;
827 if (sk->sk_type == SOCK_STREAM)
828 return err;
829 } else {
830 sock->state = SS_DISCONNECTING;
831 err = 0;
834 /* Receive and send shutdowns are treated alike. */
835 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
836 if (mode) {
837 lock_sock(sk);
838 sk->sk_shutdown |= mode;
839 sk->sk_state_change(sk);
840 release_sock(sk);
842 if (sk->sk_type == SOCK_STREAM) {
843 sock_reset_flag(sk, SOCK_DONE);
844 vsock_send_shutdown(sk, mode);
848 return err;
851 static unsigned int vsock_poll(struct file *file, struct socket *sock,
852 poll_table *wait)
854 struct sock *sk;
855 unsigned int mask;
856 struct vsock_sock *vsk;
858 sk = sock->sk;
859 vsk = vsock_sk(sk);
861 poll_wait(file, sk_sleep(sk), wait);
862 mask = 0;
864 if (sk->sk_err)
865 /* Signify that there has been an error on this socket. */
866 mask |= POLLERR;
868 /* INET sockets treat local write shutdown and peer write shutdown as a
869 * case of POLLHUP set.
871 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
872 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
873 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
874 mask |= POLLHUP;
877 if (sk->sk_shutdown & RCV_SHUTDOWN ||
878 vsk->peer_shutdown & SEND_SHUTDOWN) {
879 mask |= POLLRDHUP;
882 if (sock->type == SOCK_DGRAM) {
883 /* For datagram sockets we can read if there is something in
884 * the queue and write as long as the socket isn't shutdown for
885 * sending.
887 if (!skb_queue_empty(&sk->sk_receive_queue) ||
888 (sk->sk_shutdown & RCV_SHUTDOWN)) {
889 mask |= POLLIN | POLLRDNORM;
892 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
893 mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
895 } else if (sock->type == SOCK_STREAM) {
896 lock_sock(sk);
898 /* Listening sockets that have connections in their accept
899 * queue can be read.
901 if (sk->sk_state == VSOCK_SS_LISTEN
902 && !vsock_is_accept_queue_empty(sk))
903 mask |= POLLIN | POLLRDNORM;
905 /* If there is something in the queue then we can read. */
906 if (transport->stream_is_active(vsk) &&
907 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
908 bool data_ready_now = false;
909 int ret = transport->notify_poll_in(
910 vsk, 1, &data_ready_now);
911 if (ret < 0) {
912 mask |= POLLERR;
913 } else {
914 if (data_ready_now)
915 mask |= POLLIN | POLLRDNORM;
920 /* Sockets whose connections have been closed, reset, or
921 * terminated should also be considered read, and we check the
922 * shutdown flag for that.
924 if (sk->sk_shutdown & RCV_SHUTDOWN ||
925 vsk->peer_shutdown & SEND_SHUTDOWN) {
926 mask |= POLLIN | POLLRDNORM;
929 /* Connected sockets that can produce data can be written. */
930 if (sk->sk_state == SS_CONNECTED) {
931 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
932 bool space_avail_now = false;
933 int ret = transport->notify_poll_out(
934 vsk, 1, &space_avail_now);
935 if (ret < 0) {
936 mask |= POLLERR;
937 } else {
938 if (space_avail_now)
939 /* Remove POLLWRBAND since INET
940 * sockets are not setting it.
942 mask |= POLLOUT | POLLWRNORM;
948 /* Simulate INET socket poll behaviors, which sets
949 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
950 * but local send is not shutdown.
952 if (sk->sk_state == SS_UNCONNECTED) {
953 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
954 mask |= POLLOUT | POLLWRNORM;
958 release_sock(sk);
961 return mask;
964 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
965 size_t len)
967 int err;
968 struct sock *sk;
969 struct vsock_sock *vsk;
970 struct sockaddr_vm *remote_addr;
972 if (msg->msg_flags & MSG_OOB)
973 return -EOPNOTSUPP;
975 /* For now, MSG_DONTWAIT is always assumed... */
976 err = 0;
977 sk = sock->sk;
978 vsk = vsock_sk(sk);
980 lock_sock(sk);
982 err = vsock_auto_bind(vsk);
983 if (err)
984 goto out;
987 /* If the provided message contains an address, use that. Otherwise
988 * fall back on the socket's remote handle (if it has been connected).
