USB: core: be specific about attribute permissions
[linux/fpc-iii.git] / mm / memcontrol.c
blobc5792a5d87cede8cf2c5474156c1596f51f5ba61
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
62 #include <asm/uaccess.h>
64 #include <trace/events/vmscan.h>
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
69 #define MEM_CGROUP_RECLAIM_RETRIES 5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
83 #else
84 #define do_swap_account 0
85 #endif
89 * Statistics for memory cgroup.
91 enum mem_cgroup_stat_index {
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
100 MEM_CGROUP_STAT_NSTATS,
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "swap",
111 enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
116 MEM_CGROUP_EVENTS_NSTATS,
119 static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
126 static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
140 enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
143 MEM_CGROUP_TARGET_NUMAINFO,
144 MEM_CGROUP_NTARGETS,
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET 1024
150 struct mem_cgroup_stat_cpu {
151 long count[MEM_CGROUP_STAT_NSTATS];
152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 unsigned long nr_page_events;
154 unsigned long targets[MEM_CGROUP_NTARGETS];
157 struct mem_cgroup_reclaim_iter {
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
162 struct mem_cgroup *last_visited;
163 unsigned long last_dead_count;
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
170 * per-zone information in memory controller.
172 struct mem_cgroup_per_zone {
173 struct lruvec lruvec;
174 unsigned long lru_size[NR_LRU_LISTS];
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
183 /* use container_of */
186 struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
195 struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
200 struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
204 struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
210 struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 /* An array index points to threshold just below or equal to usage. */
218 int current_threshold;
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
225 struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
233 struct mem_cgroup_threshold_ary *spare;
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
256 struct mem_cgroup {
257 struct cgroup_subsys_state css;
259 * the counter to account for memory usage
261 struct res_counter res;
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
267 * the counter to account for mem+swap usage.
269 struct res_counter memsw;
272 * the counter to account for kernel memory usage.
274 struct res_counter kmem;
276 * Should the accounting and control be hierarchical, per subtree?
278 bool use_hierarchy;
279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
281 bool oom_lock;
282 atomic_t under_oom;
284 int swappiness;
285 /* OOM-Killer disable */
286 int oom_kill_disable;
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
294 /* thresholds for memory usage. RCU-protected */
295 struct mem_cgroup_thresholds thresholds;
297 /* thresholds for mem+swap usage. RCU-protected */
298 struct mem_cgroup_thresholds memsw_thresholds;
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
307 unsigned long move_charge_at_immigrate;
309 * set > 0 if pages under this cgroup are moving to other cgroup.
311 atomic_t moving_account;
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
315 * percpu counter.
317 struct mem_cgroup_stat_cpu __percpu *stat;
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
325 atomic_t dead_count;
326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
327 struct tcp_memcontrol tcp_mem;
328 #endif
329 #if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336 #endif
338 int last_scanned_node;
339 #if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343 #endif
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
349 static size_t memcg_size(void)
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
355 /* internal only representation about the status of kmem accounting. */
356 enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
362 /* We account when limit is on, but only after call sites are patched */
363 #define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
366 #ifdef CONFIG_MEMCG_KMEM
367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
393 smp_wmb();
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
403 #endif
405 /* Stuffs for move charges at task migration. */
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
410 enum move_type {
411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
413 NR_MOVE_TYPE,
416 /* "mc" and its members are protected by cgroup_mutex */
417 static struct move_charge_struct {
418 spinlock_t lock; /* for from, to */
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
421 unsigned long immigrate_flags;
422 unsigned long precharge;
423 unsigned long moved_charge;
424 unsigned long moved_swap;
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427 } mc = {
428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
432 static bool move_anon(void)
434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
437 static bool move_file(void)
439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
446 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
449 enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451 MEM_CGROUP_CHARGE_TYPE_ANON,
452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
454 NR_CHARGE_TYPE,
457 /* for encoding cft->private value on file */
458 enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
462 _KMEM,
465 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
467 #define MEMFILE_ATTR(val) ((val) & 0xffff)
468 /* Used for OOM nofiier */
469 #define OOM_CONTROL (0)
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
484 static DEFINE_MUTEX(memcg_create_mutex);
486 static inline
487 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
489 return container_of(s, struct mem_cgroup, css);
492 /* Some nice accessors for the vmpressure. */
493 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
495 if (!memcg)
496 memcg = root_mem_cgroup;
497 return &memcg->vmpressure;
500 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
502 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
505 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
507 return &mem_cgroup_from_css(css)->vmpressure;
510 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
512 return (memcg == root_mem_cgroup);
515 /* Writing them here to avoid exposing memcg's inner layout */
516 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
518 void sock_update_memcg(struct sock *sk)
520 if (mem_cgroup_sockets_enabled) {
521 struct mem_cgroup *memcg;
522 struct cg_proto *cg_proto;
524 BUG_ON(!sk->sk_prot->proto_cgroup);
526 /* Socket cloning can throw us here with sk_cgrp already
527 * filled. It won't however, necessarily happen from
528 * process context. So the test for root memcg given
529 * the current task's memcg won't help us in this case.
531 * Respecting the original socket's memcg is a better
532 * decision in this case.
534 if (sk->sk_cgrp) {
535 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
536 css_get(&sk->sk_cgrp->memcg->css);
537 return;
540 rcu_read_lock();
541 memcg = mem_cgroup_from_task(current);
542 cg_proto = sk->sk_prot->proto_cgroup(memcg);
543 if (!mem_cgroup_is_root(memcg) &&
544 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
545 sk->sk_cgrp = cg_proto;
547 rcu_read_unlock();
550 EXPORT_SYMBOL(sock_update_memcg);
552 void sock_release_memcg(struct sock *sk)
554 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
555 struct mem_cgroup *memcg;
556 WARN_ON(!sk->sk_cgrp->memcg);
557 memcg = sk->sk_cgrp->memcg;
558 css_put(&sk->sk_cgrp->memcg->css);
562 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
564 if (!memcg || mem_cgroup_is_root(memcg))
565 return NULL;
567 return &memcg->tcp_mem.cg_proto;
569 EXPORT_SYMBOL(tcp_proto_cgroup);
571 static void disarm_sock_keys(struct mem_cgroup *memcg)
573 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
574 return;
575 static_key_slow_dec(&memcg_socket_limit_enabled);
577 #else
578 static void disarm_sock_keys(struct mem_cgroup *memcg)
581 #endif
583 #ifdef CONFIG_MEMCG_KMEM
585 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
586 * There are two main reasons for not using the css_id for this:
587 * 1) this works better in sparse environments, where we have a lot of memcgs,
588 * but only a few kmem-limited. Or also, if we have, for instance, 200
589 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
590 * 200 entry array for that.
592 * 2) In order not to violate the cgroup API, we would like to do all memory
593 * allocation in ->create(). At that point, we haven't yet allocated the
594 * css_id. Having a separate index prevents us from messing with the cgroup
595 * core for this
597 * The current size of the caches array is stored in
598 * memcg_limited_groups_array_size. It will double each time we have to
599 * increase it.
601 static DEFINE_IDA(kmem_limited_groups);
602 int memcg_limited_groups_array_size;
605 * MIN_SIZE is different than 1, because we would like to avoid going through
606 * the alloc/free process all the time. In a small machine, 4 kmem-limited
607 * cgroups is a reasonable guess. In the future, it could be a parameter or
608 * tunable, but that is strictly not necessary.
610 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
611 * this constant directly from cgroup, but it is understandable that this is
612 * better kept as an internal representation in cgroup.c. In any case, the
613 * css_id space is not getting any smaller, and we don't have to necessarily
614 * increase ours as well if it increases.
616 #define MEMCG_CACHES_MIN_SIZE 4
617 #define MEMCG_CACHES_MAX_SIZE 65535
620 * A lot of the calls to the cache allocation functions are expected to be
621 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
622 * conditional to this static branch, we'll have to allow modules that does
623 * kmem_cache_alloc and the such to see this symbol as well
625 struct static_key memcg_kmem_enabled_key;
626 EXPORT_SYMBOL(memcg_kmem_enabled_key);
628 static void disarm_kmem_keys(struct mem_cgroup *memcg)
630 if (memcg_kmem_is_active(memcg)) {
631 static_key_slow_dec(&memcg_kmem_enabled_key);
632 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
635 * This check can't live in kmem destruction function,
636 * since the charges will outlive the cgroup
638 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
640 #else
641 static void disarm_kmem_keys(struct mem_cgroup *memcg)
644 #endif /* CONFIG_MEMCG_KMEM */
646 static void disarm_static_keys(struct mem_cgroup *memcg)
648 disarm_sock_keys(memcg);
649 disarm_kmem_keys(memcg);
652 static void drain_all_stock_async(struct mem_cgroup *memcg);
654 static struct mem_cgroup_per_zone *
655 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
657 VM_BUG_ON((unsigned)nid >= nr_node_ids);
658 return &memcg->nodeinfo[nid]->zoneinfo[zid];
661 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
663 return &memcg->css;
666 static struct mem_cgroup_per_zone *
667 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
672 return mem_cgroup_zoneinfo(memcg, nid, zid);
675 static struct mem_cgroup_tree_per_zone *
676 soft_limit_tree_node_zone(int nid, int zid)
678 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
681 static struct mem_cgroup_tree_per_zone *
682 soft_limit_tree_from_page(struct page *page)
684 int nid = page_to_nid(page);
685 int zid = page_zonenum(page);
687 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
690 static void
691 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
692 struct mem_cgroup_per_zone *mz,
693 struct mem_cgroup_tree_per_zone *mctz,
694 unsigned long long new_usage_in_excess)
696 struct rb_node **p = &mctz->rb_root.rb_node;
697 struct rb_node *parent = NULL;
698 struct mem_cgroup_per_zone *mz_node;
700 if (mz->on_tree)
701 return;
703 mz->usage_in_excess = new_usage_in_excess;
704 if (!mz->usage_in_excess)
705 return;
706 while (*p) {
707 parent = *p;
708 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
709 tree_node);
710 if (mz->usage_in_excess < mz_node->usage_in_excess)
711 p = &(*p)->rb_left;
713 * We can't avoid mem cgroups that are over their soft
714 * limit by the same amount
716 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
717 p = &(*p)->rb_right;
719 rb_link_node(&mz->tree_node, parent, p);
720 rb_insert_color(&mz->tree_node, &mctz->rb_root);
721 mz->on_tree = true;
724 static void
725 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
726 struct mem_cgroup_per_zone *mz,
727 struct mem_cgroup_tree_per_zone *mctz)
729 if (!mz->on_tree)
730 return;
731 rb_erase(&mz->tree_node, &mctz->rb_root);
732 mz->on_tree = false;
735 static void
736 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
737 struct mem_cgroup_per_zone *mz,
738 struct mem_cgroup_tree_per_zone *mctz)
740 spin_lock(&mctz->lock);
741 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
742 spin_unlock(&mctz->lock);
746 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
748 unsigned long long excess;
749 struct mem_cgroup_per_zone *mz;
750 struct mem_cgroup_tree_per_zone *mctz;
751 int nid = page_to_nid(page);
752 int zid = page_zonenum(page);
753 mctz = soft_limit_tree_from_page(page);
756 * Necessary to update all ancestors when hierarchy is used.
757 * because their event counter is not touched.
759 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
760 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
761 excess = res_counter_soft_limit_excess(&memcg->res);
763 * We have to update the tree if mz is on RB-tree or
764 * mem is over its softlimit.
766 if (excess || mz->on_tree) {
767 spin_lock(&mctz->lock);
768 /* if on-tree, remove it */
769 if (mz->on_tree)
770 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
772 * Insert again. mz->usage_in_excess will be updated.
773 * If excess is 0, no tree ops.
775 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
776 spin_unlock(&mctz->lock);
781 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
783 int node, zone;
784 struct mem_cgroup_per_zone *mz;
785 struct mem_cgroup_tree_per_zone *mctz;
787 for_each_node(node) {
788 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
789 mz = mem_cgroup_zoneinfo(memcg, node, zone);
790 mctz = soft_limit_tree_node_zone(node, zone);
791 mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 static struct mem_cgroup_per_zone *
797 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799 struct rb_node *rightmost = NULL;
800 struct mem_cgroup_per_zone *mz;
802 retry:
803 mz = NULL;
804 rightmost = rb_last(&mctz->rb_root);
805 if (!rightmost)
806 goto done; /* Nothing to reclaim from */
808 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
810 * Remove the node now but someone else can add it back,
811 * we will to add it back at the end of reclaim to its correct
812 * position in the tree.
814 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
815 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
816 !css_tryget(&mz->memcg->css))
817 goto retry;
818 done:
819 return mz;
822 static struct mem_cgroup_per_zone *
823 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
825 struct mem_cgroup_per_zone *mz;
827 spin_lock(&mctz->lock);
828 mz = __mem_cgroup_largest_soft_limit_node(mctz);
829 spin_unlock(&mctz->lock);
830 return mz;
834 * Implementation Note: reading percpu statistics for memcg.
836 * Both of vmstat[] and percpu_counter has threshold and do periodic
837 * synchronization to implement "quick" read. There are trade-off between
838 * reading cost and precision of value. Then, we may have a chance to implement
839 * a periodic synchronizion of counter in memcg's counter.
841 * But this _read() function is used for user interface now. The user accounts
842 * memory usage by memory cgroup and he _always_ requires exact value because
843 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
844 * have to visit all online cpus and make sum. So, for now, unnecessary
845 * synchronization is not implemented. (just implemented for cpu hotplug)
847 * If there are kernel internal actions which can make use of some not-exact
848 * value, and reading all cpu value can be performance bottleneck in some
849 * common workload, threashold and synchonization as vmstat[] should be
850 * implemented.
852 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
853 enum mem_cgroup_stat_index idx)
855 long val = 0;
856 int cpu;
858 get_online_cpus();
859 for_each_online_cpu(cpu)
860 val += per_cpu(memcg->stat->count[idx], cpu);
861 #ifdef CONFIG_HOTPLUG_CPU
862 spin_lock(&memcg->pcp_counter_lock);
863 val += memcg->nocpu_base.count[idx];
864 spin_unlock(&memcg->pcp_counter_lock);
865 #endif
866 put_online_cpus();
867 return val;
870 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
871 bool charge)
873 int val = (charge) ? 1 : -1;
874 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
877 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
878 enum mem_cgroup_events_index idx)
880 unsigned long val = 0;
881 int cpu;
883 for_each_online_cpu(cpu)
884 val += per_cpu(memcg->stat->events[idx], cpu);
885 #ifdef CONFIG_HOTPLUG_CPU
886 spin_lock(&memcg->pcp_counter_lock);
887 val += memcg->nocpu_base.events[idx];
888 spin_unlock(&memcg->pcp_counter_lock);
889 #endif
890 return val;
893 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
894 struct page *page,
895 bool anon, int nr_pages)
897 preempt_disable();
900 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
901 * counted as CACHE even if it's on ANON LRU.
903 if (anon)
904 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
905 nr_pages);
906 else
907 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
908 nr_pages);
910 if (PageTransHuge(page))
911 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
912 nr_pages);
914 /* pagein of a big page is an event. So, ignore page size */
915 if (nr_pages > 0)
916 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
917 else {
918 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
919 nr_pages = -nr_pages; /* for event */
922 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
924 preempt_enable();
927 unsigned long
928 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
930 struct mem_cgroup_per_zone *mz;
932 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
933 return mz->lru_size[lru];
936 static unsigned long
937 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
938 unsigned int lru_mask)
940 struct mem_cgroup_per_zone *mz;
941 enum lru_list lru;
942 unsigned long ret = 0;
944 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
946 for_each_lru(lru) {
947 if (BIT(lru) & lru_mask)
948 ret += mz->lru_size[lru];
950 return ret;
953 static unsigned long
954 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
955 int nid, unsigned int lru_mask)
957 u64 total = 0;
958 int zid;
960 for (zid = 0; zid < MAX_NR_ZONES; zid++)
961 total += mem_cgroup_zone_nr_lru_pages(memcg,
962 nid, zid, lru_mask);
964 return total;
967 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
968 unsigned int lru_mask)
970 int nid;
971 u64 total = 0;
973 for_each_node_state(nid, N_MEMORY)
974 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
975 return total;
978 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
979 enum mem_cgroup_events_target target)
981 unsigned long val, next;
983 val = __this_cpu_read(memcg->stat->nr_page_events);
984 next = __this_cpu_read(memcg->stat->targets[target]);
985 /* from time_after() in jiffies.h */
986 if ((long)next - (long)val < 0) {
987 switch (target) {
988 case MEM_CGROUP_TARGET_THRESH:
989 next = val + THRESHOLDS_EVENTS_TARGET;
990 break;
991 case MEM_CGROUP_TARGET_SOFTLIMIT:
992 next = val + SOFTLIMIT_EVENTS_TARGET;
993 break;
994 case MEM_CGROUP_TARGET_NUMAINFO:
995 next = val + NUMAINFO_EVENTS_TARGET;
996 break;
997 default:
998 break;
1000 __this_cpu_write(memcg->stat->targets[target], next);
1001 return true;
1003 return false;
1007 * Check events in order.
1010 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1012 preempt_disable();
1013 /* threshold event is triggered in finer grain than soft limit */
1014 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_THRESH))) {
1016 bool do_softlimit;
1017 bool do_numainfo __maybe_unused;
1019 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 MEM_CGROUP_TARGET_SOFTLIMIT);
1021 #if MAX_NUMNODES > 1
1022 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_NUMAINFO);
1024 #endif
1025 preempt_enable();
1027 mem_cgroup_threshold(memcg);
1028 if (unlikely(do_softlimit))
1029 mem_cgroup_update_tree(memcg, page);
1030 #if MAX_NUMNODES > 1
1031 if (unlikely(do_numainfo))
1032 atomic_inc(&memcg->numainfo_events);
1033 #endif
1034 } else
1035 preempt_enable();
1038 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1040 return mem_cgroup_from_css(
1041 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1044 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047 * mm_update_next_owner() may clear mm->owner to NULL
1048 * if it races with swapoff, page migration, etc.
1049 * So this can be called with p == NULL.
1051 if (unlikely(!p))
1052 return NULL;
1054 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1057 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1059 struct mem_cgroup *memcg = NULL;
1061 if (!mm)
1062 return NULL;
1064 * Because we have no locks, mm->owner's may be being moved to other
1065 * cgroup. We use css_tryget() here even if this looks
1066 * pessimistic (rather than adding locks here).
1068 rcu_read_lock();
1069 do {
1070 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1071 if (unlikely(!memcg))
1072 break;
1073 } while (!css_tryget(&memcg->css));
1074 rcu_read_unlock();
1075 return memcg;
1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080 * ref. count) or NULL if the whole root's subtree has been visited.
1082 * helper function to be used by mem_cgroup_iter
1084 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085 struct mem_cgroup *last_visited)
1087 struct cgroup *prev_cgroup, *next_cgroup;
1090 * Root is not visited by cgroup iterators so it needs an
1091 * explicit visit.
1093 if (!last_visited)
1094 return root;
1096 prev_cgroup = (last_visited == root) ? NULL
1097 : last_visited->css.cgroup;
1098 skip_node:
1099 next_cgroup = cgroup_next_descendant_pre(
1100 prev_cgroup, root->css.cgroup);
1103 * Even if we found a group we have to make sure it is
1104 * alive. css && !memcg means that the groups should be
1105 * skipped and we should continue the tree walk.
1106 * last_visited css is safe to use because it is
1107 * protected by css_get and the tree walk is rcu safe.
1109 if (next_cgroup) {
1110 struct mem_cgroup *mem = mem_cgroup_from_cont(
1111 next_cgroup);
1112 if (css_tryget(&mem->css))
1113 return mem;
1114 else {
1115 prev_cgroup = next_cgroup;
1116 goto skip_node;
1120 return NULL;
1123 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1126 * When a group in the hierarchy below root is destroyed, the
1127 * hierarchy iterator can no longer be trusted since it might
1128 * have pointed to the destroyed group. Invalidate it.
1130 atomic_inc(&root->dead_count);
1133 static struct mem_cgroup *
1134 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1135 struct mem_cgroup *root,
1136 int *sequence)
1138 struct mem_cgroup *position = NULL;
1140 * A cgroup destruction happens in two stages: offlining and
1141 * release. They are separated by a RCU grace period.
1143 * If the iterator is valid, we may still race with an
1144 * offlining. The RCU lock ensures the object won't be
1145 * released, tryget will fail if we lost the race.
1147 *sequence = atomic_read(&root->dead_count);
1148 if (iter->last_dead_count == *sequence) {
1149 smp_rmb();
1150 position = iter->last_visited;
1151 if (position && !css_tryget(&position->css))
1152 position = NULL;
1154 return position;
1157 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1158 struct mem_cgroup *last_visited,
1159 struct mem_cgroup *new_position,
1160 int sequence)
1162 if (last_visited)
1163 css_put(&last_visited->css);
1165 * We store the sequence count from the time @last_visited was
1166 * loaded successfully instead of rereading it here so that we
1167 * don't lose destruction events in between. We could have
1168 * raced with the destruction of @new_position after all.
1170 iter->last_visited = new_position;
1171 smp_wmb();
1172 iter->last_dead_count = sequence;
1176 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1177 * @root: hierarchy root
1178 * @prev: previously returned memcg, NULL on first invocation
1179 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1181 * Returns references to children of the hierarchy below @root, or
1182 * @root itself, or %NULL after a full round-trip.
1184 * Caller must pass the return value in @prev on subsequent
1185 * invocations for reference counting, or use mem_cgroup_iter_break()
1186 * to cancel a hierarchy walk before the round-trip is complete.
1188 * Reclaimers can specify a zone and a priority level in @reclaim to
1189 * divide up the memcgs in the hierarchy among all concurrent
1190 * reclaimers operating on the same zone and priority.
