irqchip/ts4800: Add TS-4800 interrupt controller
[linux/fpc-iii.git] / drivers / scsi / csiostor / csio_hw.c
blob622bdabc88941430f18ed65b0d70fd9fb0478b9b
1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
56 /* Default MSI param level */
57 int csio_msi = 2;
59 /* FCoE function instances */
60 static int dev_num;
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
106 int csio_is_hw_ready(struct csio_hw *hw)
108 return csio_match_state(hw, csio_hws_ready);
111 int csio_is_hw_removing(struct csio_hw *hw)
113 return csio_match_state(hw, csio_hws_removing);
118 * csio_hw_wait_op_done_val - wait until an operation is completed
119 * @hw: the HW module
120 * @reg: the register to check for completion
121 * @mask: a single-bit field within @reg that indicates completion
122 * @polarity: the value of the field when the operation is completed
123 * @attempts: number of check iterations
124 * @delay: delay in usecs between iterations
125 * @valp: where to store the value of the register at completion time
127 * Wait until an operation is completed by checking a bit in a register
128 * up to @attempts times. If @valp is not NULL the value of the register
129 * at the time it indicated completion is stored there. Returns 0 if the
130 * operation completes and -EAGAIN otherwise.
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 int polarity, int attempts, int delay, uint32_t *valp)
136 uint32_t val;
137 while (1) {
138 val = csio_rd_reg32(hw, reg);
140 if (!!(val & mask) == polarity) {
141 if (valp)
142 *valp = val;
143 return 0;
146 if (--attempts == 0)
147 return -EAGAIN;
148 if (delay)
149 udelay(delay);
154 * csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155 * @hw: the adapter
156 * @addr: the indirect TP register address
157 * @mask: specifies the field within the register to modify
158 * @val: new value for the field
160 * Sets a field of an indirect TP register to the given value.
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 unsigned int mask, unsigned int val)
166 csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 csio_wr_reg32(hw, val, TP_PIO_DATA_A);
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 uint32_t value)
175 uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
177 csio_wr_reg32(hw, val | value, reg);
178 /* Flush */
179 csio_rd_reg32(hw, reg);
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
186 return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 addr, len, buf, 0);
191 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
193 #define EEPROM_MAX_RD_POLL 40
194 #define EEPROM_MAX_WR_POLL 6
195 #define EEPROM_STAT_ADDR 0x7bfc
196 #define VPD_BASE 0x400
197 #define VPD_BASE_OLD 0
198 #define VPD_LEN 1024
199 #define VPD_INFO_FLD_HDR_SIZE 3
202 * csio_hw_seeprom_read - read a serial EEPROM location
203 * @hw: hw to read
204 * @addr: EEPROM virtual address
205 * @data: where to store the read data
207 * Read a 32-bit word from a location in serial EEPROM using the card's PCI
208 * VPD capability. Note that this function must be called with a virtual
209 * address.
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
214 uint16_t val = 0;
215 int attempts = EEPROM_MAX_RD_POLL;
216 uint32_t base = hw->params.pci.vpd_cap_addr;
218 if (addr >= EEPROMVSIZE || (addr & 3))
219 return -EINVAL;
221 pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
223 do {
224 udelay(10);
225 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 } while (!(val & PCI_VPD_ADDR_F) && --attempts);
228 if (!(val & PCI_VPD_ADDR_F)) {
229 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 return -EINVAL;
233 pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 *data = le32_to_cpu(*(__le32 *)data);
236 return 0;
240 * Partial EEPROM Vital Product Data structure. Includes only the ID and
241 * VPD-R sections.
243 struct t4_vpd_hdr {
244 u8 id_tag;
245 u8 id_len[2];
246 u8 id_data[ID_LEN];
247 u8 vpdr_tag;
248 u8 vpdr_len[2];
252 * csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253 * the VPD
254 * @v: Pointer to buffered vpd data structure
255 * @kw: The keyword to search for
257 * Returns the value of the information field keyword or
258 * -EINVAL otherwise.
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
263 int32_t i;
264 int32_t offset , len;
265 const uint8_t *buf = &v->id_tag;
266 const uint8_t *vpdr_len = &v->vpdr_tag;
267 offset = sizeof(struct t4_vpd_hdr);
268 len = (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
270 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 return -EINVAL;
273 for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 if (memcmp(buf + i , kw, 2) == 0) {
275 i += VPD_INFO_FLD_HDR_SIZE;
276 return i;
279 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
282 return -EINVAL;
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
288 *pos = pci_find_capability(pdev, cap);
289 if (*pos)
290 return 0;
292 return -1;
296 * csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297 * @hw: HW module
298 * @p: where to store the parameters
300 * Reads card parameters stored in VPD EEPROM.
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
305 int i, ret, ec, sn, addr;
306 uint8_t *vpd, csum;
307 const struct t4_vpd_hdr *v;
308 /* To get around compilation warning from strstrip */
309 char *s;
311 if (csio_is_valid_vpd(hw))
312 return 0;
314 ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 &hw->params.pci.vpd_cap_addr);
316 if (ret)
317 return -EINVAL;
319 vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 if (vpd == NULL)
321 return -ENOMEM;
324 * Card information normally starts at VPD_BASE but early cards had
325 * it at 0.
327 ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
330 for (i = 0; i < VPD_LEN; i += 4) {
331 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 if (ret) {
333 kfree(vpd);
334 return ret;
338 /* Reset the VPD flag! */
339 hw->flags &= (~CSIO_HWF_VPD_VALID);
341 v = (const struct t4_vpd_hdr *)vpd;
343 #define FIND_VPD_KW(var, name) do { \
344 var = csio_hw_get_vpd_keyword_val(v, name); \
345 if (var < 0) { \
346 csio_err(hw, "missing VPD keyword " name "\n"); \
347 kfree(vpd); \
348 return -EINVAL; \
350 } while (0)
352 FIND_VPD_KW(i, "RV");
353 for (csum = 0; i >= 0; i--)
354 csum += vpd[i];
356 if (csum) {
357 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 kfree(vpd);
359 return -EINVAL;
361 FIND_VPD_KW(ec, "EC");
362 FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
365 memcpy(p->id, v->id_data, ID_LEN);
366 s = strstrip(p->id);
367 memcpy(p->ec, vpd + ec, EC_LEN);
368 s = strstrip(p->ec);
369 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 s = strstrip(p->sn);
373 csio_valid_vpd_copied(hw);
375 kfree(vpd);
376 return 0;
380 * csio_hw_sf1_read - read data from the serial flash
381 * @hw: the HW module
382 * @byte_cnt: number of bytes to read
383 * @cont: whether another operation will be chained
384 * @lock: whether to lock SF for PL access only
385 * @valp: where to store the read data
387 * Reads up to 4 bytes of data from the serial flash. The location of
388 * the read needs to be specified prior to calling this by issuing the
389 * appropriate commands to the serial flash.
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 int32_t lock, uint32_t *valp)
395 int ret;
397 if (!byte_cnt || byte_cnt > 4)
398 return -EINVAL;
399 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 return -EBUSY;
402 csio_wr_reg32(hw, SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 10, NULL);
406 if (!ret)
407 *valp = csio_rd_reg32(hw, SF_DATA_A);
408 return ret;
412 * csio_hw_sf1_write - write data to the serial flash
413 * @hw: the HW module
414 * @byte_cnt: number of bytes to write
415 * @cont: whether another operation will be chained
416 * @lock: whether to lock SF for PL access only
417 * @val: value to write
419 * Writes up to 4 bytes of data to the serial flash. The location of
420 * the write needs to be specified prior to calling this by issuing the
421 * appropriate commands to the serial flash.
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 int32_t lock, uint32_t val)
427 if (!byte_cnt || byte_cnt > 4)
428 return -EINVAL;
429 if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 return -EBUSY;
432 csio_wr_reg32(hw, val, SF_DATA_A);
433 csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
436 return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 10, NULL);
441 * csio_hw_flash_wait_op - wait for a flash operation to complete
442 * @hw: the HW module
443 * @attempts: max number of polls of the status register
444 * @delay: delay between polls in ms
446 * Wait for a flash operation to complete by polling the status register.
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
451 int ret;
452 uint32_t status;
454 while (1) {
455 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 if (ret != 0)
457 return ret;
459 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 if (ret != 0)
461 return ret;
463 if (!(status & 1))
464 return 0;
465 if (--attempts == 0)
466 return -EAGAIN;
467 if (delay)
468 msleep(delay);
473 * csio_hw_read_flash - read words from serial flash
474 * @hw: the HW module
475 * @addr: the start address for the read
476 * @nwords: how many 32-bit words to read
477 * @data: where to store the read data
478 * @byte_oriented: whether to store data as bytes or as words
480 * Read the specified number of 32-bit words from the serial flash.
481 * If @byte_oriented is set the read data is stored as a byte array
482 * (i.e., big-endian), otherwise as 32-bit words in the platform's
483 * natural endianess.
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 uint32_t *data, int32_t byte_oriented)
489 int ret;
491 if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 return -EINVAL;
494 addr = swab32(addr) | SF_RD_DATA_FAST;
496 ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 if (ret != 0)
498 return ret;
500 ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 if (ret != 0)
502 return ret;
504 for ( ; nwords; nwords--, data++) {
505 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 if (nwords == 1)
507 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
508 if (ret)
509 return ret;
510 if (byte_oriented)
511 *data = (__force __u32) htonl(*data);
513 return 0;
517 * csio_hw_write_flash - write up to a page of data to the serial flash
518 * @hw: the hw
519 * @addr: the start address to write
520 * @n: length of data to write in bytes
521 * @data: the data to write
523 * Writes up to a page of data (256 bytes) to the serial flash starting
524 * at the given address. All the data must be written to the same page.
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 uint32_t n, const uint8_t *data)
530 int ret = -EINVAL;
531 uint32_t buf[64];
532 uint32_t i, c, left, val, offset = addr & 0xff;
534 if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 return -EINVAL;
537 val = swab32(addr) | SF_PROG_PAGE;
539 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 if (ret != 0)
541 goto unlock;
543 ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 if (ret != 0)
545 goto unlock;
547 for (left = n; left; left -= c) {
548 c = min(left, 4U);
549 for (val = 0, i = 0; i < c; ++i)
550 val = (val << 8) + *data++;
552 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 if (ret)
554 goto unlock;
556 ret = csio_hw_flash_wait_op(hw, 8, 1);
557 if (ret)
558 goto unlock;
560 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
562 /* Read the page to verify the write succeeded */
563 ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 if (ret)
565 return ret;
567 if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 csio_err(hw,
569 "failed to correctly write the flash page at %#x\n",
570 addr);
571 return -EINVAL;
574 return 0;
576 unlock:
577 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
578 return ret;
582 * csio_hw_flash_erase_sectors - erase a range of flash sectors
583 * @hw: the HW module
584 * @start: the first sector to erase
585 * @end: the last sector to erase
587 * Erases the sectors in the given inclusive range.
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
592 int ret = 0;
594 while (start <= end) {
596 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 if (ret != 0)
598 goto out;
600 ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 SF_ERASE_SECTOR | (start << 8));
602 if (ret != 0)
603 goto out;
605 ret = csio_hw_flash_wait_op(hw, 14, 500);
606 if (ret != 0)
607 goto out;
609 start++;
611 out:
612 if (ret)
613 csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 start, ret);
615 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
616 return 0;
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
622 csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 FW_HDR_FW_VER_BUILD_G(hw->fwrev));
630 * csio_hw_get_fw_version - read the firmware version
631 * @hw: HW module
632 * @vers: where to place the version
634 * Reads the FW version from flash.
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
639 return csio_hw_read_flash(hw, FLASH_FW_START +
640 offsetof(struct fw_hdr, fw_ver), 1,
641 vers, 0);
645 * csio_hw_get_tp_version - read the TP microcode version
646 * @hw: HW module
647 * @vers: where to place the version
649 * Reads the TP microcode version from flash.
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
654 return csio_hw_read_flash(hw, FLASH_FW_START +
655 offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 vers, 0);
660 * csio_hw_fw_dload - download firmware.
661 * @hw: HW module
662 * @fw_data: firmware image to write.
663 * @size: image size
665 * Write the supplied firmware image to the card's serial flash.