990 if (msg->msg_name &&
991 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
992 &remote_addr) == 0) {
993 /* Ensure this address is of the right type and is a valid
994 * destination.
997 if (remote_addr->svm_cid == VMADDR_CID_ANY)
998 remote_addr->svm_cid = transport->get_local_cid();
1000 if (!vsock_addr_bound(remote_addr)) {
1001 err = -EINVAL;
1002 goto out;
1004 } else if (sock->state == SS_CONNECTED) {
1005 remote_addr = &vsk->remote_addr;
1007 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1008 remote_addr->svm_cid = transport->get_local_cid();
1010 /* XXX Should connect() or this function ensure remote_addr is
1011 * bound?
1013 if (!vsock_addr_bound(&vsk->remote_addr)) {
1014 err = -EINVAL;
1015 goto out;
1017 } else {
1018 err = -EINVAL;
1019 goto out;
1022 if (!transport->dgram_allow(remote_addr->svm_cid,
1023 remote_addr->svm_port)) {
1024 err = -EINVAL;
1025 goto out;
1028 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1030 out:
1031 release_sock(sk);
1032 return err;
1035 static int vsock_dgram_connect(struct socket *sock,
1036 struct sockaddr *addr, int addr_len, int flags)
1038 int err;
1039 struct sock *sk;
1040 struct vsock_sock *vsk;
1041 struct sockaddr_vm *remote_addr;
1043 sk = sock->sk;
1044 vsk = vsock_sk(sk);
1046 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1047 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1048 lock_sock(sk);
1049 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1050 VMADDR_PORT_ANY);
1051 sock->state = SS_UNCONNECTED;
1052 release_sock(sk);
1053 return 0;
1054 } else if (err != 0)
1055 return -EINVAL;
1057 lock_sock(sk);
1059 err = vsock_auto_bind(vsk);
1060 if (err)
1061 goto out;
1063 if (!transport->dgram_allow(remote_addr->svm_cid,
1064 remote_addr->svm_port)) {
1065 err = -EINVAL;
1066 goto out;
1069 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1070 sock->state = SS_CONNECTED;
1072 out:
1073 release_sock(sk);
1074 return err;
1077 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1078 size_t len, int flags)
1080 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1083 static const struct proto_ops vsock_dgram_ops = {
1084 .family = PF_VSOCK,
1085 .owner = THIS_MODULE,
1086 .release = vsock_release,
1087 .bind = vsock_bind,
1088 .connect = vsock_dgram_connect,
1089 .socketpair = sock_no_socketpair,
1090 .accept = sock_no_accept,
1091 .getname = vsock_getname,
1092 .poll = vsock_poll,
1093 .ioctl = sock_no_ioctl,
1094 .listen = sock_no_listen,
1095 .shutdown = vsock_shutdown,
1096 .setsockopt = sock_no_setsockopt,
1097 .getsockopt = sock_no_getsockopt,
1098 .sendmsg = vsock_dgram_sendmsg,
1099 .recvmsg = vsock_dgram_recvmsg,
1100 .mmap = sock_no_mmap,
1101 .sendpage = sock_no_sendpage,
1104 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1106 if (!transport->cancel_pkt)
1107 return -EOPNOTSUPP;
1109 return transport->cancel_pkt(vsk);
1112 static void vsock_connect_timeout(struct work_struct *work)
1114 struct sock *sk;
1115 struct vsock_sock *vsk;
1116 int cancel = 0;
1118 vsk = container_of(work, struct vsock_sock, dwork.work);
1119 sk = sk_vsock(vsk);
1121 lock_sock(sk);
1122 if (sk->sk_state == SS_CONNECTING &&
1123 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1124 sk->sk_state = SS_UNCONNECTED;
1125 sk->sk_err = ETIMEDOUT;
1126 sk->sk_error_report(sk);
1127 cancel = 1;
1129 release_sock(sk);
1130 if (cancel)
1131 vsock_transport_cancel_pkt(vsk);
1133 sock_put(sk);
1136 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1137 int addr_len, int flags)
1139 int err;
1140 struct sock *sk;
1141 struct vsock_sock *vsk;
1142 struct sockaddr_vm *remote_addr;
1143 long timeout;
1144 DEFINE_WAIT(wait);