1192 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1193 struct mem_cgroup *prev,
1194 struct mem_cgroup_reclaim_cookie *reclaim)
1196 struct mem_cgroup *memcg = NULL;
1197 struct mem_cgroup *last_visited = NULL;
1199 if (mem_cgroup_disabled())
1200 return NULL;
1202 if (!root)
1203 root = root_mem_cgroup;
1205 if (prev && !reclaim)
1206 last_visited = prev;
1208 if (!root->use_hierarchy && root != root_mem_cgroup) {
1209 if (prev)
1210 goto out_css_put;
1211 return root;
1214 rcu_read_lock();
1215 while (!memcg) {
1216 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1217 int uninitialized_var(seq);
1219 if (reclaim) {
1220 int nid = zone_to_nid(reclaim->zone);
1221 int zid = zone_idx(reclaim->zone);
1222 struct mem_cgroup_per_zone *mz;
1224 mz = mem_cgroup_zoneinfo(root, nid, zid);
1225 iter = &mz->reclaim_iter[reclaim->priority];
1226 if (prev && reclaim->generation != iter->generation) {
1227 iter->last_visited = NULL;
1228 goto out_unlock;
1231 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1234 memcg = __mem_cgroup_iter_next(root, last_visited);
1236 if (reclaim) {
1237 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1239 if (!memcg)
1240 iter->generation++;
1241 else if (!prev && memcg)
1242 reclaim->generation = iter->generation;
1245 if (prev && !memcg)
1246 goto out_unlock;
1248 out_unlock:
1249 rcu_read_unlock();
1250 out_css_put:
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1254 return memcg;
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1276 #define for_each_mem_cgroup_tree(iter, root) \
1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1278 iter != NULL; \
1279 iter = mem_cgroup_iter(root, iter, NULL))
1281 #define for_each_mem_cgroup(iter) \
1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1283 iter != NULL; \
1284 iter = mem_cgroup_iter(NULL, iter, NULL))
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1288 struct mem_cgroup *memcg;
1290 rcu_read_lock();
1291 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 if (unlikely(!memcg))
1293 goto out;
1295 switch (idx) {
1296 case PGFAULT:
1297 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 break;
1299 case PGMAJFAULT:
1300 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 break;
1302 default:
1303 BUG();
1305 out:
1306 rcu_read_unlock();
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
1313 * @memcg: memcg of the wanted lruvec
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1317 * is disabled.
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 struct mem_cgroup *memcg)
1322 struct mem_cgroup_per_zone *mz;
1323 struct lruvec *lruvec;
1325 if (mem_cgroup_disabled()) {
1326 lruvec = &zone->lruvec;
1327 goto out;
1330 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1331 lruvec = &mz->lruvec;
1332 out:
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1338 if (unlikely(lruvec->zone != zone))
1339 lruvec->zone = zone;
1340 return lruvec;
1344 * Following LRU functions are allowed to be used without PCG_LOCK.
1345 * Operations are called by routine of global LRU independently from memcg.
1346 * What we have to take care of here is validness of pc->mem_cgroup.
1348 * Changes to pc->mem_cgroup happens when
1349 * 1. charge
1350 * 2. moving account
1351 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1352 * It is added to LRU before charge.
1353 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1354 * When moving account, the page is not on LRU. It's isolated.
1358 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1359 * @page: the page
1360 * @zone: zone of the page
1362 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1364 struct mem_cgroup_per_zone *mz;
1365 struct mem_cgroup *memcg;
1366 struct page_cgroup *pc;
1367 struct lruvec *lruvec;
1369 if (mem_cgroup_disabled()) {
1370 lruvec = &zone->lruvec;
1371 goto out;
1374 pc = lookup_page_cgroup(page);
1375 memcg = pc->mem_cgroup;
1378 * Surreptitiously switch any uncharged offlist page to root:
1379 * an uncharged page off lru does nothing to secure
1380 * its former mem_cgroup from sudden removal.
1382 * Our caller holds lru_lock, and PageCgroupUsed is updated
1383 * under page_cgroup lock: between them, they make all uses
1384 * of pc->mem_cgroup safe.
1386 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1387 pc->mem_cgroup = memcg = root_mem_cgroup;
1389 mz = page_cgroup_zoneinfo(memcg, page);
1390 lruvec = &mz->lruvec;
1391 out:
1393 * Since a node can be onlined after the mem_cgroup was created,
1394 * we have to be prepared to initialize lruvec->zone here;
1395 * and if offlined then reonlined, we need to reinitialize it.
1397 if (unlikely(lruvec->zone != zone))
1398 lruvec->zone = zone;
1399 return lruvec;
1403 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404 * @lruvec: mem_cgroup per zone lru vector
1405 * @lru: index of lru list the page is sitting on
1406 * @nr_pages: positive when adding or negative when removing
1408 * This function must be called when a page is added to or removed from an
1409 * lru list.
1411 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1412 int nr_pages)
1414 struct mem_cgroup_per_zone *mz;
1415 unsigned long *lru_size;
1417 if (mem_cgroup_disabled())
1418 return;
1420 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1421 lru_size = mz->lru_size + lru;
1422 *lru_size += nr_pages;
1423 VM_BUG_ON((long)(*lru_size) < 0);
1427 * Checks whether given mem is same or in the root_mem_cgroup's
1428 * hierarchy subtree
1430 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1431 struct mem_cgroup *memcg)
1433 if (root_memcg == memcg)
1434 return true;
1435 if (!root_memcg->use_hierarchy || !memcg)
1436 return false;
1437 return css_is_ancestor(&memcg->css, &root_memcg->css);
1440 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1441 struct mem_cgroup *memcg)
1443 bool ret;
1445 rcu_read_lock();
1446 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1447 rcu_read_unlock();
1448 return ret;
1451 bool task_in_mem_cgroup(struct task_struct *task,
1452 const struct mem_cgroup *memcg)
1454 struct mem_cgroup *curr = NULL;
1455 struct task_struct *p;
1456 bool ret;
1458 p = find_lock_task_mm(task);
1459 if (p) {
1460 curr = try_get_mem_cgroup_from_mm(p->mm);
1461 task_unlock(p);
1462 } else {
1464 * All threads may have already detached their mm's, but the oom
1465 * killer still needs to detect if they have already been oom
1466 * killed to prevent needlessly killing additional tasks.
1468 rcu_read_lock();
1469 curr = mem_cgroup_from_task(task);
1470 if (curr)
1471 css_get(&curr->css);
1472 rcu_read_unlock();
1474 if (!curr)
1475 return false;
1477 * We should check use_hierarchy of "memcg" not "curr". Because checking
1478 * use_hierarchy of "curr" here make this function true if hierarchy is
1479 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1480 * hierarchy(even if use_hierarchy is disabled in "memcg").
1482 ret = mem_cgroup_same_or_subtree(memcg, curr);
1483 css_put(&curr->css);
1484 return ret;
1487 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1489 unsigned long inactive_ratio;
1490 unsigned long inactive;
1491 unsigned long active;
1492 unsigned long gb;
1494 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1495 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1497 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1498 if (gb)
1499 inactive_ratio = int_sqrt(10 * gb);
1500 else
1501 inactive_ratio = 1;
1503 return inactive * inactive_ratio < active;
1506 #define mem_cgroup_from_res_counter(counter, member) \
1507 container_of(counter, struct mem_cgroup, member)
1510 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1511 * @memcg: the memory cgroup
1513 * Returns the maximum amount of memory @mem can be charged with, in
1514 * pages.
1516 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1518 unsigned long long margin;
1520 margin = res_counter_margin(&memcg->res);
1521 if (do_swap_account)
1522 margin = min(margin, res_counter_margin(&memcg->memsw));
1523 return margin >> PAGE_SHIFT;
1526 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1528 struct cgroup *cgrp = memcg->css.cgroup;
1530 /* root ? */
1531 if (cgrp->parent == NULL)
1532 return vm_swappiness;
1534 return memcg->swappiness;
1538 * memcg->moving_account is used for checking possibility that some thread is
1539 * calling move_account(). When a thread on CPU-A starts moving pages under
1540 * a memcg, other threads should check memcg->moving_account under
1541 * rcu_read_lock(), like this:
1543 * CPU-A CPU-B
1544 * rcu_read_lock()
1545 * memcg->moving_account+1 if (memcg->mocing_account)
1546 * take heavy locks.
1547 * synchronize_rcu() update something.
1548 * rcu_read_unlock()
1549 * start move here.
1552 /* for quick checking without looking up memcg */
1553 atomic_t memcg_moving __read_mostly;
1555 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1557 atomic_inc(&memcg_moving);
1558 atomic_inc(&memcg->moving_account);
1559 synchronize_rcu();
1562 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1565 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1566 * We check NULL in callee rather than caller.
1568 if (memcg) {
1569 atomic_dec(&memcg_moving);
1570 atomic_dec(&memcg->moving_account);
1575 * 2 routines for checking "mem" is under move_account() or not.
1577 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1578 * is used for avoiding races in accounting. If true,
1579 * pc->mem_cgroup may be overwritten.
1581 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1582 * under hierarchy of moving cgroups. This is for
1583 * waiting at hith-memory prressure caused by "move".
1586 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1588 VM_BUG_ON(!rcu_read_lock_held());
1589 return atomic_read(&memcg->moving_account) > 0;
1592 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1594 struct mem_cgroup *from;
1595 struct mem_cgroup *to;
1596 bool ret = false;
1598 * Unlike task_move routines, we access mc.to, mc.from not under
1599 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1601 spin_lock(&mc.lock);
1602 from = mc.from;
1603 to = mc.to;
1604 if (!from)
1605 goto unlock;
1607 ret = mem_cgroup_same_or_subtree(memcg, from)
1608 || mem_cgroup_same_or_subtree(memcg, to);
1609 unlock:
1610 spin_unlock(&mc.lock);
1611 return ret;
1614 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1616 if (mc.moving_task && current != mc.moving_task) {
1617 if (mem_cgroup_under_move(memcg)) {
1618 DEFINE_WAIT(wait);
1619 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1620 /* moving charge context might have finished. */
1621 if (mc.moving_task)
1622 schedule();
1623 finish_wait(&mc.waitq, &wait);
1624 return true;
1627 return false;
1631 * Take this lock when
1632 * - a code tries to modify page's memcg while it's USED.
1633 * - a code tries to modify page state accounting in a memcg.
1634 * see mem_cgroup_stolen(), too.
1636 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1639 spin_lock_irqsave(&memcg->move_lock, *flags);
1642 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1643 unsigned long *flags)
1645 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1648 #define K(x) ((x) << (PAGE_SHIFT-10))
1650 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1651 * @memcg: The memory cgroup that went over limit
1652 * @p: Task that is going to be killed
1654 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1655 * enabled
1657 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1659 struct cgroup *task_cgrp;
1660 struct cgroup *mem_cgrp;
1662 * Need a buffer in BSS, can't rely on allocations. The code relies
1663 * on the assumption that OOM is serialized for memory controller.
1664 * If this assumption is broken, revisit this code.
1666 static char memcg_name[PATH_MAX];
1667 int ret;
1668 struct mem_cgroup *iter;
1669 unsigned int i;
1671 if (!p)
1672 return;
1674 rcu_read_lock();
1676 mem_cgrp = memcg->css.cgroup;
1677 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1679 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1680 if (ret < 0) {
1682 * Unfortunately, we are unable to convert to a useful name
1683 * But we'll still print out the usage information
1685 rcu_read_unlock();
1686 goto done;
1688 rcu_read_unlock();
1690 pr_info("Task in %s killed", memcg_name);
1692 rcu_read_lock();
1693 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1694 if (ret < 0) {
1695 rcu_read_unlock();
1696 goto done;
1698 rcu_read_unlock();
1701 * Continues from above, so we don't need an KERN_ level
1703 pr_cont(" as a result of limit of %s\n", memcg_name);
1704 done:
1706 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1707 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1708 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1709 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1710 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1711 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1712 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1713 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1714 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1715 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1716 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1717 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1719 for_each_mem_cgroup_tree(iter, memcg) {
1720 pr_info("Memory cgroup stats");
1722 rcu_read_lock();
1723 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1724 if (!ret)
1725 pr_cont(" for %s", memcg_name);
1726 rcu_read_unlock();
1727 pr_cont(":");
1729 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1730 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1731 continue;
1732 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1733 K(mem_cgroup_read_stat(iter, i)));
1736 for (i = 0; i < NR_LRU_LISTS; i++)
1737 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1738 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1740 pr_cont("\n");
1745 * This function returns the number of memcg under hierarchy tree. Returns
1746 * 1(self count) if no children.
1748 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1750 int num = 0;
1751 struct mem_cgroup *iter;
1753 for_each_mem_cgroup_tree(iter, memcg)
1754 num++;
1755 return num;
1759 * Return the memory (and swap, if configured) limit for a memcg.
1761 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1763 u64 limit;
1765 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1768 * Do not consider swap space if we cannot swap due to swappiness
1770 if (mem_cgroup_swappiness(memcg)) {
1771 u64 memsw;
1773 limit += total_swap_pages << PAGE_SHIFT;
1774 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1777 * If memsw is finite and limits the amount of swap space
1778 * available to this memcg, return that limit.
1780 limit = min(limit, memsw);
1783 return limit;
1786 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1787 int order)
1789 struct mem_cgroup *iter;
1790 unsigned long chosen_points = 0;
1791 unsigned long totalpages;
1792 unsigned int points = 0;
1793 struct task_struct *chosen = NULL;
1796 * If current has a pending SIGKILL or is exiting, then automatically
1797 * select it. The goal is to allow it to allocate so that it may
1798 * quickly exit and free its memory.
1800 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1801 set_thread_flag(TIF_MEMDIE);
1802 return;
1805 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1806 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1807 for_each_mem_cgroup_tree(iter, memcg) {
1808 struct cgroup *cgroup = iter->css.cgroup;
1809 struct cgroup_iter it;
1810 struct task_struct *task;
1812 cgroup_iter_start(cgroup, &it);
1813 while ((task = cgroup_iter_next(cgroup, &it))) {
1814 switch (oom_scan_process_thread(task, totalpages, NULL,
1815 false)) {
1816 case OOM_SCAN_SELECT:
1817 if (chosen)
1818 put_task_struct(chosen);
1819 chosen = task;
1820 chosen_points = ULONG_MAX;
1821 get_task_struct(chosen);
1822 /* fall through */
1823 case OOM_SCAN_CONTINUE:
1824 continue;
1825 case OOM_SCAN_ABORT:
1826 cgroup_iter_end(cgroup, &it);
1827 mem_cgroup_iter_break(memcg, iter);
1828 if (chosen)
1829 put_task_struct(chosen);
1830 return;
1831 case OOM_SCAN_OK:
1832 break;
1834 points = oom_badness(task, memcg, NULL, totalpages);
1835 if (points > chosen_points) {
1836 if (chosen)
1837 put_task_struct(chosen);
1838 chosen = task;
1839 chosen_points = points;
1840 get_task_struct(chosen);
1843 cgroup_iter_end(cgroup, &it);
1846 if (!chosen)
1847 return;
1848 points = chosen_points * 1000 / totalpages;
1849 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1850 NULL, "Memory cgroup out of memory");
1853 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1854 gfp_t gfp_mask,
1855 unsigned long flags)
1857 unsigned long total = 0;
1858 bool noswap = false;
1859 int loop;
1861 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1862 noswap = true;
1863 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1864 noswap = true;
1866 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1867 if (loop)
1868 drain_all_stock_async(memcg);
1869 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1871 * Allow limit shrinkers, which are triggered directly
1872 * by userspace, to catch signals and stop reclaim
1873 * after minimal progress, regardless of the margin.
1875 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1876 break;
1877 if (mem_cgroup_margin(memcg))
1878 break;
1880 * If nothing was reclaimed after two attempts, there
1881 * may be no reclaimable pages in this hierarchy.
1883 if (loop && !total)
1884 break;
1886 return total;
1890 * test_mem_cgroup_node_reclaimable
1891 * @memcg: the target memcg
1892 * @nid: the node ID to be checked.
1893 * @noswap : specify true here if the user wants flle only information.
1895 * This function returns whether the specified memcg contains any
1896 * reclaimable pages on a node. Returns true if there are any reclaimable
1897 * pages in the node.
1899 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1900 int nid, bool noswap)
1902 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1903 return true;
1904 if (noswap || !total_swap_pages)
1905 return false;
1906 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1907 return true;
1908 return false;
1911 #if MAX_NUMNODES > 1
1914 * Always updating the nodemask is not very good - even if we have an empty
1915 * list or the wrong list here, we can start from some node and traverse all
1916 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1919 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1921 int nid;
1923 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1924 * pagein/pageout changes since the last update.
1926 if (!atomic_read(&memcg->numainfo_events))
1927 return;
1928 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1929 return;
1931 /* make a nodemask where this memcg uses memory from */
1932 memcg->scan_nodes = node_states[N_MEMORY];
1934 for_each_node_mask(nid, node_states[N_MEMORY]) {
1936 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1937 node_clear(nid, memcg->scan_nodes);
1940 atomic_set(&memcg->numainfo_events, 0);
1941 atomic_set(&memcg->numainfo_updating, 0);
1945 * Selecting a node where we start reclaim from. Because what we need is just
1946 * reducing usage counter, start from anywhere is O,K. Considering
1947 * memory reclaim from current node, there are pros. and cons.
1949 * Freeing memory from current node means freeing memory from a node which
1950 * we'll use or we've used. So, it may make LRU bad. And if several threads
1951 * hit limits, it will see a contention on a node. But freeing from remote
1952 * node means more costs for memory reclaim because of memory latency.
1954 * Now, we use round-robin. Better algorithm is welcomed.
1956 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1958 int node;
1960 mem_cgroup_may_update_nodemask(memcg);
1961 node = memcg->last_scanned_node;
1963 node = next_node(node, memcg->scan_nodes);
1964 if (node == MAX_NUMNODES)
1965 node = first_node(memcg->scan_nodes);
1967 * We call this when we hit limit, not when pages are added to LRU.
1968 * No LRU may hold pages because all pages are UNEVICTABLE or
1969 * memcg is too small and all pages are not on LRU. In that case,
1970 * we use curret node.
1972 if (unlikely(node == MAX_NUMNODES))
1973 node = numa_node_id();
1975 memcg->last_scanned_node = node;
1976 return node;
1980 * Check all nodes whether it contains reclaimable pages or not.
1981 * For quick scan, we make use of scan_nodes. This will allow us to skip
1982 * unused nodes. But scan_nodes is lazily updated and may not cotain
1983 * enough new information. We need to do double check.
1985 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1987 int nid;
1990 * quick check...making use of scan_node.
1991 * We can skip unused nodes.
1993 if (!nodes_empty(memcg->scan_nodes)) {
1994 for (nid = first_node(memcg->scan_nodes);
1995 nid < MAX_NUMNODES;
1996 nid = next_node(nid, memcg->scan_nodes)) {
1998 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999 return true;
2003 * Check rest of nodes.
2005 for_each_node_state(nid, N_MEMORY) {
2006 if (node_isset(nid, memcg->scan_nodes))
2007 continue;
2008 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2009 return true;
2011 return false;
2014 #else
2015 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2017 return 0;
2020 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2022 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2024 #endif
2026 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2027 struct zone *zone,
2028 gfp_t gfp_mask,
2029 unsigned long *total_scanned)
2031 struct mem_cgroup *victim = NULL;
2032 int total = 0;
2033 int loop = 0;
2034 unsigned long excess;
2035 unsigned long nr_scanned;
2036 struct mem_cgroup_reclaim_cookie reclaim = {
2037 .zone = zone,
2038 .priority = 0,
2041 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2043 while (1) {
2044 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2045 if (!victim) {
2046 loop++;
2047 if (loop >= 2) {
2049 * If we have not been able to reclaim
2050 * anything, it might because there are
2051 * no reclaimable pages under this hierarchy
2053 if (!total)
2054 break;
2056 * We want to do more targeted reclaim.
2057 * excess >> 2 is not to excessive so as to
2058 * reclaim too much, nor too less that we keep
2059 * coming back to reclaim from this cgroup
2061 if (total >= (excess >> 2) ||
2062 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2063 break;
2065 continue;
2067 if (!mem_cgroup_reclaimable(victim, false))
2068 continue;
2069 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2070 zone, &nr_scanned);
2071 *total_scanned += nr_scanned;
2072 if (!res_counter_soft_limit_excess(&root_memcg->res))
2073 break;
2075 mem_cgroup_iter_break(root_memcg, victim);
2076 return total;
2080 * Check OOM-Killer is already running under our hierarchy.
2081 * If someone is running, return false.
2082 * Has to be called with memcg_oom_lock
2084 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2086 struct mem_cgroup *iter, *failed = NULL;
2088 for_each_mem_cgroup_tree(iter, memcg) {
2089 if (iter->oom_lock) {
2091 * this subtree of our hierarchy is already locked
2092 * so we cannot give a lock.
2094 failed = iter;
2095 mem_cgroup_iter_break(memcg, iter);
2096 break;
2097 } else
2098 iter->oom_lock = true;
2101 if (!failed)
2102 return true;
2105 * OK, we failed to lock the whole subtree so we have to clean up
2106 * what we set up to the failing subtree
2108 for_each_mem_cgroup_tree(iter, memcg) {
2109 if (iter == failed) {
2110 mem_cgroup_iter_break(memcg, iter);
2111 break;
2113 iter->oom_lock = false;
2115 return false;
2119 * Has to be called with memcg_oom_lock
2121 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2123 struct mem_cgroup *iter;
2125 for_each_mem_cgroup_tree(iter, memcg)
2126 iter->oom_lock = false;
2127 return 0;
2130 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2132 struct mem_cgroup *iter;
2134 for_each_mem_cgroup_tree(iter, memcg)
2135 atomic_inc(&iter->under_oom);
2138 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2140 struct mem_cgroup *iter;
2143 * When a new child is created while the hierarchy is under oom,
2144 * mem_cgroup_oom_lock() may not be called. We have to use
2145 * atomic_add_unless() here.