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
670 uint32_t csum;
671 int32_t addr;
672 int ret;
673 uint32_t i;
674 uint8_t first_page[SF_PAGE_SIZE];
675 const __be32 *p = (const __be32 *)fw_data;
676 struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 uint32_t sf_sec_size;
679 if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 csio_err(hw, "Serial Flash data invalid\n");
681 return -EINVAL;
684 if (!size) {
685 csio_err(hw, "FW image has no data\n");
686 return -EINVAL;
689 if (size & 511) {
690 csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 return -EINVAL;
694 if (ntohs(hdr->len512) * 512 != size) {
695 csio_err(hw, "FW image size differs from size in FW header\n");
696 return -EINVAL;
699 if (size > FLASH_FW_MAX_SIZE) {
700 csio_err(hw, "FW image too large, max is %u bytes\n",
701 FLASH_FW_MAX_SIZE);
702 return -EINVAL;
705 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 csum += ntohl(p[i]);
708 if (csum != 0xffffffff) {
709 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 return -EINVAL;
713 sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
716 csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
719 ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 FLASH_FW_START_SEC + i - 1);
721 if (ret) {
722 csio_err(hw, "Flash Erase failed\n");
723 goto out;
727 * We write the correct version at the end so the driver can see a bad
728 * version if the FW write fails. Start by writing a copy of the
729 * first page with a bad version.
731 memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 if (ret)
735 goto out;
737 csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 FW_IMG_START, FW_IMG_START + size);
740 addr = FLASH_FW_START;
741 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 addr += SF_PAGE_SIZE;
743 fw_data += SF_PAGE_SIZE;
744 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 if (ret)
746 goto out;
749 ret = csio_hw_write_flash(hw,
750 FLASH_FW_START +
751 offsetof(struct fw_hdr, fw_ver),
752 sizeof(hdr->fw_ver),
753 (const uint8_t *)&hdr->fw_ver);
755 out:
756 if (ret)
757 csio_err(hw, "firmware download failed, error %d\n", ret);
758 return ret;
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
764 int ret;
765 uint32_t info = 0;
767 ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 if (!ret)
769 ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 csio_wr_reg32(hw, 0, SF_OP_A); /* unlock SF */
771 if (ret != 0)
772 return ret;
774 if ((info & 0xff) != 0x20) /* not a Numonix flash */
775 return -EINVAL;
776 info >>= 16; /* log2 of size */
777 if (info >= 0x14 && info < 0x18)
778 hw->params.sf_nsec = 1 << (info - 16);
779 else if (info == 0x18)
780 hw->params.sf_nsec = 64;
781 else
782 return -EINVAL;
783 hw->params.sf_size = 1 << info;
785 return 0;
788 /*****************************************************************************/
789 /* HW State machine assists */
790 /*****************************************************************************/
792 static int
793 csio_hw_dev_ready(struct csio_hw *hw)
795 uint32_t reg;
796 int cnt = 6;
798 while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
799 (--cnt != 0))
800 mdelay(100);
802 if ((cnt == 0) && (((int32_t)(SOURCEPF_G(reg)) < 0) ||
803 (SOURCEPF_G(reg) >= CSIO_MAX_PFN))) {
804 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
805 return -EIO;
808 hw->pfn = SOURCEPF_G(reg);
810 return 0;
814 * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
815 * @hw: HW module
816 * @state: Device state
818 * FW_HELLO_CMD has to be polled for completion.
820 static int
821 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
823 struct csio_mb *mbp;
824 int rv = 0;
825 enum fw_retval retval;
826 uint8_t mpfn;
827 char state_str[16];
828 int retries = FW_CMD_HELLO_RETRIES;
830 memset(state_str, 0, sizeof(state_str));
832 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
833 if (!mbp) {
834 rv = -ENOMEM;
835 CSIO_INC_STATS(hw, n_err_nomem);
836 goto out;
839 retry:
840 csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
841 hw->pfn, CSIO_MASTER_MAY, NULL);
843 rv = csio_mb_issue(hw, mbp);
844 if (rv) {
845 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
846 goto out_free_mb;
849 csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
850 if (retval != FW_SUCCESS) {
851 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
852 rv = -EINVAL;
853 goto out_free_mb;
856 /* Firmware has designated us to be master */
857 if (hw->pfn == mpfn) {
858 hw->flags |= CSIO_HWF_MASTER;
859 } else if (*state == CSIO_DEV_STATE_UNINIT) {
861 * If we're not the Master PF then we need to wait around for
862 * the Master PF Driver to finish setting up the adapter.
864 * Note that we also do this wait if we're a non-Master-capable
865 * PF and there is no current Master PF; a Master PF may show up
866 * momentarily and we wouldn't want to fail pointlessly. (This
867 * can happen when an OS loads lots of different drivers rapidly
868 * at the same time). In this case, the Master PF returned by
869 * the firmware will be PCIE_FW_MASTER_MASK so the test below
870 * will work ...
873 int waiting = FW_CMD_HELLO_TIMEOUT;
876 * Wait for the firmware to either indicate an error or
877 * initialized state. If we see either of these we bail out
878 * and report the issue to the caller. If we exhaust the
879 * "hello timeout" and we haven't exhausted our retries, try
880 * again. Otherwise bail with a timeout error.
882 for (;;) {
883 uint32_t pcie_fw;
885 spin_unlock_irq(&hw->lock);
886 msleep(50);
887 spin_lock_irq(&hw->lock);
888 waiting -= 50;
891 * If neither Error nor Initialialized are indicated
892 * by the firmware keep waiting till we exaust our
893 * timeout ... and then retry if we haven't exhausted
894 * our retries ...
896 pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
897 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
898 if (waiting <= 0) {
899 if (retries-- > 0)
900 goto retry;
902 rv = -ETIMEDOUT;
903 break;
905 continue;
909 * We either have an Error or Initialized condition
910 * report errors preferentially.
912 if (state) {
913 if (pcie_fw & PCIE_FW_ERR_F) {
914 *state = CSIO_DEV_STATE_ERR;
915 rv = -ETIMEDOUT;
916 } else if (pcie_fw & PCIE_FW_INIT_F)
917 *state = CSIO_DEV_STATE_INIT;
921 * If we arrived before a Master PF was selected and
922 * there's not a valid Master PF, grab its identity
923 * for our caller.
925 if (mpfn == PCIE_FW_MASTER_M &&
926 (pcie_fw & PCIE_FW_MASTER_VLD_F))
927 mpfn = PCIE_FW_MASTER_G(pcie_fw);
928 break;
930 hw->flags &= ~CSIO_HWF_MASTER;
933 switch (*state) {
934 case CSIO_DEV_STATE_UNINIT:
935 strcpy(state_str, "Initializing");
936 break;
937 case CSIO_DEV_STATE_INIT:
938 strcpy(state_str, "Initialized");
939 break;
940 case CSIO_DEV_STATE_ERR:
941 strcpy(state_str, "Error");
942 break;
943 default:
944 strcpy(state_str, "Unknown");
945 break;
948 if (hw->pfn == mpfn)
949 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
950 hw->pfn, state_str);
951 else
952 csio_info(hw,
953 "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
954 hw->pfn, mpfn, state_str);
956 out_free_mb:
957 mempool_free(mbp, hw->mb_mempool);
958 out:
959 return rv;
963 * csio_do_bye - Perform the BYE FW Mailbox command and process response.
964 * @hw: HW module
967 static int
968 csio_do_bye(struct csio_hw *hw)
970 struct csio_mb *mbp;
971 enum fw_retval retval;
973 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
974 if (!mbp) {
975 CSIO_INC_STATS(hw, n_err_nomem);
976 return -ENOMEM;
979 csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
981 if (csio_mb_issue(hw, mbp)) {
982 csio_err(hw, "Issue of BYE command failed\n");
983 mempool_free(mbp, hw->mb_mempool);
984 return -EINVAL;
987 retval = csio_mb_fw_retval(mbp);
988 if (retval != FW_SUCCESS) {
989 mempool_free(mbp, hw->mb_mempool);
990 return -EINVAL;
993 mempool_free(mbp, hw->mb_mempool);
995 return 0;
999 * csio_do_reset- Perform the device reset.
1000 * @hw: HW module
1001 * @fw_rst: FW reset
1003 * If fw_rst is set, issues FW reset mbox cmd otherwise
1004 * does PIO reset.
1005 * Performs reset of the function.
1007 static int
1008 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1010 struct csio_mb *mbp;
1011 enum fw_retval retval;
1013 if (!fw_rst) {
1014 /* PIO reset */
1015 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1016 mdelay(2000);
1017 return 0;
1020 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1021 if (!mbp) {
1022 CSIO_INC_STATS(hw, n_err_nomem);
1023 return -ENOMEM;
1026 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1027 PIORSTMODE_F | PIORST_F, 0, NULL);
1029 if (csio_mb_issue(hw, mbp)) {
1030 csio_err(hw, "Issue of RESET command failed.n");
1031 mempool_free(mbp, hw->mb_mempool);
1032 return -EINVAL;
1035 retval = csio_mb_fw_retval(mbp);
1036 if (retval != FW_SUCCESS) {
1037 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1038 mempool_free(mbp, hw->mb_mempool);
1039 return -EINVAL;
1042 mempool_free(mbp, hw->mb_mempool);
1044 return 0;
1047 static int
1048 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1050 struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1051 uint16_t caps;
1053 caps = ntohs(rsp->fcoecaps);
1055 if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1056 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1057 return -EINVAL;
1060 if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1061 csio_err(hw, "No FCoE Control Offload capability\n");
1062 return -EINVAL;
1065 return 0;
1069 * csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1070 * @hw: the HW module
1071 * @mbox: mailbox to use for the FW RESET command (if desired)
1072 * @force: force uP into RESET even if FW RESET command fails
1074 * Issues a RESET command to firmware (if desired) with a HALT indication
1075 * and then puts the microprocessor into RESET state. The RESET command
1076 * will only be issued if a legitimate mailbox is provided (mbox <=
1077 * PCIE_FW_MASTER_MASK).
1079 * This is generally used in order for the host to safely manipulate the
1080 * adapter without fear of conflicting with whatever the firmware might
1081 * be doing. The only way out of this state is to RESTART the firmware
1082 * ...
1084 static int
1085 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1087 enum fw_retval retval = 0;
1090 * If a legitimate mailbox is provided, issue a RESET command
1091 * with a HALT indication.
1093 if (mbox <= PCIE_FW_MASTER_M) {
1094 struct csio_mb *mbp;
1096 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1097 if (!mbp) {
1098 CSIO_INC_STATS(hw, n_err_nomem);
1099 return -ENOMEM;
1102 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1103 PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1104 NULL);
1106 if (csio_mb_issue(hw, mbp)) {
1107 csio_err(hw, "Issue of RESET command failed!\n");
1108 mempool_free(mbp, hw->mb_mempool);
1109 return -EINVAL;
1112 retval = csio_mb_fw_retval(mbp);
1113 mempool_free(mbp, hw->mb_mempool);
1117 * Normally we won't complete the operation if the firmware RESET
1118 * command fails but if our caller insists we'll go ahead and put the
1119 * uP into RESET. This can be useful if the firmware is hung or even
1120 * missing ... We'll have to take the risk of putting the uP into
1121 * RESET without the cooperation of firmware in that case.
1123 * We also force the firmware's HALT flag to be on in case we bypassed
1124 * the firmware RESET command above or we're dealing with old firmware
1125 * which doesn't have the HALT capability. This will serve as a flag
1126 * for the incoming firmware to know that it's coming out of a HALT
1127 * rather than a RESET ... if it's new enough to understand that ...
1129 if (retval == 0 || force) {
1130 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1131 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1132 PCIE_FW_HALT_F);
1136 * And we always return the result of the firmware RESET command
1137 * even when we force the uP into RESET ...
1139 return retval ? -EINVAL : 0;
1143 * csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1144 * @hw: the HW module
1145 * @reset: if we want to do a RESET to restart things
1147 * Restart firmware previously halted by csio_hw_fw_halt(). On successful
1148 * return the previous PF Master remains as the new PF Master and there
1149 * is no need to issue a new HELLO command, etc.
