irqchip/ts4800: Add TS-4800 interrupt controller
[linux/fpc-iii.git] / drivers / gpu / drm / drm_edid.c
blobd5d2c03fd1369b904e31af5184c05e4b9da0f82d
1 /*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 * Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 * Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/module.h>
35 #include <drm/drmP.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_displayid.h>
39 #define version_greater(edid, maj, min) \
40 (((edid)->version > (maj)) || \
41 ((edid)->version == (maj) && (edid)->revision > (min)))
43 #define EDID_EST_TIMINGS 16
44 #define EDID_STD_TIMINGS 8
45 #define EDID_DETAILED_TIMINGS 4
48 * EDID blocks out in the wild have a variety of bugs, try to collect
49 * them here (note that userspace may work around broken monitors first,
50 * but fixes should make their way here so that the kernel "just works"
51 * on as many displays as possible).
54 /* First detailed mode wrong, use largest 60Hz mode */
55 #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0)
56 /* Reported 135MHz pixel clock is too high, needs adjustment */
57 #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1)
58 /* Prefer the largest mode at 75 Hz */
59 #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2)
60 /* Detail timing is in cm not mm */
61 #define EDID_QUIRK_DETAILED_IN_CM (1 << 3)
62 /* Detailed timing descriptors have bogus size values, so just take the
63 * maximum size and use that.
65 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4)
66 /* Monitor forgot to set the first detailed is preferred bit. */
67 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5)
68 /* use +hsync +vsync for detailed mode */
69 #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6)
70 /* Force reduced-blanking timings for detailed modes */
71 #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7)
72 /* Force 8bpc */
73 #define EDID_QUIRK_FORCE_8BPC (1 << 8)
74 /* Force 12bpc */
75 #define EDID_QUIRK_FORCE_12BPC (1 << 9)
77 struct detailed_mode_closure {
78 struct drm_connector *connector;
79 struct edid *edid;
80 bool preferred;
81 u32 quirks;
82 int modes;
85 #define LEVEL_DMT 0
86 #define LEVEL_GTF 1
87 #define LEVEL_GTF2 2
88 #define LEVEL_CVT 3
90 static struct edid_quirk {
91 char vendor[4];
92 int product_id;
93 u32 quirks;
94 } edid_quirk_list[] = {
95 /* Acer AL1706 */
96 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
97 /* Acer F51 */
98 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
99 /* Unknown Acer */
100 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
102 /* Belinea 10 15 55 */
103 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
106 /* Envision Peripherals, Inc. EN-7100e */
107 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 /* Envision EN2028 */
109 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
111 /* Funai Electronics PM36B */
112 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 EDID_QUIRK_DETAILED_IN_CM },
115 /* LG Philips LCD LP154W01-A5 */
116 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
117 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
119 /* Philips 107p5 CRT */
120 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
122 /* Proview AY765C */
123 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
125 /* Samsung SyncMaster 205BW. Note: irony */
126 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
127 /* Samsung SyncMaster 22[5-6]BW */
128 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
129 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
131 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
132 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
134 /* ViewSonic VA2026w */
135 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
137 /* Medion MD 30217 PG */
138 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
140 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
141 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145 * Autogenerated from the DMT spec.
146 * This table is copied from xfree86/modes/xf86EdidModes.c.
148 static const struct drm_display_mode drm_dmt_modes[] = {
149 /* 0x01 - 640x350@85Hz */
150 { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
151 736, 832, 0, 350, 382, 385, 445, 0,
152 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
153 /* 0x02 - 640x400@85Hz */
154 { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
155 736, 832, 0, 400, 401, 404, 445, 0,
156 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
157 /* 0x03 - 720x400@85Hz */
158 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
159 828, 936, 0, 400, 401, 404, 446, 0,
160 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
161 /* 0x04 - 640x480@60Hz */
162 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
163 752, 800, 0, 480, 490, 492, 525, 0,
164 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
165 /* 0x05 - 640x480@72Hz */
166 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
167 704, 832, 0, 480, 489, 492, 520, 0,
168 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
169 /* 0x06 - 640x480@75Hz */
170 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
171 720, 840, 0, 480, 481, 484, 500, 0,
172 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
173 /* 0x07 - 640x480@85Hz */
174 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
175 752, 832, 0, 480, 481, 484, 509, 0,
176 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
177 /* 0x08 - 800x600@56Hz */
178 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
179 896, 1024, 0, 600, 601, 603, 625, 0,
180 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
181 /* 0x09 - 800x600@60Hz */
182 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
183 968, 1056, 0, 600, 601, 605, 628, 0,
184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
185 /* 0x0a - 800x600@72Hz */
186 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
187 976, 1040, 0, 600, 637, 643, 666, 0,
188 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
189 /* 0x0b - 800x600@75Hz */
190 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
191 896, 1056, 0, 600, 601, 604, 625, 0,
192 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
193 /* 0x0c - 800x600@85Hz */
194 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
195 896, 1048, 0, 600, 601, 604, 631, 0,
196 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
197 /* 0x0d - 800x600@120Hz RB */
198 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
199 880, 960, 0, 600, 603, 607, 636, 0,
200 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
201 /* 0x0e - 848x480@60Hz */
202 { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
203 976, 1088, 0, 480, 486, 494, 517, 0,
204 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
205 /* 0x0f - 1024x768@43Hz, interlace */
206 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
207 1208, 1264, 0, 768, 768, 772, 817, 0,
208 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
209 DRM_MODE_FLAG_INTERLACE) },
210 /* 0x10 - 1024x768@60Hz */
211 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
212 1184, 1344, 0, 768, 771, 777, 806, 0,
213 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
214 /* 0x11 - 1024x768@70Hz */
215 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
216 1184, 1328, 0, 768, 771, 777, 806, 0,
217 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
218 /* 0x12 - 1024x768@75Hz */
219 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
220 1136, 1312, 0, 768, 769, 772, 800, 0,
221 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
222 /* 0x13 - 1024x768@85Hz */
223 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
224 1168, 1376, 0, 768, 769, 772, 808, 0,
225 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
226 /* 0x14 - 1024x768@120Hz RB */
227 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
228 1104, 1184, 0, 768, 771, 775, 813, 0,
229 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
230 /* 0x15 - 1152x864@75Hz */
231 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
232 1344, 1600, 0, 864, 865, 868, 900, 0,
233 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
234 /* 0x55 - 1280x720@60Hz */
235 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
236 1430, 1650, 0, 720, 725, 730, 750, 0,
237 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
238 /* 0x16 - 1280x768@60Hz RB */
239 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
240 1360, 1440, 0, 768, 771, 778, 790, 0,
241 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
242 /* 0x17 - 1280x768@60Hz */
243 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
244 1472, 1664, 0, 768, 771, 778, 798, 0,
245 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
246 /* 0x18 - 1280x768@75Hz */
247 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
248 1488, 1696, 0, 768, 771, 778, 805, 0,
249 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
250 /* 0x19 - 1280x768@85Hz */
251 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
252 1496, 1712, 0, 768, 771, 778, 809, 0,
253 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
254 /* 0x1a - 1280x768@120Hz RB */
255 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
256 1360, 1440, 0, 768, 771, 778, 813, 0,
257 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
258 /* 0x1b - 1280x800@60Hz RB */
259 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
260 1360, 1440, 0, 800, 803, 809, 823, 0,
261 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
262 /* 0x1c - 1280x800@60Hz */
263 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
264 1480, 1680, 0, 800, 803, 809, 831, 0,
265 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
266 /* 0x1d - 1280x800@75Hz */
267 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
268 1488, 1696, 0, 800, 803, 809, 838, 0,
269 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
270 /* 0x1e - 1280x800@85Hz */
271 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
272 1496, 1712, 0, 800, 803, 809, 843, 0,
273 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
274 /* 0x1f - 1280x800@120Hz RB */
275 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
276 1360, 1440, 0, 800, 803, 809, 847, 0,
277 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
278 /* 0x20 - 1280x960@60Hz */
279 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
280 1488, 1800, 0, 960, 961, 964, 1000, 0,
281 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
282 /* 0x21 - 1280x960@85Hz */
283 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
284 1504, 1728, 0, 960, 961, 964, 1011, 0,
285 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
286 /* 0x22 - 1280x960@120Hz RB */
287 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
288 1360, 1440, 0, 960, 963, 967, 1017, 0,
289 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
290 /* 0x23 - 1280x1024@60Hz */
291 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
292 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
293 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
294 /* 0x24 - 1280x1024@75Hz */
295 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
296 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
297 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
298 /* 0x25 - 1280x1024@85Hz */
299 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
300 1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
301 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
302 /* 0x26 - 1280x1024@120Hz RB */
303 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
304 1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
305 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
306 /* 0x27 - 1360x768@60Hz */
307 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
308 1536, 1792, 0, 768, 771, 777, 795, 0,
309 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
310 /* 0x28 - 1360x768@120Hz RB */
311 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
312 1440, 1520, 0, 768, 771, 776, 813, 0,
313 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
314 /* 0x51 - 1366x768@60Hz */
315 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
316 1579, 1792, 0, 768, 771, 774, 798, 0,
317 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318 /* 0x56 - 1366x768@60Hz */
319 { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
320 1436, 1500, 0, 768, 769, 772, 800, 0,
321 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
322 /* 0x29 - 1400x1050@60Hz RB */
323 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
324 1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
325 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
326 /* 0x2a - 1400x1050@60Hz */
327 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
328 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
329 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
330 /* 0x2b - 1400x1050@75Hz */
331 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
332 1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
333 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
334 /* 0x2c - 1400x1050@85Hz */
335 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
336 1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
337 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338 /* 0x2d - 1400x1050@120Hz RB */
339 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
340 1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
341 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
342 /* 0x2e - 1440x900@60Hz RB */
343 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
344 1520, 1600, 0, 900, 903, 909, 926, 0,
345 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
346 /* 0x2f - 1440x900@60Hz */
347 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
348 1672, 1904, 0, 900, 903, 909, 934, 0,
349 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
350 /* 0x30 - 1440x900@75Hz */
351 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
352 1688, 1936, 0, 900, 903, 909, 942, 0,
353 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
354 /* 0x31 - 1440x900@85Hz */
355 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
356 1696, 1952, 0, 900, 903, 909, 948, 0,
357 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358 /* 0x32 - 1440x900@120Hz RB */
359 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
360 1520, 1600, 0, 900, 903, 909, 953, 0,
361 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
362 /* 0x53 - 1600x900@60Hz */
363 { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
364 1704, 1800, 0, 900, 901, 904, 1000, 0,
365 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
366 /* 0x33 - 1600x1200@60Hz */
367 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
368 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
369 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
370 /* 0x34 - 1600x1200@65Hz */
371 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
372 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
373 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374 /* 0x35 - 1600x1200@70Hz */
375 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
376 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
377 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378 /* 0x36 - 1600x1200@75Hz */
379 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
380 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
381 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
382 /* 0x37 - 1600x1200@85Hz */
383 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
384 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
385 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386 /* 0x38 - 1600x1200@120Hz RB */
387 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
388 1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
389 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390 /* 0x39 - 1680x1050@60Hz RB */
391 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
392 1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
393 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
394 /* 0x3a - 1680x1050@60Hz */
395 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
396 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
397 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
398 /* 0x3b - 1680x1050@75Hz */
399 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
400 1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
401 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
402 /* 0x3c - 1680x1050@85Hz */
403 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
404 1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
405 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
406 /* 0x3d - 1680x1050@120Hz RB */
407 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
408 1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
409 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
410 /* 0x3e - 1792x1344@60Hz */
411 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
412 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
413 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
414 /* 0x3f - 1792x1344@75Hz */
415 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
416 2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
417 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
418 /* 0x40 - 1792x1344@120Hz RB */
419 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
420 1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
421 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
422 /* 0x41 - 1856x1392@60Hz */
423 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
424 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
425 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426 /* 0x42 - 1856x1392@75Hz */
427 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
428 2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
429 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430 /* 0x43 - 1856x1392@120Hz RB */
431 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
432 1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
433 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434 /* 0x52 - 1920x1080@60Hz */
435 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
436 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
437 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
438 /* 0x44 - 1920x1200@60Hz RB */
439 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
440 2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
441 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
442 /* 0x45 - 1920x1200@60Hz */
443 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
444 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446 /* 0x46 - 1920x1200@75Hz */
447 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
448 2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
449 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450 /* 0x47 - 1920x1200@85Hz */
451 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
452 2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
453 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
454 /* 0x48 - 1920x1200@120Hz RB */
455 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
456 2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
458 /* 0x49 - 1920x1440@60Hz */
459 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
460 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
461 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
462 /* 0x4a - 1920x1440@75Hz */
463 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
464 2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
465 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
466 /* 0x4b - 1920x1440@120Hz RB */
467 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
468 2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
470 /* 0x54 - 2048x1152@60Hz */
471 { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
472 2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
473 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474 /* 0x4c - 2560x1600@60Hz RB */
475 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
476 2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
477 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
478 /* 0x4d - 2560x1600@60Hz */
479 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
480 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
481 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
482 /* 0x4e - 2560x1600@75Hz */
483 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
484 3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
485 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
486 /* 0x4f - 2560x1600@85Hz */
487 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
488 3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
489 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490 /* 0x50 - 2560x1600@120Hz RB */
491 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
492 2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
493 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
494 /* 0x57 - 4096x2160@60Hz RB */
495 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
496 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
497 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
498 /* 0x58 - 4096x2160@59.94Hz RB */
499 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
500 4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
505 * These more or less come from the DMT spec. The 720x400 modes are
506 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
507 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
508 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
509 * mode.