2147 for_each_mem_cgroup_tree(iter, memcg)
2148 atomic_add_unless(&iter->under_oom, -1, 0);
2151 static DEFINE_SPINLOCK(memcg_oom_lock);
2152 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2154 struct oom_wait_info {
2155 struct mem_cgroup *memcg;
2156 wait_queue_t wait;
2159 static int memcg_oom_wake_function(wait_queue_t *wait,
2160 unsigned mode, int sync, void *arg)
2162 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163 struct mem_cgroup *oom_wait_memcg;
2164 struct oom_wait_info *oom_wait_info;
2166 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2167 oom_wait_memcg = oom_wait_info->memcg;
2170 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2171 * Then we can use css_is_ancestor without taking care of RCU.
2173 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2175 return 0;
2176 return autoremove_wake_function(wait, mode, sync, arg);
2179 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2181 /* for filtering, pass "memcg" as argument. */
2182 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2185 static void memcg_oom_recover(struct mem_cgroup *memcg)
2187 if (memcg && atomic_read(&memcg->under_oom))
2188 memcg_wakeup_oom(memcg);
2192 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2194 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2195 int order)
2197 struct oom_wait_info owait;
2198 bool locked, need_to_kill;
2200 owait.memcg = memcg;
2201 owait.wait.flags = 0;
2202 owait.wait.func = memcg_oom_wake_function;
2203 owait.wait.private = current;
2204 INIT_LIST_HEAD(&owait.wait.task_list);
2205 need_to_kill = true;
2206 mem_cgroup_mark_under_oom(memcg);
2208 /* At first, try to OOM lock hierarchy under memcg.*/
2209 spin_lock(&memcg_oom_lock);
2210 locked = mem_cgroup_oom_lock(memcg);
2212 * Even if signal_pending(), we can't quit charge() loop without
2213 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2214 * under OOM is always welcomed, use TASK_KILLABLE here.
2216 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2217 if (!locked || memcg->oom_kill_disable)
2218 need_to_kill = false;
2219 if (locked)
2220 mem_cgroup_oom_notify(memcg);
2221 spin_unlock(&memcg_oom_lock);
2223 if (need_to_kill) {
2224 finish_wait(&memcg_oom_waitq, &owait.wait);
2225 mem_cgroup_out_of_memory(memcg, mask, order);
2226 } else {
2227 schedule();
2228 finish_wait(&memcg_oom_waitq, &owait.wait);
2230 spin_lock(&memcg_oom_lock);
2231 if (locked)
2232 mem_cgroup_oom_unlock(memcg);
2233 memcg_wakeup_oom(memcg);
2234 spin_unlock(&memcg_oom_lock);
2236 mem_cgroup_unmark_under_oom(memcg);
2238 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2239 return false;
2240 /* Give chance to dying process */
2241 schedule_timeout_uninterruptible(1);
2242 return true;
2246 * Currently used to update mapped file statistics, but the routine can be
2247 * generalized to update other statistics as well.
2249 * Notes: Race condition
2251 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2252 * it tends to be costly. But considering some conditions, we doesn't need
2253 * to do so _always_.
2255 * Considering "charge", lock_page_cgroup() is not required because all
2256 * file-stat operations happen after a page is attached to radix-tree. There
2257 * are no race with "charge".
2259 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2260 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2261 * if there are race with "uncharge". Statistics itself is properly handled
2262 * by flags.
2264 * Considering "move", this is an only case we see a race. To make the race
2265 * small, we check mm->moving_account and detect there are possibility of race
2266 * If there is, we take a lock.
2269 void __mem_cgroup_begin_update_page_stat(struct page *page,
2270 bool *locked, unsigned long *flags)
2272 struct mem_cgroup *memcg;
2273 struct page_cgroup *pc;
2275 pc = lookup_page_cgroup(page);
2276 again:
2277 memcg = pc->mem_cgroup;
2278 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2279 return;
2281 * If this memory cgroup is not under account moving, we don't
2282 * need to take move_lock_mem_cgroup(). Because we already hold
2283 * rcu_read_lock(), any calls to move_account will be delayed until
2284 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2286 if (!mem_cgroup_stolen(memcg))
2287 return;
2289 move_lock_mem_cgroup(memcg, flags);
2290 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2291 move_unlock_mem_cgroup(memcg, flags);
2292 goto again;
2294 *locked = true;
2297 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2299 struct page_cgroup *pc = lookup_page_cgroup(page);
2302 * It's guaranteed that pc->mem_cgroup never changes while
2303 * lock is held because a routine modifies pc->mem_cgroup
2304 * should take move_lock_mem_cgroup().
2306 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2309 void mem_cgroup_update_page_stat(struct page *page,
2310 enum mem_cgroup_page_stat_item idx, int val)
2312 struct mem_cgroup *memcg;
2313 struct page_cgroup *pc = lookup_page_cgroup(page);
2314 unsigned long uninitialized_var(flags);
2316 if (mem_cgroup_disabled())
2317 return;
2319 memcg = pc->mem_cgroup;
2320 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2321 return;
2323 switch (idx) {
2324 case MEMCG_NR_FILE_MAPPED:
2325 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2326 break;
2327 default:
2328 BUG();
2331 this_cpu_add(memcg->stat->count[idx], val);
2335 * size of first charge trial. "32" comes from vmscan.c's magic value.
2336 * TODO: maybe necessary to use big numbers in big irons.
2338 #define CHARGE_BATCH 32U
2339 struct memcg_stock_pcp {
2340 struct mem_cgroup *cached; /* this never be root cgroup */
2341 unsigned int nr_pages;
2342 struct work_struct work;
2343 unsigned long flags;
2344 #define FLUSHING_CACHED_CHARGE 0
2346 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2347 static DEFINE_MUTEX(percpu_charge_mutex);
2350 * consume_stock: Try to consume stocked charge on this cpu.
2351 * @memcg: memcg to consume from.
2352 * @nr_pages: how many pages to charge.
2354 * The charges will only happen if @memcg matches the current cpu's memcg
2355 * stock, and at least @nr_pages are available in that stock. Failure to
2356 * service an allocation will refill the stock.
2358 * returns true if successful, false otherwise.
2360 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2362 struct memcg_stock_pcp *stock;
2363 bool ret = true;
2365 if (nr_pages > CHARGE_BATCH)
2366 return false;
2368 stock = &get_cpu_var(memcg_stock);
2369 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2370 stock->nr_pages -= nr_pages;
2371 else /* need to call res_counter_charge */
2372 ret = false;
2373 put_cpu_var(memcg_stock);
2374 return ret;
2378 * Returns stocks cached in percpu to res_counter and reset cached information.
2380 static void drain_stock(struct memcg_stock_pcp *stock)
2382 struct mem_cgroup *old = stock->cached;
2384 if (stock->nr_pages) {
2385 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2387 res_counter_uncharge(&old->res, bytes);
2388 if (do_swap_account)
2389 res_counter_uncharge(&old->memsw, bytes);
2390 stock->nr_pages = 0;
2392 stock->cached = NULL;
2396 * This must be called under preempt disabled or must be called by
2397 * a thread which is pinned to local cpu.
2399 static void drain_local_stock(struct work_struct *dummy)
2401 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2402 drain_stock(stock);
2403 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2406 static void __init memcg_stock_init(void)
2408 int cpu;
2410 for_each_possible_cpu(cpu) {
2411 struct memcg_stock_pcp *stock =
2412 &per_cpu(memcg_stock, cpu);
2413 INIT_WORK(&stock->work, drain_local_stock);
2418 * Cache charges(val) which is from res_counter, to local per_cpu area.
2419 * This will be consumed by consume_stock() function, later.
2421 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2423 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2425 if (stock->cached != memcg) { /* reset if necessary */
2426 drain_stock(stock);
2427 stock->cached = memcg;
2429 stock->nr_pages += nr_pages;
2430 put_cpu_var(memcg_stock);
2434 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2435 * of the hierarchy under it. sync flag says whether we should block
2436 * until the work is done.
2438 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2440 int cpu, curcpu;
2442 /* Notify other cpus that system-wide "drain" is running */
2443 get_online_cpus();
2444 curcpu = get_cpu();
2445 for_each_online_cpu(cpu) {
2446 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2447 struct mem_cgroup *memcg;
2449 memcg = stock->cached;
2450 if (!memcg || !stock->nr_pages)
2451 continue;
2452 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2453 continue;
2454 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2455 if (cpu == curcpu)
2456 drain_local_stock(&stock->work);
2457 else
2458 schedule_work_on(cpu, &stock->work);
2461 put_cpu();
2463 if (!sync)
2464 goto out;
2466 for_each_online_cpu(cpu) {
2467 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2468 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2469 flush_work(&stock->work);
2471 out:
2472 put_online_cpus();
2476 * Tries to drain stocked charges in other cpus. This function is asynchronous
2477 * and just put a work per cpu for draining localy on each cpu. Caller can
2478 * expects some charges will be back to res_counter later but cannot wait for
2479 * it.
2481 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2484 * If someone calls draining, avoid adding more kworker runs.
2486 if (!mutex_trylock(&percpu_charge_mutex))
2487 return;
2488 drain_all_stock(root_memcg, false);
2489 mutex_unlock(&percpu_charge_mutex);
2492 /* This is a synchronous drain interface. */
2493 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2495 /* called when force_empty is called */
2496 mutex_lock(&percpu_charge_mutex);
2497 drain_all_stock(root_memcg, true);
2498 mutex_unlock(&percpu_charge_mutex);
2502 * This function drains percpu counter value from DEAD cpu and
2503 * move it to local cpu. Note that this function can be preempted.
2505 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2507 int i;
2509 spin_lock(&memcg->pcp_counter_lock);
2510 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2511 long x = per_cpu(memcg->stat->count[i], cpu);
2513 per_cpu(memcg->stat->count[i], cpu) = 0;
2514 memcg->nocpu_base.count[i] += x;
2516 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2517 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2519 per_cpu(memcg->stat->events[i], cpu) = 0;
2520 memcg->nocpu_base.events[i] += x;
2522 spin_unlock(&memcg->pcp_counter_lock);
2525 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2526 unsigned long action,
2527 void *hcpu)
2529 int cpu = (unsigned long)hcpu;
2530 struct memcg_stock_pcp *stock;
2531 struct mem_cgroup *iter;
2533 if (action == CPU_ONLINE)
2534 return NOTIFY_OK;
2536 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2537 return NOTIFY_OK;
2539 for_each_mem_cgroup(iter)
2540 mem_cgroup_drain_pcp_counter(iter, cpu);
2542 stock = &per_cpu(memcg_stock, cpu);
2543 drain_stock(stock);
2544 return NOTIFY_OK;
2548 /* See __mem_cgroup_try_charge() for details */
2549 enum {
2550 CHARGE_OK, /* success */
2551 CHARGE_RETRY, /* need to retry but retry is not bad */
2552 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2553 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2554 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2557 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2558 unsigned int nr_pages, unsigned int min_pages,
2559 bool oom_check)
2561 unsigned long csize = nr_pages * PAGE_SIZE;
2562 struct mem_cgroup *mem_over_limit;
2563 struct res_counter *fail_res;
2564 unsigned long flags = 0;
2565 int ret;
2567 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2569 if (likely(!ret)) {
2570 if (!do_swap_account)
2571 return CHARGE_OK;
2572 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2573 if (likely(!ret))
2574 return CHARGE_OK;
2576 res_counter_uncharge(&memcg->res, csize);
2577 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2578 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2579 } else
2580 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2582 * Never reclaim on behalf of optional batching, retry with a
2583 * single page instead.
2585 if (nr_pages > min_pages)
2586 return CHARGE_RETRY;
2588 if (!(gfp_mask & __GFP_WAIT))
2589 return CHARGE_WOULDBLOCK;
2591 if (gfp_mask & __GFP_NORETRY)
2592 return CHARGE_NOMEM;
2594 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2595 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2596 return CHARGE_RETRY;
2598 * Even though the limit is exceeded at this point, reclaim
2599 * may have been able to free some pages. Retry the charge
2600 * before killing the task.
2602 * Only for regular pages, though: huge pages are rather
2603 * unlikely to succeed so close to the limit, and we fall back
2604 * to regular pages anyway in case of failure.
2606 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2607 return CHARGE_RETRY;
2610 * At task move, charge accounts can be doubly counted. So, it's
2611 * better to wait until the end of task_move if something is going on.
2613 if (mem_cgroup_wait_acct_move(mem_over_limit))
2614 return CHARGE_RETRY;
2616 /* If we don't need to call oom-killer at el, return immediately */
2617 if (!oom_check)
2618 return CHARGE_NOMEM;
2619 /* check OOM */
2620 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2621 return CHARGE_OOM_DIE;
2623 return CHARGE_RETRY;
2627 * __mem_cgroup_try_charge() does
2628 * 1. detect memcg to be charged against from passed *mm and *ptr,
2629 * 2. update res_counter
2630 * 3. call memory reclaim if necessary.
2632 * In some special case, if the task is fatal, fatal_signal_pending() or
2633 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2634 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2635 * as possible without any hazards. 2: all pages should have a valid
2636 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2637 * pointer, that is treated as a charge to root_mem_cgroup.
2639 * So __mem_cgroup_try_charge() will return
2640 * 0 ... on success, filling *ptr with a valid memcg pointer.
2641 * -ENOMEM ... charge failure because of resource limits.
2642 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2644 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2645 * the oom-killer can be invoked.
2647 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2648 gfp_t gfp_mask,
2649 unsigned int nr_pages,
2650 struct mem_cgroup **ptr,
2651 bool oom)
2653 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2654 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2655 struct mem_cgroup *memcg = NULL;
2656 int ret;
2659 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2660 * in system level. So, allow to go ahead dying process in addition to
2661 * MEMDIE process.
2663 if (unlikely(test_thread_flag(TIF_MEMDIE)
2664 || fatal_signal_pending(current)))
2665 goto bypass;
2668 * We always charge the cgroup the mm_struct belongs to.
2669 * The mm_struct's mem_cgroup changes on task migration if the
2670 * thread group leader migrates. It's possible that mm is not
2671 * set, if so charge the root memcg (happens for pagecache usage).
2673 if (!*ptr && !mm)
2674 *ptr = root_mem_cgroup;
2675 again:
2676 if (*ptr) { /* css should be a valid one */
2677 memcg = *ptr;
2678 if (mem_cgroup_is_root(memcg))
2679 goto done;
2680 if (consume_stock(memcg, nr_pages))
2681 goto done;
2682 css_get(&memcg->css);
2683 } else {
2684 struct task_struct *p;
2686 rcu_read_lock();
2687 p = rcu_dereference(mm->owner);
2689 * Because we don't have task_lock(), "p" can exit.
2690 * In that case, "memcg" can point to root or p can be NULL with
2691 * race with swapoff. Then, we have small risk of mis-accouning.
2692 * But such kind of mis-account by race always happens because
2693 * we don't have cgroup_mutex(). It's overkill and we allo that
2694 * small race, here.
2695 * (*) swapoff at el will charge against mm-struct not against
2696 * task-struct. So, mm->owner can be NULL.
2698 memcg = mem_cgroup_from_task(p);
2699 if (!memcg)
2700 memcg = root_mem_cgroup;
2701 if (mem_cgroup_is_root(memcg)) {
2702 rcu_read_unlock();
2703 goto done;
2705 if (consume_stock(memcg, nr_pages)) {
2707 * It seems dagerous to access memcg without css_get().
2708 * But considering how consume_stok works, it's not
2709 * necessary. If consume_stock success, some charges
2710 * from this memcg are cached on this cpu. So, we
2711 * don't need to call css_get()/css_tryget() before
2712 * calling consume_stock().
2714 rcu_read_unlock();
2715 goto done;
2717 /* after here, we may be blocked. we need to get refcnt */
2718 if (!css_tryget(&memcg->css)) {
2719 rcu_read_unlock();
2720 goto again;
2722 rcu_read_unlock();
2725 do {
2726 bool oom_check;
2728 /* If killed, bypass charge */
2729 if (fatal_signal_pending(current)) {
2730 css_put(&memcg->css);
2731 goto bypass;
2734 oom_check = false;
2735 if (oom && !nr_oom_retries) {
2736 oom_check = true;
2737 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2740 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2741 oom_check);
2742 switch (ret) {
2743 case CHARGE_OK:
2744 break;
2745 case CHARGE_RETRY: /* not in OOM situation but retry */
2746 batch = nr_pages;
2747 css_put(&memcg->css);
2748 memcg = NULL;
2749 goto again;
2750 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2751 css_put(&memcg->css);
2752 goto nomem;
2753 case CHARGE_NOMEM: /* OOM routine works */
2754 if (!oom) {
2755 css_put(&memcg->css);
2756 goto nomem;
2758 /* If oom, we never return -ENOMEM */
2759 nr_oom_retries--;
2760 break;
2761 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2762 css_put(&memcg->css);
2763 goto bypass;
2765 } while (ret != CHARGE_OK);
2767 if (batch > nr_pages)
2768 refill_stock(memcg, batch - nr_pages);
2769 css_put(&memcg->css);
2770 done:
2771 *ptr = memcg;
2772 return 0;
2773 nomem:
2774 *ptr = NULL;
2775 return -ENOMEM;
2776 bypass:
2777 *ptr = root_mem_cgroup;
2778 return -EINTR;
2782 * Somemtimes we have to undo a charge we got by try_charge().
2783 * This function is for that and do uncharge, put css's refcnt.
2784 * gotten by try_charge().
2786 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2787 unsigned int nr_pages)
2789 if (!mem_cgroup_is_root(memcg)) {
2790 unsigned long bytes = nr_pages * PAGE_SIZE;
2792 res_counter_uncharge(&memcg->res, bytes);
2793 if (do_swap_account)
2794 res_counter_uncharge(&memcg->memsw, bytes);
2799 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2800 * This is useful when moving usage to parent cgroup.
2802 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2803 unsigned int nr_pages)
2805 unsigned long bytes = nr_pages * PAGE_SIZE;
2807 if (mem_cgroup_is_root(memcg))
2808 return;
2810 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2811 if (do_swap_account)
2812 res_counter_uncharge_until(&memcg->memsw,
2813 memcg->memsw.parent, bytes);
2817 * A helper function to get mem_cgroup from ID. must be called under
2818 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2819 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2820 * called against removed memcg.)
2822 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2824 struct cgroup_subsys_state *css;
2826 /* ID 0 is unused ID */
2827 if (!id)
2828 return NULL;
2829 css = css_lookup(&mem_cgroup_subsys, id);
2830 if (!css)
2831 return NULL;
2832 return mem_cgroup_from_css(css);
2835 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2837 struct mem_cgroup *memcg = NULL;
2838 struct page_cgroup *pc;
2839 unsigned short id;
2840 swp_entry_t ent;
2842 VM_BUG_ON(!PageLocked(page));
2844 pc = lookup_page_cgroup(page);
2845 lock_page_cgroup(pc);
2846 if (PageCgroupUsed(pc)) {
2847 memcg = pc->mem_cgroup;
2848 if (memcg && !css_tryget(&memcg->css))
2849 memcg = NULL;
2850 } else if (PageSwapCache(page)) {
2851 ent.val = page_private(page);
2852 id = lookup_swap_cgroup_id(ent);
2853 rcu_read_lock();
2854 memcg = mem_cgroup_lookup(id);
2855 if (memcg && !css_tryget(&memcg->css))
2856 memcg = NULL;
2857 rcu_read_unlock();
2859 unlock_page_cgroup(pc);
2860 return memcg;
2863 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2864 struct page *page,
2865 unsigned int nr_pages,
2866 enum charge_type ctype,
2867 bool lrucare)
2869 struct page_cgroup *pc = lookup_page_cgroup(page);
2870 struct zone *uninitialized_var(zone);
2871 struct lruvec *lruvec;
2872 bool was_on_lru = false;
2873 bool anon;
2875 lock_page_cgroup(pc);
2876 VM_BUG_ON(PageCgroupUsed(pc));
2878 * we don't need page_cgroup_lock about tail pages, becase they are not
2879 * accessed by any other context at this point.
2883 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2884 * may already be on some other mem_cgroup's LRU. Take care of it.
2886 if (lrucare) {
2887 zone = page_zone(page);
2888 spin_lock_irq(&zone->lru_lock);
2889 if (PageLRU(page)) {
2890 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2891 ClearPageLRU(page);
2892 del_page_from_lru_list(page, lruvec, page_lru(page));
2893 was_on_lru = true;
2897 pc->mem_cgroup = memcg;
2899 * We access a page_cgroup asynchronously without lock_page_cgroup().
2900 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2901 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2902 * before USED bit, we need memory barrier here.
2903 * See mem_cgroup_add_lru_list(), etc.
2905 smp_wmb();
2906 SetPageCgroupUsed(pc);
2908 if (lrucare) {
2909 if (was_on_lru) {
2910 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2911 VM_BUG_ON(PageLRU(page));
2912 SetPageLRU(page);
2913 add_page_to_lru_list(page, lruvec, page_lru(page));
2915 spin_unlock_irq(&zone->lru_lock);
2918 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2919 anon = true;
2920 else
2921 anon = false;
2923 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2924 unlock_page_cgroup(pc);
2927 * "charge_statistics" updated event counter. Then, check it.
2928 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2929 * if they exceeds softlimit.
2931 memcg_check_events(memcg, page);
2934 static DEFINE_MUTEX(set_limit_mutex);
2936 #ifdef CONFIG_MEMCG_KMEM
2937 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2939 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2940 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2944 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2945 * in the memcg_cache_params struct.