1146 err = 0;
1147 sk = sock->sk;
1148 vsk = vsock_sk(sk);
1150 lock_sock(sk);
1152 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1153 switch (sock->state) {
1154 case SS_CONNECTED:
1155 err = -EISCONN;
1156 goto out;
1157 case SS_DISCONNECTING:
1158 err = -EINVAL;
1159 goto out;
1160 case SS_CONNECTING:
1161 /* This continues on so we can move sock into the SS_CONNECTED
1162 * state once the connection has completed (at which point err
1163 * will be set to zero also). Otherwise, we will either wait
1164 * for the connection or return -EALREADY should this be a
1165 * non-blocking call.
1167 err = -EALREADY;
1168 break;
1169 default:
1170 if ((sk->sk_state == VSOCK_SS_LISTEN) ||
1171 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1172 err = -EINVAL;
1173 goto out;
1176 /* The hypervisor and well-known contexts do not have socket
1177 * endpoints.
1179 if (!transport->stream_allow(remote_addr->svm_cid,
1180 remote_addr->svm_port)) {
1181 err = -ENETUNREACH;
1182 goto out;
1185 /* Set the remote address that we are connecting to. */
1186 memcpy(&vsk->remote_addr, remote_addr,
1187 sizeof(vsk->remote_addr));
1189 err = vsock_auto_bind(vsk);
1190 if (err)
1191 goto out;
1193 sk->sk_state = SS_CONNECTING;
1195 err = transport->connect(vsk);
1196 if (err < 0)
1197 goto out;
1199 /* Mark sock as connecting and set the error code to in
1200 * progress in case this is a non-blocking connect.
1202 sock->state = SS_CONNECTING;
1203 err = -EINPROGRESS;
1206 /* The receive path will handle all communication until we are able to
1207 * enter the connected state. Here we wait for the connection to be
1208 * completed or a notification of an error.
1210 timeout = vsk->connect_timeout;
1211 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1213 while (sk->sk_state != SS_CONNECTED && sk->sk_err == 0) {
1214 if (flags & O_NONBLOCK) {
1215 /* If we're not going to block, we schedule a timeout
1216 * function to generate a timeout on the connection
1217 * attempt, in case the peer doesn't respond in a
1218 * timely manner. We hold on to the socket until the
1219 * timeout fires.
1221 sock_hold(sk);
1222 INIT_DELAYED_WORK(&vsk->dwork,
1223 vsock_connect_timeout);
1224 schedule_delayed_work(&vsk->dwork, timeout);
1226 /* Skip ahead to preserve error code set above. */
1227 goto out_wait;
1230 release_sock(sk);
1231 timeout = schedule_timeout(timeout);
1232 lock_sock(sk);
1234 if (signal_pending(current)) {
1235 err = sock_intr_errno(timeout);
1236 sk->sk_state = SS_UNCONNECTED;
1237 sock->state = SS_UNCONNECTED;
1238 vsock_transport_cancel_pkt(vsk);
1239 goto out_wait;
1240 } else if (timeout == 0) {
1241 err = -ETIMEDOUT;
1242 sk->sk_state = SS_UNCONNECTED;
1243 sock->state = SS_UNCONNECTED;
1244 vsock_transport_cancel_pkt(vsk);
1245 goto out_wait;
1248 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1251 if (sk->sk_err) {
1252 err = -sk->sk_err;
1253 sk->sk_state = SS_UNCONNECTED;
1254 sock->state = SS_UNCONNECTED;
1255 } else {
1256 err = 0;
1259 out_wait:
1260 finish_wait(sk_sleep(sk), &wait);
1261 out:
1262 release_sock(sk);
1263 return err;
1266 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags)
1268 struct sock *listener;
1269 int err;
1270 struct sock *connected;
1271 struct vsock_sock *vconnected;
1272 long timeout;
1273 DEFINE_WAIT(wait);
1275 err = 0;
1276 listener = sock->sk;
1278 lock_sock(listener);
1280 if (sock->type != SOCK_STREAM) {
1281 err = -EOPNOTSUPP;
1282 goto out;
1285 if (listener->sk_state != VSOCK_SS_LISTEN) {
1286 err = -EINVAL;
1287 goto out;
1290 /* Wait for children sockets to appear; these are the new sockets
1291 * created upon connection establishment.