511 * The DMT modes have been fact-checked; the rest are mild guesses.
513 static const struct drm_display_mode edid_est_modes[] = {
514 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
515 968, 1056, 0, 600, 601, 605, 628, 0,
516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
517 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
518 896, 1024, 0, 600, 601, 603, 625, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
520 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
521 720, 840, 0, 480, 481, 484, 500, 0,
522 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
523 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
524 704, 832, 0, 480, 489, 491, 520, 0,
525 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
526 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
527 768, 864, 0, 480, 483, 486, 525, 0,
528 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
529 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
530 752, 800, 0, 480, 490, 492, 525, 0,
531 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
532 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
533 846, 900, 0, 400, 421, 423, 449, 0,
534 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
535 { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
536 846, 900, 0, 400, 412, 414, 449, 0,
537 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
538 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
539 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
540 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
541 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
542 1136, 1312, 0, 768, 769, 772, 800, 0,
543 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
544 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
545 1184, 1328, 0, 768, 771, 777, 806, 0,
546 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
547 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
548 1184, 1344, 0, 768, 771, 777, 806, 0,
549 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
550 { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
551 1208, 1264, 0, 768, 768, 776, 817, 0,
552 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
553 { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
554 928, 1152, 0, 624, 625, 628, 667, 0,
555 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
556 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
557 896, 1056, 0, 600, 601, 604, 625, 0,
558 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
559 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
560 976, 1040, 0, 600, 637, 643, 666, 0,
561 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
562 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
563 1344, 1600, 0, 864, 865, 868, 900, 0,
564 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
567 struct minimode {
568 short w;
569 short h;
570 short r;
571 short rb;
574 static const struct minimode est3_modes[] = {
575 /* byte 6 */
576 { 640, 350, 85, 0 },
577 { 640, 400, 85, 0 },
578 { 720, 400, 85, 0 },
579 { 640, 480, 85, 0 },
580 { 848, 480, 60, 0 },
581 { 800, 600, 85, 0 },
582 { 1024, 768, 85, 0 },
583 { 1152, 864, 75, 0 },
584 /* byte 7 */
585 { 1280, 768, 60, 1 },
586 { 1280, 768, 60, 0 },
587 { 1280, 768, 75, 0 },
588 { 1280, 768, 85, 0 },
589 { 1280, 960, 60, 0 },
590 { 1280, 960, 85, 0 },
591 { 1280, 1024, 60, 0 },
592 { 1280, 1024, 85, 0 },
593 /* byte 8 */
594 { 1360, 768, 60, 0 },
595 { 1440, 900, 60, 1 },
596 { 1440, 900, 60, 0 },
597 { 1440, 900, 75, 0 },
598 { 1440, 900, 85, 0 },
599 { 1400, 1050, 60, 1 },
600 { 1400, 1050, 60, 0 },
601 { 1400, 1050, 75, 0 },
602 /* byte 9 */
603 { 1400, 1050, 85, 0 },
604 { 1680, 1050, 60, 1 },
605 { 1680, 1050, 60, 0 },
606 { 1680, 1050, 75, 0 },
607 { 1680, 1050, 85, 0 },
608 { 1600, 1200, 60, 0 },
609 { 1600, 1200, 65, 0 },
610 { 1600, 1200, 70, 0 },
611 /* byte 10 */
612 { 1600, 1200, 75, 0 },
613 { 1600, 1200, 85, 0 },
614 { 1792, 1344, 60, 0 },
615 { 1792, 1344, 75, 0 },
616 { 1856, 1392, 60, 0 },
617 { 1856, 1392, 75, 0 },
618 { 1920, 1200, 60, 1 },
619 { 1920, 1200, 60, 0 },
620 /* byte 11 */
621 { 1920, 1200, 75, 0 },
622 { 1920, 1200, 85, 0 },
623 { 1920, 1440, 60, 0 },
624 { 1920, 1440, 75, 0 },
627 static const struct minimode extra_modes[] = {
628 { 1024, 576, 60, 0 },
629 { 1366, 768, 60, 0 },
630 { 1600, 900, 60, 0 },
631 { 1680, 945, 60, 0 },
632 { 1920, 1080, 60, 0 },
633 { 2048, 1152, 60, 0 },
634 { 2048, 1536, 60, 0 },
638 * Probably taken from CEA-861 spec.
639 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
641 static const struct drm_display_mode edid_cea_modes[] = {
642 /* 1 - 640x480@60Hz */
643 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
644 752, 800, 0, 480, 490, 492, 525, 0,
645 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
646 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
647 /* 2 - 720x480@60Hz */
648 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
649 798, 858, 0, 480, 489, 495, 525, 0,
650 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
651 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
652 /* 3 - 720x480@60Hz */
653 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
654 798, 858, 0, 480, 489, 495, 525, 0,
655 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
656 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
657 /* 4 - 1280x720@60Hz */
658 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
659 1430, 1650, 0, 720, 725, 730, 750, 0,
660 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
661 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
662 /* 5 - 1920x1080i@60Hz */
663 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
664 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
665 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
666 DRM_MODE_FLAG_INTERLACE),
667 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
668 /* 6 - 720(1440)x480i@60Hz */
669 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
670 801, 858, 0, 480, 488, 494, 525, 0,
671 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
672 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
673 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
674 /* 7 - 720(1440)x480i@60Hz */
675 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
676 801, 858, 0, 480, 488, 494, 525, 0,
677 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
678 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
679 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
680 /* 8 - 720(1440)x240@60Hz */
681 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
682 801, 858, 0, 240, 244, 247, 262, 0,
683 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
684 DRM_MODE_FLAG_DBLCLK),
685 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
686 /* 9 - 720(1440)x240@60Hz */
687 { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
688 801, 858, 0, 240, 244, 247, 262, 0,
689 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
690 DRM_MODE_FLAG_DBLCLK),
691 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
692 /* 10 - 2880x480i@60Hz */
693 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
694 3204, 3432, 0, 480, 488, 494, 525, 0,
695 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
696 DRM_MODE_FLAG_INTERLACE),
697 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
698 /* 11 - 2880x480i@60Hz */
699 { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
700 3204, 3432, 0, 480, 488, 494, 525, 0,
701 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
702 DRM_MODE_FLAG_INTERLACE),
703 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
704 /* 12 - 2880x240@60Hz */
705 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
706 3204, 3432, 0, 240, 244, 247, 262, 0,
707 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
708 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
709 /* 13 - 2880x240@60Hz */
710 { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
711 3204, 3432, 0, 240, 244, 247, 262, 0,
712 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
713 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
714 /* 14 - 1440x480@60Hz */
715 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
716 1596, 1716, 0, 480, 489, 495, 525, 0,
717 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
718 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
719 /* 15 - 1440x480@60Hz */
720 { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
721 1596, 1716, 0, 480, 489, 495, 525, 0,
722 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
723 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
724 /* 16 - 1920x1080@60Hz */
725 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
726 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
727 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
728 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
729 /* 17 - 720x576@50Hz */
730 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
731 796, 864, 0, 576, 581, 586, 625, 0,
732 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
733 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
734 /* 18 - 720x576@50Hz */
735 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
736 796, 864, 0, 576, 581, 586, 625, 0,
737 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
738 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
739 /* 19 - 1280x720@50Hz */
740 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
741 1760, 1980, 0, 720, 725, 730, 750, 0,
742 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
743 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
744 /* 20 - 1920x1080i@50Hz */
745 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
746 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
747 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
748 DRM_MODE_FLAG_INTERLACE),
749 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
750 /* 21 - 720(1440)x576i@50Hz */
751 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
752 795, 864, 0, 576, 580, 586, 625, 0,
753 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
754 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
755 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
756 /* 22 - 720(1440)x576i@50Hz */
757 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
758 795, 864, 0, 576, 580, 586, 625, 0,
759 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
760 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
761 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
762 /* 23 - 720(1440)x288@50Hz */
763 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
764 795, 864, 0, 288, 290, 293, 312, 0,
765 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
766 DRM_MODE_FLAG_DBLCLK),
767 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
768 /* 24 - 720(1440)x288@50Hz */
769 { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
770 795, 864, 0, 288, 290, 293, 312, 0,
771 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
772 DRM_MODE_FLAG_DBLCLK),
773 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
774 /* 25 - 2880x576i@50Hz */
775 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
776 3180, 3456, 0, 576, 580, 586, 625, 0,
777 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
778 DRM_MODE_FLAG_INTERLACE),
779 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
780 /* 26 - 2880x576i@50Hz */
781 { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
782 3180, 3456, 0, 576, 580, 586, 625, 0,
783 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
784 DRM_MODE_FLAG_INTERLACE),
785 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
786 /* 27 - 2880x288@50Hz */
787 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
788 3180, 3456, 0, 288, 290, 293, 312, 0,
789 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
790 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
791 /* 28 - 2880x288@50Hz */
792 { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
793 3180, 3456, 0, 288, 290, 293, 312, 0,
794 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
795 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
796 /* 29 - 1440x576@50Hz */
797 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
798 1592, 1728, 0, 576, 581, 586, 625, 0,
799 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
800 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
801 /* 30 - 1440x576@50Hz */
802 { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
803 1592, 1728, 0, 576, 581, 586, 625, 0,
804 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
805 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
806 /* 31 - 1920x1080@50Hz */
807 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
808 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
809 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
811 /* 32 - 1920x1080@24Hz */
812 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
813 2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
814 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
815 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
816 /* 33 - 1920x1080@25Hz */
817 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
818 2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
819 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821 /* 34 - 1920x1080@30Hz */
822 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
823 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
824 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
825 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
826 /* 35 - 2880x480@60Hz */
827 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
828 3192, 3432, 0, 480, 489, 495, 525, 0,
829 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
830 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
831 /* 36 - 2880x480@60Hz */
832 { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
833 3192, 3432, 0, 480, 489, 495, 525, 0,
834 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
835 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
836 /* 37 - 2880x576@50Hz */
837 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
838 3184, 3456, 0, 576, 581, 586, 625, 0,
839 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
840 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
841 /* 38 - 2880x576@50Hz */
842 { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
843 3184, 3456, 0, 576, 581, 586, 625, 0,
844 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
845 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
846 /* 39 - 1920x1080i@50Hz */
847 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
848 2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
849 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
850 DRM_MODE_FLAG_INTERLACE),
851 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
852 /* 40 - 1920x1080i@100Hz */
853 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
854 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
855 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
856 DRM_MODE_FLAG_INTERLACE),
857 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858 /* 41 - 1280x720@100Hz */
859 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
860 1760, 1980, 0, 720, 725, 730, 750, 0,
861 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
862 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
863 /* 42 - 720x576@100Hz */
864 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
865 796, 864, 0, 576, 581, 586, 625, 0,
866 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
868 /* 43 - 720x576@100Hz */
869 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
870 796, 864, 0, 576, 581, 586, 625, 0,
871 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
872 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873 /* 44 - 720(1440)x576i@100Hz */
874 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
875 795, 864, 0, 576, 580, 586, 625, 0,
876 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
878 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879 /* 45 - 720(1440)x576i@100Hz */
880 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
881 795, 864, 0, 576, 580, 586, 625, 0,
882 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
884 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885 /* 46 - 1920x1080i@120Hz */
886 { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
887 2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
888 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
889 DRM_MODE_FLAG_INTERLACE),
890 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
891 /* 47 - 1280x720@120Hz */
892 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
893 1430, 1650, 0, 720, 725, 730, 750, 0,
894 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
895 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
896 /* 48 - 720x480@120Hz */
897 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
898 798, 858, 0, 480, 489, 495, 525, 0,
899 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
900 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
901 /* 49 - 720x480@120Hz */
902 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
903 798, 858, 0, 480, 489, 495, 525, 0,
904 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
905 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
906 /* 50 - 720(1440)x480i@120Hz */
907 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
908 801, 858, 0, 480, 488, 494, 525, 0,
909 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
910 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
911 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
912 /* 51 - 720(1440)x480i@120Hz */
913 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
914 801, 858, 0, 480, 488, 494, 525, 0,
915 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
916 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
917 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
918 /* 52 - 720x576@200Hz */
919 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
920 796, 864, 0, 576, 581, 586, 625, 0,
921 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
922 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
923 /* 53 - 720x576@200Hz */
924 { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
925 796, 864, 0, 576, 581, 586, 625, 0,
926 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
927 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
928 /* 54 - 720(1440)x576i@200Hz */
929 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
930 795, 864, 0, 576, 580, 586, 625, 0,
931 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
932 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
933 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
934 /* 55 - 720(1440)x576i@200Hz */
935 { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
936 795, 864, 0, 576, 580, 586, 625, 0,
937 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
938 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
939 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
940 /* 56 - 720x480@240Hz */
941 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
942 798, 858, 0, 480, 489, 495, 525, 0,
943 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
945 /* 57 - 720x480@240Hz */
946 { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
947 798, 858, 0, 480, 489, 495, 525, 0,
948 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
949 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
950 /* 58 - 720(1440)x480i@240 */
951 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
952 801, 858, 0, 480, 488, 494, 525, 0,
953 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
954 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
955 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
956 /* 59 - 720(1440)x480i@240 */
957 { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
958 801, 858, 0, 480, 488, 494, 525, 0,
959 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
960 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
961 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962 /* 60 - 1280x720@24Hz */
963 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
964 3080, 3300, 0, 720, 725, 730, 750, 0,
965 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
966 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
967 /* 61 - 1280x720@25Hz */
968 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
969 3740, 3960, 0, 720, 725, 730, 750, 0,
970 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
971 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972 /* 62 - 1280x720@30Hz */
973 { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
974 3080, 3300, 0, 720, 725, 730, 750, 0,
975 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
976 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977 /* 63 - 1920x1080@120Hz */
978 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
979 2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
980 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
981 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
982 /* 64 - 1920x1080@100Hz */
983 { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
984 2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
985 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
986 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
990 * HDMI 1.4 4k modes.