2947 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2949 struct kmem_cache *cachep;
2951 VM_BUG_ON(p->is_root_cache);
2952 cachep = p->root_cache;
2953 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2956 #ifdef CONFIG_SLABINFO
2957 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2958 struct seq_file *m)
2960 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2961 struct memcg_cache_params *params;
2963 if (!memcg_can_account_kmem(memcg))
2964 return -EIO;
2966 print_slabinfo_header(m);
2968 mutex_lock(&memcg->slab_caches_mutex);
2969 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2970 cache_show(memcg_params_to_cache(params), m);
2971 mutex_unlock(&memcg->slab_caches_mutex);
2973 return 0;
2975 #endif
2977 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2979 struct res_counter *fail_res;
2980 struct mem_cgroup *_memcg;
2981 int ret = 0;
2982 bool may_oom;
2984 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2985 if (ret)
2986 return ret;
2989 * Conditions under which we can wait for the oom_killer. Those are
2990 * the same conditions tested by the core page allocator
2992 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2994 _memcg = memcg;
2995 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2996 &_memcg, may_oom);
2998 if (ret == -EINTR) {
3000 * __mem_cgroup_try_charge() chosed to bypass to root due to
3001 * OOM kill or fatal signal. Since our only options are to
3002 * either fail the allocation or charge it to this cgroup, do
3003 * it as a temporary condition. But we can't fail. From a
3004 * kmem/slab perspective, the cache has already been selected,
3005 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3006 * our minds.
3008 * This condition will only trigger if the task entered
3009 * memcg_charge_kmem in a sane state, but was OOM-killed during
3010 * __mem_cgroup_try_charge() above. Tasks that were already
3011 * dying when the allocation triggers should have been already
3012 * directed to the root cgroup in memcontrol.h
3014 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3015 if (do_swap_account)
3016 res_counter_charge_nofail(&memcg->memsw, size,
3017 &fail_res);
3018 ret = 0;
3019 } else if (ret)
3020 res_counter_uncharge(&memcg->kmem, size);
3022 return ret;
3025 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3027 res_counter_uncharge(&memcg->res, size);
3028 if (do_swap_account)
3029 res_counter_uncharge(&memcg->memsw, size);
3031 /* Not down to 0 */
3032 if (res_counter_uncharge(&memcg->kmem, size))
3033 return;
3036 * Releases a reference taken in kmem_cgroup_css_offline in case
3037 * this last uncharge is racing with the offlining code or it is
3038 * outliving the memcg existence.
3040 * The memory barrier imposed by test&clear is paired with the
3041 * explicit one in memcg_kmem_mark_dead().
3043 if (memcg_kmem_test_and_clear_dead(memcg))
3044 css_put(&memcg->css);
3047 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3049 if (!memcg)
3050 return;
3052 mutex_lock(&memcg->slab_caches_mutex);
3053 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3054 mutex_unlock(&memcg->slab_caches_mutex);
3058 * helper for acessing a memcg's index. It will be used as an index in the
3059 * child cache array in kmem_cache, and also to derive its name. This function
3060 * will return -1 when this is not a kmem-limited memcg.
3062 int memcg_cache_id(struct mem_cgroup *memcg)
3064 return memcg ? memcg->kmemcg_id : -1;
3068 * This ends up being protected by the set_limit mutex, during normal
3069 * operation, because that is its main call site.
3071 * But when we create a new cache, we can call this as well if its parent
3072 * is kmem-limited. That will have to hold set_limit_mutex as well.
3074 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3076 int num, ret;
3078 num = ida_simple_get(&kmem_limited_groups,
3079 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3080 if (num < 0)
3081 return num;
3083 * After this point, kmem_accounted (that we test atomically in
3084 * the beginning of this conditional), is no longer 0. This
3085 * guarantees only one process will set the following boolean
3086 * to true. We don't need test_and_set because we're protected
3087 * by the set_limit_mutex anyway.
3089 memcg_kmem_set_activated(memcg);
3091 ret = memcg_update_all_caches(num+1);
3092 if (ret) {
3093 ida_simple_remove(&kmem_limited_groups, num);
3094 memcg_kmem_clear_activated(memcg);
3095 return ret;
3098 memcg->kmemcg_id = num;
3099 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3100 mutex_init(&memcg->slab_caches_mutex);
3101 return 0;
3104 static size_t memcg_caches_array_size(int num_groups)
3106 ssize_t size;
3107 if (num_groups <= 0)
3108 return 0;
3110 size = 2 * num_groups;
3111 if (size < MEMCG_CACHES_MIN_SIZE)
3112 size = MEMCG_CACHES_MIN_SIZE;
3113 else if (size > MEMCG_CACHES_MAX_SIZE)
3114 size = MEMCG_CACHES_MAX_SIZE;
3116 return size;
3120 * We should update the current array size iff all caches updates succeed. This
3121 * can only be done from the slab side. The slab mutex needs to be held when
3122 * calling this.
3124 void memcg_update_array_size(int num)
3126 if (num > memcg_limited_groups_array_size)
3127 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3130 static void kmem_cache_destroy_work_func(struct work_struct *w);
3132 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3134 struct memcg_cache_params *cur_params = s->memcg_params;
3136 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3138 if (num_groups > memcg_limited_groups_array_size) {
3139 int i;
3140 ssize_t size = memcg_caches_array_size(num_groups);
3142 size *= sizeof(void *);
3143 size += sizeof(struct memcg_cache_params);
3145 s->memcg_params = kzalloc(size, GFP_KERNEL);
3146 if (!s->memcg_params) {
3147 s->memcg_params = cur_params;
3148 return -ENOMEM;
3151 s->memcg_params->is_root_cache = true;
3154 * There is the chance it will be bigger than
3155 * memcg_limited_groups_array_size, if we failed an allocation
3156 * in a cache, in which case all caches updated before it, will
3157 * have a bigger array.
3159 * But if that is the case, the data after
3160 * memcg_limited_groups_array_size is certainly unused
3162 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3163 if (!cur_params->memcg_caches[i])
3164 continue;
3165 s->memcg_params->memcg_caches[i] =
3166 cur_params->memcg_caches[i];
3170 * Ideally, we would wait until all caches succeed, and only
3171 * then free the old one. But this is not worth the extra
3172 * pointer per-cache we'd have to have for this.
3174 * It is not a big deal if some caches are left with a size
3175 * bigger than the others. And all updates will reset this
3176 * anyway.
3178 kfree(cur_params);
3180 return 0;
3183 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3184 struct kmem_cache *root_cache)
3186 size_t size = sizeof(struct memcg_cache_params);
3188 if (!memcg_kmem_enabled())
3189 return 0;
3191 if (!memcg)
3192 size += memcg_limited_groups_array_size * sizeof(void *);
3194 s->memcg_params = kzalloc(size, GFP_KERNEL);
3195 if (!s->memcg_params)
3196 return -ENOMEM;
3198 if (memcg) {
3199 s->memcg_params->memcg = memcg;
3200 s->memcg_params->root_cache = root_cache;
3201 INIT_WORK(&s->memcg_params->destroy,
3202 kmem_cache_destroy_work_func);
3203 } else
3204 s->memcg_params->is_root_cache = true;
3206 return 0;
3209 void memcg_release_cache(struct kmem_cache *s)
3211 struct kmem_cache *root;
3212 struct mem_cgroup *memcg;
3213 int id;
3216 * This happens, for instance, when a root cache goes away before we
3217 * add any memcg.
3219 if (!s->memcg_params)
3220 return;
3222 if (s->memcg_params->is_root_cache)
3223 goto out;
3225 memcg = s->memcg_params->memcg;
3226 id = memcg_cache_id(memcg);
3228 root = s->memcg_params->root_cache;
3229 root->memcg_params->memcg_caches[id] = NULL;
3231 mutex_lock(&memcg->slab_caches_mutex);
3232 list_del(&s->memcg_params->list);
3233 mutex_unlock(&memcg->slab_caches_mutex);
3235 css_put(&memcg->css);
3236 out:
3237 kfree(s->memcg_params);
3241 * During the creation a new cache, we need to disable our accounting mechanism
3242 * altogether. This is true even if we are not creating, but rather just
3243 * enqueing new caches to be created.
3245 * This is because that process will trigger allocations; some visible, like
3246 * explicit kmallocs to auxiliary data structures, name strings and internal
3247 * cache structures; some well concealed, like INIT_WORK() that can allocate
3248 * objects during debug.
3250 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3251 * to it. This may not be a bounded recursion: since the first cache creation
3252 * failed to complete (waiting on the allocation), we'll just try to create the
3253 * cache again, failing at the same point.
3255 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3256 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3257 * inside the following two functions.
3259 static inline void memcg_stop_kmem_account(void)
3261 VM_BUG_ON(!current->mm);
3262 current->memcg_kmem_skip_account++;
3265 static inline void memcg_resume_kmem_account(void)
3267 VM_BUG_ON(!current->mm);
3268 current->memcg_kmem_skip_account--;
3271 static void kmem_cache_destroy_work_func(struct work_struct *w)
3273 struct kmem_cache *cachep;
3274 struct memcg_cache_params *p;
3276 p = container_of(w, struct memcg_cache_params, destroy);
3278 cachep = memcg_params_to_cache(p);
3281 * If we get down to 0 after shrink, we could delete right away.
3282 * However, memcg_release_pages() already puts us back in the workqueue
3283 * in that case. If we proceed deleting, we'll get a dangling
3284 * reference, and removing the object from the workqueue in that case
3285 * is unnecessary complication. We are not a fast path.
3287 * Note that this case is fundamentally different from racing with
3288 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3289 * kmem_cache_shrink, not only we would be reinserting a dead cache
3290 * into the queue, but doing so from inside the worker racing to
3291 * destroy it.
3293 * So if we aren't down to zero, we'll just schedule a worker and try
3294 * again
3296 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3297 kmem_cache_shrink(cachep);
3298 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3299 return;
3300 } else
3301 kmem_cache_destroy(cachep);
3304 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3306 if (!cachep->memcg_params->dead)
3307 return;
3310 * There are many ways in which we can get here.
3312 * We can get to a memory-pressure situation while the delayed work is
3313 * still pending to run. The vmscan shrinkers can then release all
3314 * cache memory and get us to destruction. If this is the case, we'll
3315 * be executed twice, which is a bug (the second time will execute over
3316 * bogus data). In this case, cancelling the work should be fine.
3318 * But we can also get here from the worker itself, if
3319 * kmem_cache_shrink is enough to shake all the remaining objects and
3320 * get the page count to 0. In this case, we'll deadlock if we try to
3321 * cancel the work (the worker runs with an internal lock held, which
3322 * is the same lock we would hold for cancel_work_sync().)
3324 * Since we can't possibly know who got us here, just refrain from
3325 * running if there is already work pending
3327 if (work_pending(&cachep->memcg_params->destroy))
3328 return;
3330 * We have to defer the actual destroying to a workqueue, because
3331 * we might currently be in a context that cannot sleep.
3333 schedule_work(&cachep->memcg_params->destroy);
3337 * This lock protects updaters, not readers. We want readers to be as fast as
3338 * they can, and they will either see NULL or a valid cache value. Our model
3339 * allow them to see NULL, in which case the root memcg will be selected.
3341 * We need this lock because multiple allocations to the same cache from a non
3342 * will span more than one worker. Only one of them can create the cache.
3344 static DEFINE_MUTEX(memcg_cache_mutex);
3347 * Called with memcg_cache_mutex held
3349 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3350 struct kmem_cache *s)
3352 struct kmem_cache *new;
3353 static char *tmp_name = NULL;
3355 lockdep_assert_held(&memcg_cache_mutex);
3358 * kmem_cache_create_memcg duplicates the given name and
3359 * cgroup_name for this name requires RCU context.
3360 * This static temporary buffer is used to prevent from
3361 * pointless shortliving allocation.
3363 if (!tmp_name) {
3364 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3365 if (!tmp_name)
3366 return NULL;
3369 rcu_read_lock();
3370 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3371 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3372 rcu_read_unlock();
3374 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3375 (s->flags & ~SLAB_PANIC), s->ctor, s);
3377 if (new)
3378 new->allocflags |= __GFP_KMEMCG;
3380 return new;
3383 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3384 struct kmem_cache *cachep)
3386 struct kmem_cache *new_cachep;
3387 int idx;
3389 BUG_ON(!memcg_can_account_kmem(memcg));
3391 idx = memcg_cache_id(memcg);
3393 mutex_lock(&memcg_cache_mutex);
3394 new_cachep = cachep->memcg_params->memcg_caches[idx];
3395 if (new_cachep) {
3396 css_put(&memcg->css);
3397 goto out;
3400 new_cachep = kmem_cache_dup(memcg, cachep);
3401 if (new_cachep == NULL) {
3402 new_cachep = cachep;
3403 css_put(&memcg->css);
3404 goto out;
3407 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3409 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3411 * the readers won't lock, make sure everybody sees the updated value,
3412 * so they won't put stuff in the queue again for no reason
3414 wmb();
3415 out:
3416 mutex_unlock(&memcg_cache_mutex);
3417 return new_cachep;
3420 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3422 struct kmem_cache *c;
3423 int i;
3425 if (!s->memcg_params)
3426 return;
3427 if (!s->memcg_params->is_root_cache)
3428 return;
3431 * If the cache is being destroyed, we trust that there is no one else
3432 * requesting objects from it. Even if there are, the sanity checks in
3433 * kmem_cache_destroy should caught this ill-case.
3435 * Still, we don't want anyone else freeing memcg_caches under our
3436 * noses, which can happen if a new memcg comes to life. As usual,
3437 * we'll take the set_limit_mutex to protect ourselves against this.
3439 mutex_lock(&set_limit_mutex);
3440 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3441 c = s->memcg_params->memcg_caches[i];
3442 if (!c)
3443 continue;
3446 * We will now manually delete the caches, so to avoid races
3447 * we need to cancel all pending destruction workers and
3448 * proceed with destruction ourselves.
3450 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3451 * and that could spawn the workers again: it is likely that
3452 * the cache still have active pages until this very moment.
3453 * This would lead us back to mem_cgroup_destroy_cache.
3455 * But that will not execute at all if the "dead" flag is not
3456 * set, so flip it down to guarantee we are in control.
3458 c->memcg_params->dead = false;
3459 cancel_work_sync(&c->memcg_params->destroy);
3460 kmem_cache_destroy(c);
3462 mutex_unlock(&set_limit_mutex);
3465 struct create_work {
3466 struct mem_cgroup *memcg;
3467 struct kmem_cache *cachep;
3468 struct work_struct work;
3471 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3473 struct kmem_cache *cachep;
3474 struct memcg_cache_params *params;
3476 if (!memcg_kmem_is_active(memcg))
3477 return;
3479 mutex_lock(&memcg->slab_caches_mutex);
3480 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3481 cachep = memcg_params_to_cache(params);
3482 cachep->memcg_params->dead = true;
3483 schedule_work(&cachep->memcg_params->destroy);
3485 mutex_unlock(&memcg->slab_caches_mutex);
3488 static void memcg_create_cache_work_func(struct work_struct *w)
3490 struct create_work *cw;
3492 cw = container_of(w, struct create_work, work);
3493 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3494 kfree(cw);
3498 * Enqueue the creation of a per-memcg kmem_cache.
3500 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3501 struct kmem_cache *cachep)
3503 struct create_work *cw;
3505 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3506 if (cw == NULL) {
3507 css_put(&memcg->css);
3508 return;
3511 cw->memcg = memcg;
3512 cw->cachep = cachep;
3514 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3515 schedule_work(&cw->work);
3518 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3519 struct kmem_cache *cachep)
3522 * We need to stop accounting when we kmalloc, because if the
3523 * corresponding kmalloc cache is not yet created, the first allocation
3524 * in __memcg_create_cache_enqueue will recurse.
3526 * However, it is better to enclose the whole function. Depending on
3527 * the debugging options enabled, INIT_WORK(), for instance, can
3528 * trigger an allocation. This too, will make us recurse. Because at
3529 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3530 * the safest choice is to do it like this, wrapping the whole function.
3532 memcg_stop_kmem_account();
3533 __memcg_create_cache_enqueue(memcg, cachep);
3534 memcg_resume_kmem_account();
3537 * Return the kmem_cache we're supposed to use for a slab allocation.
3538 * We try to use the current memcg's version of the cache.
3540 * If the cache does not exist yet, if we are the first user of it,
3541 * we either create it immediately, if possible, or create it asynchronously
3542 * in a workqueue.
3543 * In the latter case, we will let the current allocation go through with
3544 * the original cache.
3546 * Can't be called in interrupt context or from kernel threads.
3547 * This function needs to be called with rcu_read_lock() held.
3549 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3550 gfp_t gfp)
3552 struct mem_cgroup *memcg;
3553 int idx;
3555 VM_BUG_ON(!cachep->memcg_params);
3556 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3558 if (!current->mm || current->memcg_kmem_skip_account)
3559 return cachep;
3561 rcu_read_lock();
3562 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3564 if (!memcg_can_account_kmem(memcg))
3565 goto out;
3567 idx = memcg_cache_id(memcg);
3570 * barrier to mare sure we're always seeing the up to date value. The
3571 * code updating memcg_caches will issue a write barrier to match this.
3573 read_barrier_depends();
3574 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3575 cachep = cachep->memcg_params->memcg_caches[idx];
3576 goto out;
3579 /* The corresponding put will be done in the workqueue. */
3580 if (!css_tryget(&memcg->css))
3581 goto out;
3582 rcu_read_unlock();
3585 * If we are in a safe context (can wait, and not in interrupt
3586 * context), we could be be predictable and return right away.
3587 * This would guarantee that the allocation being performed
3588 * already belongs in the new cache.
3590 * However, there are some clashes that can arrive from locking.
3591 * For instance, because we acquire the slab_mutex while doing
3592 * kmem_cache_dup, this means no further allocation could happen
3593 * with the slab_mutex held.
3595 * Also, because cache creation issue get_online_cpus(), this
3596 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3597 * that ends up reversed during cpu hotplug. (cpuset allocates
3598 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3599 * better to defer everything.
3601 memcg_create_cache_enqueue(memcg, cachep);
3602 return cachep;
3603 out:
3604 rcu_read_unlock();
3605 return cachep;
3607 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3610 * We need to verify if the allocation against current->mm->owner's memcg is
3611 * possible for the given order. But the page is not allocated yet, so we'll
3612 * need a further commit step to do the final arrangements.
3614 * It is possible for the task to switch cgroups in this mean time, so at
3615 * commit time, we can't rely on task conversion any longer. We'll then use
3616 * the handle argument to return to the caller which cgroup we should commit
3617 * against. We could also return the memcg directly and avoid the pointer
3618 * passing, but a boolean return value gives better semantics considering
3619 * the compiled-out case as well.
3621 * Returning true means the allocation is possible.
3623 bool
3624 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3626 struct mem_cgroup *memcg;
3627 int ret;
3629 *_memcg = NULL;
3632 * Disabling accounting is only relevant for some specific memcg
3633 * internal allocations. Therefore we would initially not have such
3634 * check here, since direct calls to the page allocator that are marked
3635 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3636 * concerned with cache allocations, and by having this test at
3637 * memcg_kmem_get_cache, we are already able to relay the allocation to
3638 * the root cache and bypass the memcg cache altogether.
3640 * There is one exception, though: the SLUB allocator does not create
3641 * large order caches, but rather service large kmallocs directly from
3642 * the page allocator. Therefore, the following sequence when backed by
3643 * the SLUB allocator:
3645 * memcg_stop_kmem_account();
3646 * kmalloc(<large_number>)
3647 * memcg_resume_kmem_account();
3649 * would effectively ignore the fact that we should skip accounting,
3650 * since it will drive us directly to this function without passing
3651 * through the cache selector memcg_kmem_get_cache. Such large
3652 * allocations are extremely rare but can happen, for instance, for the
3653 * cache arrays. We bring this test here.
3655 if (!current->mm || current->memcg_kmem_skip_account)
3656 return true;
3658 memcg = try_get_mem_cgroup_from_mm(current->mm);
3661 * very rare case described in mem_cgroup_from_task. Unfortunately there
3662 * isn't much we can do without complicating this too much, and it would
3663 * be gfp-dependent anyway. Just let it go
3665 if (unlikely(!memcg))
3666 return true;
3668 if (!memcg_can_account_kmem(memcg)) {
3669 css_put(&memcg->css);
3670 return true;
3673 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3674 if (!ret)
3675 *_memcg = memcg;
3677 css_put(&memcg->css);
3678 return (ret == 0);
3681 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3682 int order)
3684 struct page_cgroup *pc;
3686 VM_BUG_ON(mem_cgroup_is_root(memcg));
3688 /* The page allocation failed. Revert */
3689 if (!page) {
3690 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3691 return;
3694 pc = lookup_page_cgroup(page);
3695 lock_page_cgroup(pc);
3696 pc->mem_cgroup = memcg;
3697 SetPageCgroupUsed(pc);
3698 unlock_page_cgroup(pc);
3701 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3703 struct mem_cgroup *memcg = NULL;
3704 struct page_cgroup *pc;
3707 pc = lookup_page_cgroup(page);
3709 * Fast unlocked return. Theoretically might have changed, have to
3710 * check again after locking.
3712 if (!PageCgroupUsed(pc))
3713 return;
3715 lock_page_cgroup(pc);
3716 if (PageCgroupUsed(pc)) {
3717 memcg = pc->mem_cgroup;
3718 ClearPageCgroupUsed(pc);
3720 unlock_page_cgroup(pc);
3723 * We trust that only if there is a memcg associated with the page, it
3724 * is a valid allocation
3726 if (!memcg)
3727 return;
3729 VM_BUG_ON(mem_cgroup_is_root(memcg));
3730 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3732 #else
3733 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3736 #endif /* CONFIG_MEMCG_KMEM */
3738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3740 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3742 * Because tail pages are not marked as "used", set it. We're under
3743 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3744 * charge/uncharge will be never happen and move_account() is done under
3745 * compound_lock(), so we don't have to take care of races.