1293 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1294 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1296 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1297 listener->sk_err == 0) {
1298 release_sock(listener);
1299 timeout = schedule_timeout(timeout);
1300 finish_wait(sk_sleep(listener), &wait);
1301 lock_sock(listener);
1303 if (signal_pending(current)) {
1304 err = sock_intr_errno(timeout);
1305 goto out;
1306 } else if (timeout == 0) {
1307 err = -EAGAIN;
1308 goto out;
1311 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1313 finish_wait(sk_sleep(listener), &wait);
1315 if (listener->sk_err)
1316 err = -listener->sk_err;
1318 if (connected) {
1319 listener->sk_ack_backlog--;
1321 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1322 vconnected = vsock_sk(connected);
1324 /* If the listener socket has received an error, then we should
1325 * reject this socket and return. Note that we simply mark the
1326 * socket rejected, drop our reference, and let the cleanup
1327 * function handle the cleanup; the fact that we found it in
1328 * the listener's accept queue guarantees that the cleanup
1329 * function hasn't run yet.
1331 if (err) {
1332 vconnected->rejected = true;
1333 } else {
1334 newsock->state = SS_CONNECTED;
1335 sock_graft(connected, newsock);
1338 release_sock(connected);
1339 sock_put(connected);
1342 out:
1343 release_sock(listener);
1344 return err;
1347 static int vsock_listen(struct socket *sock, int backlog)
1349 int err;
1350 struct sock *sk;
1351 struct vsock_sock *vsk;
1353 sk = sock->sk;
1355 lock_sock(sk);
1357 if (sock->type != SOCK_STREAM) {
1358 err = -EOPNOTSUPP;
1359 goto out;
1362 if (sock->state != SS_UNCONNECTED) {
1363 err = -EINVAL;
1364 goto out;
1367 vsk = vsock_sk(sk);
1369 if (!vsock_addr_bound(&vsk->local_addr)) {
1370 err = -EINVAL;
1371 goto out;
1374 sk->sk_max_ack_backlog = backlog;
1375 sk->sk_state = VSOCK_SS_LISTEN;
1377 err = 0;
1379 out:
1380 release_sock(sk);
1381 return err;
1384 static int vsock_stream_setsockopt(struct socket *sock,
1385 int level,
1386 int optname,
1387 char __user *optval,
1388 unsigned int optlen)
1390 int err;
1391 struct sock *sk;
1392 struct vsock_sock *vsk;
1393 u64 val;
1395 if (level != AF_VSOCK)
1396 return -ENOPROTOOPT;
1398 #define COPY_IN(_v) \
1399 do { \
1400 if (optlen < sizeof(_v)) { \
1401 err = -EINVAL; \
1402 goto exit; \
1404 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1405 err = -EFAULT; \
1406 goto exit; \
1408 } while (0)
1410 err = 0;
1411 sk = sock->sk;
1412 vsk = vsock_sk(sk);
1414 lock_sock(sk);
1416 switch (optname) {
1417 case SO_VM_SOCKETS_BUFFER_SIZE:
1418 COPY_IN(val);
1419 transport->set_buffer_size(vsk, val);
1420 break;
1422 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1423 COPY_IN(val);
1424 transport->set_max_buffer_size(vsk, val);
1425 break;
1427 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1428 COPY_IN(val);
1429 transport->set_min_buffer_size(vsk, val);
1430 break;
1432 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1433 struct timeval tv;
1434 COPY_IN(tv);
1435 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1436 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1437 vsk->connect_timeout = tv.tv_sec * HZ +
1438 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1439 if (vsk->connect_timeout == 0)