992 static const struct drm_display_mode edid_4k_modes[] = {
993 /* 1 - 3840x2160@30Hz */
994 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
995 3840, 4016, 4104, 4400, 0,
996 2160, 2168, 2178, 2250, 0,
997 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
998 .vrefresh = 30, },
999 /* 2 - 3840x2160@25Hz */
1000 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1001 3840, 4896, 4984, 5280, 0,
1002 2160, 2168, 2178, 2250, 0,
1003 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1004 .vrefresh = 25, },
1005 /* 3 - 3840x2160@24Hz */
1006 { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1007 3840, 5116, 5204, 5500, 0,
1008 2160, 2168, 2178, 2250, 0,
1009 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1010 .vrefresh = 24, },
1011 /* 4 - 4096x2160@24Hz (SMPTE) */
1012 { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1013 4096, 5116, 5204, 5500, 0,
1014 2160, 2168, 2178, 2250, 0,
1015 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1016 .vrefresh = 24, },
1019 /*** DDC fetch and block validation ***/
1021 static const u8 edid_header[] = {
1022 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1026 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1027 * @raw_edid: pointer to raw base EDID block
1029 * Sanity check the header of the base EDID block.
1031 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1033 int drm_edid_header_is_valid(const u8 *raw_edid)
1035 int i, score = 0;
1037 for (i = 0; i < sizeof(edid_header); i++)
1038 if (raw_edid[i] == edid_header[i])
1039 score++;
1041 return score;
1043 EXPORT_SYMBOL(drm_edid_header_is_valid);
1045 static int edid_fixup __read_mostly = 6;
1046 module_param_named(edid_fixup, edid_fixup, int, 0400);
1047 MODULE_PARM_DESC(edid_fixup,
1048 "Minimum number of valid EDID header bytes (0-8, default 6)");
1050 static void drm_get_displayid(struct drm_connector *connector,
1051 struct edid *edid);
1053 static int drm_edid_block_checksum(const u8 *raw_edid)
1055 int i;
1056 u8 csum = 0;
1057 for (i = 0; i < EDID_LENGTH; i++)
1058 csum += raw_edid[i];
1060 return csum;
1063 static bool drm_edid_is_zero(const u8 *in_edid, int length)
1065 if (memchr_inv(in_edid, 0, length))
1066 return false;
1068 return true;
1072 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1073 * @raw_edid: pointer to raw EDID block
1074 * @block: type of block to validate (0 for base, extension otherwise)
1075 * @print_bad_edid: if true, dump bad EDID blocks to the console
1076 * @edid_corrupt: if true, the header or checksum is invalid
1078 * Validate a base or extension EDID block and optionally dump bad blocks to
1079 * the console.
1081 * Return: True if the block is valid, false otherwise.
1083 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1084 bool *edid_corrupt)
1086 u8 csum;
1087 struct edid *edid = (struct edid *)raw_edid;
1089 if (WARN_ON(!raw_edid))
1090 return false;
1092 if (edid_fixup > 8 || edid_fixup < 0)
1093 edid_fixup = 6;
1095 if (block == 0) {
1096 int score = drm_edid_header_is_valid(raw_edid);
1097 if (score == 8) {
1098 if (edid_corrupt)
1099 *edid_corrupt = false;
1100 } else if (score >= edid_fixup) {
1101 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1102 * The corrupt flag needs to be set here otherwise, the
1103 * fix-up code here will correct the problem, the
1104 * checksum is correct and the test fails
1106 if (edid_corrupt)
1107 *edid_corrupt = true;
1108 DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1109 memcpy(raw_edid, edid_header, sizeof(edid_header));
1110 } else {
1111 if (edid_corrupt)
1112 *edid_corrupt = true;
1113 goto bad;
1117 csum = drm_edid_block_checksum(raw_edid);
1118 if (csum) {
1119 if (print_bad_edid) {
1120 DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1123 if (edid_corrupt)
1124 *edid_corrupt = true;
1126 /* allow CEA to slide through, switches mangle this */
1127 if (raw_edid[0] != 0x02)
1128 goto bad;
1131 /* per-block-type checks */
1132 switch (raw_edid[0]) {
1133 case 0: /* base */
1134 if (edid->version != 1) {
1135 DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1136 goto bad;
1139 if (edid->revision > 4)
1140 DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1141 break;
1143 default:
1144 break;
1147 return true;
1149 bad:
1150 if (print_bad_edid) {
1151 if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1152 printk(KERN_ERR "EDID block is all zeroes\n");
1153 } else {
1154 printk(KERN_ERR "Raw EDID:\n");
1155 print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1156 raw_edid, EDID_LENGTH, false);
1159 return false;
1161 EXPORT_SYMBOL(drm_edid_block_valid);
1164 * drm_edid_is_valid - sanity check EDID data
1165 * @edid: EDID data
1167 * Sanity-check an entire EDID record (including extensions)
1169 * Return: True if the EDID data is valid, false otherwise.
1171 bool drm_edid_is_valid(struct edid *edid)
1173 int i;
1174 u8 *raw = (u8 *)edid;
1176 if (!edid)
1177 return false;
1179 for (i = 0; i <= edid->extensions; i++)
1180 if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1181 return false;
1183 return true;
1185 EXPORT_SYMBOL(drm_edid_is_valid);
1187 #define DDC_SEGMENT_ADDR 0x30
1189 * drm_do_probe_ddc_edid() - get EDID information via I2C
1190 * @data: I2C device adapter
1191 * @buf: EDID data buffer to be filled
1192 * @block: 128 byte EDID block to start fetching from
1193 * @len: EDID data buffer length to fetch
1195 * Try to fetch EDID information by calling I2C driver functions.
1197 * Return: 0 on success or -1 on failure.
1199 static int
1200 drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1202 struct i2c_adapter *adapter = data;
1203 unsigned char start = block * EDID_LENGTH;
1204 unsigned char segment = block >> 1;
1205 unsigned char xfers = segment ? 3 : 2;
1206 int ret, retries = 5;
1209 * The core I2C driver will automatically retry the transfer if the
1210 * adapter reports EAGAIN. However, we find that bit-banging transfers
1211 * are susceptible to errors under a heavily loaded machine and
1212 * generate spurious NAKs and timeouts. Retrying the transfer
1213 * of the individual block a few times seems to overcome this.
1215 do {
1216 struct i2c_msg msgs[] = {
1218 .addr = DDC_SEGMENT_ADDR,
1219 .flags = 0,
1220 .len = 1,
1221 .buf = &segment,
1222 }, {
1223 .addr = DDC_ADDR,
1224 .flags = 0,
1225 .len = 1,
1226 .buf = &start,
1227 }, {
1228 .addr = DDC_ADDR,
1229 .flags = I2C_M_RD,
1230 .len = len,
1231 .buf = buf,
1236 * Avoid sending the segment addr to not upset non-compliant
1237 * DDC monitors.
1239 ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1241 if (ret == -ENXIO) {
1242 DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1243 adapter->name);
1244 break;
1246 } while (ret != xfers && --retries);
1248 return ret == xfers ? 0 : -1;
1252 * drm_do_get_edid - get EDID data using a custom EDID block read function
1253 * @connector: connector we're probing
1254 * @get_edid_block: EDID block read function
1255 * @data: private data passed to the block read function
1257 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1258 * exposes a different interface to read EDID blocks this function can be used
1259 * to get EDID data using a custom block read function.
1261 * As in the general case the DDC bus is accessible by the kernel at the I2C
1262 * level, drivers must make all reasonable efforts to expose it as an I2C
1263 * adapter and use drm_get_edid() instead of abusing this function.
1265 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1267 struct edid *drm_do_get_edid(struct drm_connector *connector,
1268 int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1269 size_t len),
1270 void *data)
1272 int i, j = 0, valid_extensions = 0;
1273 u8 *block, *new;
1274 bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1276 if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1277 return NULL;
1279 /* base block fetch */
1280 for (i = 0; i < 4; i++) {
1281 if (get_edid_block(data, block, 0, EDID_LENGTH))
1282 goto out;
1283 if (drm_edid_block_valid(block, 0, print_bad_edid,
1284 &connector->edid_corrupt))
1285 break;
1286 if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1287 connector->null_edid_counter++;
1288 goto carp;
1291 if (i == 4)
1292 goto carp;
1294 /* if there's no extensions, we're done */
1295 if (block[0x7e] == 0)
1296 return (struct edid *)block;
1298 new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1299 if (!new)
1300 goto out;
1301 block = new;
1303 for (j = 1; j <= block[0x7e]; j++) {
1304 for (i = 0; i < 4; i++) {
1305 if (get_edid_block(data,
1306 block + (valid_extensions + 1) * EDID_LENGTH,
1307 j, EDID_LENGTH))
1308 goto out;
1309 if (drm_edid_block_valid(block + (valid_extensions + 1)
1310 * EDID_LENGTH, j,
1311 print_bad_edid,
1312 NULL)) {
1313 valid_extensions++;
1314 break;
1318 if (i == 4 && print_bad_edid) {
1319 dev_warn(connector->dev->dev,
1320 "%s: Ignoring invalid EDID block %d.\n",
1321 connector->name, j);
1323 connector->bad_edid_counter++;
1327 if (valid_extensions != block[0x7e]) {
1328 block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1329 block[0x7e] = valid_extensions;
1330 new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1331 if (!new)
1332 goto out;
1333 block = new;
1336 return (struct edid *)block;
1338 carp:
1339 if (print_bad_edid) {
1340 dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1341 connector->name, j);
1343 connector->bad_edid_counter++;
1345 out:
1346 kfree(block);
1347 return NULL;
1349 EXPORT_SYMBOL_GPL(drm_do_get_edid);
1352 * drm_probe_ddc() - probe DDC presence
1353 * @adapter: I2C adapter to probe
1355 * Return: True on success, false on failure.
1357 bool
1358 drm_probe_ddc(struct i2c_adapter *adapter)
1360 unsigned char out;
1362 return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1364 EXPORT_SYMBOL(drm_probe_ddc);
1367 * drm_get_edid - get EDID data, if available
1368 * @connector: connector we're probing
1369 * @adapter: I2C adapter to use for DDC
1371 * Poke the given I2C channel to grab EDID data if possible. If found,
1372 * attach it to the connector.
1374 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1376 struct edid *drm_get_edid(struct drm_connector *connector,
1377 struct i2c_adapter *adapter)
1379 struct edid *edid;
1381 if (!drm_probe_ddc(adapter))
1382 return NULL;
1384 edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1385 if (edid)
1386 drm_get_displayid(connector, edid);
1387 return edid;
1389 EXPORT_SYMBOL(drm_get_edid);
1392 * drm_edid_duplicate - duplicate an EDID and the extensions
1393 * @edid: EDID to duplicate
1395 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1397 struct edid *drm_edid_duplicate(const struct edid *edid)
1399 return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1401 EXPORT_SYMBOL(drm_edid_duplicate);
1403 /*** EDID parsing ***/
1406 * edid_vendor - match a string against EDID's obfuscated vendor field
1407 * @edid: EDID to match
1408 * @vendor: vendor string
1410 * Returns true if @vendor is in @edid, false otherwise
1412 static bool edid_vendor(struct edid *edid, char *vendor)
1414 char edid_vendor[3];
1416 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1417 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1418 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1419 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1421 return !strncmp(edid_vendor, vendor, 3);
1425 * edid_get_quirks - return quirk flags for a given EDID
1426 * @edid: EDID to process
1428 * This tells subsequent routines what fixes they need to apply.
1430 static u32 edid_get_quirks(struct edid *edid)
1432 struct edid_quirk *quirk;
1433 int i;
1435 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1436 quirk = &edid_quirk_list[i];
1438 if (edid_vendor(edid, quirk->vendor) &&
1439 (EDID_PRODUCT_ID(edid) == quirk->product_id))
1440 return quirk->quirks;
1443 return 0;
1446 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1447 #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1450 * edid_fixup_preferred - set preferred modes based on quirk list
1451 * @connector: has mode list to fix up
1452 * @quirks: quirks list
1454 * Walk the mode list for @connector, clearing the preferred status
1455 * on existing modes and setting it anew for the right mode ala @quirks.
1457 static void edid_fixup_preferred(struct drm_connector *connector,
1458 u32 quirks)
1460 struct drm_display_mode *t, *cur_mode, *preferred_mode;
1461 int target_refresh = 0;
1462 int cur_vrefresh, preferred_vrefresh;
1464 if (list_empty(&connector->probed_modes))
1465 return;
1467 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1468 target_refresh = 60;
1469 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1470 target_refresh = 75;
1472 preferred_mode = list_first_entry(&connector->probed_modes,
1473 struct drm_display_mode, head);
1475 list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1476 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1478 if (cur_mode == preferred_mode)
1479 continue;
1481 /* Largest mode is preferred */
1482 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1483 preferred_mode = cur_mode;
1485 cur_vrefresh = cur_mode->vrefresh ?