3747 void mem_cgroup_split_huge_fixup(struct page *head)
3749 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3750 struct page_cgroup *pc;
3751 struct mem_cgroup *memcg;
3752 int i;
3754 if (mem_cgroup_disabled())
3755 return;
3757 memcg = head_pc->mem_cgroup;
3758 for (i = 1; i < HPAGE_PMD_NR; i++) {
3759 pc = head_pc + i;
3760 pc->mem_cgroup = memcg;
3761 smp_wmb();/* see __commit_charge() */
3762 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3764 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3765 HPAGE_PMD_NR);
3767 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3770 * mem_cgroup_move_account - move account of the page
3771 * @page: the page
3772 * @nr_pages: number of regular pages (>1 for huge pages)
3773 * @pc: page_cgroup of the page.
3774 * @from: mem_cgroup which the page is moved from.
3775 * @to: mem_cgroup which the page is moved to. @from != @to.
3777 * The caller must confirm following.
3778 * - page is not on LRU (isolate_page() is useful.)
3779 * - compound_lock is held when nr_pages > 1
3781 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3782 * from old cgroup.
3784 static int mem_cgroup_move_account(struct page *page,
3785 unsigned int nr_pages,
3786 struct page_cgroup *pc,
3787 struct mem_cgroup *from,
3788 struct mem_cgroup *to)
3790 unsigned long flags;
3791 int ret;
3792 bool anon = PageAnon(page);
3794 VM_BUG_ON(from == to);
3795 VM_BUG_ON(PageLRU(page));
3797 * The page is isolated from LRU. So, collapse function
3798 * will not handle this page. But page splitting can happen.
3799 * Do this check under compound_page_lock(). The caller should
3800 * hold it.
3802 ret = -EBUSY;
3803 if (nr_pages > 1 && !PageTransHuge(page))
3804 goto out;
3806 lock_page_cgroup(pc);
3808 ret = -EINVAL;
3809 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3810 goto unlock;
3812 move_lock_mem_cgroup(from, &flags);
3814 if (!anon && page_mapped(page)) {
3815 /* Update mapped_file data for mem_cgroup */
3816 preempt_disable();
3817 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3818 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3819 preempt_enable();
3821 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3823 /* caller should have done css_get */
3824 pc->mem_cgroup = to;
3825 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3826 move_unlock_mem_cgroup(from, &flags);
3827 ret = 0;
3828 unlock:
3829 unlock_page_cgroup(pc);
3831 * check events
3833 memcg_check_events(to, page);
3834 memcg_check_events(from, page);
3835 out:
3836 return ret;
3840 * mem_cgroup_move_parent - moves page to the parent group
3841 * @page: the page to move
3842 * @pc: page_cgroup of the page
3843 * @child: page's cgroup
3845 * move charges to its parent or the root cgroup if the group has no
3846 * parent (aka use_hierarchy==0).
3847 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3848 * mem_cgroup_move_account fails) the failure is always temporary and
3849 * it signals a race with a page removal/uncharge or migration. In the
3850 * first case the page is on the way out and it will vanish from the LRU
3851 * on the next attempt and the call should be retried later.
3852 * Isolation from the LRU fails only if page has been isolated from
3853 * the LRU since we looked at it and that usually means either global
3854 * reclaim or migration going on. The page will either get back to the
3855 * LRU or vanish.
3856 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3857 * (!PageCgroupUsed) or moved to a different group. The page will
3858 * disappear in the next attempt.
3860 static int mem_cgroup_move_parent(struct page *page,
3861 struct page_cgroup *pc,
3862 struct mem_cgroup *child)
3864 struct mem_cgroup *parent;
3865 unsigned int nr_pages;
3866 unsigned long uninitialized_var(flags);
3867 int ret;
3869 VM_BUG_ON(mem_cgroup_is_root(child));
3871 ret = -EBUSY;
3872 if (!get_page_unless_zero(page))
3873 goto out;
3874 if (isolate_lru_page(page))
3875 goto put;
3877 nr_pages = hpage_nr_pages(page);
3879 parent = parent_mem_cgroup(child);
3881 * If no parent, move charges to root cgroup.
3883 if (!parent)
3884 parent = root_mem_cgroup;
3886 if (nr_pages > 1) {
3887 VM_BUG_ON(!PageTransHuge(page));
3888 flags = compound_lock_irqsave(page);
3891 ret = mem_cgroup_move_account(page, nr_pages,
3892 pc, child, parent);
3893 if (!ret)
3894 __mem_cgroup_cancel_local_charge(child, nr_pages);
3896 if (nr_pages > 1)
3897 compound_unlock_irqrestore(page, flags);
3898 putback_lru_page(page);
3899 put:
3900 put_page(page);
3901 out:
3902 return ret;
3906 * Charge the memory controller for page usage.
3907 * Return
3908 * 0 if the charge was successful
3909 * < 0 if the cgroup is over its limit
3911 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3912 gfp_t gfp_mask, enum charge_type ctype)
3914 struct mem_cgroup *memcg = NULL;
3915 unsigned int nr_pages = 1;
3916 bool oom = true;
3917 int ret;
3919 if (PageTransHuge(page)) {
3920 nr_pages <<= compound_order(page);
3921 VM_BUG_ON(!PageTransHuge(page));
3923 * Never OOM-kill a process for a huge page. The
3924 * fault handler will fall back to regular pages.
3926 oom = false;
3929 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3930 if (ret == -ENOMEM)
3931 return ret;
3932 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3933 return 0;
3936 int mem_cgroup_newpage_charge(struct page *page,
3937 struct mm_struct *mm, gfp_t gfp_mask)
3939 if (mem_cgroup_disabled())
3940 return 0;
3941 VM_BUG_ON(page_mapped(page));
3942 VM_BUG_ON(page->mapping && !PageAnon(page));
3943 VM_BUG_ON(!mm);
3944 return mem_cgroup_charge_common(page, mm, gfp_mask,
3945 MEM_CGROUP_CHARGE_TYPE_ANON);
3949 * While swap-in, try_charge -> commit or cancel, the page is locked.
3950 * And when try_charge() successfully returns, one refcnt to memcg without
3951 * struct page_cgroup is acquired. This refcnt will be consumed by
3952 * "commit()" or removed by "cancel()"
3954 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3955 struct page *page,
3956 gfp_t mask,
3957 struct mem_cgroup **memcgp)
3959 struct mem_cgroup *memcg;
3960 struct page_cgroup *pc;
3961 int ret;
3963 pc = lookup_page_cgroup(page);
3965 * Every swap fault against a single page tries to charge the
3966 * page, bail as early as possible. shmem_unuse() encounters
3967 * already charged pages, too. The USED bit is protected by
3968 * the page lock, which serializes swap cache removal, which
3969 * in turn serializes uncharging.
3971 if (PageCgroupUsed(pc))
3972 return 0;
3973 if (!do_swap_account)
3974 goto charge_cur_mm;
3975 memcg = try_get_mem_cgroup_from_page(page);
3976 if (!memcg)
3977 goto charge_cur_mm;
3978 *memcgp = memcg;
3979 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3980 css_put(&memcg->css);
3981 if (ret == -EINTR)
3982 ret = 0;
3983 return ret;
3984 charge_cur_mm:
3985 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3986 if (ret == -EINTR)
3987 ret = 0;
3988 return ret;
3991 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3992 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3994 *memcgp = NULL;
3995 if (mem_cgroup_disabled())
3996 return 0;
3998 * A racing thread's fault, or swapoff, may have already
3999 * updated the pte, and even removed page from swap cache: in
4000 * those cases unuse_pte()'s pte_same() test will fail; but
4001 * there's also a KSM case which does need to charge the page.
4003 if (!PageSwapCache(page)) {
4004 int ret;
4006 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4007 if (ret == -EINTR)
4008 ret = 0;
4009 return ret;
4011 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4014 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4016 if (mem_cgroup_disabled())
4017 return;
4018 if (!memcg)
4019 return;
4020 __mem_cgroup_cancel_charge(memcg, 1);
4023 static void
4024 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4025 enum charge_type ctype)
4027 if (mem_cgroup_disabled())
4028 return;
4029 if (!memcg)
4030 return;
4032 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4034 * Now swap is on-memory. This means this page may be
4035 * counted both as mem and swap....double count.
4036 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4037 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4038 * may call delete_from_swap_cache() before reach here.
4040 if (do_swap_account && PageSwapCache(page)) {
4041 swp_entry_t ent = {.val = page_private(page)};
4042 mem_cgroup_uncharge_swap(ent);
4046 void mem_cgroup_commit_charge_swapin(struct page *page,
4047 struct mem_cgroup *memcg)
4049 __mem_cgroup_commit_charge_swapin(page, memcg,
4050 MEM_CGROUP_CHARGE_TYPE_ANON);
4053 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4054 gfp_t gfp_mask)
4056 struct mem_cgroup *memcg = NULL;
4057 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4058 int ret;
4060 if (mem_cgroup_disabled())
4061 return 0;
4062 if (PageCompound(page))
4063 return 0;
4065 if (!PageSwapCache(page))
4066 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4067 else { /* page is swapcache/shmem */
4068 ret = __mem_cgroup_try_charge_swapin(mm, page,
4069 gfp_mask, &memcg);
4070 if (!ret)
4071 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4073 return ret;
4076 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4077 unsigned int nr_pages,
4078 const enum charge_type ctype)
4080 struct memcg_batch_info *batch = NULL;
4081 bool uncharge_memsw = true;
4083 /* If swapout, usage of swap doesn't decrease */
4084 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4085 uncharge_memsw = false;
4087 batch = &current->memcg_batch;
4089 * In usual, we do css_get() when we remember memcg pointer.
4090 * But in this case, we keep res->usage until end of a series of
4091 * uncharges. Then, it's ok to ignore memcg's refcnt.
4093 if (!batch->memcg)
4094 batch->memcg = memcg;
4096 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4097 * In those cases, all pages freed continuously can be expected to be in
4098 * the same cgroup and we have chance to coalesce uncharges.
4099 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4100 * because we want to do uncharge as soon as possible.
4103 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4104 goto direct_uncharge;
4106 if (nr_pages > 1)
4107 goto direct_uncharge;
4110 * In typical case, batch->memcg == mem. This means we can
4111 * merge a series of uncharges to an uncharge of res_counter.
4112 * If not, we uncharge res_counter ony by one.
4114 if (batch->memcg != memcg)
4115 goto direct_uncharge;
4116 /* remember freed charge and uncharge it later */
4117 batch->nr_pages++;
4118 if (uncharge_memsw)
4119 batch->memsw_nr_pages++;
4120 return;
4121 direct_uncharge:
4122 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4123 if (uncharge_memsw)
4124 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4125 if (unlikely(batch->memcg != memcg))
4126 memcg_oom_recover(memcg);
4130 * uncharge if !page_mapped(page)
4132 static struct mem_cgroup *
4133 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4134 bool end_migration)
4136 struct mem_cgroup *memcg = NULL;
4137 unsigned int nr_pages = 1;
4138 struct page_cgroup *pc;
4139 bool anon;
4141 if (mem_cgroup_disabled())
4142 return NULL;
4144 if (PageTransHuge(page)) {
4145 nr_pages <<= compound_order(page);
4146 VM_BUG_ON(!PageTransHuge(page));
4149 * Check if our page_cgroup is valid
4151 pc = lookup_page_cgroup(page);
4152 if (unlikely(!PageCgroupUsed(pc)))
4153 return NULL;
4155 lock_page_cgroup(pc);
4157 memcg = pc->mem_cgroup;
4159 if (!PageCgroupUsed(pc))
4160 goto unlock_out;
4162 anon = PageAnon(page);
4164 switch (ctype) {
4165 case MEM_CGROUP_CHARGE_TYPE_ANON:
4167 * Generally PageAnon tells if it's the anon statistics to be
4168 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4169 * used before page reached the stage of being marked PageAnon.
4171 anon = true;
4172 /* fallthrough */
4173 case MEM_CGROUP_CHARGE_TYPE_DROP:
4174 /* See mem_cgroup_prepare_migration() */
4175 if (page_mapped(page))
4176 goto unlock_out;
4178 * Pages under migration may not be uncharged. But
4179 * end_migration() /must/ be the one uncharging the
4180 * unused post-migration page and so it has to call
4181 * here with the migration bit still set. See the
4182 * res_counter handling below.
4184 if (!end_migration && PageCgroupMigration(pc))
4185 goto unlock_out;
4186 break;
4187 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4188 if (!PageAnon(page)) { /* Shared memory */
4189 if (page->mapping && !page_is_file_cache(page))
4190 goto unlock_out;
4191 } else if (page_mapped(page)) /* Anon */
4192 goto unlock_out;
4193 break;
4194 default:
4195 break;
4198 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4200 ClearPageCgroupUsed(pc);
4202 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4203 * freed from LRU. This is safe because uncharged page is expected not
4204 * to be reused (freed soon). Exception is SwapCache, it's handled by
4205 * special functions.
4208 unlock_page_cgroup(pc);
4210 * even after unlock, we have memcg->res.usage here and this memcg
4211 * will never be freed, so it's safe to call css_get().
4213 memcg_check_events(memcg, page);
4214 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4215 mem_cgroup_swap_statistics(memcg, true);
4216 css_get(&memcg->css);
4219 * Migration does not charge the res_counter for the
4220 * replacement page, so leave it alone when phasing out the
4221 * page that is unused after the migration.
4223 if (!end_migration && !mem_cgroup_is_root(memcg))
4224 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4226 return memcg;
4228 unlock_out:
4229 unlock_page_cgroup(pc);
4230 return NULL;
4233 void mem_cgroup_uncharge_page(struct page *page)
4235 /* early check. */
4236 if (page_mapped(page))
4237 return;
4238 VM_BUG_ON(page->mapping && !PageAnon(page));
4240 * If the page is in swap cache, uncharge should be deferred
4241 * to the swap path, which also properly accounts swap usage
4242 * and handles memcg lifetime.
4244 * Note that this check is not stable and reclaim may add the
4245 * page to swap cache at any time after this. However, if the
4246 * page is not in swap cache by the time page->mapcount hits
4247 * 0, there won't be any page table references to the swap
4248 * slot, and reclaim will free it and not actually write the
4249 * page to disk.
4251 if (PageSwapCache(page))
4252 return;
4253 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4256 void mem_cgroup_uncharge_cache_page(struct page *page)
4258 VM_BUG_ON(page_mapped(page));
4259 VM_BUG_ON(page->mapping);
4260 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4264 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4265 * In that cases, pages are freed continuously and we can expect pages
4266 * are in the same memcg. All these calls itself limits the number of
4267 * pages freed at once, then uncharge_start/end() is called properly.
4268 * This may be called prural(2) times in a context,
4271 void mem_cgroup_uncharge_start(void)
4273 current->memcg_batch.do_batch++;
4274 /* We can do nest. */
4275 if (current->memcg_batch.do_batch == 1) {
4276 current->memcg_batch.memcg = NULL;
4277 current->memcg_batch.nr_pages = 0;
4278 current->memcg_batch.memsw_nr_pages = 0;
4282 void mem_cgroup_uncharge_end(void)
4284 struct memcg_batch_info *batch = &current->memcg_batch;
4286 if (!batch->do_batch)
4287 return;
4289 batch->do_batch--;
4290 if (batch->do_batch) /* If stacked, do nothing. */
4291 return;
4293 if (!batch->memcg)
4294 return;
4296 * This "batch->memcg" is valid without any css_get/put etc...
4297 * bacause we hide charges behind us.
4299 if (batch->nr_pages)
4300 res_counter_uncharge(&batch->memcg->res,
4301 batch->nr_pages * PAGE_SIZE);
4302 if (batch->memsw_nr_pages)
4303 res_counter_uncharge(&batch->memcg->memsw,
4304 batch->memsw_nr_pages * PAGE_SIZE);
4305 memcg_oom_recover(batch->memcg);
4306 /* forget this pointer (for sanity check) */
4307 batch->memcg = NULL;
4310 #ifdef CONFIG_SWAP
4312 * called after __delete_from_swap_cache() and drop "page" account.
4313 * memcg information is recorded to swap_cgroup of "ent"
4315 void
4316 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4318 struct mem_cgroup *memcg;
4319 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4321 if (!swapout) /* this was a swap cache but the swap is unused ! */
4322 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4324 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4327 * record memcg information, if swapout && memcg != NULL,
4328 * css_get() was called in uncharge().
4330 if (do_swap_account && swapout && memcg)
4331 swap_cgroup_record(ent, css_id(&memcg->css));
4333 #endif
4335 #ifdef CONFIG_MEMCG_SWAP
4337 * called from swap_entry_free(). remove record in swap_cgroup and
4338 * uncharge "memsw" account.
4340 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4342 struct mem_cgroup *memcg;
4343 unsigned short id;
4345 if (!do_swap_account)
4346 return;
4348 id = swap_cgroup_record(ent, 0);
4349 rcu_read_lock();
4350 memcg = mem_cgroup_lookup(id);
4351 if (memcg) {
4353 * We uncharge this because swap is freed.
4354 * This memcg can be obsolete one. We avoid calling css_tryget
4356 if (!mem_cgroup_is_root(memcg))
4357 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4358 mem_cgroup_swap_statistics(memcg, false);
4359 css_put(&memcg->css);
4361 rcu_read_unlock();
4365 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4366 * @entry: swap entry to be moved
4367 * @from: mem_cgroup which the entry is moved from
4368 * @to: mem_cgroup which the entry is moved to
4370 * It succeeds only when the swap_cgroup's record for this entry is the same
4371 * as the mem_cgroup's id of @from.
4373 * Returns 0 on success, -EINVAL on failure.
4375 * The caller must have charged to @to, IOW, called res_counter_charge() about
4376 * both res and memsw, and called css_get().
4378 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4379 struct mem_cgroup *from, struct mem_cgroup *to)
4381 unsigned short old_id, new_id;
4383 old_id = css_id(&from->css);
4384 new_id = css_id(&to->css);
4386 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4387 mem_cgroup_swap_statistics(from, false);
4388 mem_cgroup_swap_statistics(to, true);
4390 * This function is only called from task migration context now.
4391 * It postpones res_counter and refcount handling till the end
4392 * of task migration(mem_cgroup_clear_mc()) for performance
4393 * improvement. But we cannot postpone css_get(to) because if
4394 * the process that has been moved to @to does swap-in, the
4395 * refcount of @to might be decreased to 0.
4397 * We are in attach() phase, so the cgroup is guaranteed to be
4398 * alive, so we can just call css_get().
4400 css_get(&to->css);
4401 return 0;
4403 return -EINVAL;
4405 #else
4406 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4407 struct mem_cgroup *from, struct mem_cgroup *to)
4409 return -EINVAL;
4411 #endif
4414 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4415 * page belongs to.
4417 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4418 struct mem_cgroup **memcgp)
4420 struct mem_cgroup *memcg = NULL;
4421 unsigned int nr_pages = 1;
4422 struct page_cgroup *pc;
4423 enum charge_type ctype;
4425 *memcgp = NULL;
4427 if (mem_cgroup_disabled())
4428 return;
4430 if (PageTransHuge(page))
4431 nr_pages <<= compound_order(page);
4433 pc = lookup_page_cgroup(page);
4434 lock_page_cgroup(pc);
4435 if (PageCgroupUsed(pc)) {
4436 memcg = pc->mem_cgroup;
4437 css_get(&memcg->css);
4439 * At migrating an anonymous page, its mapcount goes down
4440 * to 0 and uncharge() will be called. But, even if it's fully
4441 * unmapped, migration may fail and this page has to be
4442 * charged again. We set MIGRATION flag here and delay uncharge
4443 * until end_migration() is called
4445 * Corner Case Thinking
4446 * A)
4447 * When the old page was mapped as Anon and it's unmap-and-freed
4448 * while migration was ongoing.
4449 * If unmap finds the old page, uncharge() of it will be delayed
4450 * until end_migration(). If unmap finds a new page, it's
4451 * uncharged when it make mapcount to be 1->0. If unmap code
4452 * finds swap_migration_entry, the new page will not be mapped
4453 * and end_migration() will find it(mapcount==0).
4455 * B)
4456 * When the old page was mapped but migraion fails, the kernel
4457 * remaps it. A charge for it is kept by MIGRATION flag even
4458 * if mapcount goes down to 0. We can do remap successfully
4459 * without charging it again.
4461 * C)
4462 * The "old" page is under lock_page() until the end of
4463 * migration, so, the old page itself will not be swapped-out.
4464 * If the new page is swapped out before end_migraton, our
4465 * hook to usual swap-out path will catch the event.
4467 if (PageAnon(page))
4468 SetPageCgroupMigration(pc);
4470 unlock_page_cgroup(pc);
4472 * If the page is not charged at this point,
4473 * we return here.
4475 if (!memcg)
4476 return;
4478 *memcgp = memcg;
4480 * We charge new page before it's used/mapped. So, even if unlock_page()
4481 * is called before end_migration, we can catch all events on this new
4482 * page. In the case new page is migrated but not remapped, new page's
4483 * mapcount will be finally 0 and we call uncharge in end_migration().
4485 if (PageAnon(page))
4486 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4487 else
4488 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4490 * The page is committed to the memcg, but it's not actually
4491 * charged to the res_counter since we plan on replacing the
4492 * old one and only one page is going to be left afterwards.
4494 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4497 /* remove redundant charge if migration failed*/
4498 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4499 struct page *oldpage, struct page *newpage, bool migration_ok)
4501 struct page *used, *unused;
4502 struct page_cgroup *pc;
4503 bool anon;
4505 if (!memcg)
4506 return;
4508 if (!migration_ok) {
4509 used = oldpage;
4510 unused = newpage;
4511 } else {
4512 used = newpage;
4513 unused = oldpage;
4515 anon = PageAnon(used);
4516 __mem_cgroup_uncharge_common(unused,
4517 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4518 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4519 true);
4520 css_put(&memcg->css);
4522 * We disallowed uncharge of pages under migration because mapcount
4523 * of the page goes down to zero, temporarly.
4524 * Clear the flag and check the page should be charged.