1440 vsk->connect_timeout =
1441 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1443 } else {
1444 err = -ERANGE;
1446 break;
1449 default:
1450 err = -ENOPROTOOPT;
1451 break;
1454 #undef COPY_IN
1456 exit:
1457 release_sock(sk);
1458 return err;
1461 static int vsock_stream_getsockopt(struct socket *sock,
1462 int level, int optname,
1463 char __user *optval,
1464 int __user *optlen)
1466 int err;
1467 int len;
1468 struct sock *sk;
1469 struct vsock_sock *vsk;
1470 u64 val;
1472 if (level != AF_VSOCK)
1473 return -ENOPROTOOPT;
1475 err = get_user(len, optlen);
1476 if (err != 0)
1477 return err;
1479 #define COPY_OUT(_v) \
1480 do { \
1481 if (len < sizeof(_v)) \
1482 return -EINVAL; \
1484 len = sizeof(_v); \
1485 if (copy_to_user(optval, &_v, len) != 0) \
1486 return -EFAULT; \
1488 } while (0)
1490 err = 0;
1491 sk = sock->sk;
1492 vsk = vsock_sk(sk);
1494 switch (optname) {
1495 case SO_VM_SOCKETS_BUFFER_SIZE:
1496 val = transport->get_buffer_size(vsk);
1497 COPY_OUT(val);
1498 break;
1500 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1501 val = transport->get_max_buffer_size(vsk);
1502 COPY_OUT(val);
1503 break;
1505 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1506 val = transport->get_min_buffer_size(vsk);
1507 COPY_OUT(val);
1508 break;
1510 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1511 struct timeval tv;
1512 tv.tv_sec = vsk->connect_timeout / HZ;
1513 tv.tv_usec =
1514 (vsk->connect_timeout -
1515 tv.tv_sec * HZ) * (1000000 / HZ);
1516 COPY_OUT(tv);
1517 break;
1519 default:
1520 return -ENOPROTOOPT;
1523 err = put_user(len, optlen);
1524 if (err != 0)
1525 return -EFAULT;
1527 #undef COPY_OUT
1529 return 0;
1532 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1533 size_t len)
1535 struct sock *sk;
1536 struct vsock_sock *vsk;
1537 ssize_t total_written;
1538 long timeout;
1539 int err;
1540 struct vsock_transport_send_notify_data send_data;
1541 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1543 sk = sock->sk;
1544 vsk = vsock_sk(sk);
1545 total_written = 0;
1546 err = 0;
1548 if (msg->msg_flags & MSG_OOB)
1549 return -EOPNOTSUPP;
1551 lock_sock(sk);
1553 /* Callers should not provide a destination with stream sockets. */
1554 if (msg->msg_namelen) {
1555 err = sk->sk_state == SS_CONNECTED ? -EISCONN : -EOPNOTSUPP;
1556 goto out;
1559 /* Send data only if both sides are not shutdown in the direction. */
1560 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1561 vsk->peer_shutdown & RCV_SHUTDOWN) {
1562 err = -EPIPE;
1563 goto out;
1566 if (sk->sk_state != SS_CONNECTED ||
1567 !vsock_addr_bound(&vsk->local_addr)) {
1568 err = -ENOTCONN;
1569 goto out;
1572 if (!vsock_addr_bound(&vsk->remote_addr)) {
1573 err = -EDESTADDRREQ;
1574 goto out;
1577 /* Wait for room in the produce queue to enqueue our user's data. */
1578 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1580 err = transport->notify_send_init(vsk, &send_data);
1581 if (err < 0)
1582 goto out;
1584 while (total_written < len) {
1585 ssize_t written;
1587 add_wait_queue(sk_sleep(sk), &wait);
1588 while (vsock_stream_has_space(vsk) == 0 &&
1589 sk->sk_err == 0 &&
1590 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1591 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1593 /* Don't wait for non-blocking sockets. */