1151 * We do this in two ways:
1153 * 1. If we're dealing with newer firmware we'll simply want to take
1154 * the chip's microprocessor out of RESET. This will cause the
1155 * firmware to start up from its start vector. And then we'll loop
1156 * until the firmware indicates it's started again (PCIE_FW.HALT
1157 * reset to 0) or we timeout.
1159 * 2. If we're dealing with older firmware then we'll need to RESET
1160 * the chip since older firmware won't recognize the PCIE_FW.HALT
1161 * flag and automatically RESET itself on startup.
1163 static int
1164 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1166 if (reset) {
1168 * Since we're directing the RESET instead of the firmware
1169 * doing it automatically, we need to clear the PCIE_FW.HALT
1170 * bit.
1172 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1175 * If we've been given a valid mailbox, first try to get the
1176 * firmware to do the RESET. If that works, great and we can
1177 * return success. Otherwise, if we haven't been given a
1178 * valid mailbox or the RESET command failed, fall back to
1179 * hitting the chip with a hammer.
1181 if (mbox <= PCIE_FW_MASTER_M) {
1182 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1183 msleep(100);
1184 if (csio_do_reset(hw, true) == 0)
1185 return 0;
1188 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1189 msleep(2000);
1190 } else {
1191 int ms;
1193 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1194 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1195 if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1196 return 0;
1197 msleep(100);
1198 ms += 100;
1200 return -ETIMEDOUT;
1202 return 0;
1206 * csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1207 * @hw: the HW module
1208 * @mbox: mailbox to use for the FW RESET command (if desired)
1209 * @fw_data: the firmware image to write
1210 * @size: image size
1211 * @force: force upgrade even if firmware doesn't cooperate
1213 * Perform all of the steps necessary for upgrading an adapter's
1214 * firmware image. Normally this requires the cooperation of the
1215 * existing firmware in order to halt all existing activities
1216 * but if an invalid mailbox token is passed in we skip that step
1217 * (though we'll still put the adapter microprocessor into RESET in
1218 * that case).
1220 * On successful return the new firmware will have been loaded and
1221 * the adapter will have been fully RESET losing all previous setup
1222 * state. On unsuccessful return the adapter may be completely hosed ...
1223 * positive errno indicates that the adapter is ~probably~ intact, a
1224 * negative errno indicates that things are looking bad ...
1226 static int
1227 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1228 const u8 *fw_data, uint32_t size, int32_t force)
1230 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1231 int reset, ret;
1233 ret = csio_hw_fw_halt(hw, mbox, force);
1234 if (ret != 0 && !force)
1235 return ret;
1237 ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1238 if (ret != 0)
1239 return ret;
1242 * Older versions of the firmware don't understand the new
1243 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1244 * restart. So for newly loaded older firmware we'll have to do the
1245 * RESET for it so it starts up on a clean slate. We can tell if
1246 * the newly loaded firmware will handle this right by checking
1247 * its header flags to see if it advertises the capability.
1249 reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1250 return csio_hw_fw_restart(hw, mbox, reset);
1254 * csio_get_device_params - Get device parameters.
1255 * @hw: HW module
1258 static int
1259 csio_get_device_params(struct csio_hw *hw)
1261 struct csio_wrm *wrm = csio_hw_to_wrm(hw);
1262 struct csio_mb *mbp;
1263 enum fw_retval retval;
1264 u32 param[6];
1265 int i, j = 0;
1267 /* Initialize portids to -1 */
1268 for (i = 0; i < CSIO_MAX_PPORTS; i++)
1269 hw->pport[i].portid = -1;
1271 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1272 if (!mbp) {
1273 CSIO_INC_STATS(hw, n_err_nomem);
1274 return -ENOMEM;
1277 /* Get port vec information. */
1278 param[0] = FW_PARAM_DEV(PORTVEC);
1280 /* Get Core clock. */
1281 param[1] = FW_PARAM_DEV(CCLK);
1283 /* Get EQ id start and end. */
1284 param[2] = FW_PARAM_PFVF(EQ_START);
1285 param[3] = FW_PARAM_PFVF(EQ_END);
1287 /* Get IQ id start and end. */
1288 param[4] = FW_PARAM_PFVF(IQFLINT_START);
1289 param[5] = FW_PARAM_PFVF(IQFLINT_END);
1291 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1292 ARRAY_SIZE(param), param, NULL, false, NULL);
1293 if (csio_mb_issue(hw, mbp)) {
1294 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1295 mempool_free(mbp, hw->mb_mempool);
1296 return -EINVAL;
1299 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1300 ARRAY_SIZE(param), param);
1301 if (retval != FW_SUCCESS) {
1302 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1303 retval);
1304 mempool_free(mbp, hw->mb_mempool);
1305 return -EINVAL;
1308 /* cache the information. */
1309 hw->port_vec = param[0];
1310 hw->vpd.cclk = param[1];
1311 wrm->fw_eq_start = param[2];
1312 wrm->fw_iq_start = param[4];
1314 /* Using FW configured max iqs & eqs */
1315 if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1316 !csio_is_hw_master(hw)) {
1317 hw->cfg_niq = param[5] - param[4] + 1;
1318 hw->cfg_neq = param[3] - param[2] + 1;
1319 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1320 hw->cfg_niq, hw->cfg_neq);
1323 hw->port_vec &= csio_port_mask;
1325 hw->num_pports = hweight32(hw->port_vec);
1327 csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1328 hw->port_vec, hw->num_pports);
1330 for (i = 0; i < hw->num_pports; i++) {
1331 while ((hw->port_vec & (1 << j)) == 0)
1332 j++;
1333 hw->pport[i].portid = j++;
1334 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1336 mempool_free(mbp, hw->mb_mempool);
1338 return 0;
1343 * csio_config_device_caps - Get and set device capabilities.
1344 * @hw: HW module
1347 static int
1348 csio_config_device_caps(struct csio_hw *hw)
1350 struct csio_mb *mbp;
1351 enum fw_retval retval;
1352 int rv = -EINVAL;
1354 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1355 if (!mbp) {
1356 CSIO_INC_STATS(hw, n_err_nomem);
1357 return -ENOMEM;
1360 /* Get device capabilities */
1361 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1363 if (csio_mb_issue(hw, mbp)) {
1364 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1365 goto out;
1368 retval = csio_mb_fw_retval(mbp);
1369 if (retval != FW_SUCCESS) {
1370 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1371 goto out;
1374 /* Validate device capabilities */
1375 rv = csio_hw_validate_caps(hw, mbp);
1376 if (rv != 0)
1377 goto out;
1379 /* Don't config device capabilities if already configured */
1380 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1381 rv = 0;
1382 goto out;
1385 /* Write back desired device capabilities */
1386 csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1387 false, true, NULL);
1389 if (csio_mb_issue(hw, mbp)) {
1390 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1391 goto out;
1394 retval = csio_mb_fw_retval(mbp);
1395 if (retval != FW_SUCCESS) {
1396 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1397 goto out;
1400 rv = 0;
1401 out:
1402 mempool_free(mbp, hw->mb_mempool);
1403 return rv;
1407 * csio_enable_ports - Bring up all available ports.
1408 * @hw: HW module.
1411 static int
1412 csio_enable_ports(struct csio_hw *hw)
1414 struct csio_mb *mbp;
1415 enum fw_retval retval;
1416 uint8_t portid;
1417 int i;
1419 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1420 if (!mbp) {
1421 CSIO_INC_STATS(hw, n_err_nomem);
1422 return -ENOMEM;
1425 for (i = 0; i < hw->num_pports; i++) {
1426 portid = hw->pport[i].portid;
1428 /* Read PORT information */
1429 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1430 false, 0, 0, NULL);
1432 if (csio_mb_issue(hw, mbp)) {
1433 csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1434 portid);
1435 mempool_free(mbp, hw->mb_mempool);
1436 return -EINVAL;
1439 csio_mb_process_read_port_rsp(hw, mbp, &retval,
1440 &hw->pport[i].pcap);
1441 if (retval != FW_SUCCESS) {
1442 csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1443 portid, retval);
1444 mempool_free(mbp, hw->mb_mempool);
1445 return -EINVAL;
1448 /* Write back PORT information */
1449 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1450 (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1452 if (csio_mb_issue(hw, mbp)) {
1453 csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1454 portid);
1455 mempool_free(mbp, hw->mb_mempool);
1456 return -EINVAL;
1459 retval = csio_mb_fw_retval(mbp);
1460 if (retval != FW_SUCCESS) {
1461 csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1462 portid, retval);
1463 mempool_free(mbp, hw->mb_mempool);
1464 return -EINVAL;
1467 } /* For all ports */
1469 mempool_free(mbp, hw->mb_mempool);
1471 return 0;
1475 * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1476 * @hw: HW module
1477 * Issued with lock held.
1479 static int
1480 csio_get_fcoe_resinfo(struct csio_hw *hw)
1482 struct csio_fcoe_res_info *res_info = &hw->fres_info;
1483 struct fw_fcoe_res_info_cmd *rsp;
1484 struct csio_mb *mbp;
1485 enum fw_retval retval;
1487 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1488 if (!mbp) {
1489 CSIO_INC_STATS(hw, n_err_nomem);
1490 return -ENOMEM;
1493 /* Get FCoE FW resource information */
1494 csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1496 if (csio_mb_issue(hw, mbp)) {
1497 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1498 mempool_free(mbp, hw->mb_mempool);
1499 return -EINVAL;
1502 rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1503 retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1504 if (retval != FW_SUCCESS) {
1505 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1506 retval);
1507 mempool_free(mbp, hw->mb_mempool);
1508 return -EINVAL;
1511 res_info->e_d_tov = ntohs(rsp->e_d_tov);
1512 res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1513 res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1514 res_info->r_r_tov = ntohs(rsp->r_r_tov);
1515 res_info->max_xchgs = ntohl(rsp->max_xchgs);
1516 res_info->max_ssns = ntohl(rsp->max_ssns);
1517 res_info->used_xchgs = ntohl(rsp->used_xchgs);
1518 res_info->used_ssns = ntohl(rsp->used_ssns);
1519 res_info->max_fcfs = ntohl(rsp->max_fcfs);
1520 res_info->max_vnps = ntohl(rsp->max_vnps);
1521 res_info->used_fcfs = ntohl(rsp->used_fcfs);
1522 res_info->used_vnps = ntohl(rsp->used_vnps);
1524 csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1525 res_info->max_xchgs);
1526 mempool_free(mbp, hw->mb_mempool);
1528 return 0;
1531 static int
1532 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1534 struct csio_mb *mbp;
1535 enum fw_retval retval;
1536 u32 _param[1];
1538 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1539 if (!mbp) {
1540 CSIO_INC_STATS(hw, n_err_nomem);
1541 return -ENOMEM;
1545 * Find out whether we're dealing with a version of
1546 * the firmware which has configuration file support.
1548 _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1549 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1551 csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1552 ARRAY_SIZE(_param), _param, NULL, false, NULL);
1553 if (csio_mb_issue(hw, mbp)) {
1554 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1555 mempool_free(mbp, hw->mb_mempool);
1556 return -EINVAL;
1559 csio_mb_process_read_params_rsp(hw, mbp, &retval,
1560 ARRAY_SIZE(_param), _param);
1561 if (retval != FW_SUCCESS) {
1562 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1563 retval);
1564 mempool_free(mbp, hw->mb_mempool);
1565 return -EINVAL;
1568 mempool_free(mbp, hw->mb_mempool);
1569 *param = _param[0];
1571 return 0;
1574 static int
1575 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1577 int ret = 0;
1578 const struct firmware *cf;
1579 struct pci_dev *pci_dev = hw->pdev;
1580 struct device *dev = &pci_dev->dev;
1581 unsigned int mtype = 0, maddr = 0;
1582 uint32_t *cfg_data;
1583 int value_to_add = 0;
1585 if (request_firmware(&cf, FW_CFG_NAME_T5, dev) < 0) {
1586 csio_err(hw, "could not find config file %s, err: %d\n",
1587 FW_CFG_NAME_T5, ret);
1588 return -ENOENT;
1591 if (cf->size%4 != 0)
1592 value_to_add = 4 - (cf->size % 4);
1594 cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1595 if (cfg_data == NULL) {
1596 ret = -ENOMEM;
1597 goto leave;
1600 memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1601 if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1602 ret = -EINVAL;
1603 goto leave;
1606 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1607 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1609 ret = csio_memory_write(hw, mtype, maddr,
1610 cf->size + value_to_add, cfg_data);
1612 if ((ret == 0) && (value_to_add != 0)) {
1613 union {
1614 u32 word;
1615 char buf[4];
1616 } last;
1617 size_t size = cf->size & ~0x3;
1618 int i;
1620 last.word = cfg_data[size >> 2];
1621 for (i = value_to_add; i < 4; i++)
1622 last.buf[i] = 0;
1623 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1625 if (ret == 0) {
1626 csio_info(hw, "config file upgraded to %s\n",
1627 FW_CFG_NAME_T5);
1628 snprintf(path, 64, "%s%s", "/lib/firmware/", FW_CFG_NAME_T5);
1631 leave:
1632 kfree(cfg_data);
1633 release_firmware(cf);
1634 return ret;
1638 * HW initialization: contact FW, obtain config, perform basic init.