4526 pc = lookup_page_cgroup(oldpage);
4527 lock_page_cgroup(pc);
4528 ClearPageCgroupMigration(pc);
4529 unlock_page_cgroup(pc);
4532 * If a page is a file cache, radix-tree replacement is very atomic
4533 * and we can skip this check. When it was an Anon page, its mapcount
4534 * goes down to 0. But because we added MIGRATION flage, it's not
4535 * uncharged yet. There are several case but page->mapcount check
4536 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4537 * check. (see prepare_charge() also)
4539 if (anon)
4540 mem_cgroup_uncharge_page(used);
4544 * At replace page cache, newpage is not under any memcg but it's on
4545 * LRU. So, this function doesn't touch res_counter but handles LRU
4546 * in correct way. Both pages are locked so we cannot race with uncharge.
4548 void mem_cgroup_replace_page_cache(struct page *oldpage,
4549 struct page *newpage)
4551 struct mem_cgroup *memcg = NULL;
4552 struct page_cgroup *pc;
4553 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4555 if (mem_cgroup_disabled())
4556 return;
4558 pc = lookup_page_cgroup(oldpage);
4559 /* fix accounting on old pages */
4560 lock_page_cgroup(pc);
4561 if (PageCgroupUsed(pc)) {
4562 memcg = pc->mem_cgroup;
4563 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4564 ClearPageCgroupUsed(pc);
4566 unlock_page_cgroup(pc);
4569 * When called from shmem_replace_page(), in some cases the
4570 * oldpage has already been charged, and in some cases not.
4572 if (!memcg)
4573 return;
4575 * Even if newpage->mapping was NULL before starting replacement,
4576 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4577 * LRU while we overwrite pc->mem_cgroup.
4579 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4582 #ifdef CONFIG_DEBUG_VM
4583 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4585 struct page_cgroup *pc;
4587 pc = lookup_page_cgroup(page);
4589 * Can be NULL while feeding pages into the page allocator for
4590 * the first time, i.e. during boot or memory hotplug;
4591 * or when mem_cgroup_disabled().
4593 if (likely(pc) && PageCgroupUsed(pc))
4594 return pc;
4595 return NULL;
4598 bool mem_cgroup_bad_page_check(struct page *page)
4600 if (mem_cgroup_disabled())
4601 return false;
4603 return lookup_page_cgroup_used(page) != NULL;
4606 void mem_cgroup_print_bad_page(struct page *page)
4608 struct page_cgroup *pc;
4610 pc = lookup_page_cgroup_used(page);
4611 if (pc) {
4612 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4613 pc, pc->flags, pc->mem_cgroup);
4616 #endif
4618 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4619 unsigned long long val)
4621 int retry_count;
4622 u64 memswlimit, memlimit;
4623 int ret = 0;
4624 int children = mem_cgroup_count_children(memcg);
4625 u64 curusage, oldusage;
4626 int enlarge;
4629 * For keeping hierarchical_reclaim simple, how long we should retry
4630 * is depends on callers. We set our retry-count to be function
4631 * of # of children which we should visit in this loop.
4633 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4635 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4637 enlarge = 0;
4638 while (retry_count) {
4639 if (signal_pending(current)) {
4640 ret = -EINTR;
4641 break;
4644 * Rather than hide all in some function, I do this in
4645 * open coded manner. You see what this really does.
4646 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4648 mutex_lock(&set_limit_mutex);
4649 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4650 if (memswlimit < val) {
4651 ret = -EINVAL;
4652 mutex_unlock(&set_limit_mutex);
4653 break;
4656 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4657 if (memlimit < val)
4658 enlarge = 1;
4660 ret = res_counter_set_limit(&memcg->res, val);
4661 if (!ret) {
4662 if (memswlimit == val)
4663 memcg->memsw_is_minimum = true;
4664 else
4665 memcg->memsw_is_minimum = false;
4667 mutex_unlock(&set_limit_mutex);
4669 if (!ret)
4670 break;
4672 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4673 MEM_CGROUP_RECLAIM_SHRINK);
4674 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4675 /* Usage is reduced ? */
4676 if (curusage >= oldusage)
4677 retry_count--;
4678 else
4679 oldusage = curusage;
4681 if (!ret && enlarge)
4682 memcg_oom_recover(memcg);
4684 return ret;
4687 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4688 unsigned long long val)
4690 int retry_count;
4691 u64 memlimit, memswlimit, oldusage, curusage;
4692 int children = mem_cgroup_count_children(memcg);
4693 int ret = -EBUSY;
4694 int enlarge = 0;
4696 /* see mem_cgroup_resize_res_limit */
4697 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4698 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4699 while (retry_count) {
4700 if (signal_pending(current)) {
4701 ret = -EINTR;
4702 break;
4705 * Rather than hide all in some function, I do this in
4706 * open coded manner. You see what this really does.
4707 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4709 mutex_lock(&set_limit_mutex);
4710 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4711 if (memlimit > val) {
4712 ret = -EINVAL;
4713 mutex_unlock(&set_limit_mutex);
4714 break;
4716 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4717 if (memswlimit < val)
4718 enlarge = 1;
4719 ret = res_counter_set_limit(&memcg->memsw, val);
4720 if (!ret) {
4721 if (memlimit == val)
4722 memcg->memsw_is_minimum = true;
4723 else
4724 memcg->memsw_is_minimum = false;
4726 mutex_unlock(&set_limit_mutex);
4728 if (!ret)
4729 break;
4731 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4732 MEM_CGROUP_RECLAIM_NOSWAP |
4733 MEM_CGROUP_RECLAIM_SHRINK);
4734 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4735 /* Usage is reduced ? */
4736 if (curusage >= oldusage)
4737 retry_count--;
4738 else
4739 oldusage = curusage;
4741 if (!ret && enlarge)
4742 memcg_oom_recover(memcg);
4743 return ret;
4746 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4747 gfp_t gfp_mask,
4748 unsigned long *total_scanned)
4750 unsigned long nr_reclaimed = 0;
4751 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4752 unsigned long reclaimed;
4753 int loop = 0;
4754 struct mem_cgroup_tree_per_zone *mctz;
4755 unsigned long long excess;
4756 unsigned long nr_scanned;
4758 if (order > 0)
4759 return 0;
4761 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4763 * This loop can run a while, specially if mem_cgroup's continuously
4764 * keep exceeding their soft limit and putting the system under
4765 * pressure
4767 do {
4768 if (next_mz)
4769 mz = next_mz;
4770 else
4771 mz = mem_cgroup_largest_soft_limit_node(mctz);
4772 if (!mz)
4773 break;
4775 nr_scanned = 0;
4776 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4777 gfp_mask, &nr_scanned);
4778 nr_reclaimed += reclaimed;
4779 *total_scanned += nr_scanned;
4780 spin_lock(&mctz->lock);
4783 * If we failed to reclaim anything from this memory cgroup
4784 * it is time to move on to the next cgroup
4786 next_mz = NULL;
4787 if (!reclaimed) {
4788 do {
4790 * Loop until we find yet another one.
4792 * By the time we get the soft_limit lock
4793 * again, someone might have aded the
4794 * group back on the RB tree. Iterate to
4795 * make sure we get a different mem.
4796 * mem_cgroup_largest_soft_limit_node returns
4797 * NULL if no other cgroup is present on
4798 * the tree
4800 next_mz =
4801 __mem_cgroup_largest_soft_limit_node(mctz);
4802 if (next_mz == mz)
4803 css_put(&next_mz->memcg->css);
4804 else /* next_mz == NULL or other memcg */
4805 break;
4806 } while (1);
4808 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4809 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4811 * One school of thought says that we should not add
4812 * back the node to the tree if reclaim returns 0.
4813 * But our reclaim could return 0, simply because due
4814 * to priority we are exposing a smaller subset of
4815 * memory to reclaim from. Consider this as a longer
4816 * term TODO.
4818 /* If excess == 0, no tree ops */
4819 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4820 spin_unlock(&mctz->lock);
4821 css_put(&mz->memcg->css);
4822 loop++;
4824 * Could not reclaim anything and there are no more
4825 * mem cgroups to try or we seem to be looping without
4826 * reclaiming anything.
4828 if (!nr_reclaimed &&
4829 (next_mz == NULL ||
4830 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4831 break;
4832 } while (!nr_reclaimed);
4833 if (next_mz)
4834 css_put(&next_mz->memcg->css);
4835 return nr_reclaimed;
4839 * mem_cgroup_force_empty_list - clears LRU of a group
4840 * @memcg: group to clear
4841 * @node: NUMA node
4842 * @zid: zone id
4843 * @lru: lru to to clear
4845 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4846 * reclaim the pages page themselves - pages are moved to the parent (or root)
4847 * group.
4849 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4850 int node, int zid, enum lru_list lru)
4852 struct lruvec *lruvec;
4853 unsigned long flags;
4854 struct list_head *list;
4855 struct page *busy;
4856 struct zone *zone;
4858 zone = &NODE_DATA(node)->node_zones[zid];
4859 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4860 list = &lruvec->lists[lru];
4862 busy = NULL;
4863 do {
4864 struct page_cgroup *pc;
4865 struct page *page;
4867 spin_lock_irqsave(&zone->lru_lock, flags);
4868 if (list_empty(list)) {
4869 spin_unlock_irqrestore(&zone->lru_lock, flags);
4870 break;
4872 page = list_entry(list->prev, struct page, lru);
4873 if (busy == page) {
4874 list_move(&page->lru, list);
4875 busy = NULL;
4876 spin_unlock_irqrestore(&zone->lru_lock, flags);
4877 continue;
4879 spin_unlock_irqrestore(&zone->lru_lock, flags);
4881 pc = lookup_page_cgroup(page);
4883 if (mem_cgroup_move_parent(page, pc, memcg)) {
4884 /* found lock contention or "pc" is obsolete. */
4885 busy = page;
4886 cond_resched();
4887 } else
4888 busy = NULL;
4889 } while (!list_empty(list));
4893 * make mem_cgroup's charge to be 0 if there is no task by moving
4894 * all the charges and pages to the parent.
4895 * This enables deleting this mem_cgroup.
4897 * Caller is responsible for holding css reference on the memcg.
4899 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4901 int node, zid;
4902 u64 usage;
4904 do {
4905 /* This is for making all *used* pages to be on LRU. */
4906 lru_add_drain_all();
4907 drain_all_stock_sync(memcg);
4908 mem_cgroup_start_move(memcg);
4909 for_each_node_state(node, N_MEMORY) {
4910 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4911 enum lru_list lru;
4912 for_each_lru(lru) {
4913 mem_cgroup_force_empty_list(memcg,
4914 node, zid, lru);
4918 mem_cgroup_end_move(memcg);
4919 memcg_oom_recover(memcg);
4920 cond_resched();
4923 * Kernel memory may not necessarily be trackable to a specific
4924 * process. So they are not migrated, and therefore we can't
4925 * expect their value to drop to 0 here.
4926 * Having res filled up with kmem only is enough.
4928 * This is a safety check because mem_cgroup_force_empty_list
4929 * could have raced with mem_cgroup_replace_page_cache callers
4930 * so the lru seemed empty but the page could have been added
4931 * right after the check. RES_USAGE should be safe as we always
4932 * charge before adding to the LRU.
4934 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4935 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4936 } while (usage > 0);
4940 * This mainly exists for tests during the setting of set of use_hierarchy.
4941 * Since this is the very setting we are changing, the current hierarchy value
4942 * is meaningless
4944 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4946 struct cgroup *pos;
4948 /* bounce at first found */
4949 cgroup_for_each_child(pos, memcg->css.cgroup)
4950 return true;
4951 return false;
4955 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4956 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4957 * from mem_cgroup_count_children(), in the sense that we don't really care how
4958 * many children we have; we only need to know if we have any. It also counts
4959 * any memcg without hierarchy as infertile.
4961 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4963 return memcg->use_hierarchy && __memcg_has_children(memcg);
4967 * Reclaims as many pages from the given memcg as possible and moves
4968 * the rest to the parent.
4970 * Caller is responsible for holding css reference for memcg.
4972 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4974 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4975 struct cgroup *cgrp = memcg->css.cgroup;
4977 /* returns EBUSY if there is a task or if we come here twice. */
4978 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4979 return -EBUSY;
4981 /* we call try-to-free pages for make this cgroup empty */
4982 lru_add_drain_all();
4983 /* try to free all pages in this cgroup */
4984 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4985 int progress;
4987 if (signal_pending(current))
4988 return -EINTR;
4990 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4991 false);
4992 if (!progress) {
4993 nr_retries--;
4994 /* maybe some writeback is necessary */
4995 congestion_wait(BLK_RW_ASYNC, HZ/10);
4999 lru_add_drain();
5000 mem_cgroup_reparent_charges(memcg);
5002 return 0;
5005 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5007 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5008 int ret;
5010 if (mem_cgroup_is_root(memcg))
5011 return -EINVAL;
5012 css_get(&memcg->css);
5013 ret = mem_cgroup_force_empty(memcg);
5014 css_put(&memcg->css);
5016 return ret;
5020 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5022 return mem_cgroup_from_cont(cont)->use_hierarchy;
5025 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5026 u64 val)
5028 int retval = 0;
5029 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5030 struct cgroup *parent = cont->parent;
5031 struct mem_cgroup *parent_memcg = NULL;
5033 if (parent)
5034 parent_memcg = mem_cgroup_from_cont(parent);
5036 mutex_lock(&memcg_create_mutex);
5038 if (memcg->use_hierarchy == val)
5039 goto out;
5042 * If parent's use_hierarchy is set, we can't make any modifications
5043 * in the child subtrees. If it is unset, then the change can
5044 * occur, provided the current cgroup has no children.
5046 * For the root cgroup, parent_mem is NULL, we allow value to be
5047 * set if there are no children.
5049 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5050 (val == 1 || val == 0)) {
5051 if (!__memcg_has_children(memcg))
5052 memcg->use_hierarchy = val;
5053 else
5054 retval = -EBUSY;
5055 } else
5056 retval = -EINVAL;
5058 out:
5059 mutex_unlock(&memcg_create_mutex);
5061 return retval;
5065 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5066 enum mem_cgroup_stat_index idx)
5068 struct mem_cgroup *iter;
5069 long val = 0;
5071 /* Per-cpu values can be negative, use a signed accumulator */
5072 for_each_mem_cgroup_tree(iter, memcg)
5073 val += mem_cgroup_read_stat(iter, idx);
5075 if (val < 0) /* race ? */
5076 val = 0;
5077 return val;
5080 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5082 u64 val;
5084 if (!mem_cgroup_is_root(memcg)) {
5085 if (!swap)
5086 return res_counter_read_u64(&memcg->res, RES_USAGE);
5087 else
5088 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5092 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5093 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5095 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5096 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5098 if (swap)
5099 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5101 return val << PAGE_SHIFT;
5104 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5105 struct file *file, char __user *buf,
5106 size_t nbytes, loff_t *ppos)
5108 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5109 char str[64];
5110 u64 val;
5111 int name, len;
5112 enum res_type type;
5114 type = MEMFILE_TYPE(cft->private);
5115 name = MEMFILE_ATTR(cft->private);
5117 switch (type) {
5118 case _MEM:
5119 if (name == RES_USAGE)
5120 val = mem_cgroup_usage(memcg, false);
5121 else
5122 val = res_counter_read_u64(&memcg->res, name);
5123 break;
5124 case _MEMSWAP:
5125 if (name == RES_USAGE)
5126 val = mem_cgroup_usage(memcg, true);
5127 else
5128 val = res_counter_read_u64(&memcg->memsw, name);
5129 break;
5130 case _KMEM:
5131 val = res_counter_read_u64(&memcg->kmem, name);
5132 break;
5133 default:
5134 BUG();
5137 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5138 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5141 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5143 int ret = -EINVAL;
5144 #ifdef CONFIG_MEMCG_KMEM
5145 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5147 * For simplicity, we won't allow this to be disabled. It also can't
5148 * be changed if the cgroup has children already, or if tasks had
5149 * already joined.
5151 * If tasks join before we set the limit, a person looking at
5152 * kmem.usage_in_bytes will have no way to determine when it took
5153 * place, which makes the value quite meaningless.
5155 * After it first became limited, changes in the value of the limit are
5156 * of course permitted.
5158 mutex_lock(&memcg_create_mutex);
5159 mutex_lock(&set_limit_mutex);
5160 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5161 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5162 ret = -EBUSY;
5163 goto out;
5165 ret = res_counter_set_limit(&memcg->kmem, val);
5166 VM_BUG_ON(ret);
5168 ret = memcg_update_cache_sizes(memcg);
5169 if (ret) {
5170 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5171 goto out;
5173 static_key_slow_inc(&memcg_kmem_enabled_key);
5175 * setting the active bit after the inc will guarantee no one
5176 * starts accounting before all call sites are patched
5178 memcg_kmem_set_active(memcg);
5179 } else
5180 ret = res_counter_set_limit(&memcg->kmem, val);
5181 out:
5182 mutex_unlock(&set_limit_mutex);
5183 mutex_unlock(&memcg_create_mutex);
5184 #endif
5185 return ret;
5188 #ifdef CONFIG_MEMCG_KMEM
5189 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5191 int ret = 0;
5192 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5193 if (!parent)
5194 goto out;
5196 memcg->kmem_account_flags = parent->kmem_account_flags;
5198 * When that happen, we need to disable the static branch only on those
5199 * memcgs that enabled it. To achieve this, we would be forced to
5200 * complicate the code by keeping track of which memcgs were the ones
5201 * that actually enabled limits, and which ones got it from its
5202 * parents.
5204 * It is a lot simpler just to do static_key_slow_inc() on every child
5205 * that is accounted.
5207 if (!memcg_kmem_is_active(memcg))
5208 goto out;
5211 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5212 * memcg is active already. If the later initialization fails then the
5213 * cgroup core triggers the cleanup so we do not have to do it here.
5215 static_key_slow_inc(&memcg_kmem_enabled_key);
5217 mutex_lock(&set_limit_mutex);
5218 memcg_stop_kmem_account();
5219 ret = memcg_update_cache_sizes(memcg);
5220 memcg_resume_kmem_account();
5221 mutex_unlock(&set_limit_mutex);
5222 out:
5223 return ret;
5225 #endif /* CONFIG_MEMCG_KMEM */
5228 * The user of this function is...
5229 * RES_LIMIT.
5231 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5232 const char *buffer)
5234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5235 enum res_type type;
5236 int name;
5237 unsigned long long val;
5238 int ret;
5240 type = MEMFILE_TYPE(cft->private);
5241 name = MEMFILE_ATTR(cft->private);
5243 switch (name) {
5244 case RES_LIMIT:
5245 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5246 ret = -EINVAL;
5247 break;
5249 /* This function does all necessary parse...reuse it */
5250 ret = res_counter_memparse_write_strategy(buffer, &val);
5251 if (ret)
5252 break;
5253 if (type == _MEM)
5254 ret = mem_cgroup_resize_limit(memcg, val);
5255 else if (type == _MEMSWAP)
5256 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5257 else if (type == _KMEM)
5258 ret = memcg_update_kmem_limit(cont, val);
5259 else
5260 return -EINVAL;
5261 break;
5262 case RES_SOFT_LIMIT:
5263 ret = res_counter_memparse_write_strategy(buffer, &val);
5264 if (ret)
5265 break;
5267 * For memsw, soft limits are hard to implement in terms
5268 * of semantics, for now, we support soft limits for
5269 * control without swap
5271 if (type == _MEM)
5272 ret = res_counter_set_soft_limit(&memcg->res, val);
5273 else
5274 ret = -EINVAL;
5275 break;
5276 default:
5277 ret = -EINVAL; /* should be BUG() ? */
5278 break;
5280 return ret;
5283 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5284 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5286 struct cgroup *cgroup;
5287 unsigned long long min_limit, min_memsw_limit, tmp;
5289 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5291 cgroup = memcg->css.cgroup;
5292 if (!memcg->use_hierarchy)
5293 goto out;
5295 while (cgroup->parent) {
5296 cgroup = cgroup->parent;
5297 memcg = mem_cgroup_from_cont(cgroup);
5298 if (!memcg->use_hierarchy)
5299 break;
5300 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5301 min_limit = min(min_limit, tmp);
5302 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5303 min_memsw_limit = min(min_memsw_limit, tmp);
5305 out:
5306 *mem_limit = min_limit;
5307 *memsw_limit = min_memsw_limit;
5310 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5312 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5313 int name;
5314 enum res_type type;
5316 type = MEMFILE_TYPE(event);
5317 name = MEMFILE_ATTR(event);
5319 switch (name) {
5320 case RES_MAX_USAGE:
5321 if (type == _MEM)
5322 res_counter_reset_max(&memcg->res);
5323 else if (type == _MEMSWAP)
5324 res_counter_reset_max(&memcg->memsw);
5325 else if (type == _KMEM)
5326 res_counter_reset_max(&memcg->kmem);
5327 else
5328 return -EINVAL;
5329 break;
5330 case RES_FAILCNT:
5331 if (type == _MEM)
5332 res_counter_reset_failcnt(&memcg->res);
5333 else if (type == _MEMSWAP)
5334 res_counter_reset_failcnt(&memcg->memsw);
5335 else if (type == _KMEM)
5336 res_counter_reset_failcnt(&memcg->kmem);
5337 else
5338 return -EINVAL;
5339 break;
5342 return 0;
5345 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5346 struct cftype *cft)
5348 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5351 #ifdef CONFIG_MMU
5352 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5353 struct cftype *cft, u64 val)
5355 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5357 if (val >= (1 << NR_MOVE_TYPE))
5358 return -EINVAL;
5361 * No kind of locking is needed in here, because ->can_attach() will
5362 * check this value once in the beginning of the process, and then carry
5363 * on with stale data. This means that changes to this value will only
5364 * affect task migrations starting after the change.