1486 cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1487 preferred_vrefresh = preferred_mode->vrefresh ?
1488 preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1489 /* At a given size, try to get closest to target refresh */
1490 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1491 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1492 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1493 preferred_mode = cur_mode;
1497 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1500 static bool
1501 mode_is_rb(const struct drm_display_mode *mode)
1503 return (mode->htotal - mode->hdisplay == 160) &&
1504 (mode->hsync_end - mode->hdisplay == 80) &&
1505 (mode->hsync_end - mode->hsync_start == 32) &&
1506 (mode->vsync_start - mode->vdisplay == 3);
1510 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1511 * @dev: Device to duplicate against
1512 * @hsize: Mode width
1513 * @vsize: Mode height
1514 * @fresh: Mode refresh rate
1515 * @rb: Mode reduced-blanking-ness
1517 * Walk the DMT mode list looking for a match for the given parameters.
1519 * Return: A newly allocated copy of the mode, or NULL if not found.
1521 struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1522 int hsize, int vsize, int fresh,
1523 bool rb)
1525 int i;
1527 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1528 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1529 if (hsize != ptr->hdisplay)
1530 continue;
1531 if (vsize != ptr->vdisplay)
1532 continue;
1533 if (fresh != drm_mode_vrefresh(ptr))
1534 continue;
1535 if (rb != mode_is_rb(ptr))
1536 continue;
1538 return drm_mode_duplicate(dev, ptr);
1541 return NULL;
1543 EXPORT_SYMBOL(drm_mode_find_dmt);
1545 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1547 static void
1548 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1550 int i, n = 0;
1551 u8 d = ext[0x02];
1552 u8 *det_base = ext + d;
1554 n = (127 - d) / 18;
1555 for (i = 0; i < n; i++)
1556 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1559 static void
1560 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1562 unsigned int i, n = min((int)ext[0x02], 6);
1563 u8 *det_base = ext + 5;
1565 if (ext[0x01] != 1)
1566 return; /* unknown version */
1568 for (i = 0; i < n; i++)
1569 cb((struct detailed_timing *)(det_base + 18 * i), closure);
1572 static void
1573 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1575 int i;
1576 struct edid *edid = (struct edid *)raw_edid;
1578 if (edid == NULL)
1579 return;
1581 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1582 cb(&(edid->detailed_timings[i]), closure);
1584 for (i = 1; i <= raw_edid[0x7e]; i++) {
1585 u8 *ext = raw_edid + (i * EDID_LENGTH);
1586 switch (*ext) {
1587 case CEA_EXT:
1588 cea_for_each_detailed_block(ext, cb, closure);
1589 break;
1590 case VTB_EXT:
1591 vtb_for_each_detailed_block(ext, cb, closure);
1592 break;
1593 default:
1594 break;
1599 static void
1600 is_rb(struct detailed_timing *t, void *data)
1602 u8 *r = (u8 *)t;
1603 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1604 if (r[15] & 0x10)
1605 *(bool *)data = true;
1608 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
1609 static bool
1610 drm_monitor_supports_rb(struct edid *edid)
1612 if (edid->revision >= 4) {
1613 bool ret = false;
1614 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1615 return ret;
1618 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1621 static void
1622 find_gtf2(struct detailed_timing *t, void *data)
1624 u8 *r = (u8 *)t;
1625 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1626 *(u8 **)data = r;
1629 /* Secondary GTF curve kicks in above some break frequency */
1630 static int
1631 drm_gtf2_hbreak(struct edid *edid)
1633 u8 *r = NULL;
1634 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1635 return r ? (r[12] * 2) : 0;
1638 static int
1639 drm_gtf2_2c(struct edid *edid)
1641 u8 *r = NULL;
1642 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1643 return r ? r[13] : 0;
1646 static int
1647 drm_gtf2_m(struct edid *edid)
1649 u8 *r = NULL;
1650 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1651 return r ? (r[15] << 8) + r[14] : 0;
1654 static int
1655 drm_gtf2_k(struct edid *edid)
1657 u8 *r = NULL;
1658 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1659 return r ? r[16] : 0;
1662 static int
1663 drm_gtf2_2j(struct edid *edid)
1665 u8 *r = NULL;
1666 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1667 return r ? r[17] : 0;
1671 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1672 * @edid: EDID block to scan
1674 static int standard_timing_level(struct edid *edid)
1676 if (edid->revision >= 2) {
1677 if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1678 return LEVEL_CVT;
1679 if (drm_gtf2_hbreak(edid))
1680 return LEVEL_GTF2;
1681 return LEVEL_GTF;
1683 return LEVEL_DMT;
1687 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
1688 * monitors fill with ascii space (0x20) instead.
1690 static int
1691 bad_std_timing(u8 a, u8 b)
1693 return (a == 0x00 && b == 0x00) ||
1694 (a == 0x01 && b == 0x01) ||
1695 (a == 0x20 && b == 0x20);
1699 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1700 * @connector: connector of for the EDID block
1701 * @edid: EDID block to scan
1702 * @t: standard timing params
1704 * Take the standard timing params (in this case width, aspect, and refresh)
1705 * and convert them into a real mode using CVT/GTF/DMT.
1707 static struct drm_display_mode *
1708 drm_mode_std(struct drm_connector *connector, struct edid *edid,
1709 struct std_timing *t)
1711 struct drm_device *dev = connector->dev;
1712 struct drm_display_mode *m, *mode = NULL;
1713 int hsize, vsize;
1714 int vrefresh_rate;
1715 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1716 >> EDID_TIMING_ASPECT_SHIFT;
1717 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1718 >> EDID_TIMING_VFREQ_SHIFT;
1719 int timing_level = standard_timing_level(edid);
1721 if (bad_std_timing(t->hsize, t->vfreq_aspect))
1722 return NULL;
1724 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1725 hsize = t->hsize * 8 + 248;
1726 /* vrefresh_rate = vfreq + 60 */
1727 vrefresh_rate = vfreq + 60;
1728 /* the vdisplay is calculated based on the aspect ratio */
1729 if (aspect_ratio == 0) {
1730 if (edid->revision < 3)
1731 vsize = hsize;
1732 else
1733 vsize = (hsize * 10) / 16;
1734 } else if (aspect_ratio == 1)
1735 vsize = (hsize * 3) / 4;
1736 else if (aspect_ratio == 2)
1737 vsize = (hsize * 4) / 5;
1738 else
1739 vsize = (hsize * 9) / 16;
1741 /* HDTV hack, part 1 */
1742 if (vrefresh_rate == 60 &&
1743 ((hsize == 1360 && vsize == 765) ||
1744 (hsize == 1368 && vsize == 769))) {
1745 hsize = 1366;
1746 vsize = 768;
1750 * If this connector already has a mode for this size and refresh
1751 * rate (because it came from detailed or CVT info), use that
1752 * instead. This way we don't have to guess at interlace or
1753 * reduced blanking.
1755 list_for_each_entry(m, &connector->probed_modes, head)
1756 if (m->hdisplay == hsize && m->vdisplay == vsize &&
1757 drm_mode_vrefresh(m) == vrefresh_rate)
1758 return NULL;
1760 /* HDTV hack, part 2 */
1761 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1762 mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1763 false);
1764 mode->hdisplay = 1366;
1765 mode->hsync_start = mode->hsync_start - 1;
1766 mode->hsync_end = mode->hsync_end - 1;
1767 return mode;
1770 /* check whether it can be found in default mode table */
1771 if (drm_monitor_supports_rb(edid)) {
1772 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1773 true);
1774 if (mode)
1775 return mode;
1777 mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1778 if (mode)
1779 return mode;
1781 /* okay, generate it */
1782 switch (timing_level) {
1783 case LEVEL_DMT:
1784 break;
1785 case LEVEL_GTF:
1786 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1787 break;
1788 case LEVEL_GTF2:
1790 * This is potentially wrong if there's ever a monitor with
1791 * more than one ranges section, each claiming a different
1792 * secondary GTF curve. Please don't do that.
1794 mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1795 if (!mode)
1796 return NULL;
1797 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1798 drm_mode_destroy(dev, mode);
1799 mode = drm_gtf_mode_complex(dev, hsize, vsize,
1800 vrefresh_rate, 0, 0,
1801 drm_gtf2_m(edid),
1802 drm_gtf2_2c(edid),
1803 drm_gtf2_k(edid),
1804 drm_gtf2_2j(edid));
1806 break;
1807 case LEVEL_CVT:
1808 mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1809 false);
1810 break;
1812 return mode;
1816 * EDID is delightfully ambiguous about how interlaced modes are to be
1817 * encoded. Our internal representation is of frame height, but some
1818 * HDTV detailed timings are encoded as field height.
1820 * The format list here is from CEA, in frame size. Technically we
1821 * should be checking refresh rate too. Whatever.
1823 static void
1824 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1825 struct detailed_pixel_timing *pt)
1827 int i;
1828 static const struct {
1829 int w, h;
1830 } cea_interlaced[] = {
1831 { 1920, 1080 },
1832 { 720, 480 },
1833 { 1440, 480 },
1834 { 2880, 480 },
1835 { 720, 576 },
1836 { 1440, 576 },
1837 { 2880, 576 },
1840 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1841 return;
1843 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1844 if ((mode->hdisplay == cea_interlaced[i].w) &&
1845 (mode->vdisplay == cea_interlaced[i].h / 2)) {
1846 mode->vdisplay *= 2;
1847 mode->vsync_start *= 2;
1848 mode->vsync_end *= 2;
1849 mode->vtotal *= 2;
1850 mode->vtotal |= 1;
1854 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1858 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1859 * @dev: DRM device (needed to create new mode)
1860 * @edid: EDID block
1861 * @timing: EDID detailed timing info
1862 * @quirks: quirks to apply
1864 * An EDID detailed timing block contains enough info for us to create and
1865 * return a new struct drm_display_mode.