1640 * If the firmware we're dealing with has Configuration File support, then
1641 * we use that to perform all configuration -- either using the configuration
1642 * file stored in flash on the adapter or using a filesystem-local file
1643 * if available.
1645 * If we don't have configuration file support in the firmware, then we'll
1646 * have to set things up the old fashioned way with hard-coded register
1647 * writes and firmware commands ...
1651 * Attempt to initialize the HW via a Firmware Configuration File.
1653 static int
1654 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1656 struct csio_mb *mbp = NULL;
1657 struct fw_caps_config_cmd *caps_cmd;
1658 unsigned int mtype, maddr;
1659 int rv = -EINVAL;
1660 uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1661 char path[64];
1662 char *config_name = NULL;
1665 * Reset device if necessary
1667 if (reset) {
1668 rv = csio_do_reset(hw, true);
1669 if (rv != 0)
1670 goto bye;
1674 * If we have a configuration file in host ,
1675 * then use that. Otherwise, use the configuration file stored
1676 * in the HW flash ...
1678 spin_unlock_irq(&hw->lock);
1679 rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1680 spin_lock_irq(&hw->lock);
1681 if (rv != 0) {
1683 * config file was not found. Use default
1684 * config file from flash.
1686 config_name = "On FLASH";
1687 mtype = FW_MEMTYPE_CF_FLASH;
1688 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1689 } else {
1690 config_name = path;
1691 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1692 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1695 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1696 if (!mbp) {
1697 CSIO_INC_STATS(hw, n_err_nomem);
1698 return -ENOMEM;
1701 * Tell the firmware to process the indicated Configuration File.
1702 * If there are no errors and the caller has provided return value
1703 * pointers for the [fini] section version, checksum and computed
1704 * checksum, pass those back to the caller.
1706 caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1707 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1708 caps_cmd->op_to_write =
1709 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1710 FW_CMD_REQUEST_F |
1711 FW_CMD_READ_F);
1712 caps_cmd->cfvalid_to_len16 =
1713 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1714 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1715 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1716 FW_LEN16(*caps_cmd));
1718 if (csio_mb_issue(hw, mbp)) {
1719 rv = -EINVAL;
1720 goto bye;
1723 rv = csio_mb_fw_retval(mbp);
1724 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
1725 * Configuration File in FLASH), our last gasp effort is to use the
1726 * Firmware Configuration File which is embedded in the
1727 * firmware. A very few early versions of the firmware didn't
1728 * have one embedded but we can ignore those.
1730 if (rv == ENOENT) {
1731 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1732 caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1733 FW_CMD_REQUEST_F |
1734 FW_CMD_READ_F);
1735 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1737 if (csio_mb_issue(hw, mbp)) {
1738 rv = -EINVAL;
1739 goto bye;
1742 rv = csio_mb_fw_retval(mbp);
1743 config_name = "Firmware Default";
1745 if (rv != FW_SUCCESS)
1746 goto bye;
1748 finiver = ntohl(caps_cmd->finiver);
1749 finicsum = ntohl(caps_cmd->finicsum);
1750 cfcsum = ntohl(caps_cmd->cfcsum);
1753 * And now tell the firmware to use the configuration we just loaded.
1755 caps_cmd->op_to_write =
1756 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1757 FW_CMD_REQUEST_F |
1758 FW_CMD_WRITE_F);
1759 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1761 if (csio_mb_issue(hw, mbp)) {
1762 rv = -EINVAL;
1763 goto bye;
1766 rv = csio_mb_fw_retval(mbp);
1767 if (rv != FW_SUCCESS) {
1768 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1769 goto bye;
1772 mempool_free(mbp, hw->mb_mempool);
1773 if (finicsum != cfcsum) {
1774 csio_warn(hw,
1775 "Config File checksum mismatch: csum=%#x, computed=%#x\n",
1776 finicsum, cfcsum);
1779 /* Validate device capabilities */
1780 rv = csio_hw_validate_caps(hw, mbp);
1781 if (rv != 0)
1782 goto bye;
1784 * Note that we're operating with parameters
1785 * not supplied by the driver, rather than from hard-wired
1786 * initialization constants buried in the driver.
1788 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
1790 /* device parameters */
1791 rv = csio_get_device_params(hw);
1792 if (rv != 0)
1793 goto bye;
1795 /* Configure SGE */
1796 csio_wr_sge_init(hw);
1799 * And finally tell the firmware to initialize itself using the
1800 * parameters from the Configuration File.
1802 /* Post event to notify completion of configuration */
1803 csio_post_event(&hw->sm, CSIO_HWE_INIT);
1805 csio_info(hw, "Successfully configure using Firmware "
1806 "Configuration File %s, version %#x, computed checksum %#x\n",
1807 config_name, finiver, cfcsum);
1808 return 0;
1811 * Something bad happened. Return the error ...
1813 bye:
1814 if (mbp)
1815 mempool_free(mbp, hw->mb_mempool);
1816 hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
1817 csio_warn(hw, "Configuration file error %d\n", rv);
1818 return rv;
1821 /* Is the given firmware API compatible with the one the driver was compiled
1822 * with?
1824 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
1827 /* short circuit if it's the exact same firmware version */
1828 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
1829 return 1;
1831 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
1832 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
1833 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
1834 return 1;
1835 #undef SAME_INTF
1837 return 0;
1840 /* The firmware in the filesystem is usable, but should it be installed?
1841 * This routine explains itself in detail if it indicates the filesystem
1842 * firmware should be installed.
1844 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
1845 int k, int c)
1847 const char *reason;
1849 if (!card_fw_usable) {
1850 reason = "incompatible or unusable";
1851 goto install;
1854 if (k > c) {
1855 reason = "older than the version supported with this driver";
1856 goto install;
1859 return 0;
1861 install:
1862 csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
1863 "installing firmware %u.%u.%u.%u on card.\n",
1864 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1865 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
1866 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1867 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1869 return 1;
1872 static struct fw_info fw_info_array[] = {
1874 .chip = CHELSIO_T5,
1875 .fs_name = FW_CFG_NAME_T5,
1876 .fw_mod_name = FW_FNAME_T5,
1877 .fw_hdr = {
1878 .chip = FW_HDR_CHIP_T5,
1879 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
1880 .intfver_nic = FW_INTFVER(T5, NIC),
1881 .intfver_vnic = FW_INTFVER(T5, VNIC),
1882 .intfver_ri = FW_INTFVER(T5, RI),
1883 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
1884 .intfver_fcoe = FW_INTFVER(T5, FCOE),
1889 static struct fw_info *find_fw_info(int chip)
1891 int i;
1893 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
1894 if (fw_info_array[i].chip == chip)
1895 return &fw_info_array[i];
1897 return NULL;
1900 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
1901 const u8 *fw_data, unsigned int fw_size,
1902 struct fw_hdr *card_fw, enum csio_dev_state state,
1903 int *reset)
1905 int ret, card_fw_usable, fs_fw_usable;
1906 const struct fw_hdr *fs_fw;
1907 const struct fw_hdr *drv_fw;
1909 drv_fw = &fw_info->fw_hdr;
1911 /* Read the header of the firmware on the card */
1912 ret = csio_hw_read_flash(hw, FLASH_FW_START,
1913 sizeof(*card_fw) / sizeof(uint32_t),
1914 (uint32_t *)card_fw, 1);
1915 if (ret == 0) {
1916 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
1917 } else {
1918 csio_err(hw,
1919 "Unable to read card's firmware header: %d\n", ret);
1920 card_fw_usable = 0;
1923 if (fw_data != NULL) {
1924 fs_fw = (const void *)fw_data;
1925 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
1926 } else {
1927 fs_fw = NULL;
1928 fs_fw_usable = 0;
1931 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
1932 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
1933 /* Common case: the firmware on the card is an exact match and
1934 * the filesystem one is an exact match too, or the filesystem
1935 * one is absent/incompatible.
1937 } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
1938 csio_should_install_fs_fw(hw, card_fw_usable,
1939 be32_to_cpu(fs_fw->fw_ver),
1940 be32_to_cpu(card_fw->fw_ver))) {
1941 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
1942 fw_size, 0);
1943 if (ret != 0) {
1944 csio_err(hw,
1945 "failed to install firmware: %d\n", ret);
1946 goto bye;
1949 /* Installed successfully, update the cached header too. */
1950 memcpy(card_fw, fs_fw, sizeof(*card_fw));
1951 card_fw_usable = 1;
1952 *reset = 0; /* already reset as part of load_fw */
1955 if (!card_fw_usable) {
1956 uint32_t d, c, k;
1958 d = be32_to_cpu(drv_fw->fw_ver);
1959 c = be32_to_cpu(card_fw->fw_ver);
1960 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
1962 csio_err(hw, "Cannot find a usable firmware: "
1963 "chip state %d, "
1964 "driver compiled with %d.%d.%d.%d, "
1965 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
1966 state,
1967 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
1968 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
1969 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
1970 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
1971 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
1972 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
1973 ret = EINVAL;
1974 goto bye;
1977 /* We're using whatever's on the card and it's known to be good. */
1978 hw->fwrev = be32_to_cpu(card_fw->fw_ver);
1979 hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
1981 bye:
1982 return ret;
1986 * Returns -EINVAL if attempts to flash the firmware failed
1987 * else returns 0,
1988 * if flashing was not attempted because the card had the
1989 * latest firmware ECANCELED is returned
1991 static int
1992 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
1994 int ret = -ECANCELED;
1995 const struct firmware *fw;
1996 struct fw_info *fw_info;
1997 struct fw_hdr *card_fw;
1998 struct pci_dev *pci_dev = hw->pdev;
1999 struct device *dev = &pci_dev->dev ;
2000 const u8 *fw_data = NULL;
2001 unsigned int fw_size = 0;
2003 /* This is the firmware whose headers the driver was compiled
2004 * against
2006 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2007 if (fw_info == NULL) {
2008 csio_err(hw,
2009 "unable to get firmware info for chip %d.\n",
2010 CHELSIO_CHIP_VERSION(hw->chip_id));
2011 return -EINVAL;
2014 if (request_firmware(&fw, FW_FNAME_T5, dev) < 0) {
2015 csio_err(hw, "could not find firmware image %s, err: %d\n",
2016 FW_FNAME_T5, ret);
2017 } else {
2018 fw_data = fw->data;
2019 fw_size = fw->size;
2022 /* allocate memory to read the header of the firmware on the
2023 * card
2025 card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2027 /* upgrade FW logic */
2028 ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2029 hw->fw_state, reset);
2031 /* Cleaning up */
2032 if (fw != NULL)
2033 release_firmware(fw);
2034 kfree(card_fw);
2035 return ret;
2039 * csio_hw_configure - Configure HW
2040 * @hw - HW module
2043 static void
2044 csio_hw_configure(struct csio_hw *hw)
2046 int reset = 1;
2047 int rv;
2048 u32 param[1];
2050 rv = csio_hw_dev_ready(hw);
2051 if (rv != 0) {
2052 CSIO_INC_STATS(hw, n_err_fatal);
2053 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2054 goto out;
2057 /* HW version */
2058 hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2060 /* Needed for FW download */
2061 rv = csio_hw_get_flash_params(hw);
2062 if (rv != 0) {
2063 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2064 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2065 goto out;
2068 /* Set PCIe completion timeout to 4 seconds */
2069 if (pci_is_pcie(hw->pdev))
2070 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2071 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2073 hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2075 rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2076 if (rv != 0)
2077 goto out;
2079 csio_hw_print_fw_version(hw, "Firmware revision");
2081 rv = csio_do_hello(hw, &hw->fw_state);
2082 if (rv != 0) {
2083 CSIO_INC_STATS(hw, n_err_fatal);
2084 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2085 goto out;
2088 /* Read vpd */
2089 rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2090 if (rv != 0)
2091 goto out;
2093 csio_hw_get_fw_version(hw, &hw->fwrev);
2094 csio_hw_get_tp_version(hw, &hw->tp_vers);
2095 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2097 /* Do firmware update */
2098 spin_unlock_irq(&hw->lock);
2099 rv = csio_hw_flash_fw(hw, &reset);
2100 spin_lock_irq(&hw->lock);
2102 if (rv != 0)
2103 goto out;
2105 /* If the firmware doesn't support Configuration Files,
2106 * return an error.