5366 memcg->move_charge_at_immigrate = val;
5367 return 0;
5369 #else
5370 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5371 struct cftype *cft, u64 val)
5373 return -ENOSYS;
5375 #endif
5377 #ifdef CONFIG_NUMA
5378 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5379 struct seq_file *m)
5381 int nid;
5382 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5383 unsigned long node_nr;
5384 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5386 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5387 seq_printf(m, "total=%lu", total_nr);
5388 for_each_node_state(nid, N_MEMORY) {
5389 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5390 seq_printf(m, " N%d=%lu", nid, node_nr);
5392 seq_putc(m, '\n');
5394 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5395 seq_printf(m, "file=%lu", file_nr);
5396 for_each_node_state(nid, N_MEMORY) {
5397 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5398 LRU_ALL_FILE);
5399 seq_printf(m, " N%d=%lu", nid, node_nr);
5401 seq_putc(m, '\n');
5403 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5404 seq_printf(m, "anon=%lu", anon_nr);
5405 for_each_node_state(nid, N_MEMORY) {
5406 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407 LRU_ALL_ANON);
5408 seq_printf(m, " N%d=%lu", nid, node_nr);
5410 seq_putc(m, '\n');
5412 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5413 seq_printf(m, "unevictable=%lu", unevictable_nr);
5414 for_each_node_state(nid, N_MEMORY) {
5415 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5416 BIT(LRU_UNEVICTABLE));
5417 seq_printf(m, " N%d=%lu", nid, node_nr);
5419 seq_putc(m, '\n');
5420 return 0;
5422 #endif /* CONFIG_NUMA */
5424 static inline void mem_cgroup_lru_names_not_uptodate(void)
5426 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5429 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5430 struct seq_file *m)
5432 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5433 struct mem_cgroup *mi;
5434 unsigned int i;
5436 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5437 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5438 continue;
5439 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5440 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5443 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5444 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5445 mem_cgroup_read_events(memcg, i));
5447 for (i = 0; i < NR_LRU_LISTS; i++)
5448 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5449 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5451 /* Hierarchical information */
5453 unsigned long long limit, memsw_limit;
5454 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5455 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5456 if (do_swap_account)
5457 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5458 memsw_limit);
5461 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5462 long long val = 0;
5464 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5465 continue;
5466 for_each_mem_cgroup_tree(mi, memcg)
5467 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5468 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5471 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5472 unsigned long long val = 0;
5474 for_each_mem_cgroup_tree(mi, memcg)
5475 val += mem_cgroup_read_events(mi, i);
5476 seq_printf(m, "total_%s %llu\n",
5477 mem_cgroup_events_names[i], val);
5480 for (i = 0; i < NR_LRU_LISTS; i++) {
5481 unsigned long long val = 0;
5483 for_each_mem_cgroup_tree(mi, memcg)
5484 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5485 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5488 #ifdef CONFIG_DEBUG_VM
5490 int nid, zid;
5491 struct mem_cgroup_per_zone *mz;
5492 struct zone_reclaim_stat *rstat;
5493 unsigned long recent_rotated[2] = {0, 0};
5494 unsigned long recent_scanned[2] = {0, 0};
5496 for_each_online_node(nid)
5497 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5498 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5499 rstat = &mz->lruvec.reclaim_stat;
5501 recent_rotated[0] += rstat->recent_rotated[0];
5502 recent_rotated[1] += rstat->recent_rotated[1];
5503 recent_scanned[0] += rstat->recent_scanned[0];
5504 recent_scanned[1] += rstat->recent_scanned[1];
5506 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5507 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5508 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5509 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5511 #endif
5513 return 0;
5516 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5520 return mem_cgroup_swappiness(memcg);
5523 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5524 u64 val)
5526 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5527 struct mem_cgroup *parent;
5529 if (val > 100)
5530 return -EINVAL;
5532 if (cgrp->parent == NULL)
5533 return -EINVAL;
5535 parent = mem_cgroup_from_cont(cgrp->parent);
5537 mutex_lock(&memcg_create_mutex);
5539 /* If under hierarchy, only empty-root can set this value */
5540 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5541 mutex_unlock(&memcg_create_mutex);
5542 return -EINVAL;
5545 memcg->swappiness = val;
5547 mutex_unlock(&memcg_create_mutex);
5549 return 0;
5552 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5554 struct mem_cgroup_threshold_ary *t;
5555 u64 usage;
5556 int i;
5558 rcu_read_lock();
5559 if (!swap)
5560 t = rcu_dereference(memcg->thresholds.primary);
5561 else
5562 t = rcu_dereference(memcg->memsw_thresholds.primary);
5564 if (!t)
5565 goto unlock;
5567 usage = mem_cgroup_usage(memcg, swap);
5570 * current_threshold points to threshold just below or equal to usage.
5571 * If it's not true, a threshold was crossed after last
5572 * call of __mem_cgroup_threshold().
5574 i = t->current_threshold;
5577 * Iterate backward over array of thresholds starting from
5578 * current_threshold and check if a threshold is crossed.
5579 * If none of thresholds below usage is crossed, we read
5580 * only one element of the array here.
5582 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5583 eventfd_signal(t->entries[i].eventfd, 1);
5585 /* i = current_threshold + 1 */
5586 i++;
5589 * Iterate forward over array of thresholds starting from
5590 * current_threshold+1 and check if a threshold is crossed.
5591 * If none of thresholds above usage is crossed, we read
5592 * only one element of the array here.
5594 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5595 eventfd_signal(t->entries[i].eventfd, 1);
5597 /* Update current_threshold */
5598 t->current_threshold = i - 1;
5599 unlock:
5600 rcu_read_unlock();
5603 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5605 while (memcg) {
5606 __mem_cgroup_threshold(memcg, false);
5607 if (do_swap_account)
5608 __mem_cgroup_threshold(memcg, true);
5610 memcg = parent_mem_cgroup(memcg);
5614 static int compare_thresholds(const void *a, const void *b)
5616 const struct mem_cgroup_threshold *_a = a;
5617 const struct mem_cgroup_threshold *_b = b;
5619 return _a->threshold - _b->threshold;
5622 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5624 struct mem_cgroup_eventfd_list *ev;
5626 list_for_each_entry(ev, &memcg->oom_notify, list)
5627 eventfd_signal(ev->eventfd, 1);
5628 return 0;
5631 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5633 struct mem_cgroup *iter;
5635 for_each_mem_cgroup_tree(iter, memcg)
5636 mem_cgroup_oom_notify_cb(iter);
5639 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5640 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5642 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5643 struct mem_cgroup_thresholds *thresholds;
5644 struct mem_cgroup_threshold_ary *new;
5645 enum res_type type = MEMFILE_TYPE(cft->private);
5646 u64 threshold, usage;
5647 int i, size, ret;
5649 ret = res_counter_memparse_write_strategy(args, &threshold);
5650 if (ret)
5651 return ret;
5653 mutex_lock(&memcg->thresholds_lock);
5655 if (type == _MEM)
5656 thresholds = &memcg->thresholds;
5657 else if (type == _MEMSWAP)
5658 thresholds = &memcg->memsw_thresholds;
5659 else
5660 BUG();
5662 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5664 /* Check if a threshold crossed before adding a new one */
5665 if (thresholds->primary)
5666 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5668 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5670 /* Allocate memory for new array of thresholds */
5671 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5672 GFP_KERNEL);
5673 if (!new) {
5674 ret = -ENOMEM;
5675 goto unlock;
5677 new->size = size;
5679 /* Copy thresholds (if any) to new array */
5680 if (thresholds->primary) {
5681 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5682 sizeof(struct mem_cgroup_threshold));
5685 /* Add new threshold */
5686 new->entries[size - 1].eventfd = eventfd;
5687 new->entries[size - 1].threshold = threshold;
5689 /* Sort thresholds. Registering of new threshold isn't time-critical */
5690 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5691 compare_thresholds, NULL);
5693 /* Find current threshold */
5694 new->current_threshold = -1;
5695 for (i = 0; i < size; i++) {
5696 if (new->entries[i].threshold <= usage) {
5698 * new->current_threshold will not be used until
5699 * rcu_assign_pointer(), so it's safe to increment
5700 * it here.
5702 ++new->current_threshold;
5703 } else
5704 break;
5707 /* Free old spare buffer and save old primary buffer as spare */
5708 kfree(thresholds->spare);
5709 thresholds->spare = thresholds->primary;
5711 rcu_assign_pointer(thresholds->primary, new);
5713 /* To be sure that nobody uses thresholds */
5714 synchronize_rcu();
5716 unlock:
5717 mutex_unlock(&memcg->thresholds_lock);
5719 return ret;
5722 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5723 struct cftype *cft, struct eventfd_ctx *eventfd)
5725 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5726 struct mem_cgroup_thresholds *thresholds;
5727 struct mem_cgroup_threshold_ary *new;
5728 enum res_type type = MEMFILE_TYPE(cft->private);
5729 u64 usage;
5730 int i, j, size;
5732 mutex_lock(&memcg->thresholds_lock);
5733 if (type == _MEM)
5734 thresholds = &memcg->thresholds;
5735 else if (type == _MEMSWAP)
5736 thresholds = &memcg->memsw_thresholds;
5737 else
5738 BUG();
5740 if (!thresholds->primary)
5741 goto unlock;
5743 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5745 /* Check if a threshold crossed before removing */
5746 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5748 /* Calculate new number of threshold */
5749 size = 0;
5750 for (i = 0; i < thresholds->primary->size; i++) {
5751 if (thresholds->primary->entries[i].eventfd != eventfd)
5752 size++;
5755 new = thresholds->spare;
5757 /* Set thresholds array to NULL if we don't have thresholds */
5758 if (!size) {
5759 kfree(new);
5760 new = NULL;
5761 goto swap_buffers;
5764 new->size = size;
5766 /* Copy thresholds and find current threshold */
5767 new->current_threshold = -1;
5768 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5769 if (thresholds->primary->entries[i].eventfd == eventfd)
5770 continue;
5772 new->entries[j] = thresholds->primary->entries[i];
5773 if (new->entries[j].threshold <= usage) {
5775 * new->current_threshold will not be used
5776 * until rcu_assign_pointer(), so it's safe to increment
5777 * it here.
5779 ++new->current_threshold;
5781 j++;
5784 swap_buffers:
5785 /* Swap primary and spare array */
5786 thresholds->spare = thresholds->primary;
5787 /* If all events are unregistered, free the spare array */
5788 if (!new) {
5789 kfree(thresholds->spare);
5790 thresholds->spare = NULL;
5793 rcu_assign_pointer(thresholds->primary, new);
5795 /* To be sure that nobody uses thresholds */
5796 synchronize_rcu();
5797 unlock:
5798 mutex_unlock(&memcg->thresholds_lock);
5801 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5802 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5804 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5805 struct mem_cgroup_eventfd_list *event;
5806 enum res_type type = MEMFILE_TYPE(cft->private);
5808 BUG_ON(type != _OOM_TYPE);
5809 event = kmalloc(sizeof(*event), GFP_KERNEL);
5810 if (!event)
5811 return -ENOMEM;
5813 spin_lock(&memcg_oom_lock);
5815 event->eventfd = eventfd;
5816 list_add(&event->list, &memcg->oom_notify);
5818 /* already in OOM ? */
5819 if (atomic_read(&memcg->under_oom))
5820 eventfd_signal(eventfd, 1);
5821 spin_unlock(&memcg_oom_lock);
5823 return 0;
5826 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5827 struct cftype *cft, struct eventfd_ctx *eventfd)
5829 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5830 struct mem_cgroup_eventfd_list *ev, *tmp;
5831 enum res_type type = MEMFILE_TYPE(cft->private);
5833 BUG_ON(type != _OOM_TYPE);
5835 spin_lock(&memcg_oom_lock);
5837 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5838 if (ev->eventfd == eventfd) {
5839 list_del(&ev->list);
5840 kfree(ev);
5844 spin_unlock(&memcg_oom_lock);
5847 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5848 struct cftype *cft, struct cgroup_map_cb *cb)
5850 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5852 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5854 if (atomic_read(&memcg->under_oom))
5855 cb->fill(cb, "under_oom", 1);
5856 else
5857 cb->fill(cb, "under_oom", 0);
5858 return 0;
5861 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5862 struct cftype *cft, u64 val)
5864 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5865 struct mem_cgroup *parent;
5867 /* cannot set to root cgroup and only 0 and 1 are allowed */
5868 if (!cgrp->parent || !((val == 0) || (val == 1)))
5869 return -EINVAL;
5871 parent = mem_cgroup_from_cont(cgrp->parent);
5873 mutex_lock(&memcg_create_mutex);
5874 /* oom-kill-disable is a flag for subhierarchy. */
5875 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5876 mutex_unlock(&memcg_create_mutex);
5877 return -EINVAL;
5879 memcg->oom_kill_disable = val;
5880 if (!val)
5881 memcg_oom_recover(memcg);
5882 mutex_unlock(&memcg_create_mutex);
5883 return 0;
5886 #ifdef CONFIG_MEMCG_KMEM
5887 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5889 int ret;
5891 memcg->kmemcg_id = -1;
5892 ret = memcg_propagate_kmem(memcg);
5893 if (ret)
5894 return ret;
5896 return mem_cgroup_sockets_init(memcg, ss);
5899 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5901 mem_cgroup_sockets_destroy(memcg);
5904 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5906 if (!memcg_kmem_is_active(memcg))
5907 return;
5910 * kmem charges can outlive the cgroup. In the case of slab
5911 * pages, for instance, a page contain objects from various
5912 * processes. As we prevent from taking a reference for every
5913 * such allocation we have to be careful when doing uncharge
5914 * (see memcg_uncharge_kmem) and here during offlining.
5916 * The idea is that that only the _last_ uncharge which sees
5917 * the dead memcg will drop the last reference. An additional
5918 * reference is taken here before the group is marked dead
5919 * which is then paired with css_put during uncharge resp. here.
5921 * Although this might sound strange as this path is called from
5922 * css_offline() when the referencemight have dropped down to 0
5923 * and shouldn't be incremented anymore (css_tryget would fail)
5924 * we do not have other options because of the kmem allocations
5925 * lifetime.
5927 css_get(&memcg->css);
5929 memcg_kmem_mark_dead(memcg);
5931 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5932 return;
5934 if (memcg_kmem_test_and_clear_dead(memcg))
5935 css_put(&memcg->css);
5937 #else
5938 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5940 return 0;
5943 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5947 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5950 #endif
5952 static struct cftype mem_cgroup_files[] = {
5954 .name = "usage_in_bytes",
5955 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5956 .read = mem_cgroup_read,
5957 .register_event = mem_cgroup_usage_register_event,
5958 .unregister_event = mem_cgroup_usage_unregister_event,
5961 .name = "max_usage_in_bytes",
5962 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5963 .trigger = mem_cgroup_reset,
5964 .read = mem_cgroup_read,
5967 .name = "limit_in_bytes",
5968 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5969 .write_string = mem_cgroup_write,
5970 .read = mem_cgroup_read,
5973 .name = "soft_limit_in_bytes",
5974 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5975 .write_string = mem_cgroup_write,
5976 .read = mem_cgroup_read,
5979 .name = "failcnt",
5980 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5981 .trigger = mem_cgroup_reset,
5982 .read = mem_cgroup_read,
5985 .name = "stat",
5986 .read_seq_string = memcg_stat_show,
5989 .name = "force_empty",
5990 .trigger = mem_cgroup_force_empty_write,
5993 .name = "use_hierarchy",
5994 .flags = CFTYPE_INSANE,
5995 .write_u64 = mem_cgroup_hierarchy_write,
5996 .read_u64 = mem_cgroup_hierarchy_read,
5999 .name = "swappiness",
6000 .read_u64 = mem_cgroup_swappiness_read,
6001 .write_u64 = mem_cgroup_swappiness_write,
6004 .name = "move_charge_at_immigrate",
6005 .read_u64 = mem_cgroup_move_charge_read,
6006 .write_u64 = mem_cgroup_move_charge_write,
6009 .name = "oom_control",
6010 .read_map = mem_cgroup_oom_control_read,
6011 .write_u64 = mem_cgroup_oom_control_write,
6012 .register_event = mem_cgroup_oom_register_event,
6013 .unregister_event = mem_cgroup_oom_unregister_event,
6014 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6017 .name = "pressure_level",
6018 .register_event = vmpressure_register_event,
6019 .unregister_event = vmpressure_unregister_event,
6021 #ifdef CONFIG_NUMA
6023 .name = "numa_stat",
6024 .read_seq_string = memcg_numa_stat_show,
6026 #endif
6027 #ifdef CONFIG_MEMCG_KMEM
6029 .name = "kmem.limit_in_bytes",
6030 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6031 .write_string = mem_cgroup_write,
6032 .read = mem_cgroup_read,
6035 .name = "kmem.usage_in_bytes",
6036 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6037 .read = mem_cgroup_read,
6040 .name = "kmem.failcnt",
6041 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6042 .trigger = mem_cgroup_reset,
6043 .read = mem_cgroup_read,
6046 .name = "kmem.max_usage_in_bytes",
6047 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6048 .trigger = mem_cgroup_reset,
6049 .read = mem_cgroup_read,
6051 #ifdef CONFIG_SLABINFO
6053 .name = "kmem.slabinfo",
6054 .read_seq_string = mem_cgroup_slabinfo_read,
6056 #endif
6057 #endif
6058 { }, /* terminate */
6061 #ifdef CONFIG_MEMCG_SWAP
6062 static struct cftype memsw_cgroup_files[] = {
6064 .name = "memsw.usage_in_bytes",
6065 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6066 .read = mem_cgroup_read,
6067 .register_event = mem_cgroup_usage_register_event,
6068 .unregister_event = mem_cgroup_usage_unregister_event,
6071 .name = "memsw.max_usage_in_bytes",
6072 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6073 .trigger = mem_cgroup_reset,
6074 .read = mem_cgroup_read,
6077 .name = "memsw.limit_in_bytes",
6078 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6079 .write_string = mem_cgroup_write,
6080 .read = mem_cgroup_read,
6083 .name = "memsw.failcnt",
6084 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6085 .trigger = mem_cgroup_reset,
6086 .read = mem_cgroup_read,
6088 { }, /* terminate */
6090 #endif
6091 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6093 struct mem_cgroup_per_node *pn;
6094 struct mem_cgroup_per_zone *mz;
6095 int zone, tmp = node;
6097 * This routine is called against possible nodes.
6098 * But it's BUG to call kmalloc() against offline node.
6100 * TODO: this routine can waste much memory for nodes which will
6101 * never be onlined. It's better to use memory hotplug callback
6102 * function.
6104 if (!node_state(node, N_NORMAL_MEMORY))
6105 tmp = -1;
6106 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6107 if (!pn)
6108 return 1;
6110 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6111 mz = &pn->zoneinfo[zone];
6112 lruvec_init(&mz->lruvec);
6113 mz->usage_in_excess = 0;
6114 mz->on_tree = false;
6115 mz->memcg = memcg;
6117 memcg->nodeinfo[node] = pn;
6118 return 0;
6121 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6123 kfree(memcg->nodeinfo[node]);
6126 static struct mem_cgroup *mem_cgroup_alloc(void)
6128 struct mem_cgroup *memcg;
6129 size_t size = memcg_size();
6131 /* Can be very big if nr_node_ids is very big */
6132 if (size < PAGE_SIZE)
6133 memcg = kzalloc(size, GFP_KERNEL);
6134 else
6135 memcg = vzalloc(size);
6137 if (!memcg)
6138 return NULL;
6140 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6141 if (!memcg->stat)
6142 goto out_free;
6143 spin_lock_init(&memcg->pcp_counter_lock);
6144 return memcg;
6146 out_free:
6147 if (size < PAGE_SIZE)
6148 kfree(memcg);
6149 else
6150 vfree(memcg);
6151 return NULL;
6155 * At destroying mem_cgroup, references from swap_cgroup can remain.
6156 * (scanning all at force_empty is too costly...)
6158 * Instead of clearing all references at force_empty, we remember
6159 * the number of reference from swap_cgroup and free mem_cgroup when
6160 * it goes down to 0.
6162 * Removal of cgroup itself succeeds regardless of refs from swap.
6165 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6167 int node;
6168 size_t size = memcg_size();
6170 mem_cgroup_remove_from_trees(memcg);
6171 free_css_id(&mem_cgroup_subsys, &memcg->css);
6173 for_each_node(node)
6174 free_mem_cgroup_per_zone_info(memcg, node);
6176 free_percpu(memcg->stat);
6179 * We need to make sure that (at least for now), the jump label
6180 * destruction code runs outside of the cgroup lock. This is because
6181 * get_online_cpus(), which is called from the static_branch update,
6182 * can't be called inside the cgroup_lock. cpusets are the ones
6183 * enforcing this dependency, so if they ever change, we might as well.
6185 * schedule_work() will guarantee this happens. Be careful if you need
6186 * to move this code around, and make sure it is outside
6187 * the cgroup_lock.