1594 if (timeout == 0) {
1595 err = -EAGAIN;
1596 remove_wait_queue(sk_sleep(sk), &wait);
1597 goto out_err;
1600 err = transport->notify_send_pre_block(vsk, &send_data);
1601 if (err < 0) {
1602 remove_wait_queue(sk_sleep(sk), &wait);
1603 goto out_err;
1606 release_sock(sk);
1607 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1608 lock_sock(sk);
1609 if (signal_pending(current)) {
1610 err = sock_intr_errno(timeout);
1611 remove_wait_queue(sk_sleep(sk), &wait);
1612 goto out_err;
1613 } else if (timeout == 0) {
1614 err = -EAGAIN;
1615 remove_wait_queue(sk_sleep(sk), &wait);
1616 goto out_err;
1619 remove_wait_queue(sk_sleep(sk), &wait);
1621 /* These checks occur both as part of and after the loop
1622 * conditional since we need to check before and after
1623 * sleeping.
1625 if (sk->sk_err) {
1626 err = -sk->sk_err;
1627 goto out_err;
1628 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1629 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1630 err = -EPIPE;
1631 goto out_err;
1634 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1635 if (err < 0)
1636 goto out_err;
1638 /* Note that enqueue will only write as many bytes as are free
1639 * in the produce queue, so we don't need to ensure len is
1640 * smaller than the queue size. It is the caller's
1641 * responsibility to check how many bytes we were able to send.
1644 written = transport->stream_enqueue(
1645 vsk, msg,
1646 len - total_written);
1647 if (written < 0) {
1648 err = -ENOMEM;
1649 goto out_err;
1652 total_written += written;
1654 err = transport->notify_send_post_enqueue(
1655 vsk, written, &send_data);
1656 if (err < 0)
1657 goto out_err;
1661 out_err:
1662 if (total_written > 0)
1663 err = total_written;
1664 out:
1665 release_sock(sk);
1666 return err;
1670 static int
1671 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1672 int flags)
1674 struct sock *sk;
1675 struct vsock_sock *vsk;
1676 int err;
1677 size_t target;
1678 ssize_t copied;
1679 long timeout;
1680 struct vsock_transport_recv_notify_data recv_data;
1682 DEFINE_WAIT(wait);
1684 sk = sock->sk;
1685 vsk = vsock_sk(sk);
1686 err = 0;
1688 lock_sock(sk);
1690 if (sk->sk_state != SS_CONNECTED) {
1691 /* Recvmsg is supposed to return 0 if a peer performs an
1692 * orderly shutdown. Differentiate between that case and when a
1693 * peer has not connected or a local shutdown occured with the
1694 * SOCK_DONE flag.
1696 if (sock_flag(sk, SOCK_DONE))
1697 err = 0;
1698 else
1699 err = -ENOTCONN;
1701 goto out;
1704 if (flags & MSG_OOB) {
1705 err = -EOPNOTSUPP;
1706 goto out;
1709 /* We don't check peer_shutdown flag here since peer may actually shut
1710 * down, but there can be data in the queue that a local socket can
1711 * receive.
1713 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1714 err = 0;
1715 goto out;
1718 /* It is valid on Linux to pass in a zero-length receive buffer. This
1719 * is not an error. We may as well bail out now.
1721 if (!len) {
1722 err = 0;
1723 goto out;
1726 /* We must not copy less than target bytes into the user's buffer
1727 * before returning successfully, so we wait for the consume queue to
1728 * have that much data to consume before dequeueing. Note that this
1729 * makes it impossible to handle cases where target is greater than the
1730 * queue size.