1867 static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1868 struct edid *edid,
1869 struct detailed_timing *timing,
1870 u32 quirks)
1872 struct drm_display_mode *mode;
1873 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1874 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1875 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1876 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1877 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1878 unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1879 unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1880 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1881 unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1883 /* ignore tiny modes */
1884 if (hactive < 64 || vactive < 64)
1885 return NULL;
1887 if (pt->misc & DRM_EDID_PT_STEREO) {
1888 DRM_DEBUG_KMS("stereo mode not supported\n");
1889 return NULL;
1891 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1892 DRM_DEBUG_KMS("composite sync not supported\n");
1895 /* it is incorrect if hsync/vsync width is zero */
1896 if (!hsync_pulse_width || !vsync_pulse_width) {
1897 DRM_DEBUG_KMS("Incorrect Detailed timing. "
1898 "Wrong Hsync/Vsync pulse width\n");
1899 return NULL;
1902 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1903 mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1904 if (!mode)
1905 return NULL;
1907 goto set_size;
1910 mode = drm_mode_create(dev);
1911 if (!mode)
1912 return NULL;
1914 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1915 timing->pixel_clock = cpu_to_le16(1088);
1917 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1919 mode->hdisplay = hactive;
1920 mode->hsync_start = mode->hdisplay + hsync_offset;
1921 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1922 mode->htotal = mode->hdisplay + hblank;
1924 mode->vdisplay = vactive;
1925 mode->vsync_start = mode->vdisplay + vsync_offset;
1926 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1927 mode->vtotal = mode->vdisplay + vblank;
1929 /* Some EDIDs have bogus h/vtotal values */
1930 if (mode->hsync_end > mode->htotal)
1931 mode->htotal = mode->hsync_end + 1;
1932 if (mode->vsync_end > mode->vtotal)
1933 mode->vtotal = mode->vsync_end + 1;
1935 drm_mode_do_interlace_quirk(mode, pt);
1937 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1938 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1941 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1942 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1943 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1944 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1946 set_size:
1947 mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1948 mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1950 if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1951 mode->width_mm *= 10;
1952 mode->height_mm *= 10;
1955 if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1956 mode->width_mm = edid->width_cm * 10;
1957 mode->height_mm = edid->height_cm * 10;
1960 mode->type = DRM_MODE_TYPE_DRIVER;
1961 mode->vrefresh = drm_mode_vrefresh(mode);
1962 drm_mode_set_name(mode);
1964 return mode;
1967 static bool
1968 mode_in_hsync_range(const struct drm_display_mode *mode,
1969 struct edid *edid, u8 *t)
1971 int hsync, hmin, hmax;
1973 hmin = t[7];
1974 if (edid->revision >= 4)
1975 hmin += ((t[4] & 0x04) ? 255 : 0);
1976 hmax = t[8];
1977 if (edid->revision >= 4)
1978 hmax += ((t[4] & 0x08) ? 255 : 0);
1979 hsync = drm_mode_hsync(mode);
1981 return (hsync <= hmax && hsync >= hmin);
1984 static bool
1985 mode_in_vsync_range(const struct drm_display_mode *mode,
1986 struct edid *edid, u8 *t)
1988 int vsync, vmin, vmax;
1990 vmin = t[5];
1991 if (edid->revision >= 4)
1992 vmin += ((t[4] & 0x01) ? 255 : 0);
1993 vmax = t[6];
1994 if (edid->revision >= 4)
1995 vmax += ((t[4] & 0x02) ? 255 : 0);
1996 vsync = drm_mode_vrefresh(mode);
1998 return (vsync <= vmax && vsync >= vmin);
2001 static u32
2002 range_pixel_clock(struct edid *edid, u8 *t)
2004 /* unspecified */
2005 if (t[9] == 0 || t[9] == 255)
2006 return 0;
2008 /* 1.4 with CVT support gives us real precision, yay */
2009 if (edid->revision >= 4 && t[10] == 0x04)
2010 return (t[9] * 10000) - ((t[12] >> 2) * 250);
2012 /* 1.3 is pathetic, so fuzz up a bit */
2013 return t[9] * 10000 + 5001;
2016 static bool
2017 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2018 struct detailed_timing *timing)
2020 u32 max_clock;
2021 u8 *t = (u8 *)timing;
2023 if (!mode_in_hsync_range(mode, edid, t))
2024 return false;
2026 if (!mode_in_vsync_range(mode, edid, t))
2027 return false;
2029 if ((max_clock = range_pixel_clock(edid, t)))
2030 if (mode->clock > max_clock)
2031 return false;
2033 /* 1.4 max horizontal check */
2034 if (edid->revision >= 4 && t[10] == 0x04)
2035 if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2036 return false;
2038 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2039 return false;
2041 return true;
2044 static bool valid_inferred_mode(const struct drm_connector *connector,
2045 const struct drm_display_mode *mode)
2047 const struct drm_display_mode *m;
2048 bool ok = false;
2050 list_for_each_entry(m, &connector->probed_modes, head) {
2051 if (mode->hdisplay == m->hdisplay &&
2052 mode->vdisplay == m->vdisplay &&
2053 drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2054 return false; /* duplicated */
2055 if (mode->hdisplay <= m->hdisplay &&
2056 mode->vdisplay <= m->vdisplay)
2057 ok = true;
2059 return ok;
2062 static int
2063 drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2064 struct detailed_timing *timing)
2066 int i, modes = 0;
2067 struct drm_display_mode *newmode;
2068 struct drm_device *dev = connector->dev;
2070 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2071 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2072 valid_inferred_mode(connector, drm_dmt_modes + i)) {
2073 newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2074 if (newmode) {
2075 drm_mode_probed_add(connector, newmode);
2076 modes++;
2081 return modes;
2084 /* fix up 1366x768 mode from 1368x768;
2085 * GFT/CVT can't express 1366 width which isn't dividable by 8
2087 static void fixup_mode_1366x768(struct drm_display_mode *mode)
2089 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2090 mode->hdisplay = 1366;
2091 mode->hsync_start--;
2092 mode->hsync_end--;
2093 drm_mode_set_name(mode);
2097 static int
2098 drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2099 struct detailed_timing *timing)
2101 int i, modes = 0;
2102 struct drm_display_mode *newmode;
2103 struct drm_device *dev = connector->dev;
2105 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2106 const struct minimode *m = &extra_modes[i];
2107 newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2108 if (!newmode)
2109 return modes;
2111 fixup_mode_1366x768(newmode);
2112 if (!mode_in_range(newmode, edid, timing) ||
2113 !valid_inferred_mode(connector, newmode)) {
2114 drm_mode_destroy(dev, newmode);
2115 continue;
2118 drm_mode_probed_add(connector, newmode);
2119 modes++;
2122 return modes;
2125 static int
2126 drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2127 struct detailed_timing *timing)
2129 int i, modes = 0;
2130 struct drm_display_mode *newmode;
2131 struct drm_device *dev = connector->dev;
2132 bool rb = drm_monitor_supports_rb(edid);
2134 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2135 const struct minimode *m = &extra_modes[i];
2136 newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2137 if (!newmode)
2138 return modes;
2140 fixup_mode_1366x768(newmode);
2141 if (!mode_in_range(newmode, edid, timing) ||
2142 !valid_inferred_mode(connector, newmode)) {
2143 drm_mode_destroy(dev, newmode);
2144 continue;
2147 drm_mode_probed_add(connector, newmode);
2148 modes++;
2151 return modes;
2154 static void
2155 do_inferred_modes(struct detailed_timing *timing, void *c)
2157 struct detailed_mode_closure *closure = c;
2158 struct detailed_non_pixel *data = &timing->data.other_data;
2159 struct detailed_data_monitor_range *range = &data->data.range;
2161 if (data->type != EDID_DETAIL_MONITOR_RANGE)
2162 return;
2164 closure->modes += drm_dmt_modes_for_range(closure->connector,
2165 closure->edid,
2166 timing);
2168 if (!version_greater(closure->edid, 1, 1))
2169 return; /* GTF not defined yet */
2171 switch (range->flags) {
2172 case 0x02: /* secondary gtf, XXX could do more */
2173 case 0x00: /* default gtf */
2174 closure->modes += drm_gtf_modes_for_range(closure->connector,
2175 closure->edid,
2176 timing);
2177 break;
2178 case 0x04: /* cvt, only in 1.4+ */
2179 if (!version_greater(closure->edid, 1, 3))
2180 break;
2182 closure->modes += drm_cvt_modes_for_range(closure->connector,
2183 closure->edid,
2184 timing);
2185 break;
2186 case 0x01: /* just the ranges, no formula */
2187 default:
2188 break;
2192 static int
2193 add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2195 struct detailed_mode_closure closure = {
2196 .connector = connector,
2197 .edid = edid,
2200 if (version_greater(edid, 1, 0))
2201 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2202 &closure);
2204 return closure.modes;
2207 static int
2208 drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2210 int i, j, m, modes = 0;
2211 struct drm_display_mode *mode;
2212 u8 *est = ((u8 *)timing) + 5;
2214 for (i = 0; i < 6; i++) {
2215 for (j = 7; j >= 0; j--) {
2216 m = (i * 8) + (7 - j);
2217 if (m >= ARRAY_SIZE(est3_modes))
2218 break;
2219 if (est[i] & (1 << j)) {
2220 mode = drm_mode_find_dmt(connector->dev,
2221 est3_modes[m].w,
2222 est3_modes[m].h,
2223 est3_modes[m].r,
2224 est3_modes[m].rb);
2225 if (mode) {
2226 drm_mode_probed_add(connector, mode);
2227 modes++;
2233 return modes;
2236 static void
2237 do_established_modes(struct detailed_timing *timing, void *c)
2239 struct detailed_mode_closure *closure = c;
2240 struct detailed_non_pixel *data = &timing->data.other_data;
2242 if (data->type == EDID_DETAIL_EST_TIMINGS)
2243 closure->modes += drm_est3_modes(closure->connector, timing);
2247 * add_established_modes - get est. modes from EDID and add them
2248 * @connector: connector to add mode(s) to
2249 * @edid: EDID block to scan
2251 * Each EDID block contains a bitmap of the supported "established modes" list
2252 * (defined above). Tease them out and add them to the global modes list.
2254 static int
2255 add_established_modes(struct drm_connector *connector, struct edid *edid)
2257 struct drm_device *dev = connector->dev;
2258 unsigned long est_bits = edid->established_timings.t1 |
2259 (edid->established_timings.t2 << 8) |
2260 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
2261 int i, modes = 0;
2262 struct detailed_mode_closure closure = {
2263 .connector = connector,
2264 .edid = edid,
2267 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2268 if (est_bits & (1<<i)) {
2269 struct drm_display_mode *newmode;
2270 newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2271 if (newmode) {
2272 drm_mode_probed_add(connector, newmode);
2273 modes++;
2278 if (version_greater(edid, 1, 0))
2279 drm_for_each_detailed_block((u8 *)edid,
2280 do_established_modes, &closure);
2282 return modes + closure.modes;
2285 static void
2286 do_standard_modes(struct detailed_timing *timing, void *c)
2288 struct detailed_mode_closure *closure = c;
2289 struct detailed_non_pixel *data = &timing->data.other_data;
2290 struct drm_connector *connector = closure->connector;
2291 struct edid *edid = closure->edid;
2293 if (data->type == EDID_DETAIL_STD_MODES) {
2294 int i;
2295 for (i = 0; i < 6; i++) {
2296 struct std_timing *std;
2297 struct drm_display_mode *newmode;
2299 std = &data->data.timings[i];
2300 newmode = drm_mode_std(connector, edid, std);
2301 if (newmode) {
2302 drm_mode_probed_add(connector, newmode);
2303 closure->modes++;
2310 * add_standard_modes - get std. modes from EDID and add them
2311 * @connector: connector to add mode(s) to
2312 * @edid: EDID block to scan
2314 * Standard modes can be calculated using the appropriate standard (DMT,
2315 * GTF or CVT. Grab them from @edid and add them to the list.
2317 static int
2318 add_standard_modes(struct drm_connector *connector, struct edid *edid)
2320 int i, modes = 0;
2321 struct detailed_mode_closure closure = {
2322 .connector = connector,
2323 .edid = edid,
2326 for (i = 0; i < EDID_STD_TIMINGS; i++) {
2327 struct drm_display_mode *newmode;
2329 newmode = drm_mode_std(connector, edid,
2330 &edid->standard_timings[i]);
2331 if (newmode) {
2332 drm_mode_probed_add(connector, newmode);
2333 modes++;
2337 if (version_greater(edid, 1, 0))
2338 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2339 &closure);
2341 /* XXX should also look for standard codes in VTB blocks */
2343 return modes + closure.modes;
2346 static int drm_cvt_modes(struct drm_connector *connector,
2347 struct detailed_timing *timing)
2349 int i, j, modes = 0;
2350 struct drm_display_mode *newmode;
2351 struct drm_device *dev = connector->dev;
2352 struct cvt_timing *cvt;
2353 const int rates[] = { 60, 85, 75, 60, 50 };
2354 const u8 empty[3] = { 0, 0, 0 };
2356 for (i = 0; i < 4; i++) {
2357 int uninitialized_var(width), height;
2358 cvt = &(timing->data.other_data.data.cvt[i]);
2360 if (!memcmp(cvt->code, empty, 3))
2361 continue;
2363 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2364 switch (cvt->code[1] & 0x0c) {
2365 case 0x00:
2366 width = height * 4 / 3;
2367 break;
2368 case 0x04:
2369 width = height * 16 / 9;
2370 break;
2371 case 0x08:
2372 width = height * 16 / 10;
2373 break;
2374 case 0x0c:
2375 width = height * 15 / 9;
2376 break;
2379 for (j = 1; j < 5; j++) {
2380 if (cvt->code[2] & (1 << j)) {
2381 newmode = drm_cvt_mode(dev, width, height,
2382 rates[j], j == 0,
2383 false, false);
2384 if (newmode) {
2385 drm_mode_probed_add(connector, newmode);
2386 modes++;
2392 return modes;
2395 static void
2396 do_cvt_mode(struct detailed_timing *timing, void *c)
2398 struct detailed_mode_closure *closure = c;
2399 struct detailed_non_pixel *data = &timing->data.other_data;
2401 if (data->type == EDID_DETAIL_CVT_3BYTE)
2402 closure->modes += drm_cvt_modes(closure->connector, timing);
2405 static int
2406 add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2408 struct detailed_mode_closure closure = {
2409 .connector = connector,
2410 .edid = edid,
2413 if (version_greater(edid, 1, 2))
2414 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2416 /* XXX should also look for CVT codes in VTB blocks */
2418 return closure.modes;
2421 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2423 static void
2424 do_detailed_mode(struct detailed_timing *timing, void *c)
2426 struct detailed_mode_closure *closure = c;
2427 struct drm_display_mode *newmode;
2429 if (timing->pixel_clock) {
2430 newmode = drm_mode_detailed(closure->connector->dev,
2431 closure->edid, timing,
2432 closure->quirks);
2433 if (!newmode)
2434 return;
2436 if (closure->preferred)
2437 newmode->type |= DRM_MODE_TYPE_PREFERRED;
2440 * Detailed modes are limited to 10kHz pixel clock resolution,
2441 * so fix up anything that looks like CEA/HDMI mode, but the clock
2442 * is just slightly off.
2444 fixup_detailed_cea_mode_clock(newmode);
2446 drm_mode_probed_add(closure->connector, newmode);
2447 closure->modes++;
2448 closure->preferred = 0;
2453 * add_detailed_modes - Add modes from detailed timings
2454 * @connector: attached connector
2455 * @edid: EDID block to scan
2456 * @quirks: quirks to apply
2458 static int
2459 add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2460 u32 quirks)
2462 struct detailed_mode_closure closure = {
2463 .connector = connector,
2464 .edid = edid,
2465 .preferred = 1,
2466 .quirks = quirks,
2469 if (closure.preferred && !version_greater(edid, 1, 3))
2470 closure.preferred =
2471 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2473 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2475 return closure.modes;
2478 #define AUDIO_BLOCK 0x01
2479 #define VIDEO_BLOCK 0x02
2480 #define VENDOR_BLOCK 0x03
2481 #define SPEAKER_BLOCK 0x04
2482 #define VIDEO_CAPABILITY_BLOCK 0x07
2483 #define EDID_BASIC_AUDIO (1 << 6)
2484 #define EDID_CEA_YCRCB444 (1 << 5)
2485 #define EDID_CEA_YCRCB422 (1 << 4)
2486 #define EDID_CEA_VCDB_QS (1 << 6)
2489 * Search EDID for CEA extension block.