2108 rv = csio_hw_check_fwconfig(hw, param);
2109 if (rv != 0) {
2110 csio_info(hw, "Firmware doesn't support "
2111 "Firmware Configuration files\n");
2112 goto out;
2115 /* The firmware provides us with a memory buffer where we can
2116 * load a Configuration File from the host if we want to
2117 * override the Configuration File in flash.
2119 rv = csio_hw_use_fwconfig(hw, reset, param);
2120 if (rv == -ENOENT) {
2121 csio_info(hw, "Could not initialize "
2122 "adapter, error%d\n", rv);
2123 goto out;
2125 if (rv != 0) {
2126 csio_info(hw, "Could not initialize "
2127 "adapter, error%d\n", rv);
2128 goto out;
2131 } else {
2132 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2134 hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2136 /* device parameters */
2137 rv = csio_get_device_params(hw);
2138 if (rv != 0)
2139 goto out;
2141 /* Get device capabilities */
2142 rv = csio_config_device_caps(hw);
2143 if (rv != 0)
2144 goto out;
2146 /* Configure SGE */
2147 csio_wr_sge_init(hw);
2149 /* Post event to notify completion of configuration */
2150 csio_post_event(&hw->sm, CSIO_HWE_INIT);
2151 goto out;
2153 } /* if not master */
2155 out:
2156 return;
2160 * csio_hw_initialize - Initialize HW
2161 * @hw - HW module
2164 static void
2165 csio_hw_initialize(struct csio_hw *hw)
2167 struct csio_mb *mbp;
2168 enum fw_retval retval;
2169 int rv;
2170 int i;
2172 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2173 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2174 if (!mbp)
2175 goto out;
2177 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2179 if (csio_mb_issue(hw, mbp)) {
2180 csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2181 goto free_and_out;
2184 retval = csio_mb_fw_retval(mbp);
2185 if (retval != FW_SUCCESS) {
2186 csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2187 retval);
2188 goto free_and_out;
2191 mempool_free(mbp, hw->mb_mempool);
2194 rv = csio_get_fcoe_resinfo(hw);
2195 if (rv != 0) {
2196 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2197 goto out;
2200 spin_unlock_irq(&hw->lock);
2201 rv = csio_config_queues(hw);
2202 spin_lock_irq(&hw->lock);
2204 if (rv != 0) {
2205 csio_err(hw, "Config of queues failed!: %d\n", rv);
2206 goto out;
2209 for (i = 0; i < hw->num_pports; i++)
2210 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2212 if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2213 rv = csio_enable_ports(hw);
2214 if (rv != 0) {
2215 csio_err(hw, "Failed to enable ports: %d\n", rv);
2216 goto out;
2220 csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2221 return;
2223 free_and_out:
2224 mempool_free(mbp, hw->mb_mempool);
2225 out:
2226 return;
2229 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2232 * csio_hw_intr_enable - Enable HW interrupts
2233 * @hw: Pointer to HW module.
2235 * Enable interrupts in HW registers.
2237 static void
2238 csio_hw_intr_enable(struct csio_hw *hw)
2240 uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2241 uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2242 uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2245 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2246 * by FW, so do nothing for INTX.
2248 if (hw->intr_mode == CSIO_IM_MSIX)
2249 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2250 AIVEC_V(AIVEC_M), vec);
2251 else if (hw->intr_mode == CSIO_IM_MSI)
2252 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2253 AIVEC_V(AIVEC_M), 0);
2255 csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2257 /* Turn on MB interrupts - this will internally flush PIO as well */
2258 csio_mb_intr_enable(hw);
2260 /* These are common registers - only a master can modify them */
2261 if (csio_is_hw_master(hw)) {
2263 * Disable the Serial FLASH interrupt, if enabled!
2265 pl &= (~SF_F);
2266 csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2268 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2269 EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2270 ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2271 ERR_DATA_CPL_ON_HIGH_QID1_F |
2272 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2273 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2274 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2275 ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2276 SGE_INT_ENABLE3_A);
2277 csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2280 hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2285 * csio_hw_intr_disable - Disable HW interrupts
2286 * @hw: Pointer to HW module.
2288 * Turn off Mailbox and PCI_PF_CFG interrupts.
2290 void
2291 csio_hw_intr_disable(struct csio_hw *hw)
2293 uint32_t pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2295 if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2296 return;
2298 hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2300 csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2301 if (csio_is_hw_master(hw))
2302 csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2304 /* Turn off MB interrupts */
2305 csio_mb_intr_disable(hw);
2309 void
2310 csio_hw_fatal_err(struct csio_hw *hw)
2312 csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2313 csio_hw_intr_disable(hw);
2315 /* Do not reset HW, we may need FW state for debugging */
2316 csio_fatal(hw, "HW Fatal error encountered!\n");
2319 /*****************************************************************************/
2320 /* START: HW SM */
2321 /*****************************************************************************/
2323 * csio_hws_uninit - Uninit state
2324 * @hw - HW module
2325 * @evt - Event
2328 static void
2329 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2331 hw->prev_evt = hw->cur_evt;
2332 hw->cur_evt = evt;
2333 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2335 switch (evt) {
2336 case CSIO_HWE_CFG:
2337 csio_set_state(&hw->sm, csio_hws_configuring);
2338 csio_hw_configure(hw);
2339 break;
2341 default:
2342 CSIO_INC_STATS(hw, n_evt_unexp);
2343 break;
2348 * csio_hws_configuring - Configuring state
2349 * @hw - HW module
2350 * @evt - Event
2353 static void
2354 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2356 hw->prev_evt = hw->cur_evt;
2357 hw->cur_evt = evt;
2358 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2360 switch (evt) {
2361 case CSIO_HWE_INIT:
2362 csio_set_state(&hw->sm, csio_hws_initializing);
2363 csio_hw_initialize(hw);
2364 break;
2366 case CSIO_HWE_INIT_DONE:
2367 csio_set_state(&hw->sm, csio_hws_ready);
2368 /* Fan out event to all lnode SMs */
2369 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2370 break;
2372 case CSIO_HWE_FATAL:
2373 csio_set_state(&hw->sm, csio_hws_uninit);
2374 break;
2376 case CSIO_HWE_PCI_REMOVE:
2377 csio_do_bye(hw);
2378 break;
2379 default:
2380 CSIO_INC_STATS(hw, n_evt_unexp);
2381 break;
2386 * csio_hws_initializing - Initialiazing state
2387 * @hw - HW module
2388 * @evt - Event
2391 static void
2392 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2394 hw->prev_evt = hw->cur_evt;
2395 hw->cur_evt = evt;
2396 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2398 switch (evt) {
2399 case CSIO_HWE_INIT_DONE:
2400 csio_set_state(&hw->sm, csio_hws_ready);
2402 /* Fan out event to all lnode SMs */
2403 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2405 /* Enable interrupts */
2406 csio_hw_intr_enable(hw);
2407 break;
2409 case CSIO_HWE_FATAL:
2410 csio_set_state(&hw->sm, csio_hws_uninit);
2411 break;
2413 case CSIO_HWE_PCI_REMOVE:
2414 csio_do_bye(hw);
2415 break;
2417 default:
2418 CSIO_INC_STATS(hw, n_evt_unexp);
2419 break;
2424 * csio_hws_ready - Ready state
2425 * @hw - HW module
2426 * @evt - Event
2429 static void
2430 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2432 /* Remember the event */
2433 hw->evtflag = evt;
2435 hw->prev_evt = hw->cur_evt;
2436 hw->cur_evt = evt;
2437 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2439 switch (evt) {
2440 case CSIO_HWE_HBA_RESET:
2441 case CSIO_HWE_FW_DLOAD:
2442 case CSIO_HWE_SUSPEND:
2443 case CSIO_HWE_PCI_REMOVE:
2444 case CSIO_HWE_PCIERR_DETECTED:
2445 csio_set_state(&hw->sm, csio_hws_quiescing);
2446 /* cleanup all outstanding cmds */
2447 if (evt == CSIO_HWE_HBA_RESET ||
2448 evt == CSIO_HWE_PCIERR_DETECTED)
2449 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2450 else
2451 csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2453 csio_hw_intr_disable(hw);
2454 csio_hw_mbm_cleanup(hw);
2455 csio_evtq_stop(hw);
2456 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2457 csio_evtq_flush(hw);
2458 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2459 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2460 break;
2462 case CSIO_HWE_FATAL:
2463 csio_set_state(&hw->sm, csio_hws_uninit);
2464 break;
2466 default:
2467 CSIO_INC_STATS(hw, n_evt_unexp);
2468 break;
2473 * csio_hws_quiescing - Quiescing state
2474 * @hw - HW module
2475 * @evt - Event
2478 static void
2479 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2481 hw->prev_evt = hw->cur_evt;
2482 hw->cur_evt = evt;
2483 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2485 switch (evt) {
2486 case CSIO_HWE_QUIESCED:
2487 switch (hw->evtflag) {
2488 case CSIO_HWE_FW_DLOAD:
2489 csio_set_state(&hw->sm, csio_hws_resetting);
2490 /* Download firmware */
2491 /* Fall through */
2493 case CSIO_HWE_HBA_RESET:
2494 csio_set_state(&hw->sm, csio_hws_resetting);
2495 /* Start reset of the HBA */
2496 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2497 csio_wr_destroy_queues(hw, false);
2498 csio_do_reset(hw, false);
2499 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2500 break;
2502 case CSIO_HWE_PCI_REMOVE:
2503 csio_set_state(&hw->sm, csio_hws_removing);
2504 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2505 csio_wr_destroy_queues(hw, true);
2506 /* Now send the bye command */
2507 csio_do_bye(hw);
2508 break;
2510 case CSIO_HWE_SUSPEND:
2511 csio_set_state(&hw->sm, csio_hws_quiesced);
2512 break;
2514 case CSIO_HWE_PCIERR_DETECTED:
2515 csio_set_state(&hw->sm, csio_hws_pcierr);
2516 csio_wr_destroy_queues(hw, false);
2517 break;
2519 default:
2520 CSIO_INC_STATS(hw, n_evt_unexp);
2521 break;
2524 break;
2526 default:
2527 CSIO_INC_STATS(hw, n_evt_unexp);
2528 break;
2533 * csio_hws_quiesced - Quiesced state
2534 * @hw - HW module
2535 * @evt - Event
2538 static void
2539 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2541 hw->prev_evt = hw->cur_evt;
2542 hw->cur_evt = evt;
2543 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2545 switch (evt) {
2546 case CSIO_HWE_RESUME:
2547 csio_set_state(&hw->sm, csio_hws_configuring);
2548 csio_hw_configure(hw);
2549 break;
2551 default:
2552 CSIO_INC_STATS(hw, n_evt_unexp);
2553 break;
2558 * csio_hws_resetting - HW Resetting state
2559 * @hw - HW module
2560 * @evt - Event
2563 static void
2564 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2566 hw->prev_evt = hw->cur_evt;
2567 hw->cur_evt = evt;
2568 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2570 switch (evt) {
2571 case CSIO_HWE_HBA_RESET_DONE:
2572 csio_evtq_start(hw);
2573 csio_set_state(&hw->sm, csio_hws_configuring);
2574 csio_hw_configure(hw);
2575 break;
2577 default:
2578 CSIO_INC_STATS(hw, n_evt_unexp);
2579 break;
2584 * csio_hws_removing - PCI Hotplug removing state
2585 * @hw - HW module
2586 * @evt - Event
2589 static void
2590 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2592 hw->prev_evt = hw->cur_evt;
2593 hw->cur_evt = evt;
2594 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2596 switch (evt) {
2597 case CSIO_HWE_HBA_RESET:
2598 if (!csio_is_hw_master(hw))
2599 break;
2601 * The BYE should have alerady been issued, so we cant
2602 * use the mailbox interface. Hence we use the PL_RST
2603 * register directly.