1732 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1733 if (target >= transport->stream_rcvhiwat(vsk)) {
1734 err = -ENOMEM;
1735 goto out;
1737 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1738 copied = 0;
1740 err = transport->notify_recv_init(vsk, target, &recv_data);
1741 if (err < 0)
1742 goto out;
1745 while (1) {
1746 s64 ready;
1748 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1749 ready = vsock_stream_has_data(vsk);
1751 if (ready == 0) {
1752 if (sk->sk_err != 0 ||
1753 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1754 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1755 finish_wait(sk_sleep(sk), &wait);
1756 break;
1758 /* Don't wait for non-blocking sockets. */
1759 if (timeout == 0) {
1760 err = -EAGAIN;
1761 finish_wait(sk_sleep(sk), &wait);
1762 break;
1765 err = transport->notify_recv_pre_block(
1766 vsk, target, &recv_data);
1767 if (err < 0) {
1768 finish_wait(sk_sleep(sk), &wait);
1769 break;
1771 release_sock(sk);
1772 timeout = schedule_timeout(timeout);
1773 lock_sock(sk);
1775 if (signal_pending(current)) {
1776 err = sock_intr_errno(timeout);
1777 finish_wait(sk_sleep(sk), &wait);
1778 break;
1779 } else if (timeout == 0) {
1780 err = -EAGAIN;
1781 finish_wait(sk_sleep(sk), &wait);
1782 break;
1784 } else {
1785 ssize_t read;
1787 finish_wait(sk_sleep(sk), &wait);
1789 if (ready < 0) {
1790 /* Invalid queue pair content. XXX This should
1791 * be changed to a connection reset in a later
1792 * change.
1795 err = -ENOMEM;
1796 goto out;
1799 err = transport->notify_recv_pre_dequeue(
1800 vsk, target, &recv_data);
1801 if (err < 0)
1802 break;
1804 read = transport->stream_dequeue(
1805 vsk, msg,
1806 len - copied, flags);
1807 if (read < 0) {
1808 err = -ENOMEM;
1809 break;
1812 copied += read;
1814 err = transport->notify_recv_post_dequeue(
1815 vsk, target, read,
1816 !(flags & MSG_PEEK), &recv_data);
1817 if (err < 0)
1818 goto out;
1820 if (read >= target || flags & MSG_PEEK)
1821 break;
1823 target -= read;
1827 if (sk->sk_err)
1828 err = -sk->sk_err;
1829 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1830 err = 0;
1832 if (copied > 0)
1833 err = copied;
1835 out:
1836 release_sock(sk);
1837 return err;
1840 static const struct proto_ops vsock_stream_ops = {
1841 .family = PF_VSOCK,
1842 .owner = THIS_MODULE,
1843 .release = vsock_release,
1844 .bind = vsock_bind,
1845 .connect = vsock_stream_connect,
1846 .socketpair = sock_no_socketpair,
1847 .accept = vsock_accept,
1848 .getname = vsock_getname,
1849 .poll = vsock_poll,
1850 .ioctl = sock_no_ioctl,
1851 .listen = vsock_listen,
1852 .shutdown = vsock_shutdown,
1853 .setsockopt = vsock_stream_setsockopt,
1854 .getsockopt = vsock_stream_getsockopt,
1855 .sendmsg = vsock_stream_sendmsg,
1856 .recvmsg = vsock_stream_recvmsg,
1857 .mmap = sock_no_mmap,
1858 .sendpage = sock_no_sendpage,
1861 static int vsock_create(struct net *net, struct socket *sock,
1862 int protocol, int kern)
1864 if (!sock)
1865 return -EINVAL;
1867 if (protocol && protocol != PF_VSOCK)
1868 return -EPROTONOSUPPORT;
1870 switch (sock->type) {
1871 case SOCK_DGRAM:
1872 sock->ops = &vsock_dgram_ops;
1873 break;
1874 case SOCK_STREAM:
1875 sock->ops = &vsock_stream_ops;
1876 break;
1877 default:
1878 return -ESOCKTNOSUPPORT;
1881 sock->state = SS_UNCONNECTED;