2491 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2493 u8 *edid_ext = NULL;
2494 int i;
2496 /* No EDID or EDID extensions */
2497 if (edid == NULL || edid->extensions == 0)
2498 return NULL;
2500 /* Find CEA extension */
2501 for (i = 0; i < edid->extensions; i++) {
2502 edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2503 if (edid_ext[0] == ext_id)
2504 break;
2507 if (i == edid->extensions)
2508 return NULL;
2510 return edid_ext;
2513 static u8 *drm_find_cea_extension(struct edid *edid)
2515 return drm_find_edid_extension(edid, CEA_EXT);
2518 static u8 *drm_find_displayid_extension(struct edid *edid)
2520 return drm_find_edid_extension(edid, DISPLAYID_EXT);
2524 * Calculate the alternate clock for the CEA mode
2525 * (60Hz vs. 59.94Hz etc.)
2527 static unsigned int
2528 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2530 unsigned int clock = cea_mode->clock;
2532 if (cea_mode->vrefresh % 6 != 0)
2533 return clock;
2536 * edid_cea_modes contains the 59.94Hz
2537 * variant for 240 and 480 line modes,
2538 * and the 60Hz variant otherwise.
2540 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2541 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2542 else
2543 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2545 return clock;
2549 * drm_match_cea_mode - look for a CEA mode matching given mode
2550 * @to_match: display mode
2552 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2553 * mode.
2555 u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2557 u8 mode;
2559 if (!to_match->clock)
2560 return 0;
2562 for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2563 const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2564 unsigned int clock1, clock2;
2566 /* Check both 60Hz and 59.94Hz */
2567 clock1 = cea_mode->clock;
2568 clock2 = cea_mode_alternate_clock(cea_mode);
2570 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2571 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2572 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2573 return mode + 1;
2575 return 0;
2577 EXPORT_SYMBOL(drm_match_cea_mode);
2580 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2581 * the input VIC from the CEA mode list
2582 * @video_code: ID given to each of the CEA modes
2584 * Returns picture aspect ratio
2586 enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2588 /* return picture aspect ratio for video_code - 1 to access the
2589 * right array element
2591 return edid_cea_modes[video_code-1].picture_aspect_ratio;
2593 EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2596 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2597 * specific block).
2599 * It's almost like cea_mode_alternate_clock(), we just need to add an
2600 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2601 * one.
2603 static unsigned int
2604 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2606 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2607 return hdmi_mode->clock;
2609 return cea_mode_alternate_clock(hdmi_mode);
2613 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2614 * @to_match: display mode
2616 * An HDMI mode is one defined in the HDMI vendor specific block.
2618 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2620 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2622 u8 mode;
2624 if (!to_match->clock)
2625 return 0;
2627 for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2628 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2629 unsigned int clock1, clock2;
2631 /* Make sure to also match alternate clocks */
2632 clock1 = hdmi_mode->clock;
2633 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2635 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2636 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2637 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2638 return mode + 1;
2640 return 0;
2643 static int
2644 add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2646 struct drm_device *dev = connector->dev;
2647 struct drm_display_mode *mode, *tmp;
2648 LIST_HEAD(list);
2649 int modes = 0;
2651 /* Don't add CEA modes if the CEA extension block is missing */
2652 if (!drm_find_cea_extension(edid))
2653 return 0;
2656 * Go through all probed modes and create a new mode
2657 * with the alternate clock for certain CEA modes.
2659 list_for_each_entry(mode, &connector->probed_modes, head) {
2660 const struct drm_display_mode *cea_mode = NULL;
2661 struct drm_display_mode *newmode;
2662 u8 mode_idx = drm_match_cea_mode(mode) - 1;
2663 unsigned int clock1, clock2;
2665 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2666 cea_mode = &edid_cea_modes[mode_idx];
2667 clock2 = cea_mode_alternate_clock(cea_mode);
2668 } else {
2669 mode_idx = drm_match_hdmi_mode(mode) - 1;
2670 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2671 cea_mode = &edid_4k_modes[mode_idx];
2672 clock2 = hdmi_mode_alternate_clock(cea_mode);
2676 if (!cea_mode)
2677 continue;
2679 clock1 = cea_mode->clock;
2681 if (clock1 == clock2)
2682 continue;
2684 if (mode->clock != clock1 && mode->clock != clock2)
2685 continue;
2687 newmode = drm_mode_duplicate(dev, cea_mode);
2688 if (!newmode)
2689 continue;
2691 /* Carry over the stereo flags */
2692 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2695 * The current mode could be either variant. Make
2696 * sure to pick the "other" clock for the new mode.
2698 if (mode->clock != clock1)
2699 newmode->clock = clock1;
2700 else
2701 newmode->clock = clock2;
2703 list_add_tail(&newmode->head, &list);
2706 list_for_each_entry_safe(mode, tmp, &list, head) {
2707 list_del(&mode->head);
2708 drm_mode_probed_add(connector, mode);
2709 modes++;
2712 return modes;
2715 static struct drm_display_mode *
2716 drm_display_mode_from_vic_index(struct drm_connector *connector,
2717 const u8 *video_db, u8 video_len,
2718 u8 video_index)
2720 struct drm_device *dev = connector->dev;
2721 struct drm_display_mode *newmode;
2722 u8 cea_mode;
2724 if (video_db == NULL || video_index >= video_len)
2725 return NULL;
2727 /* CEA modes are numbered 1..127 */
2728 cea_mode = (video_db[video_index] & 127) - 1;
2729 if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2730 return NULL;
2732 newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2733 if (!newmode)
2734 return NULL;
2736 newmode->vrefresh = 0;
2738 return newmode;
2741 static int
2742 do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2744 int i, modes = 0;
2746 for (i = 0; i < len; i++) {
2747 struct drm_display_mode *mode;
2748 mode = drm_display_mode_from_vic_index(connector, db, len, i);
2749 if (mode) {
2750 drm_mode_probed_add(connector, mode);
2751 modes++;
2755 return modes;
2758 struct stereo_mandatory_mode {
2759 int width, height, vrefresh;
2760 unsigned int flags;
2763 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2764 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2765 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2766 { 1920, 1080, 50,
2767 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2768 { 1920, 1080, 60,
2769 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2770 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2771 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2772 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2773 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2776 static bool
2777 stereo_match_mandatory(const struct drm_display_mode *mode,
2778 const struct stereo_mandatory_mode *stereo_mode)
2780 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2782 return mode->hdisplay == stereo_mode->width &&
2783 mode->vdisplay == stereo_mode->height &&
2784 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2785 drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2788 static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2790 struct drm_device *dev = connector->dev;
2791 const struct drm_display_mode *mode;
2792 struct list_head stereo_modes;
2793 int modes = 0, i;
2795 INIT_LIST_HEAD(&stereo_modes);
2797 list_for_each_entry(mode, &connector->probed_modes, head) {
2798 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2799 const struct stereo_mandatory_mode *mandatory;
2800 struct drm_display_mode *new_mode;
2802 if (!stereo_match_mandatory(mode,
2803 &stereo_mandatory_modes[i]))
2804 continue;
2806 mandatory = &stereo_mandatory_modes[i];
2807 new_mode = drm_mode_duplicate(dev, mode);
2808 if (!new_mode)
2809 continue;
2811 new_mode->flags |= mandatory->flags;
2812 list_add_tail(&new_mode->head, &stereo_modes);
2813 modes++;
2817 list_splice_tail(&stereo_modes, &connector->probed_modes);
2819 return modes;
2822 static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2824 struct drm_device *dev = connector->dev;
2825 struct drm_display_mode *newmode;
2827 vic--; /* VICs start at 1 */
2828 if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2829 DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2830 return 0;
2833 newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2834 if (!newmode)
2835 return 0;
2837 drm_mode_probed_add(connector, newmode);
2839 return 1;
2842 static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2843 const u8 *video_db, u8 video_len, u8 video_index)
2845 struct drm_display_mode *newmode;
2846 int modes = 0;
2848 if (structure & (1 << 0)) {
2849 newmode = drm_display_mode_from_vic_index(connector, video_db,
2850 video_len,
2851 video_index);
2852 if (newmode) {
2853 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2854 drm_mode_probed_add(connector, newmode);
2855 modes++;
2858 if (structure & (1 << 6)) {
2859 newmode = drm_display_mode_from_vic_index(connector, video_db,
2860 video_len,
2861 video_index);
2862 if (newmode) {
2863 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2864 drm_mode_probed_add(connector, newmode);
2865 modes++;
2868 if (structure & (1 << 8)) {
2869 newmode = drm_display_mode_from_vic_index(connector, video_db,
2870 video_len,
2871 video_index);
2872 if (newmode) {
2873 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2874 drm_mode_probed_add(connector, newmode);
2875 modes++;
2879 return modes;
2883 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2884 * @connector: connector corresponding to the HDMI sink
2885 * @db: start of the CEA vendor specific block
2886 * @len: length of the CEA block payload, ie. one can access up to db[len]
2888 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2889 * also adds the stereo 3d modes when applicable.
2891 static int
2892 do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2893 const u8 *video_db, u8 video_len)
2895 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2896 u8 vic_len, hdmi_3d_len = 0;
2897 u16 mask;
2898 u16 structure_all;
2900 if (len < 8)
2901 goto out;
2903 /* no HDMI_Video_Present */
2904 if (!(db[8] & (1 << 5)))
2905 goto out;
2907 /* Latency_Fields_Present */
2908 if (db[8] & (1 << 7))
2909 offset += 2;
2911 /* I_Latency_Fields_Present */
2912 if (db[8] & (1 << 6))
2913 offset += 2;
2915 /* the declared length is not long enough for the 2 first bytes
2916 * of additional video format capabilities */
2917 if (len < (8 + offset + 2))
2918 goto out;
2920 /* 3D_Present */
2921 offset++;
2922 if (db[8 + offset] & (1 << 7)) {
2923 modes += add_hdmi_mandatory_stereo_modes(connector);
2925 /* 3D_Multi_present */
2926 multi_present = (db[8 + offset] & 0x60) >> 5;
2929 offset++;
2930 vic_len = db[8 + offset] >> 5;
2931 hdmi_3d_len = db[8 + offset] & 0x1f;
2933 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2934 u8 vic;
2936 vic = db[9 + offset + i];
2937 modes += add_hdmi_mode(connector, vic);
2939 offset += 1 + vic_len;
2941 if (multi_present == 1)
2942 multi_len = 2;
2943 else if (multi_present == 2)
2944 multi_len = 4;
2945 else
2946 multi_len = 0;
2948 if (len < (8 + offset + hdmi_3d_len - 1))
2949 goto out;
2951 if (hdmi_3d_len < multi_len)
2952 goto out;
2954 if (multi_present == 1 || multi_present == 2) {
2955 /* 3D_Structure_ALL */
2956 structure_all = (db[8 + offset] << 8) | db[9 + offset];
2958 /* check if 3D_MASK is present */
2959 if (multi_present == 2)
2960 mask = (db[10 + offset] << 8) | db[11 + offset];
2961 else
2962 mask = 0xffff;
2964 for (i = 0; i < 16; i++) {
2965 if (mask & (1 << i))
2966 modes += add_3d_struct_modes(connector,
2967 structure_all,
2968 video_db,
2969 video_len, i);
2973 offset += multi_len;
2975 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2976 int vic_index;
2977 struct drm_display_mode *newmode = NULL;
2978 unsigned int newflag = 0;
2979 bool detail_present;
2981 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2983 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2984 break;
2986 /* 2D_VIC_order_X */
2987 vic_index = db[8 + offset + i] >> 4;
2989 /* 3D_Structure_X */
2990 switch (db[8 + offset + i] & 0x0f) {
2991 case 0:
2992 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2993 break;
2994 case 6:
2995 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2996 break;
2997 case 8:
2998 /* 3D_Detail_X */
2999 if ((db[9 + offset + i] >> 4) == 1)
3000 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3001 break;
3004 if (newflag != 0) {
3005 newmode = drm_display_mode_from_vic_index(connector,
3006 video_db,
3007 video_len,
3008 vic_index);
3010 if (newmode) {
3011 newmode->flags |= newflag;
3012 drm_mode_probed_add(connector, newmode);
3013 modes++;
3017 if (detail_present)
3018 i++;
3021 out:
3022 return modes;
3025 static int
3026 cea_db_payload_len(const u8 *db)
3028 return db[0] & 0x1f;
3031 static int
3032 cea_db_tag(const u8 *db)
3034 return db[0] >> 5;
3037 static int
3038 cea_revision(const u8 *cea)
3040 return cea[1];
3043 static int
3044 cea_db_offsets(const u8 *cea, int *start, int *end)
3046 /* Data block offset in CEA extension block */
3047 *start = 4;
3048 *end = cea[2];
3049 if (*end == 0)
3050 *end = 127;
3051 if (*end < 4 || *end > 127)
3052 return -ERANGE;
3053 return 0;
3056 static bool cea_db_is_hdmi_vsdb(const u8 *db)
3058 int hdmi_id;
3060 if (cea_db_tag(db) != VENDOR_BLOCK)
3061 return false;
3063 if (cea_db_payload_len(db) < 5)
3064 return false;
3066 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3068 return hdmi_id == HDMI_IEEE_OUI;
3071 #define for_each_cea_db(cea, i, start, end) \
3072 for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3074 static int
3075 add_cea_modes(struct drm_connector *connector, struct edid *edid)
3077 const u8 *cea = drm_find_cea_extension(edid);
3078 const u8 *db, *hdmi = NULL, *video = NULL;
3079 u8 dbl, hdmi_len, video_len = 0;
3080 int modes = 0;
3082 if (cea && cea_revision(cea) >= 3) {
3083 int i, start, end;
3085 if (cea_db_offsets(cea, &start, &end))
3086 return 0;
3088 for_each_cea_db(cea, i, start, end) {
3089 db = &cea[i];
3090 dbl = cea_db_payload_len(db);
3092 if (cea_db_tag(db) == VIDEO_BLOCK) {
3093 video = db + 1;
3094 video_len = dbl;
3095 modes += do_cea_modes(connector, video, dbl);
3097 else if (cea_db_is_hdmi_vsdb(db)) {
3098 hdmi = db;
3099 hdmi_len = dbl;
3105 * We parse the HDMI VSDB after having added the cea modes as we will
3106 * be patching their flags when the sink supports stereo 3D.