2605 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2606 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2607 mdelay(2000);
2608 break;
2610 /* Should never receive any new events */
2611 default:
2612 CSIO_INC_STATS(hw, n_evt_unexp);
2613 break;
2619 * csio_hws_pcierr - PCI Error state
2620 * @hw - HW module
2621 * @evt - Event
2624 static void
2625 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2627 hw->prev_evt = hw->cur_evt;
2628 hw->cur_evt = evt;
2629 CSIO_INC_STATS(hw, n_evt_sm[evt]);
2631 switch (evt) {
2632 case CSIO_HWE_PCIERR_SLOT_RESET:
2633 csio_evtq_start(hw);
2634 csio_set_state(&hw->sm, csio_hws_configuring);
2635 csio_hw_configure(hw);
2636 break;
2638 default:
2639 CSIO_INC_STATS(hw, n_evt_unexp);
2640 break;
2644 /*****************************************************************************/
2645 /* END: HW SM */
2646 /*****************************************************************************/
2649 * csio_handle_intr_status - table driven interrupt handler
2650 * @hw: HW instance
2651 * @reg: the interrupt status register to process
2652 * @acts: table of interrupt actions
2654 * A table driven interrupt handler that applies a set of masks to an
2655 * interrupt status word and performs the corresponding actions if the
2656 * interrupts described by the mask have occured. The actions include
2657 * optionally emitting a warning or alert message. The table is terminated
2658 * by an entry specifying mask 0. Returns the number of fatal interrupt
2659 * conditions.
2662 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2663 const struct intr_info *acts)
2665 int fatal = 0;
2666 unsigned int mask = 0;
2667 unsigned int status = csio_rd_reg32(hw, reg);
2669 for ( ; acts->mask; ++acts) {
2670 if (!(status & acts->mask))
2671 continue;
2672 if (acts->fatal) {
2673 fatal++;
2674 csio_fatal(hw, "Fatal %s (0x%x)\n",
2675 acts->msg, status & acts->mask);
2676 } else if (acts->msg)
2677 csio_info(hw, "%s (0x%x)\n",
2678 acts->msg, status & acts->mask);
2679 mask |= acts->mask;
2681 status &= mask;
2682 if (status) /* clear processed interrupts */
2683 csio_wr_reg32(hw, status, reg);
2684 return fatal;
2688 * TP interrupt handler.
2690 static void csio_tp_intr_handler(struct csio_hw *hw)
2692 static struct intr_info tp_intr_info[] = {
2693 { 0x3fffffff, "TP parity error", -1, 1 },
2694 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
2695 { 0, NULL, 0, 0 }
2698 if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
2699 csio_hw_fatal_err(hw);
2703 * SGE interrupt handler.
2705 static void csio_sge_intr_handler(struct csio_hw *hw)
2707 uint64_t v;
2709 static struct intr_info sge_intr_info[] = {
2710 { ERR_CPL_EXCEED_IQE_SIZE_F,
2711 "SGE received CPL exceeding IQE size", -1, 1 },
2712 { ERR_INVALID_CIDX_INC_F,
2713 "SGE GTS CIDX increment too large", -1, 0 },
2714 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
2715 { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
2716 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
2717 "SGE IQID > 1023 received CPL for FL", -1, 0 },
2718 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
2719 0 },
2720 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
2721 0 },
2722 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
2723 0 },
2724 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
2725 0 },
2726 { ERR_ING_CTXT_PRIO_F,
2727 "SGE too many priority ingress contexts", -1, 0 },
2728 { ERR_EGR_CTXT_PRIO_F,
2729 "SGE too many priority egress contexts", -1, 0 },
2730 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
2731 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
2732 { 0, NULL, 0, 0 }
2735 v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
2736 ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
2737 if (v) {
2738 csio_fatal(hw, "SGE parity error (%#llx)\n",
2739 (unsigned long long)v);
2740 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
2741 SGE_INT_CAUSE1_A);
2742 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
2745 v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
2747 if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
2748 v != 0)
2749 csio_hw_fatal_err(hw);
2752 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
2753 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
2754 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
2755 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
2758 * CIM interrupt handler.
2760 static void csio_cim_intr_handler(struct csio_hw *hw)
2762 static struct intr_info cim_intr_info[] = {
2763 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
2764 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2765 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2766 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
2767 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
2768 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
2769 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
2770 { 0, NULL, 0, 0 }
2772 static struct intr_info cim_upintr_info[] = {
2773 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
2774 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
2775 { ILLWRINT_F, "CIM illegal write", -1, 1 },
2776 { ILLRDINT_F, "CIM illegal read", -1, 1 },
2777 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
2778 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
2779 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
2780 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
2781 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
2782 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
2783 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
2784 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
2785 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
2786 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
2787 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
2788 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
2789 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
2790 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
2791 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
2792 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
2793 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
2794 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
2795 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
2796 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
2797 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
2798 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
2799 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
2800 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
2801 { 0, NULL, 0, 0 }
2804 int fat;
2806 fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
2807 cim_intr_info) +
2808 csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
2809 cim_upintr_info);
2810 if (fat)
2811 csio_hw_fatal_err(hw);
2815 * ULP RX interrupt handler.
2817 static void csio_ulprx_intr_handler(struct csio_hw *hw)
2819 static struct intr_info ulprx_intr_info[] = {
2820 { 0x1800000, "ULPRX context error", -1, 1 },
2821 { 0x7fffff, "ULPRX parity error", -1, 1 },
2822 { 0, NULL, 0, 0 }
2825 if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
2826 csio_hw_fatal_err(hw);
2830 * ULP TX interrupt handler.
2832 static void csio_ulptx_intr_handler(struct csio_hw *hw)
2834 static struct intr_info ulptx_intr_info[] = {
2835 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
2836 0 },
2837 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
2838 0 },
2839 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
2840 0 },
2841 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
2842 0 },
2843 { 0xfffffff, "ULPTX parity error", -1, 1 },
2844 { 0, NULL, 0, 0 }
2847 if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
2848 csio_hw_fatal_err(hw);
2852 * PM TX interrupt handler.
2854 static void csio_pmtx_intr_handler(struct csio_hw *hw)
2856 static struct intr_info pmtx_intr_info[] = {
2857 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
2858 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
2859 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
2860 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
2861 { 0xffffff0, "PMTX framing error", -1, 1 },
2862 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
2863 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
2864 1 },
2865 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
2866 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
2867 { 0, NULL, 0, 0 }
2870 if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
2871 csio_hw_fatal_err(hw);
2875 * PM RX interrupt handler.
2877 static void csio_pmrx_intr_handler(struct csio_hw *hw)
2879 static struct intr_info pmrx_intr_info[] = {
2880 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
2881 { 0x3ffff0, "PMRX framing error", -1, 1 },
2882 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
2883 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
2884 1 },
2885 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
2886 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
2887 { 0, NULL, 0, 0 }
2890 if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
2891 csio_hw_fatal_err(hw);
2895 * CPL switch interrupt handler.
2897 static void csio_cplsw_intr_handler(struct csio_hw *hw)
2899 static struct intr_info cplsw_intr_info[] = {
2900 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
2901 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
2902 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
2903 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
2904 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
2905 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
2906 { 0, NULL, 0, 0 }
2909 if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
2910 csio_hw_fatal_err(hw);
2914 * LE interrupt handler.
2916 static void csio_le_intr_handler(struct csio_hw *hw)
2918 static struct intr_info le_intr_info[] = {
2919 { LIPMISS_F, "LE LIP miss", -1, 0 },
2920 { LIP0_F, "LE 0 LIP error", -1, 0 },
2921 { PARITYERR_F, "LE parity error", -1, 1 },
2922 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
2923 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
2924 { 0, NULL, 0, 0 }
2927 if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A, le_intr_info))
2928 csio_hw_fatal_err(hw);
2932 * MPS interrupt handler.
2934 static void csio_mps_intr_handler(struct csio_hw *hw)
2936 static struct intr_info mps_rx_intr_info[] = {
2937 { 0xffffff, "MPS Rx parity error", -1, 1 },
2938 { 0, NULL, 0, 0 }
2940 static struct intr_info mps_tx_intr_info[] = {
2941 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
2942 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2943 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
2944 -1, 1 },
2945 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
2946 -1, 1 },
2947 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
2948 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
2949 { FRMERR_F, "MPS Tx framing error", -1, 1 },
2950 { 0, NULL, 0, 0 }
2952 static struct intr_info mps_trc_intr_info[] = {
2953 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
2954 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
2955 -1, 1 },
2956 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
2957 { 0, NULL, 0, 0 }
2959 static struct intr_info mps_stat_sram_intr_info[] = {
2960 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2961 { 0, NULL, 0, 0 }
2963 static struct intr_info mps_stat_tx_intr_info[] = {
2964 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2965 { 0, NULL, 0, 0 }
2967 static struct intr_info mps_stat_rx_intr_info[] = {
2968 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2969 { 0, NULL, 0, 0 }
2971 static struct intr_info mps_cls_intr_info[] = {
2972 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
2973 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
2974 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
2975 { 0, NULL, 0, 0 }
2978 int fat;
2980 fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
2981 mps_rx_intr_info) +
2982 csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
2983 mps_tx_intr_info) +
2984 csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
2985 mps_trc_intr_info) +
2986 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
2987 mps_stat_sram_intr_info) +
2988 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
2989 mps_stat_tx_intr_info) +
2990 csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
2991 mps_stat_rx_intr_info) +
2992 csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
2993 mps_cls_intr_info);
2995 csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
2996 csio_rd_reg32(hw, MPS_INT_CAUSE_A); /* flush */
2997 if (fat)
2998 csio_hw_fatal_err(hw);
3001 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3002 ECC_UE_INT_CAUSE_F)
3005 * EDC/MC interrupt handler.
3007 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3009 static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3011 unsigned int addr, cnt_addr, v;
3013 if (idx <= MEM_EDC1) {
3014 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3015 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3016 } else {
3017 addr = MC_INT_CAUSE_A;
3018 cnt_addr = MC_ECC_STATUS_A;
3021 v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3022 if (v & PERR_INT_CAUSE_F)
3023 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3024 if (v & ECC_CE_INT_CAUSE_F) {
3025 uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3027 csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3028 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3029 cnt, name[idx], cnt > 1 ? "s" : "");
3031 if (v & ECC_UE_INT_CAUSE_F)
3032 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3034 csio_wr_reg32(hw, v, addr);
3035 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3036 csio_hw_fatal_err(hw);
3040 * MA interrupt handler.
3042 static void csio_ma_intr_handler(struct csio_hw *hw)
3044 uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3046 if (status & MEM_PERR_INT_CAUSE_F)
3047 csio_fatal(hw, "MA parity error, parity status %#x\n",
3048 csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3049 if (status & MEM_WRAP_INT_CAUSE_F) {
3050 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3051 csio_fatal(hw,
3052 "MA address wrap-around error by client %u to address %#x\n",
3053 MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3055 csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3056 csio_hw_fatal_err(hw);
3060 * SMB interrupt handler.
3062 static void csio_smb_intr_handler(struct csio_hw *hw)
3064 static struct intr_info smb_intr_info[] = {
3065 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3066 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3067 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3068 { 0, NULL, 0, 0 }
3071 if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3072 csio_hw_fatal_err(hw);
3076 * NC-SI interrupt handler.