1883 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1886 static const struct net_proto_family vsock_family_ops = {
1887 .family = AF_VSOCK,
1888 .create = vsock_create,
1889 .owner = THIS_MODULE,
1892 static long vsock_dev_do_ioctl(struct file *filp,
1893 unsigned int cmd, void __user *ptr)
1895 u32 __user *p = ptr;
1896 int retval = 0;
1898 switch (cmd) {
1899 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1900 if (put_user(transport->get_local_cid(), p) != 0)
1901 retval = -EFAULT;
1902 break;
1904 default:
1905 pr_err("Unknown ioctl %d\n", cmd);
1906 retval = -EINVAL;
1909 return retval;
1912 static long vsock_dev_ioctl(struct file *filp,
1913 unsigned int cmd, unsigned long arg)
1915 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1918 #ifdef CONFIG_COMPAT
1919 static long vsock_dev_compat_ioctl(struct file *filp,
1920 unsigned int cmd, unsigned long arg)
1922 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1924 #endif
1926 static const struct file_operations vsock_device_ops = {
1927 .owner = THIS_MODULE,
1928 .unlocked_ioctl = vsock_dev_ioctl,
1929 #ifdef CONFIG_COMPAT
1930 .compat_ioctl = vsock_dev_compat_ioctl,
1931 #endif
1932 .open = nonseekable_open,
1935 static struct miscdevice vsock_device = {
1936 .name = "vsock",
1937 .fops = &vsock_device_ops,
1940 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1942 int err = mutex_lock_interruptible(&vsock_register_mutex);
1944 if (err)
1945 return err;
1947 if (transport) {
1948 err = -EBUSY;
1949 goto err_busy;
1952 /* Transport must be the owner of the protocol so that it can't
1953 * unload while there are open sockets.
1955 vsock_proto.owner = owner;
1956 transport = t;
1958 vsock_init_tables();
1960 vsock_device.minor = MISC_DYNAMIC_MINOR;
1961 err = misc_register(&vsock_device);
1962 if (err) {
1963 pr_err("Failed to register misc device\n");
1964 goto err_reset_transport;
1967 err = proto_register(&vsock_proto, 1); /* we want our slab */
1968 if (err) {
1969 pr_err("Cannot register vsock protocol\n");
1970 goto err_deregister_misc;
1973 err = sock_register(&vsock_family_ops);
1974 if (err) {
1975 pr_err("could not register af_vsock (%d) address family: %d\n",
1976 AF_VSOCK, err);
1977 goto err_unregister_proto;
1980 mutex_unlock(&vsock_register_mutex);
1981 return 0;
1983 err_unregister_proto:
1984 proto_unregister(&vsock_proto);
1985 err_deregister_misc:
1986 misc_deregister(&vsock_device);
1987 err_reset_transport:
1988 transport = NULL;
1989 err_busy:
1990 mutex_unlock(&vsock_register_mutex);
1991 return err;
1993 EXPORT_SYMBOL_GPL(__vsock_core_init);
1995 void vsock_core_exit(void)
1997 mutex_lock(&vsock_register_mutex);
1999 misc_deregister(&vsock_device);
2000 sock_unregister(AF_VSOCK);
2001 proto_unregister(&vsock_proto);
2003 /* We do not want the assignment below re-ordered. */
2004 mb();
2005 transport = NULL;
2007 mutex_unlock(&vsock_register_mutex);
2009 EXPORT_SYMBOL_GPL(vsock_core_exit);
2011 const struct vsock_transport *vsock_core_get_transport(void)
2013 /* vsock_register_mutex not taken since only the transport uses this
2014 * function and only while registered.
2016 return transport;
2018 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2020 MODULE_AUTHOR("VMware, Inc.");
2021 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2022 MODULE_VERSION("1.0.2.0-k");
2023 MODULE_LICENSE("GPL v2");