3108 if (hdmi)
3109 modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3110 video_len);
3112 return modes;
3115 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3117 const struct drm_display_mode *cea_mode;
3118 int clock1, clock2, clock;
3119 u8 mode_idx;
3120 const char *type;
3122 mode_idx = drm_match_cea_mode(mode) - 1;
3123 if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
3124 type = "CEA";
3125 cea_mode = &edid_cea_modes[mode_idx];
3126 clock1 = cea_mode->clock;
3127 clock2 = cea_mode_alternate_clock(cea_mode);
3128 } else {
3129 mode_idx = drm_match_hdmi_mode(mode) - 1;
3130 if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
3131 type = "HDMI";
3132 cea_mode = &edid_4k_modes[mode_idx];
3133 clock1 = cea_mode->clock;
3134 clock2 = hdmi_mode_alternate_clock(cea_mode);
3135 } else {
3136 return;
3140 /* pick whichever is closest */
3141 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3142 clock = clock1;
3143 else
3144 clock = clock2;
3146 if (mode->clock == clock)
3147 return;
3149 DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3150 type, mode_idx + 1, mode->clock, clock);
3151 mode->clock = clock;
3154 static void
3155 parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
3157 u8 len = cea_db_payload_len(db);
3159 if (len >= 6) {
3160 connector->eld[5] |= (db[6] >> 7) << 1; /* Supports_AI */
3161 connector->dvi_dual = db[6] & 1;
3163 if (len >= 7)
3164 connector->max_tmds_clock = db[7] * 5;
3165 if (len >= 8) {
3166 connector->latency_present[0] = db[8] >> 7;
3167 connector->latency_present[1] = (db[8] >> 6) & 1;
3169 if (len >= 9)
3170 connector->video_latency[0] = db[9];
3171 if (len >= 10)
3172 connector->audio_latency[0] = db[10];
3173 if (len >= 11)
3174 connector->video_latency[1] = db[11];
3175 if (len >= 12)
3176 connector->audio_latency[1] = db[12];
3178 DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3179 "max TMDS clock %d, "
3180 "latency present %d %d, "
3181 "video latency %d %d, "
3182 "audio latency %d %d\n",
3183 connector->dvi_dual,
3184 connector->max_tmds_clock,
3185 (int) connector->latency_present[0],
3186 (int) connector->latency_present[1],
3187 connector->video_latency[0],
3188 connector->video_latency[1],
3189 connector->audio_latency[0],
3190 connector->audio_latency[1]);
3193 static void
3194 monitor_name(struct detailed_timing *t, void *data)
3196 if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3197 *(u8 **)data = t->data.other_data.data.str.str;
3201 * drm_edid_to_eld - build ELD from EDID
3202 * @connector: connector corresponding to the HDMI/DP sink
3203 * @edid: EDID to parse
3205 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3206 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3207 * fill in.
3209 void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3211 uint8_t *eld = connector->eld;
3212 u8 *cea;
3213 u8 *name;
3214 u8 *db;
3215 int sad_count = 0;
3216 int mnl;
3217 int dbl;
3219 memset(eld, 0, sizeof(connector->eld));
3221 cea = drm_find_cea_extension(edid);
3222 if (!cea) {
3223 DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3224 return;
3227 name = NULL;
3228 drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3229 for (mnl = 0; name && mnl < 13; mnl++) {
3230 if (name[mnl] == 0x0a)
3231 break;
3232 eld[20 + mnl] = name[mnl];
3234 eld[4] = (cea[1] << 5) | mnl;
3235 DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3237 eld[0] = 2 << 3; /* ELD version: 2 */
3239 eld[16] = edid->mfg_id[0];
3240 eld[17] = edid->mfg_id[1];
3241 eld[18] = edid->prod_code[0];
3242 eld[19] = edid->prod_code[1];
3244 if (cea_revision(cea) >= 3) {
3245 int i, start, end;
3247 if (cea_db_offsets(cea, &start, &end)) {
3248 start = 0;
3249 end = 0;
3252 for_each_cea_db(cea, i, start, end) {
3253 db = &cea[i];
3254 dbl = cea_db_payload_len(db);
3256 switch (cea_db_tag(db)) {
3257 case AUDIO_BLOCK:
3258 /* Audio Data Block, contains SADs */
3259 sad_count = dbl / 3;
3260 if (dbl >= 1)
3261 memcpy(eld + 20 + mnl, &db[1], dbl);
3262 break;
3263 case SPEAKER_BLOCK:
3264 /* Speaker Allocation Data Block */
3265 if (dbl >= 1)
3266 eld[7] = db[1];
3267 break;
3268 case VENDOR_BLOCK:
3269 /* HDMI Vendor-Specific Data Block */
3270 if (cea_db_is_hdmi_vsdb(db))
3271 parse_hdmi_vsdb(connector, db);
3272 break;
3273 default:
3274 break;
3278 eld[5] |= sad_count << 4;
3280 eld[DRM_ELD_BASELINE_ELD_LEN] =
3281 DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3283 DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3284 drm_eld_size(eld), sad_count);
3286 EXPORT_SYMBOL(drm_edid_to_eld);
3289 * drm_edid_to_sad - extracts SADs from EDID
3290 * @edid: EDID to parse
3291 * @sads: pointer that will be set to the extracted SADs
3293 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3295 * Note: The returned pointer needs to be freed using kfree().
3297 * Return: The number of found SADs or negative number on error.
3299 int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3301 int count = 0;
3302 int i, start, end, dbl;
3303 u8 *cea;
3305 cea = drm_find_cea_extension(edid);
3306 if (!cea) {
3307 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3308 return -ENOENT;
3311 if (cea_revision(cea) < 3) {
3312 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3313 return -ENOTSUPP;
3316 if (cea_db_offsets(cea, &start, &end)) {
3317 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3318 return -EPROTO;
3321 for_each_cea_db(cea, i, start, end) {
3322 u8 *db = &cea[i];
3324 if (cea_db_tag(db) == AUDIO_BLOCK) {
3325 int j;
3326 dbl = cea_db_payload_len(db);
3328 count = dbl / 3; /* SAD is 3B */
3329 *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3330 if (!*sads)
3331 return -ENOMEM;
3332 for (j = 0; j < count; j++) {
3333 u8 *sad = &db[1 + j * 3];
3335 (*sads)[j].format = (sad[0] & 0x78) >> 3;
3336 (*sads)[j].channels = sad[0] & 0x7;
3337 (*sads)[j].freq = sad[1] & 0x7F;
3338 (*sads)[j].byte2 = sad[2];
3340 break;
3344 return count;
3346 EXPORT_SYMBOL(drm_edid_to_sad);
3349 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3350 * @edid: EDID to parse
3351 * @sadb: pointer to the speaker block
3353 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3355 * Note: The returned pointer needs to be freed using kfree().
3357 * Return: The number of found Speaker Allocation Blocks or negative number on
3358 * error.
3360 int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3362 int count = 0;
3363 int i, start, end, dbl;
3364 const u8 *cea;
3366 cea = drm_find_cea_extension(edid);
3367 if (!cea) {
3368 DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3369 return -ENOENT;
3372 if (cea_revision(cea) < 3) {
3373 DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3374 return -ENOTSUPP;
3377 if (cea_db_offsets(cea, &start, &end)) {
3378 DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3379 return -EPROTO;
3382 for_each_cea_db(cea, i, start, end) {
3383 const u8 *db = &cea[i];
3385 if (cea_db_tag(db) == SPEAKER_BLOCK) {
3386 dbl = cea_db_payload_len(db);
3388 /* Speaker Allocation Data Block */
3389 if (dbl == 3) {
3390 *sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3391 if (!*sadb)
3392 return -ENOMEM;
3393 count = dbl;
3394 break;
3399 return count;
3401 EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3404 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3405 * @connector: connector associated with the HDMI/DP sink
3406 * @mode: the display mode
3408 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3409 * the sink doesn't support audio or video.
3411 int drm_av_sync_delay(struct drm_connector *connector,
3412 const struct drm_display_mode *mode)
3414 int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3415 int a, v;
3417 if (!connector->latency_present[0])
3418 return 0;
3419 if (!connector->latency_present[1])
3420 i = 0;
3422 a = connector->audio_latency[i];
3423 v = connector->video_latency[i];
3426 * HDMI/DP sink doesn't support audio or video?
3428 if (a == 255 || v == 255)
3429 return 0;
3432 * Convert raw EDID values to millisecond.
3433 * Treat unknown latency as 0ms.
3435 if (a)
3436 a = min(2 * (a - 1), 500);
3437 if (v)
3438 v = min(2 * (v - 1), 500);
3440 return max(v - a, 0);
3442 EXPORT_SYMBOL(drm_av_sync_delay);
3445 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3446 * @encoder: the encoder just changed display mode
3448 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3449 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3451 * Return: The connector associated with the first HDMI/DP sink that has ELD
3452 * attached to it.
3454 struct drm_connector *drm_select_eld(struct drm_encoder *encoder)
3456 struct drm_connector *connector;
3457 struct drm_device *dev = encoder->dev;
3459 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
3460 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3462 drm_for_each_connector(connector, dev)
3463 if (connector->encoder == encoder && connector->eld[0])
3464 return connector;
3466 return NULL;
3468 EXPORT_SYMBOL(drm_select_eld);
3471 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3472 * @edid: monitor EDID information
3474 * Parse the CEA extension according to CEA-861-B.
3476 * Return: True if the monitor is HDMI, false if not or unknown.
3478 bool drm_detect_hdmi_monitor(struct edid *edid)
3480 u8 *edid_ext;
3481 int i;
3482 int start_offset, end_offset;
3484 edid_ext = drm_find_cea_extension(edid);
3485 if (!edid_ext)
3486 return false;
3488 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3489 return false;
3492 * Because HDMI identifier is in Vendor Specific Block,
3493 * search it from all data blocks of CEA extension.
3495 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3496 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3497 return true;
3500 return false;
3502 EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3505 * drm_detect_monitor_audio - check monitor audio capability
3506 * @edid: EDID block to scan
3508 * Monitor should have CEA extension block.
3509 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3510 * audio' only. If there is any audio extension block and supported
3511 * audio format, assume at least 'basic audio' support, even if 'basic
3512 * audio' is not defined in EDID.
3514 * Return: True if the monitor supports audio, false otherwise.
3516 bool drm_detect_monitor_audio(struct edid *edid)
3518 u8 *edid_ext;
3519 int i, j;
3520 bool has_audio = false;
3521 int start_offset, end_offset;
3523 edid_ext = drm_find_cea_extension(edid);
3524 if (!edid_ext)
3525 goto end;
3527 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3529 if (has_audio) {
3530 DRM_DEBUG_KMS("Monitor has basic audio support\n");
3531 goto end;
3534 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3535 goto end;
3537 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3538 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3539 has_audio = true;
3540 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3541 DRM_DEBUG_KMS("CEA audio format %d\n",
3542 (edid_ext[i + j] >> 3) & 0xf);
3543 goto end;
3546 end:
3547 return has_audio;
3549 EXPORT_SYMBOL(drm_detect_monitor_audio);
3552 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3553 * @edid: EDID block to scan
3555 * Check whether the monitor reports the RGB quantization range selection
3556 * as supported. The AVI infoframe can then be used to inform the monitor
3557 * which quantization range (full or limited) is used.
3559 * Return: True if the RGB quantization range is selectable, false otherwise.
3561 bool drm_rgb_quant_range_selectable(struct edid *edid)
3563 u8 *edid_ext;
3564 int i, start, end;
3566 edid_ext = drm_find_cea_extension(edid);
3567 if (!edid_ext)
3568 return false;
3570 if (cea_db_offsets(edid_ext, &start, &end))
3571 return false;
3573 for_each_cea_db(edid_ext, i, start, end) {
3574 if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3575 cea_db_payload_len(&edid_ext[i]) == 2) {
3576 DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3577 return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3581 return false;
3583 EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3586 * drm_assign_hdmi_deep_color_info - detect whether monitor supports
3587 * hdmi deep color modes and update drm_display_info if so.
3588 * @edid: monitor EDID information
3589 * @info: Updated with maximum supported deep color bpc and color format
3590 * if deep color supported.
3591 * @connector: DRM connector, used only for debug output
3593 * Parse the CEA extension according to CEA-861-B.
3594 * Return true if HDMI deep color supported, false if not or unknown.
3596 static bool drm_assign_hdmi_deep_color_info(struct edid *edid,
3597 struct drm_display_info *info,
3598 struct drm_connector *connector)
3600 u8 *edid_ext, *hdmi;
3601 int i;
3602 int start_offset, end_offset;
3603 unsigned int dc_bpc = 0;
3605 edid_ext = drm_find_cea_extension(edid);
3606 if (!edid_ext)
3607 return false;
3609 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3610 return false;
3613 * Because HDMI identifier is in Vendor Specific Block,
3614 * search it from all data blocks of CEA extension.