6189 disarm_static_keys(memcg);
6190 if (size < PAGE_SIZE)
6191 kfree(memcg);
6192 else
6193 vfree(memcg);
6197 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6199 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6201 if (!memcg->res.parent)
6202 return NULL;
6203 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6205 EXPORT_SYMBOL(parent_mem_cgroup);
6207 static void __init mem_cgroup_soft_limit_tree_init(void)
6209 struct mem_cgroup_tree_per_node *rtpn;
6210 struct mem_cgroup_tree_per_zone *rtpz;
6211 int tmp, node, zone;
6213 for_each_node(node) {
6214 tmp = node;
6215 if (!node_state(node, N_NORMAL_MEMORY))
6216 tmp = -1;
6217 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6218 BUG_ON(!rtpn);
6220 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6222 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6223 rtpz = &rtpn->rb_tree_per_zone[zone];
6224 rtpz->rb_root = RB_ROOT;
6225 spin_lock_init(&rtpz->lock);
6230 static struct cgroup_subsys_state * __ref
6231 mem_cgroup_css_alloc(struct cgroup *cont)
6233 struct mem_cgroup *memcg;
6234 long error = -ENOMEM;
6235 int node;
6237 memcg = mem_cgroup_alloc();
6238 if (!memcg)
6239 return ERR_PTR(error);
6241 for_each_node(node)
6242 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6243 goto free_out;
6245 /* root ? */
6246 if (cont->parent == NULL) {
6247 root_mem_cgroup = memcg;
6248 res_counter_init(&memcg->res, NULL);
6249 res_counter_init(&memcg->memsw, NULL);
6250 res_counter_init(&memcg->kmem, NULL);
6253 memcg->last_scanned_node = MAX_NUMNODES;
6254 INIT_LIST_HEAD(&memcg->oom_notify);
6255 memcg->move_charge_at_immigrate = 0;
6256 mutex_init(&memcg->thresholds_lock);
6257 spin_lock_init(&memcg->move_lock);
6258 vmpressure_init(&memcg->vmpressure);
6260 return &memcg->css;
6262 free_out:
6263 __mem_cgroup_free(memcg);
6264 return ERR_PTR(error);
6267 static int
6268 mem_cgroup_css_online(struct cgroup *cont)
6270 struct mem_cgroup *memcg, *parent;
6271 int error = 0;
6273 if (!cont->parent)
6274 return 0;
6276 mutex_lock(&memcg_create_mutex);
6277 memcg = mem_cgroup_from_cont(cont);
6278 parent = mem_cgroup_from_cont(cont->parent);
6280 memcg->use_hierarchy = parent->use_hierarchy;
6281 memcg->oom_kill_disable = parent->oom_kill_disable;
6282 memcg->swappiness = mem_cgroup_swappiness(parent);
6284 if (parent->use_hierarchy) {
6285 res_counter_init(&memcg->res, &parent->res);
6286 res_counter_init(&memcg->memsw, &parent->memsw);
6287 res_counter_init(&memcg->kmem, &parent->kmem);
6290 * No need to take a reference to the parent because cgroup
6291 * core guarantees its existence.
6293 } else {
6294 res_counter_init(&memcg->res, NULL);
6295 res_counter_init(&memcg->memsw, NULL);
6296 res_counter_init(&memcg->kmem, NULL);
6298 * Deeper hierachy with use_hierarchy == false doesn't make
6299 * much sense so let cgroup subsystem know about this
6300 * unfortunate state in our controller.
6302 if (parent != root_mem_cgroup)
6303 mem_cgroup_subsys.broken_hierarchy = true;
6306 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6307 mutex_unlock(&memcg_create_mutex);
6308 return error;
6312 * Announce all parents that a group from their hierarchy is gone.
6314 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6316 struct mem_cgroup *parent = memcg;
6318 while ((parent = parent_mem_cgroup(parent)))
6319 mem_cgroup_iter_invalidate(parent);
6322 * if the root memcg is not hierarchical we have to check it
6323 * explicitely.
6325 if (!root_mem_cgroup->use_hierarchy)
6326 mem_cgroup_iter_invalidate(root_mem_cgroup);
6329 static void mem_cgroup_css_offline(struct cgroup *cont)
6331 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6333 kmem_cgroup_css_offline(memcg);
6335 mem_cgroup_invalidate_reclaim_iterators(memcg);
6336 mem_cgroup_reparent_charges(memcg);
6337 mem_cgroup_destroy_all_caches(memcg);
6338 vmpressure_cleanup(&memcg->vmpressure);
6341 static void mem_cgroup_css_free(struct cgroup *cont)
6343 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6345 memcg_destroy_kmem(memcg);
6346 __mem_cgroup_free(memcg);
6349 #ifdef CONFIG_MMU
6350 /* Handlers for move charge at task migration. */
6351 #define PRECHARGE_COUNT_AT_ONCE 256
6352 static int mem_cgroup_do_precharge(unsigned long count)
6354 int ret = 0;
6355 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6356 struct mem_cgroup *memcg = mc.to;
6358 if (mem_cgroup_is_root(memcg)) {
6359 mc.precharge += count;
6360 /* we don't need css_get for root */
6361 return ret;
6363 /* try to charge at once */
6364 if (count > 1) {
6365 struct res_counter *dummy;
6367 * "memcg" cannot be under rmdir() because we've already checked
6368 * by cgroup_lock_live_cgroup() that it is not removed and we
6369 * are still under the same cgroup_mutex. So we can postpone
6370 * css_get().
6372 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6373 goto one_by_one;
6374 if (do_swap_account && res_counter_charge(&memcg->memsw,
6375 PAGE_SIZE * count, &dummy)) {
6376 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6377 goto one_by_one;
6379 mc.precharge += count;
6380 return ret;
6382 one_by_one:
6383 /* fall back to one by one charge */
6384 while (count--) {
6385 if (signal_pending(current)) {
6386 ret = -EINTR;
6387 break;
6389 if (!batch_count--) {
6390 batch_count = PRECHARGE_COUNT_AT_ONCE;
6391 cond_resched();
6393 ret = __mem_cgroup_try_charge(NULL,
6394 GFP_KERNEL, 1, &memcg, false);
6395 if (ret)
6396 /* mem_cgroup_clear_mc() will do uncharge later */
6397 return ret;
6398 mc.precharge++;
6400 return ret;
6404 * get_mctgt_type - get target type of moving charge
6405 * @vma: the vma the pte to be checked belongs
6406 * @addr: the address corresponding to the pte to be checked
6407 * @ptent: the pte to be checked
6408 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6410 * Returns
6411 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6412 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6413 * move charge. if @target is not NULL, the page is stored in target->page
6414 * with extra refcnt got(Callers should handle it).
6415 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6416 * target for charge migration. if @target is not NULL, the entry is stored
6417 * in target->ent.
6419 * Called with pte lock held.
6421 union mc_target {
6422 struct page *page;
6423 swp_entry_t ent;
6426 enum mc_target_type {
6427 MC_TARGET_NONE = 0,
6428 MC_TARGET_PAGE,
6429 MC_TARGET_SWAP,
6432 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6433 unsigned long addr, pte_t ptent)
6435 struct page *page = vm_normal_page(vma, addr, ptent);
6437 if (!page || !page_mapped(page))
6438 return NULL;
6439 if (PageAnon(page)) {
6440 /* we don't move shared anon */
6441 if (!move_anon())
6442 return NULL;
6443 } else if (!move_file())
6444 /* we ignore mapcount for file pages */
6445 return NULL;
6446 if (!get_page_unless_zero(page))
6447 return NULL;
6449 return page;
6452 #ifdef CONFIG_SWAP
6453 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6454 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6456 struct page *page = NULL;
6457 swp_entry_t ent = pte_to_swp_entry(ptent);
6459 if (!move_anon() || non_swap_entry(ent))
6460 return NULL;
6462 * Because lookup_swap_cache() updates some statistics counter,
6463 * we call find_get_page() with swapper_space directly.
6465 page = find_get_page(swap_address_space(ent), ent.val);
6466 if (do_swap_account)
6467 entry->val = ent.val;
6469 return page;
6471 #else
6472 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6473 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6475 return NULL;
6477 #endif
6479 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6480 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6482 struct page *page = NULL;
6483 struct address_space *mapping;
6484 pgoff_t pgoff;
6486 if (!vma->vm_file) /* anonymous vma */
6487 return NULL;
6488 if (!move_file())
6489 return NULL;
6491 mapping = vma->vm_file->f_mapping;
6492 if (pte_none(ptent))
6493 pgoff = linear_page_index(vma, addr);
6494 else /* pte_file(ptent) is true */
6495 pgoff = pte_to_pgoff(ptent);
6497 /* page is moved even if it's not RSS of this task(page-faulted). */
6498 page = find_get_page(mapping, pgoff);
6500 #ifdef CONFIG_SWAP
6501 /* shmem/tmpfs may report page out on swap: account for that too. */
6502 if (radix_tree_exceptional_entry(page)) {
6503 swp_entry_t swap = radix_to_swp_entry(page);
6504 if (do_swap_account)
6505 *entry = swap;
6506 page = find_get_page(swap_address_space(swap), swap.val);
6508 #endif
6509 return page;
6512 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6513 unsigned long addr, pte_t ptent, union mc_target *target)
6515 struct page *page = NULL;
6516 struct page_cgroup *pc;
6517 enum mc_target_type ret = MC_TARGET_NONE;
6518 swp_entry_t ent = { .val = 0 };
6520 if (pte_present(ptent))
6521 page = mc_handle_present_pte(vma, addr, ptent);
6522 else if (is_swap_pte(ptent))
6523 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6524 else if (pte_none(ptent) || pte_file(ptent))
6525 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6527 if (!page && !ent.val)
6528 return ret;
6529 if (page) {
6530 pc = lookup_page_cgroup(page);
6532 * Do only loose check w/o page_cgroup lock.
6533 * mem_cgroup_move_account() checks the pc is valid or not under
6534 * the lock.
6536 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6537 ret = MC_TARGET_PAGE;
6538 if (target)
6539 target->page = page;
6541 if (!ret || !target)
6542 put_page(page);
6544 /* There is a swap entry and a page doesn't exist or isn't charged */
6545 if (ent.val && !ret &&
6546 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6547 ret = MC_TARGET_SWAP;
6548 if (target)
6549 target->ent = ent;
6551 return ret;
6554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6556 * We don't consider swapping or file mapped pages because THP does not
6557 * support them for now.
6558 * Caller should make sure that pmd_trans_huge(pmd) is true.
6560 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6561 unsigned long addr, pmd_t pmd, union mc_target *target)
6563 struct page *page = NULL;
6564 struct page_cgroup *pc;
6565 enum mc_target_type ret = MC_TARGET_NONE;
6567 page = pmd_page(pmd);
6568 VM_BUG_ON(!page || !PageHead(page));
6569 if (!move_anon())
6570 return ret;
6571 pc = lookup_page_cgroup(page);
6572 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6573 ret = MC_TARGET_PAGE;
6574 if (target) {
6575 get_page(page);
6576 target->page = page;
6579 return ret;
6581 #else
6582 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6583 unsigned long addr, pmd_t pmd, union mc_target *target)
6585 return MC_TARGET_NONE;
6587 #endif
6589 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6590 unsigned long addr, unsigned long end,
6591 struct mm_walk *walk)
6593 struct vm_area_struct *vma = walk->private;
6594 pte_t *pte;
6595 spinlock_t *ptl;
6597 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6598 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6599 mc.precharge += HPAGE_PMD_NR;
6600 spin_unlock(&vma->vm_mm->page_table_lock);
6601 return 0;
6604 if (pmd_trans_unstable(pmd))
6605 return 0;
6606 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6607 for (; addr != end; pte++, addr += PAGE_SIZE)
6608 if (get_mctgt_type(vma, addr, *pte, NULL))
6609 mc.precharge++; /* increment precharge temporarily */
6610 pte_unmap_unlock(pte - 1, ptl);
6611 cond_resched();
6613 return 0;
6616 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6618 unsigned long precharge;
6619 struct vm_area_struct *vma;
6621 down_read(&mm->mmap_sem);
6622 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6623 struct mm_walk mem_cgroup_count_precharge_walk = {
6624 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6625 .mm = mm,
6626 .private = vma,
6628 if (is_vm_hugetlb_page(vma))
6629 continue;
6630 walk_page_range(vma->vm_start, vma->vm_end,
6631 &mem_cgroup_count_precharge_walk);
6633 up_read(&mm->mmap_sem);
6635 precharge = mc.precharge;
6636 mc.precharge = 0;
6638 return precharge;
6641 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6643 unsigned long precharge = mem_cgroup_count_precharge(mm);
6645 VM_BUG_ON(mc.moving_task);
6646 mc.moving_task = current;
6647 return mem_cgroup_do_precharge(precharge);
6650 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6651 static void __mem_cgroup_clear_mc(void)
6653 struct mem_cgroup *from = mc.from;
6654 struct mem_cgroup *to = mc.to;
6655 int i;
6657 /* we must uncharge all the leftover precharges from mc.to */
6658 if (mc.precharge) {
6659 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6660 mc.precharge = 0;
6663 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6664 * we must uncharge here.
6666 if (mc.moved_charge) {
6667 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6668 mc.moved_charge = 0;
6670 /* we must fixup refcnts and charges */
6671 if (mc.moved_swap) {
6672 /* uncharge swap account from the old cgroup */
6673 if (!mem_cgroup_is_root(mc.from))
6674 res_counter_uncharge(&mc.from->memsw,
6675 PAGE_SIZE * mc.moved_swap);
6677 for (i = 0; i < mc.moved_swap; i++)
6678 css_put(&mc.from->css);
6680 if (!mem_cgroup_is_root(mc.to)) {
6682 * we charged both to->res and to->memsw, so we should
6683 * uncharge to->res.
6685 res_counter_uncharge(&mc.to->res,
6686 PAGE_SIZE * mc.moved_swap);
6688 /* we've already done css_get(mc.to) */
6689 mc.moved_swap = 0;
6691 memcg_oom_recover(from);
6692 memcg_oom_recover(to);
6693 wake_up_all(&mc.waitq);
6696 static void mem_cgroup_clear_mc(void)
6698 struct mem_cgroup *from = mc.from;
6701 * we must clear moving_task before waking up waiters at the end of
6702 * task migration.
6704 mc.moving_task = NULL;
6705 __mem_cgroup_clear_mc();
6706 spin_lock(&mc.lock);
6707 mc.from = NULL;
6708 mc.to = NULL;
6709 spin_unlock(&mc.lock);
6710 mem_cgroup_end_move(from);
6713 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6714 struct cgroup_taskset *tset)
6716 struct task_struct *p = cgroup_taskset_first(tset);
6717 int ret = 0;
6718 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6719 unsigned long move_charge_at_immigrate;
6722 * We are now commited to this value whatever it is. Changes in this
6723 * tunable will only affect upcoming migrations, not the current one.
6724 * So we need to save it, and keep it going.
6726 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6727 if (move_charge_at_immigrate) {
6728 struct mm_struct *mm;
6729 struct mem_cgroup *from = mem_cgroup_from_task(p);
6731 VM_BUG_ON(from == memcg);
6733 mm = get_task_mm(p);
6734 if (!mm)
6735 return 0;
6736 /* We move charges only when we move a owner of the mm */
6737 if (mm->owner == p) {
6738 VM_BUG_ON(mc.from);
6739 VM_BUG_ON(mc.to);
6740 VM_BUG_ON(mc.precharge);
6741 VM_BUG_ON(mc.moved_charge);
6742 VM_BUG_ON(mc.moved_swap);
6743 mem_cgroup_start_move(from);
6744 spin_lock(&mc.lock);
6745 mc.from = from;
6746 mc.to = memcg;
6747 mc.immigrate_flags = move_charge_at_immigrate;
6748 spin_unlock(&mc.lock);
6749 /* We set mc.moving_task later */
6751 ret = mem_cgroup_precharge_mc(mm);
6752 if (ret)
6753 mem_cgroup_clear_mc();
6755 mmput(mm);
6757 return ret;
6760 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6761 struct cgroup_taskset *tset)
6763 mem_cgroup_clear_mc();
6766 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6767 unsigned long addr, unsigned long end,
6768 struct mm_walk *walk)
6770 int ret = 0;
6771 struct vm_area_struct *vma = walk->private;
6772 pte_t *pte;
6773 spinlock_t *ptl;
6774 enum mc_target_type target_type;
6775 union mc_target target;
6776 struct page *page;
6777 struct page_cgroup *pc;
6780 * We don't take compound_lock() here but no race with splitting thp
6781 * happens because:
6782 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6783 * under splitting, which means there's no concurrent thp split,
6784 * - if another thread runs into split_huge_page() just after we
6785 * entered this if-block, the thread must wait for page table lock
6786 * to be unlocked in __split_huge_page_splitting(), where the main
6787 * part of thp split is not executed yet.
6789 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6790 if (mc.precharge < HPAGE_PMD_NR) {
6791 spin_unlock(&vma->vm_mm->page_table_lock);
6792 return 0;
6794 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6795 if (target_type == MC_TARGET_PAGE) {
6796 page = target.page;
6797 if (!isolate_lru_page(page)) {
6798 pc = lookup_page_cgroup(page);
6799 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6800 pc, mc.from, mc.to)) {
6801 mc.precharge -= HPAGE_PMD_NR;
6802 mc.moved_charge += HPAGE_PMD_NR;
6804 putback_lru_page(page);
6806 put_page(page);
6808 spin_unlock(&vma->vm_mm->page_table_lock);
6809 return 0;
6812 if (pmd_trans_unstable(pmd))
6813 return 0;
6814 retry:
6815 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6816 for (; addr != end; addr += PAGE_SIZE) {
6817 pte_t ptent = *(pte++);
6818 swp_entry_t ent;
6820 if (!mc.precharge)
6821 break;
6823 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6824 case MC_TARGET_PAGE:
6825 page = target.page;
6826 if (isolate_lru_page(page))
6827 goto put;
6828 pc = lookup_page_cgroup(page);
6829 if (!mem_cgroup_move_account(page, 1, pc,
6830 mc.from, mc.to)) {
6831 mc.precharge--;
6832 /* we uncharge from mc.from later. */
6833 mc.moved_charge++;
6835 putback_lru_page(page);
6836 put: /* get_mctgt_type() gets the page */
6837 put_page(page);
6838 break;
6839 case MC_TARGET_SWAP:
6840 ent = target.ent;
6841 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6842 mc.precharge--;
6843 /* we fixup refcnts and charges later. */
6844 mc.moved_swap++;
6846 break;
6847 default:
6848 break;
6851 pte_unmap_unlock(pte - 1, ptl);
6852 cond_resched();
6854 if (addr != end) {
6856 * We have consumed all precharges we got in can_attach().
6857 * We try charge one by one, but don't do any additional
6858 * charges to mc.to if we have failed in charge once in attach()
6859 * phase.
6861 ret = mem_cgroup_do_precharge(1);
6862 if (!ret)
6863 goto retry;
6866 return ret;
6869 static void mem_cgroup_move_charge(struct mm_struct *mm)
6871 struct vm_area_struct *vma;
6873 lru_add_drain_all();
6874 retry:
6875 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6877 * Someone who are holding the mmap_sem might be waiting in
6878 * waitq. So we cancel all extra charges, wake up all waiters,
6879 * and retry. Because we cancel precharges, we might not be able
6880 * to move enough charges, but moving charge is a best-effort
6881 * feature anyway, so it wouldn't be a big problem.
6883 __mem_cgroup_clear_mc();
6884 cond_resched();
6885 goto retry;
6887 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6888 int ret;
6889 struct mm_walk mem_cgroup_move_charge_walk = {
6890 .pmd_entry = mem_cgroup_move_charge_pte_range,
6891 .mm = mm,
6892 .private = vma,
6894 if (is_vm_hugetlb_page(vma))
6895 continue;
6896 ret = walk_page_range(vma->vm_start, vma->vm_end,
6897 &mem_cgroup_move_charge_walk);
6898 if (ret)
6900 * means we have consumed all precharges and failed in
6901 * doing additional charge. Just abandon here.
6903 break;
6905 up_read(&mm->mmap_sem);
6908 static void mem_cgroup_move_task(struct cgroup *cont,
6909 struct cgroup_taskset *tset)
6911 struct task_struct *p = cgroup_taskset_first(tset);
6912 struct mm_struct *mm = get_task_mm(p);
6914 if (mm) {
6915 if (mc.to)
6916 mem_cgroup_move_charge(mm);
6917 mmput(mm);
6919 if (mc.to)
6920 mem_cgroup_clear_mc();
6922 #else /* !CONFIG_MMU */
6923 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6924 struct cgroup_taskset *tset)
6926 return 0;
6928 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6929 struct cgroup_taskset *tset)
6932 static void mem_cgroup_move_task(struct cgroup *cont,
6933 struct cgroup_taskset *tset)
6936 #endif
6939 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6940 * to verify sane_behavior flag on each mount attempt.
6942 static void mem_cgroup_bind(struct cgroup *root)
6945 * use_hierarchy is forced with sane_behavior. cgroup core
6946 * guarantees that @root doesn't have any children, so turning it
6947 * on for the root memcg is enough.
6949 if (cgroup_sane_behavior(root))
6950 mem_cgroup_from_cont(root)->use_hierarchy = true;
6953 struct cgroup_subsys mem_cgroup_subsys = {
6954 .name = "memory",
6955 .subsys_id = mem_cgroup_subsys_id,
6956 .css_alloc = mem_cgroup_css_alloc,
6957 .css_online = mem_cgroup_css_online,
6958 .css_offline = mem_cgroup_css_offline,
6959 .css_free = mem_cgroup_css_free,
6960 .can_attach = mem_cgroup_can_attach,
6961 .cancel_attach = mem_cgroup_cancel_attach,
6962 .attach = mem_cgroup_move_task,
6963 .bind = mem_cgroup_bind,
6964 .base_cftypes = mem_cgroup_files,
6965 .early_init = 0,
6966 .use_id = 1,
6969 #ifdef CONFIG_MEMCG_SWAP
6970 static int __init enable_swap_account(char *s)
6972 /* consider enabled if no parameter or 1 is given */
6973 if (!strcmp(s, "1"))
6974 really_do_swap_account = 1;
6975 else if (!strcmp(s, "0"))
6976 really_do_swap_account = 0;
6977 return 1;
6979 __setup("swapaccount=", enable_swap_account);
6981 static void __init memsw_file_init(void)
6983 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6986 static void __init enable_swap_cgroup(void)
6988 if (!mem_cgroup_disabled() && really_do_swap_account) {
6989 do_swap_account = 1;
6990 memsw_file_init();
6994 #else
6995 static void __init enable_swap_cgroup(void)
6998 #endif
7001 * subsys_initcall() for memory controller.
7003 * Some parts like hotcpu_notifier() have to be initialized from this context
7004 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7005 * everything that doesn't depend on a specific mem_cgroup structure should
7006 * be initialized from here.
7008 static int __init mem_cgroup_init(void)
7010 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7011 enable_swap_cgroup();
7012 mem_cgroup_soft_limit_tree_init();
7013 memcg_stock_init();
7014 return 0;
7016 subsys_initcall(mem_cgroup_init);