3078 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3080 static struct intr_info ncsi_intr_info[] = {
3081 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3082 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3083 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3084 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3085 { 0, NULL, 0, 0 }
3088 if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3089 csio_hw_fatal_err(hw);
3093 * XGMAC interrupt handler.
3095 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3097 uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3099 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3100 if (!v)
3101 return;
3103 if (v & TXFIFO_PRTY_ERR_F)
3104 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3105 if (v & RXFIFO_PRTY_ERR_F)
3106 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3107 csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3108 csio_hw_fatal_err(hw);
3112 * PL interrupt handler.
3114 static void csio_pl_intr_handler(struct csio_hw *hw)
3116 static struct intr_info pl_intr_info[] = {
3117 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3118 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3119 { 0, NULL, 0, 0 }
3122 if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3123 csio_hw_fatal_err(hw);
3127 * csio_hw_slow_intr_handler - control path interrupt handler
3128 * @hw: HW module
3130 * Interrupt handler for non-data global interrupt events, e.g., errors.
3131 * The designation 'slow' is because it involves register reads, while
3132 * data interrupts typically don't involve any MMIOs.
3135 csio_hw_slow_intr_handler(struct csio_hw *hw)
3137 uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3139 if (!(cause & CSIO_GLBL_INTR_MASK)) {
3140 CSIO_INC_STATS(hw, n_plint_unexp);
3141 return 0;
3144 csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3146 CSIO_INC_STATS(hw, n_plint_cnt);
3148 if (cause & CIM_F)
3149 csio_cim_intr_handler(hw);
3151 if (cause & MPS_F)
3152 csio_mps_intr_handler(hw);
3154 if (cause & NCSI_F)
3155 csio_ncsi_intr_handler(hw);
3157 if (cause & PL_F)
3158 csio_pl_intr_handler(hw);
3160 if (cause & SMB_F)
3161 csio_smb_intr_handler(hw);
3163 if (cause & XGMAC0_F)
3164 csio_xgmac_intr_handler(hw, 0);
3166 if (cause & XGMAC1_F)
3167 csio_xgmac_intr_handler(hw, 1);
3169 if (cause & XGMAC_KR0_F)
3170 csio_xgmac_intr_handler(hw, 2);
3172 if (cause & XGMAC_KR1_F)
3173 csio_xgmac_intr_handler(hw, 3);
3175 if (cause & PCIE_F)
3176 hw->chip_ops->chip_pcie_intr_handler(hw);
3178 if (cause & MC_F)
3179 csio_mem_intr_handler(hw, MEM_MC);
3181 if (cause & EDC0_F)
3182 csio_mem_intr_handler(hw, MEM_EDC0);
3184 if (cause & EDC1_F)
3185 csio_mem_intr_handler(hw, MEM_EDC1);
3187 if (cause & LE_F)
3188 csio_le_intr_handler(hw);
3190 if (cause & TP_F)
3191 csio_tp_intr_handler(hw);
3193 if (cause & MA_F)
3194 csio_ma_intr_handler(hw);
3196 if (cause & PM_TX_F)
3197 csio_pmtx_intr_handler(hw);
3199 if (cause & PM_RX_F)
3200 csio_pmrx_intr_handler(hw);
3202 if (cause & ULP_RX_F)
3203 csio_ulprx_intr_handler(hw);
3205 if (cause & CPL_SWITCH_F)
3206 csio_cplsw_intr_handler(hw);
3208 if (cause & SGE_F)
3209 csio_sge_intr_handler(hw);
3211 if (cause & ULP_TX_F)
3212 csio_ulptx_intr_handler(hw);
3214 /* Clear the interrupts just processed for which we are the master. */
3215 csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3216 csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3218 return 1;
3221 /*****************************************************************************
3222 * HW <--> mailbox interfacing routines.
3223 ****************************************************************************/
3225 * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3227 * @data: Private data pointer.
3229 * Called from worker thread context.
3231 static void
3232 csio_mberr_worker(void *data)
3234 struct csio_hw *hw = (struct csio_hw *)data;
3235 struct csio_mbm *mbm = &hw->mbm;
3236 LIST_HEAD(cbfn_q);
3237 struct csio_mb *mbp_next;
3238 int rv;
3240 del_timer_sync(&mbm->timer);
3242 spin_lock_irq(&hw->lock);
3243 if (list_empty(&mbm->cbfn_q)) {
3244 spin_unlock_irq(&hw->lock);
3245 return;
3248 list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3249 mbm->stats.n_cbfnq = 0;
3251 /* Try to start waiting mailboxes */
3252 if (!list_empty(&mbm->req_q)) {
3253 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3254 list_del_init(&mbp_next->list);
3256 rv = csio_mb_issue(hw, mbp_next);
3257 if (rv != 0)
3258 list_add_tail(&mbp_next->list, &mbm->req_q);
3259 else
3260 CSIO_DEC_STATS(mbm, n_activeq);
3262 spin_unlock_irq(&hw->lock);
3264 /* Now callback completions */
3265 csio_mb_completions(hw, &cbfn_q);
3269 * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3271 * @data: private data pointer
3274 static void
3275 csio_hw_mb_timer(uintptr_t data)
3277 struct csio_hw *hw = (struct csio_hw *)data;
3278 struct csio_mb *mbp = NULL;
3280 spin_lock_irq(&hw->lock);
3281 mbp = csio_mb_tmo_handler(hw);
3282 spin_unlock_irq(&hw->lock);
3284 /* Call back the function for the timed-out Mailbox */
3285 if (mbp)
3286 mbp->mb_cbfn(hw, mbp);
3291 * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3292 * @hw: HW module
3294 * Called with lock held, should exit with lock held.
3295 * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3296 * into a local queue. Drops lock and calls the completions. Holds
3297 * lock and returns.
3299 static void
3300 csio_hw_mbm_cleanup(struct csio_hw *hw)
3302 LIST_HEAD(cbfn_q);
3304 csio_mb_cancel_all(hw, &cbfn_q);
3306 spin_unlock_irq(&hw->lock);
3307 csio_mb_completions(hw, &cbfn_q);
3308 spin_lock_irq(&hw->lock);
3311 /*****************************************************************************
3312 * Event handling
3313 ****************************************************************************/
3315 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3316 uint16_t len)
3318 struct csio_evt_msg *evt_entry = NULL;
3320 if (type >= CSIO_EVT_MAX)
3321 return -EINVAL;
3323 if (len > CSIO_EVT_MSG_SIZE)
3324 return -EINVAL;
3326 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3327 return -EINVAL;
3329 if (list_empty(&hw->evt_free_q)) {
3330 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3331 type, len);
3332 return -ENOMEM;
3335 evt_entry = list_first_entry(&hw->evt_free_q,
3336 struct csio_evt_msg, list);
3337 list_del_init(&evt_entry->list);
3339 /* copy event msg and queue the event */
3340 evt_entry->type = type;
3341 memcpy((void *)evt_entry->data, evt_msg, len);
3342 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3344 CSIO_DEC_STATS(hw, n_evt_freeq);
3345 CSIO_INC_STATS(hw, n_evt_activeq);
3347 return 0;
3350 static int
3351 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3352 uint16_t len, bool msg_sg)
3354 struct csio_evt_msg *evt_entry = NULL;
3355 struct csio_fl_dma_buf *fl_sg;
3356 uint32_t off = 0;
3357 unsigned long flags;
3358 int n, ret = 0;
3360 if (type >= CSIO_EVT_MAX)
3361 return -EINVAL;
3363 if (len > CSIO_EVT_MSG_SIZE)
3364 return -EINVAL;
3366 spin_lock_irqsave(&hw->lock, flags);
3367 if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3368 ret = -EINVAL;
3369 goto out;
3372 if (list_empty(&hw->evt_free_q)) {
3373 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3374 type, len);
3375 ret = -ENOMEM;
3376 goto out;
3379 evt_entry = list_first_entry(&hw->evt_free_q,
3380 struct csio_evt_msg, list);
3381 list_del_init(&evt_entry->list);
3383 /* copy event msg and queue the event */
3384 evt_entry->type = type;
3386 /* If Payload in SG list*/
3387 if (msg_sg) {
3388 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3389 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3390 memcpy((void *)((uintptr_t)evt_entry->data + off),
3391 fl_sg->flbufs[n].vaddr,
3392 fl_sg->flbufs[n].len);
3393 off += fl_sg->flbufs[n].len;
3395 } else
3396 memcpy((void *)evt_entry->data, evt_msg, len);
3398 list_add_tail(&evt_entry->list, &hw->evt_active_q);
3399 CSIO_DEC_STATS(hw, n_evt_freeq);
3400 CSIO_INC_STATS(hw, n_evt_activeq);
3401 out:
3402 spin_unlock_irqrestore(&hw->lock, flags);
3403 return ret;
3406 static void
3407 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3409 if (evt_entry) {
3410 spin_lock_irq(&hw->lock);
3411 list_del_init(&evt_entry->list);
3412 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3413 CSIO_DEC_STATS(hw, n_evt_activeq);
3414 CSIO_INC_STATS(hw, n_evt_freeq);
3415 spin_unlock_irq(&hw->lock);
3419 void
3420 csio_evtq_flush(struct csio_hw *hw)
3422 uint32_t count;
3423 count = 30;
3424 while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3425 spin_unlock_irq(&hw->lock);
3426 msleep(2000);
3427 spin_lock_irq(&hw->lock);
3430 CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3433 static void
3434 csio_evtq_stop(struct csio_hw *hw)
3436 hw->flags |= CSIO_HWF_FWEVT_STOP;
3439 static void
3440 csio_evtq_start(struct csio_hw *hw)
3442 hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3445 static void
3446 csio_evtq_cleanup(struct csio_hw *hw)
3448 struct list_head *evt_entry, *next_entry;
3450 /* Release outstanding events from activeq to freeq*/
3451 if (!list_empty(&hw->evt_active_q))
3452 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3454 hw->stats.n_evt_activeq = 0;
3455 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3457 /* Freeup event entry */
3458 list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3459 kfree(evt_entry);
3460 CSIO_DEC_STATS(hw, n_evt_freeq);
3463 hw->stats.n_evt_freeq = 0;
3467 static void
3468 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3469 struct csio_fl_dma_buf *flb, void *priv)
3471 __u8 op;
3472 void *msg = NULL;
3473 uint32_t msg_len = 0;
3474 bool msg_sg = 0;
3476 op = ((struct rss_header *) wr)->opcode;
3477 if (op == CPL_FW6_PLD) {
3478 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3479 if (!flb || !flb->totlen) {
3480 CSIO_INC_STATS(hw, n_cpl_unexp);
3481 return;
3484 msg = (void *) flb;
3485 msg_len = flb->totlen;
3486 msg_sg = 1;
3487 } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3489 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3490 /* skip RSS header */
3491 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3492 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3493 sizeof(struct cpl_fw4_msg);
3494 } else {
3495 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3496 CSIO_INC_STATS(hw, n_cpl_unexp);
3497 return;
3501 * Enqueue event to EventQ. Events processing happens
3502 * in Event worker thread context
3504 if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3505 (uint16_t)msg_len, msg_sg))
3506 CSIO_INC_STATS(hw, n_evt_drop);
3509 void
3510 csio_evtq_worker(struct work_struct *work)
3512 struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3513 struct list_head *evt_entry, *next_entry;
3514 LIST_HEAD(evt_q);
3515 struct csio_evt_msg *evt_msg;
3516 struct cpl_fw6_msg *msg;
3517 struct csio_rnode *rn;
3518 int rv = 0;
3519 uint8_t evtq_stop = 0;
3521 csio_dbg(hw, "event worker thread active evts#%d\n",
3522 hw->stats.n_evt_activeq);
3524 spin_lock_irq(&hw->lock);
3525 while (!list_empty(&hw->evt_active_q)) {
3526 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3527 spin_unlock_irq(&hw->lock);
3529 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3530 evt_msg = (struct csio_evt_msg *) evt_entry;
3532 /* Drop events if queue is STOPPED */
3533 spin_lock_irq(&hw->lock);
3534 if (hw->flags & CSIO_HWF_FWEVT_STOP)
3535 evtq_stop = 1;
3536 spin_unlock_irq(&hw->lock);
3537 if (evtq_stop) {
3538 CSIO_INC_STATS(hw, n_evt_drop);
3539 goto free_evt;
3542 switch (evt_msg->type) {
3543 case CSIO_EVT_FW:
3544 msg = (struct cpl_fw6_msg *)(evt_msg->data);
3546 if ((msg->opcode == CPL_FW6_MSG ||
3547 msg->opcode == CPL_FW4_MSG) &&
3548 !msg->type) {
3549 rv = csio_mb_fwevt_handler(hw,
3550 msg->data);
3551 if (!rv)
3552 break;
3553 /* Handle any remaining fw events */
3554 csio_fcoe_fwevt_handler(hw,
3555 msg->opcode, msg->data);
3556 } else if (msg->opcode == CPL_FW6_PLD) {
3558 csio_fcoe_fwevt_handler(hw,
3559 msg->opcode, msg->data);
3560 } else {
3561 csio_warn(hw,
3562 "Unhandled FW msg op %x type %x\n",
3563 msg->opcode, msg->type);
3564 CSIO_INC_STATS(hw, n_evt_drop);
3566 break;
3568 case CSIO_EVT_MBX:
3569 csio_mberr_worker(hw);
3570 break;
3572 case CSIO_EVT_DEV_LOSS:
3573 memcpy(&rn, evt_msg->data, sizeof(rn));
3574 csio_rnode_devloss_handler(rn);
3575 break;
3577 default:
3578 csio_warn(hw, "Unhandled event %x on evtq\n",
3579 evt_msg->type);
3580 CSIO_INC_STATS(hw, n_evt_unexp);
3581 break;
3583 free_evt:
3584 csio_free_evt(hw, evt_msg);
3587 spin_lock_irq(&hw->lock);
3589 hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3590 spin_unlock_irq(&hw->lock);
3594 csio_fwevtq_handler(struct csio_hw *hw)
3596 int rv;
3598 if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3599 CSIO_INC_STATS(hw, n_int_stray);
3600 return -EINVAL;
3603 rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3604 csio_process_fwevtq_entry, NULL);
3605 return rv;
3608 /****************************************************************************
3609 * Entry points
3610 ****************************************************************************/
3612 /* Management module */
3614 * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3615 * mgmt - mgmt module
3616 * @io_req - io request
3618 * Return - 0:if given IO Req exists in active Q.