3616 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3617 if (cea_db_is_hdmi_vsdb(&edid_ext[i])) {
3618 /* HDMI supports at least 8 bpc */
3619 info->bpc = 8;
3621 hdmi = &edid_ext[i];
3622 if (cea_db_payload_len(hdmi) < 6)
3623 return false;
3625 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3626 dc_bpc = 10;
3627 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3628 DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3629 connector->name);
3632 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3633 dc_bpc = 12;
3634 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3635 DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3636 connector->name);
3639 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3640 dc_bpc = 16;
3641 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3642 DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3643 connector->name);
3646 if (dc_bpc > 0) {
3647 DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3648 connector->name, dc_bpc);
3649 info->bpc = dc_bpc;
3652 * Deep color support mandates RGB444 support for all video
3653 * modes and forbids YCRCB422 support for all video modes per
3654 * HDMI 1.3 spec.
3656 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3658 /* YCRCB444 is optional according to spec. */
3659 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3660 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3661 DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3662 connector->name);
3666 * Spec says that if any deep color mode is supported at all,
3667 * then deep color 36 bit must be supported.
3669 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3670 DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3671 connector->name);
3674 return true;
3676 else {
3677 DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3678 connector->name);
3683 return false;
3687 * drm_add_display_info - pull display info out if present
3688 * @edid: EDID data
3689 * @info: display info (attached to connector)
3690 * @connector: connector whose edid is used to build display info
3692 * Grab any available display info and stuff it into the drm_display_info
3693 * structure that's part of the connector. Useful for tracking bpp and
3694 * color spaces.
3696 static void drm_add_display_info(struct edid *edid,
3697 struct drm_display_info *info,
3698 struct drm_connector *connector)
3700 u8 *edid_ext;
3702 info->width_mm = edid->width_cm * 10;
3703 info->height_mm = edid->height_cm * 10;
3705 /* driver figures it out in this case */
3706 info->bpc = 0;
3707 info->color_formats = 0;
3709 if (edid->revision < 3)
3710 return;
3712 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3713 return;
3715 /* Get data from CEA blocks if present */
3716 edid_ext = drm_find_cea_extension(edid);
3717 if (edid_ext) {
3718 info->cea_rev = edid_ext[1];
3720 /* The existence of a CEA block should imply RGB support */
3721 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3722 if (edid_ext[3] & EDID_CEA_YCRCB444)
3723 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3724 if (edid_ext[3] & EDID_CEA_YCRCB422)
3725 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3728 /* HDMI deep color modes supported? Assign to info, if so */
3729 drm_assign_hdmi_deep_color_info(edid, info, connector);
3731 /* Only defined for 1.4 with digital displays */
3732 if (edid->revision < 4)
3733 return;
3735 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3736 case DRM_EDID_DIGITAL_DEPTH_6:
3737 info->bpc = 6;
3738 break;
3739 case DRM_EDID_DIGITAL_DEPTH_8:
3740 info->bpc = 8;
3741 break;
3742 case DRM_EDID_DIGITAL_DEPTH_10:
3743 info->bpc = 10;
3744 break;
3745 case DRM_EDID_DIGITAL_DEPTH_12:
3746 info->bpc = 12;
3747 break;
3748 case DRM_EDID_DIGITAL_DEPTH_14:
3749 info->bpc = 14;
3750 break;
3751 case DRM_EDID_DIGITAL_DEPTH_16:
3752 info->bpc = 16;
3753 break;
3754 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3755 default:
3756 info->bpc = 0;
3757 break;
3760 DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3761 connector->name, info->bpc);
3763 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3764 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3765 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3766 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3767 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3771 * drm_add_edid_modes - add modes from EDID data, if available
3772 * @connector: connector we're probing
3773 * @edid: EDID data
3775 * Add the specified modes to the connector's mode list.
3777 * Return: The number of modes added or 0 if we couldn't find any.
3779 int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3781 int num_modes = 0;
3782 u32 quirks;
3784 if (edid == NULL) {
3785 return 0;
3787 if (!drm_edid_is_valid(edid)) {
3788 dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3789 connector->name);
3790 return 0;
3793 quirks = edid_get_quirks(edid);
3796 * EDID spec says modes should be preferred in this order:
3797 * - preferred detailed mode
3798 * - other detailed modes from base block
3799 * - detailed modes from extension blocks
3800 * - CVT 3-byte code modes
3801 * - standard timing codes
3802 * - established timing codes
3803 * - modes inferred from GTF or CVT range information
3805 * We get this pretty much right.
3807 * XXX order for additional mode types in extension blocks?
3809 num_modes += add_detailed_modes(connector, edid, quirks);
3810 num_modes += add_cvt_modes(connector, edid);
3811 num_modes += add_standard_modes(connector, edid);
3812 num_modes += add_established_modes(connector, edid);
3813 num_modes += add_cea_modes(connector, edid);
3814 num_modes += add_alternate_cea_modes(connector, edid);
3815 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3816 num_modes += add_inferred_modes(connector, edid);
3818 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3819 edid_fixup_preferred(connector, quirks);
3821 drm_add_display_info(edid, &connector->display_info, connector);
3823 if (quirks & EDID_QUIRK_FORCE_8BPC)
3824 connector->display_info.bpc = 8;
3826 if (quirks & EDID_QUIRK_FORCE_12BPC)
3827 connector->display_info.bpc = 12;
3829 return num_modes;
3831 EXPORT_SYMBOL(drm_add_edid_modes);
3834 * drm_add_modes_noedid - add modes for the connectors without EDID
3835 * @connector: connector we're probing
3836 * @hdisplay: the horizontal display limit
3837 * @vdisplay: the vertical display limit
3839 * Add the specified modes to the connector's mode list. Only when the
3840 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3842 * Return: The number of modes added or 0 if we couldn't find any.
3844 int drm_add_modes_noedid(struct drm_connector *connector,
3845 int hdisplay, int vdisplay)
3847 int i, count, num_modes = 0;
3848 struct drm_display_mode *mode;
3849 struct drm_device *dev = connector->dev;
3851 count = ARRAY_SIZE(drm_dmt_modes);
3852 if (hdisplay < 0)
3853 hdisplay = 0;
3854 if (vdisplay < 0)
3855 vdisplay = 0;
3857 for (i = 0; i < count; i++) {
3858 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3859 if (hdisplay && vdisplay) {
3861 * Only when two are valid, they will be used to check
3862 * whether the mode should be added to the mode list of
3863 * the connector.
3865 if (ptr->hdisplay > hdisplay ||
3866 ptr->vdisplay > vdisplay)
3867 continue;
3869 if (drm_mode_vrefresh(ptr) > 61)
3870 continue;
3871 mode = drm_mode_duplicate(dev, ptr);
3872 if (mode) {
3873 drm_mode_probed_add(connector, mode);
3874 num_modes++;
3877 return num_modes;
3879 EXPORT_SYMBOL(drm_add_modes_noedid);
3882 * drm_set_preferred_mode - Sets the preferred mode of a connector
3883 * @connector: connector whose mode list should be processed
3884 * @hpref: horizontal resolution of preferred mode
3885 * @vpref: vertical resolution of preferred mode
3887 * Marks a mode as preferred if it matches the resolution specified by @hpref
3888 * and @vpref.
3890 void drm_set_preferred_mode(struct drm_connector *connector,
3891 int hpref, int vpref)
3893 struct drm_display_mode *mode;
3895 list_for_each_entry(mode, &connector->probed_modes, head) {
3896 if (mode->hdisplay == hpref &&
3897 mode->vdisplay == vpref)
3898 mode->type |= DRM_MODE_TYPE_PREFERRED;
3901 EXPORT_SYMBOL(drm_set_preferred_mode);
3904 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3905 * data from a DRM display mode
3906 * @frame: HDMI AVI infoframe
3907 * @mode: DRM display mode
3909 * Return: 0 on success or a negative error code on failure.
3912 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3913 const struct drm_display_mode *mode)
3915 int err;
3917 if (!frame || !mode)
3918 return -EINVAL;
3920 err = hdmi_avi_infoframe_init(frame);
3921 if (err < 0)
3922 return err;
3924 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3925 frame->pixel_repeat = 1;
3927 frame->video_code = drm_match_cea_mode(mode);
3929 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3932 * Populate picture aspect ratio from either
3933 * user input (if specified) or from the CEA mode list.
3935 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
3936 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
3937 frame->picture_aspect = mode->picture_aspect_ratio;
3938 else if (frame->video_code > 0)
3939 frame->picture_aspect = drm_get_cea_aspect_ratio(
3940 frame->video_code);
3942 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3943 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3945 return 0;
3947 EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3949 static enum hdmi_3d_structure
3950 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3952 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3954 switch (layout) {
3955 case DRM_MODE_FLAG_3D_FRAME_PACKING:
3956 return HDMI_3D_STRUCTURE_FRAME_PACKING;
3957 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3958 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3959 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3960 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3961 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3962 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3963 case DRM_MODE_FLAG_3D_L_DEPTH:
3964 return HDMI_3D_STRUCTURE_L_DEPTH;
3965 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3966 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3967 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3968 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3969 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3970 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3971 default:
3972 return HDMI_3D_STRUCTURE_INVALID;
3977 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3978 * data from a DRM display mode
3979 * @frame: HDMI vendor infoframe
3980 * @mode: DRM display mode
3982 * Note that there's is a need to send HDMI vendor infoframes only when using a
3983 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3984 * function will return -EINVAL, error that can be safely ignored.
3986 * Return: 0 on success or a negative error code on failure.
3989 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3990 const struct drm_display_mode *mode)
3992 int err;
3993 u32 s3d_flags;
3994 u8 vic;
3996 if (!frame || !mode)
3997 return -EINVAL;
3999 vic = drm_match_hdmi_mode(mode);
4000 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4002 if (!vic && !s3d_flags)
4003 return -EINVAL;
4005 if (vic && s3d_flags)
4006 return -EINVAL;
4008 err = hdmi_vendor_infoframe_init(frame);
4009 if (err < 0)
4010 return err;
4012 if (vic)
4013 frame->vic = vic;
4014 else
4015 frame->s3d_struct = s3d_structure_from_display_mode(mode);
4017 return 0;
4019 EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4021 static int drm_parse_display_id(struct drm_connector *connector,
4022 u8 *displayid, int length,
4023 bool is_edid_extension)
4025 /* if this is an EDID extension the first byte will be 0x70 */
4026 int idx = 0;
4027 struct displayid_hdr *base;
4028 struct displayid_block *block;
4029 u8 csum = 0;
4030 int i;
4032 if (is_edid_extension)
4033 idx = 1;
4035 base = (struct displayid_hdr *)&displayid[idx];
4037 DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4038 base->rev, base->bytes, base->prod_id, base->ext_count);
4040 if (base->bytes + 5 > length - idx)
4041 return -EINVAL;
4043 for (i = idx; i <= base->bytes + 5; i++) {
4044 csum += displayid[i];
4046 if (csum) {
4047 DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
4048 return -EINVAL;
4051 block = (struct displayid_block *)&displayid[idx + 4];
4052 DRM_DEBUG_KMS("block id %d, rev %d, len %d\n",
4053 block->tag, block->rev, block->num_bytes);
4055 switch (block->tag) {
4056 case DATA_BLOCK_TILED_DISPLAY: {
4057 struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4059 u16 w, h;
4060 u8 tile_v_loc, tile_h_loc;
4061 u8 num_v_tile, num_h_tile;
4062 struct drm_tile_group *tg;
4064 w = tile->tile_size[0] | tile->tile_size[1] << 8;
4065 h = tile->tile_size[2] | tile->tile_size[3] << 8;
4067 num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4068 num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4069 tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4070 tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4072 connector->has_tile = true;
4073 if (tile->tile_cap & 0x80)
4074 connector->tile_is_single_monitor = true;
4076 connector->num_h_tile = num_h_tile + 1;
4077 connector->num_v_tile = num_v_tile + 1;
4078 connector->tile_h_loc = tile_h_loc;
4079 connector->tile_v_loc = tile_v_loc;
4080 connector->tile_h_size = w + 1;
4081 connector->tile_v_size = h + 1;
4083 DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4084 DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4085 DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4086 num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4087 DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4089 tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4090 if (!tg) {
4091 tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4093 if (!tg)
4094 return -ENOMEM;
4096 if (connector->tile_group != tg) {
4097 /* if we haven't got a pointer,
4098 take the reference, drop ref to old tile group */
4099 if (connector->tile_group) {
4100 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4102 connector->tile_group = tg;
4103 } else
4104 /* if same tile group, then release the ref we just took. */
4105 drm_mode_put_tile_group(connector->dev, tg);
4107 break;
4108 default:
4109 printk("unknown displayid tag %d\n", block->tag);
4110 break;
4112 return 0;
4115 static void drm_get_displayid(struct drm_connector *connector,
4116 struct edid *edid)
4118 void *displayid = NULL;
4119 int ret;
4120 connector->has_tile = false;
4121 displayid = drm_find_displayid_extension(edid);
4122 if (!displayid) {
4123 /* drop reference to any tile group we had */
4124 goto out_drop_ref;
4127 ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4128 if (ret < 0)
4129 goto out_drop_ref;
4130 if (!connector->has_tile)
4131 goto out_drop_ref;
4132 return;
4133 out_drop_ref:
4134 if (connector->tile_group) {
4135 drm_mode_put_tile_group(connector->dev, connector->tile_group);
4136 connector->tile_group = NULL;
4138 return;