3619 * -EINVAL :if lookup fails.
3622 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3624 struct list_head *tmp;
3626 /* Lookup ioreq in the ACTIVEQ */
3627 list_for_each(tmp, &mgmtm->active_q) {
3628 if (io_req == (struct csio_ioreq *)tmp)
3629 return 0;
3631 return -EINVAL;
3634 #define ECM_MIN_TMO 1000 /* Minimum timeout value for req */
3637 * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3638 * @data - Event data.
3640 * Return - none.
3642 static void
3643 csio_mgmt_tmo_handler(uintptr_t data)
3645 struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
3646 struct list_head *tmp;
3647 struct csio_ioreq *io_req;
3649 csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3651 spin_lock_irq(&mgmtm->hw->lock);
3653 list_for_each(tmp, &mgmtm->active_q) {
3654 io_req = (struct csio_ioreq *) tmp;
3655 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3657 if (!io_req->tmo) {
3658 /* Dequeue the request from retry Q. */
3659 tmp = csio_list_prev(tmp);
3660 list_del_init(&io_req->sm.sm_list);
3661 if (io_req->io_cbfn) {
3662 /* io_req will be freed by completion handler */
3663 io_req->wr_status = -ETIMEDOUT;
3664 io_req->io_cbfn(mgmtm->hw, io_req);
3665 } else {
3666 CSIO_DB_ASSERT(0);
3671 /* If retry queue is not empty, re-arm timer */
3672 if (!list_empty(&mgmtm->active_q))
3673 mod_timer(&mgmtm->mgmt_timer,
3674 jiffies + msecs_to_jiffies(ECM_MIN_TMO));
3675 spin_unlock_irq(&mgmtm->hw->lock);
3678 static void
3679 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
3681 struct csio_hw *hw = mgmtm->hw;
3682 struct csio_ioreq *io_req;
3683 struct list_head *tmp;
3684 uint32_t count;
3686 count = 30;
3687 /* Wait for all outstanding req to complete gracefully */
3688 while ((!list_empty(&mgmtm->active_q)) && count--) {
3689 spin_unlock_irq(&hw->lock);
3690 msleep(2000);
3691 spin_lock_irq(&hw->lock);
3694 /* release outstanding req from ACTIVEQ */
3695 list_for_each(tmp, &mgmtm->active_q) {
3696 io_req = (struct csio_ioreq *) tmp;
3697 tmp = csio_list_prev(tmp);
3698 list_del_init(&io_req->sm.sm_list);
3699 mgmtm->stats.n_active--;
3700 if (io_req->io_cbfn) {
3701 /* io_req will be freed by completion handler */
3702 io_req->wr_status = -ETIMEDOUT;
3703 io_req->io_cbfn(mgmtm->hw, io_req);
3709 * csio_mgmt_init - Mgmt module init entry point
3710 * @mgmtsm - mgmt module
3711 * @hw - HW module
3713 * Initialize mgmt timer, resource wait queue, active queue,
3714 * completion q. Allocate Egress and Ingress
3715 * WR queues and save off the queue index returned by the WR
3716 * module for future use. Allocate and save off mgmt reqs in the
3717 * mgmt_req_freelist for future use. Make sure their SM is initialized
3718 * to uninit state.
3719 * Returns: 0 - on success
3720 * -ENOMEM - on error.
3722 static int
3723 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
3725 struct timer_list *timer = &mgmtm->mgmt_timer;
3727 init_timer(timer);
3728 timer->function = csio_mgmt_tmo_handler;
3729 timer->data = (unsigned long)mgmtm;
3731 INIT_LIST_HEAD(&mgmtm->active_q);
3732 INIT_LIST_HEAD(&mgmtm->cbfn_q);
3734 mgmtm->hw = hw;
3735 /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
3737 return 0;
3741 * csio_mgmtm_exit - MGMT module exit entry point
3742 * @mgmtsm - mgmt module
3744 * This function called during MGMT module uninit.
3745 * Stop timers, free ioreqs allocated.
3746 * Returns: None
3749 static void
3750 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
3752 del_timer_sync(&mgmtm->mgmt_timer);
3757 * csio_hw_start - Kicks off the HW State machine
3758 * @hw: Pointer to HW module.
3760 * It is assumed that the initialization is a synchronous operation.
3761 * So when we return afer posting the event, the HW SM should be in
3762 * the ready state, if there were no errors during init.
3765 csio_hw_start(struct csio_hw *hw)
3767 spin_lock_irq(&hw->lock);
3768 csio_post_event(&hw->sm, CSIO_HWE_CFG);
3769 spin_unlock_irq(&hw->lock);
3771 if (csio_is_hw_ready(hw))
3772 return 0;
3773 else
3774 return -EINVAL;
3778 csio_hw_stop(struct csio_hw *hw)
3780 csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
3782 if (csio_is_hw_removing(hw))
3783 return 0;
3784 else
3785 return -EINVAL;
3788 /* Max reset retries */
3789 #define CSIO_MAX_RESET_RETRIES 3
3792 * csio_hw_reset - Reset the hardware
3793 * @hw: HW module.
3795 * Caller should hold lock across this function.
3798 csio_hw_reset(struct csio_hw *hw)
3800 if (!csio_is_hw_master(hw))
3801 return -EPERM;
3803 if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
3804 csio_dbg(hw, "Max hw reset attempts reached..");
3805 return -EINVAL;
3808 hw->rst_retries++;
3809 csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
3811 if (csio_is_hw_ready(hw)) {
3812 hw->rst_retries = 0;
3813 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
3814 return 0;
3815 } else
3816 return -EINVAL;
3820 * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
3821 * @hw: HW module.
3823 static void
3824 csio_hw_get_device_id(struct csio_hw *hw)
3826 /* Is the adapter device id cached already ?*/
3827 if (csio_is_dev_id_cached(hw))
3828 return;
3830 /* Get the PCI vendor & device id */
3831 pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
3832 &hw->params.pci.vendor_id);
3833 pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
3834 &hw->params.pci.device_id);
3836 csio_dev_id_cached(hw);
3837 hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
3839 } /* csio_hw_get_device_id */
3842 * csio_hw_set_description - Set the model, description of the hw.
3843 * @hw: HW module.
3844 * @ven_id: PCI Vendor ID
3845 * @dev_id: PCI Device ID
3847 static void
3848 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
3850 uint32_t adap_type, prot_type;
3852 if (ven_id == CSIO_VENDOR_ID) {
3853 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
3854 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
3856 if (prot_type == CSIO_T5_FCOE_ASIC) {
3857 memcpy(hw->hw_ver,
3858 csio_t5_fcoe_adapters[adap_type].model_no, 16);
3859 memcpy(hw->model_desc,
3860 csio_t5_fcoe_adapters[adap_type].description,
3861 32);
3862 } else {
3863 char tempName[32] = "Chelsio FCoE Controller";
3864 memcpy(hw->model_desc, tempName, 32);
3867 } /* csio_hw_set_description */
3870 * csio_hw_init - Initialize HW module.
3871 * @hw: Pointer to HW module.
3873 * Initialize the members of the HW module.
3876 csio_hw_init(struct csio_hw *hw)
3878 int rv = -EINVAL;
3879 uint32_t i;
3880 uint16_t ven_id, dev_id;
3881 struct csio_evt_msg *evt_entry;
3883 INIT_LIST_HEAD(&hw->sm.sm_list);
3884 csio_init_state(&hw->sm, csio_hws_uninit);
3885 spin_lock_init(&hw->lock);
3886 INIT_LIST_HEAD(&hw->sln_head);
3888 /* Get the PCI vendor & device id */
3889 csio_hw_get_device_id(hw);
3891 strcpy(hw->name, CSIO_HW_NAME);
3893 /* Initialize the HW chip ops T5 specific ops */
3894 hw->chip_ops = &t5_ops;
3896 /* Set the model & its description */
3898 ven_id = hw->params.pci.vendor_id;
3899 dev_id = hw->params.pci.device_id;
3901 csio_hw_set_description(hw, ven_id, dev_id);
3903 /* Initialize default log level */
3904 hw->params.log_level = (uint32_t) csio_dbg_level;
3906 csio_set_fwevt_intr_idx(hw, -1);
3907 csio_set_nondata_intr_idx(hw, -1);
3909 /* Init all the modules: Mailbox, WorkRequest and Transport */
3910 if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
3911 goto err;
3913 rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
3914 if (rv)
3915 goto err_mbm_exit;
3917 rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
3918 if (rv)
3919 goto err_wrm_exit;
3921 rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
3922 if (rv)
3923 goto err_scsim_exit;
3924 /* Pre-allocate evtq and initialize them */
3925 INIT_LIST_HEAD(&hw->evt_active_q);
3926 INIT_LIST_HEAD(&hw->evt_free_q);
3927 for (i = 0; i < csio_evtq_sz; i++) {
3929 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
3930 if (!evt_entry) {
3931 rv = -ENOMEM;
3932 csio_err(hw, "Failed to initialize eventq");
3933 goto err_evtq_cleanup;
3936 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3937 CSIO_INC_STATS(hw, n_evt_freeq);
3940 hw->dev_num = dev_num;
3941 dev_num++;
3943 return 0;
3945 err_evtq_cleanup:
3946 csio_evtq_cleanup(hw);
3947 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3948 err_scsim_exit:
3949 csio_scsim_exit(csio_hw_to_scsim(hw));
3950 err_wrm_exit:
3951 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3952 err_mbm_exit:
3953 csio_mbm_exit(csio_hw_to_mbm(hw));
3954 err:
3955 return rv;
3959 * csio_hw_exit - Un-initialize HW module.
3960 * @hw: Pointer to HW module.
3963 void
3964 csio_hw_exit(struct csio_hw *hw)
3966 csio_evtq_cleanup(hw);
3967 csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
3968 csio_scsim_exit(csio_hw_to_scsim(hw));
3969 csio_wrm_exit(csio_hw_to_wrm(hw), hw);
3970 csio_mbm_exit(csio_hw_to_mbm(hw));